JP2018115869A - 寿命推定装置、及び車輌 - Google Patents

寿命推定装置、及び車輌 Download PDF

Info

Publication number
JP2018115869A
JP2018115869A JP2017004973A JP2017004973A JP2018115869A JP 2018115869 A JP2018115869 A JP 2018115869A JP 2017004973 A JP2017004973 A JP 2017004973A JP 2017004973 A JP2017004973 A JP 2017004973A JP 2018115869 A JP2018115869 A JP 2018115869A
Authority
JP
Japan
Prior art keywords
inverter device
drive motor
life
operation period
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017004973A
Other languages
English (en)
Inventor
継斌 呉
Jibin Wu
継斌 呉
堀井 裕介
Yusuke Horii
裕介 堀井
宮川 仁
Hitoshi Miyagawa
仁 宮川
俊幸 平尾
Toshiyuki Hirao
俊幸 平尾
充宏 阿曽
Mitsuhiro Aso
充宏 阿曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2017004973A priority Critical patent/JP2018115869A/ja
Publication of JP2018115869A publication Critical patent/JP2018115869A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

【課題】車輌に搭載されたインバータ装置の残存寿命をより高い精度で予測することを可能とする寿命推定装置を提供すること。
【解決手段】車輌Aの駆動モータ3を制御するインバータ装置7に適用可能な寿命推定装置10であって、前記インバータ装置7のスイッチング素子7aの温度を検出する温度検出部10aと、前記駆動モータ3の負荷トルクに基づいて、前記駆動モータ3の稼働期間を判定する稼働期間判定部10bと、前記駆動モータ3の稼働期間毎に、当該稼働期間中の前記スイッチング素子7aの温度変化幅に基づいて、前記インバータ装置7の寿命消費量を算出する消費寿命算出部10cと、累積した前記インバータ装置7の寿命消費量に基づいて、前記インバータ装置7の残存寿命を算出する残存寿命算出部10dと、を備える。
【選択図】図1

Description

本開示は、寿命推定装置、及び車輌に関する。
ハイブリット車輌や電気自動車においては、駆動モータと、バッテリと、当該駆動モータと当該バッテリとの間に接続されて電力変換を行うインバータ装置等が搭載されている。
インバータ装置を構成するスイッチング素子は、一般に、熱膨張係数の異なる種々の材料を使って組み立てられている。そのため、インバータ装置においては、駆動モータの稼働(駆動又は回生制動を表す。以下同じ)と停止の繰り返しにより、スイッチング素子と絶縁基板との半田接合部や、スイッチング素子に接続するワイヤボンディング部等の接合部分が熱膨張と熱収縮を繰り返し、これらの接合部分において金属疲労やクラックが進展し、スイッチング素子が破損に至ることが知られている。
そして、スイッチング素子が破損に至った場合には、インバータ装置が作動不良となることにより、突然、車輌が運転不能となる可能性がある。
このような背景から、スイッチング素子の残存寿命を監視して、当該残存寿命が尽きる前に、スイッチング素子を保守したり、スイッチング素子を取り替えること等が検討されている(例えば、特許文献1を参照)。
特開2014−178264号公報
ところで、インバータ装置のスイッチング素子は、電路のオンオフを行うため、駆動モータに通流する駆動電流又は回生電流に応じて発熱量も変化する。
この点、インバータ装置を車輌に適用する場合、車輌は、走行中における負荷変動が大きいため、それに伴って、当該スイッチング素子の発熱量及び当該スイッチング素子の接合部の温度も上下動する。そのため、車輌においては、温度変化に伴う寿命消費量の算出が難しく、残存寿命の予測精度を向上させる要請がある。
本開示は、車輌に搭載されたインバータ装置の残存寿命をより高い精度で予測することを可能とする寿命推定装置、及び車輌を提供することを目的とする。
前述した課題を解決する主たる本開示は、車輌の駆動モータを制御するインバータ装置に適用可能な寿命推定装置であって、前記インバータ装置のスイッチング素子の温度を検出する温度検出部と、前記駆動モータの負荷トルクに基づいて、前記駆動モータの稼働期間を判定する稼働期間判定部と、前記駆動モータの稼働期間毎に、当該稼働期間中の前記スイッチング素子の温度変化幅に基づいて、前記インバータ装置の寿命消費量を算出する消費寿命算出部と、累積した前記インバータ装置の寿命消費量に基づいて、前記インバータ装置の残存寿命を算出する残存寿命算出部と、を備える、寿命推定装置である。
又、前述した課題を解決する主たる本開示は、上記寿命推定装置を備える、車輌である。
本開示に係る寿命推定装置によれば、インバータ装置の残存寿命をより高い精度で予測することができる。
第1の実施形態に係る車輌の構成の一例を示す図 第1の実施形態に係るインバータ装置のスイッチング素子の搭載状態の一例を示す図 第1の実施形態に係る車輌ECUの動作の一例を示すフローチャート 第1の実施形態に係る駆動モータに対するトルク指令値の時間的変化を示す図 第1の実施形態に係るインバータ装置の温度の時間的変化を示す図 第1の実施形態に係るインバータ装置のパワーサイクルを示す図 第1の実施形態に係る延命モードの一例を示す図 第2の実施形態に係るインバータ装置が有する冷却装置の一例を示す図
(第1の実施形態)
[車輌の構成]
以下、図1、図2を参照して、本実施形態に係る車輌及び寿命推定装置の構成の一例について説明する。
図1は、本実施形態に係る車輌Aの構成の一例を示す図である。
本実施形態に係る車輌Aは、例えば、エンジン1、クラッチ2、駆動モータ3、トランスミッション4、デファレンシャルギヤ5、駆動輪6、インバータ装置7、バッテリ8、各種センサ9(9a、9b)、車輌ECU(Electronic Control Unit)10を備えるハイブリッド車輌である。尚、本実施形態に係る「車輌ECU10」が「寿命推定装置」に相当する。
本実施形態に係る車輌Aは、動力伝達機構として、エンジン1、クラッチ2、駆動モータ3、トランスミッション4、デファレンシャルギヤ5及び駆動輪6が、この順で直列に接続された駆動系を有している。
本実施形態に係る車輌Aは、エンジン1及び駆動モータ3を駆動源として走行する。そして、エンジン1や駆動モータ3が生成する動力は、トランスミッション4、デファレンシャルギヤ5を介して、駆動輪6に伝達されて、車輌Aの駆動力となる。但し、当該車輌Aの駆動系の構成は、一例であって、任意の構成であってよい。
駆動モータ3は、モータジェネレータであり、例えば、永久磁石式同期モータを含んで構成される。駆動モータ3は、駆動源として機能する際には、バッテリ8の電力を利用して駆動力を生成し、エンジン1から入力された駆動力に駆動モータ3による駆動力を付加して、トランスミッション4側へと出力するようになっている。駆動モータ3は、ジェネレータとして機能する際には、駆動輪6から伝達される動力を利用した回生制動により発電を行う。
駆動モータ3は、インバータ装置7を介してバッテリ8と電気的に接続されている。駆動モータ3が駆動源として機能するとき、駆動モータ3には、バッテリ8からの直流電力がインバータ装置7によって三相交流電力に変換されて供給される。又、駆動モータ3がジェネレータとして機能するとき、駆動モータ3が発電した三相交流電力は、インバータ装置7を介して直流電力に変換されてバッテリ8に充電される。換言すると、駆動モータ3は、インバータ装置7によって、駆動状態及び発電状態が制御される。
バッテリ8は、例えば、リチウムイオン二次電池、電気二重層キャパシタ等のエネルギー源であって、インバータ装置7に対して、直流電力を供給する。又、バッテリ8には、インバータ装置7を介して、駆動モータ3が発電した回生電力が供給される。
インバータ装置7は、例えば、直流電力を三相交流電力に変換する三相ブリッジインバータ回路であり、バッテリ8から供給される直流電力を三相交流電力に変換して、駆動モータ3に対して出力する。又、インバータ装置7は、駆動モータ3で生成される回生電力を直流電力に変換してバッテリ1に送出する。
インバータ装置7は、インバータ回路を構成する複数のスイッチング素子、及びモータECU(図示せず)を有している。そして、モータECUが複数のスイッチング素子それぞれに対してPWM(Pulse Width Modulation)信号を出力することで、駆動モータ3の動作が制御される。尚、本実施形態に係るモータECUは、車輌ECU10から制御信号に基づいて、通常モードと延命モードとで動作モードが可変に構成されている(詳細は後述)。
図2は、本実施形態に係るインバータ装置7のスイッチング素子(例えば、IGBTチップ)7aの搭載状態の一例を示す図である。
図2において、スイッチング素子7aは、セラミック等の絶縁基板7e上に搭載されている。そして、スイッチング素子7aは、絶縁基板7eに形成された金属パターンと接合部7dで接続されるとともに、ワイヤボンディング部7bでダイオードチップ7c等と接続されている。スイッチング素子7aが発生する熱は、接合部7d、絶縁基板7e、当該絶縁基板7eに接続する接合部7fを介して、ヒートシンクたる金属部材7hに放熱される。
ワイヤボンディング部7b、接合部7d及び接合部7f等は、例えば、半田や銀等の材料で構成される。そして、スイッチング素子7aの発熱に伴って、これらの接合部分において熱膨張又は熱収縮が繰り返し発生し、金属疲労やクラックが進展する。
各種センサ9は、車輌Aの各部の状態を検出するために設けられている。具体的には、各種センサ9として、インバータ装置7のスイッチング素子7aの温度を検出する温度センサ9a、アクセル操作の操作量を検出するアクセル開度センサ9b等が備え付けられている。そして、これら各種センサ9a、9bで生成される検出信号は、車輌ECU10に送信される。
ここで、温度センサ9aは、インバータ装置7のスイッチング素子7aの温度(特に、スイッチング素子7aの接合部の温度)を検出するように設けられている。温度センサ9aとしては、例えば、サーミスタ等が用いられる。
車輌ECU10は、車輌Aの各部を統括制御するもので、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、入力ポート、出力ポート等を含んで構成されている。尚、図1中の矢印は、信号経路を表している。
車輌ECU10は、温度検出部10a、稼働期間判定部10b、消費寿命算出部10c、及び残存寿命算出部10dを備えている。
温度検出部10aは、例えば、温度センサ9aの検出値に基づいて、インバータ装置7のスイッチング素子7aの温度(以下、「インバータ装置7の温度」と略称する)を検出する。
但し、温度検出部10aは、インバータ装置7のスイッチング素子7aの温度を推測できればよく、温度センサ9aの検出値に代えて、駆動モータ3の回転速度を検出するセンサ(図示せず)、駆動モータ3のトルクを検出するセンサ(図示せず)、インバータ装置7を冷却する冷却水の水温を検出するセンサ(図示せず)等の検出信号を用いてもよい。
稼働期間判定部10bは、駆動モータ3が生成する駆動トルク又は駆動モータ3に作用する回生トルク(以下、駆動トルクと回生トルクを「負荷トルク」と総称する)に基づいて、駆動モータ3の稼働期間を識別する。
尚、稼働期間判定部10bは、負荷トルクを取得する際、トルク指令値に係るデータを参照してもよいし、駆動モータ3の状態を監視するトルクセンサ(図示せず)の検出値に係るデータを参照してもよい。
消費寿命算出部10cは、駆動モータ3の稼働期間毎に、当該稼働期間中のインバータ装置7の温度変化幅に基づいてインバータ装置7の寿命消費量を算出する(図4A、図4B、図5を参照して後述)。
残存寿命算出部10dは、消費寿命算出部10cが算出するインバータ装置7の寿命消費量を累積して、インバータ装置7の残存寿命を算出する。尚、残存寿命算出部10dは、インバータ装置7の残存寿命が所定の閾値以下となった場合、保護指令信号を生成する(図6を参照して後述)。
尚、上記した各機能は、例えば、CPUがROM、RAM等に記憶された制御プログラムや各種データを参照することによって実現される。但し、当該機能は、ソフトウェアによる処理に限られず、専用のハードウェア回路によっても実現できることは勿論である。
[車輌ECUの動作]
以下、図3、図4A、図4B、図5、図6を参照して、車輌ECU10の動作について説明する。
図3は、本実施形態に係る車輌ECU10の動作の一例を示すフローチャートである。この動作フローは、例えば、車輌ECU10がコンピュータプログラムに従って実行するものである。
図3の各ステップについて説明するに際して、まず、インバータ装置7の寿命消費量の算出方法について説明する。
図4Aは、駆動モータ3に対するトルク指令値の時間的変化を示す図である。図4Bは、インバータ装置7の温度の時間的変化を示す図である。
図4Aには、横軸を時間軸、縦軸をトルク指令値(プラス側が駆動トルク、マイナス側が回生トルク)としたグラフを描き、図4Bには、横軸を時間軸、縦軸をインバータ装置7の温度としたグラフを描いている。尚、図4Aと図4Bとでは、0点を基準点とする共通の時間軸上にグラフを描いている。
本実施形態において、インバータ装置7の寿命消費量は、駆動モータ3の負荷トルクが閾値以上の期間(「1サイクルの稼働期間」とも称する)毎の温度変化幅に基づいて算出される。インバータ装置7の寿命消費量を規定するスイッチング素子7aの接合部におけるクラック等の進展は、温度の絶対値や温度上昇している時間よりも、温度変化に伴う熱膨張又は熱収縮の度合い及び頻度に依拠する。つまり、スイッチング素子7aの接合部の温度変化が上昇を始めてから低下に転ずるまでの単位となる稼働期間毎に、温度変化幅及びインバータ装置7の寿命消費量を検出することによって、より正確に残存寿命を把握することができる。
従って、本実施形態に係る車輌ECU10は、駆動モータ3の負荷トルク(駆動トルク又は回生トルク)が所定の閾値(図4A中のMth)以上になった時点を、稼働期間の開始タイミングとする。そして、駆動モータ3の負荷トルクが所定の閾値(図4A中のMth)未満になった時点を、当該稼働期間の終了タイミングとする。尚、図4A、図4BのL1、L2、L3が、それぞれ、1サイクルの稼働期間に相当する。但し、稼働期間の開始タイミングを判定する負荷トルクの閾値(第1の閾値)と、稼働期間の終了タイミングを判定する負荷トルクの閾値(第2の閾値)とは、必ずしも同一の値でなくともよい。
但し、駆動モータ3の負荷トルクの変動に伴うハンチング現象(オンオフを頻繁に繰り返す状態を意味する。以下同じ)を防止する観点から、車輌ECU10は、稼働期間の少なくとも終了タイミングを決定する際、時間的な不感帯を設ける。ここでは、車輌ECU10は、駆動モータ3の負荷トルクが所定の閾値(図4A中のMth)未満の状態が所定期間(図4A中のdL)継続した場合、当該稼働期間の終了タイミングとする。
ここで、1サイクルの稼働期間における「インバータ装置7の温度変化幅」とは、1サイクルの稼働期間の中でのインバータ装置7の最低温度(典型的には、開始タイミングの温度)と最高温度の差である。図4Bでは、稼働期間L1においてはΔT1、稼働期間L2においてはΔT2、稼働期間L3においてはΔT3が、それぞれの稼働期間におけるインバータ装置7の温度変化幅に相当する。
尚、図4Bにおいて、インバータ装置7の温度が継時的に上昇しているのは、車輌Aが走行している際に、インバータ装置7の温度が低下する前に、充放電が繰り返し実行されているためである。
図5は、本実施形態に係るインバータ装置7のパワーサイクルを示す図である。
パワーサイクルは、インバータ装置7のサーマルサイクル耐久試験にて、ある温度変化幅(ΔT)のときに、インバータ装置7が破損するまでのサイクル数(充放電の回数を意味する。以下同じ)を求めたものである。図5の横軸は温度変化幅(ΔT)、縦軸はインバータ装置7が破損するまでのサイクル数を表す。尚、パワーサイクルは、図5に示すように、1サイクルの稼働期間における温度変化幅が大きいほど、インバータ装置7が破損するまでのサイクル数が少なくなる。
車輌ECU10は、パワーサイクルを参照することで、1サイクルの稼働期間における温度変化幅(ΔT)から、1サイクルの稼働期間における寿命消費量を推定することができる。車輌ECU10は、例えば、以下の式(1)を用いて、温度変化幅ΔTから1サイクルの稼働期間におけるインバータ装置7の寿命消費量を算出する。但し、ΔTmin以下の温度変化幅のときは、無限寿命とし、寿命消費量=0とする。
温度変化幅ΔTのときの寿命消費量=1/サイクル数 … 式(1)
これより、稼働期間の度に、インバータ装置7の寿命消費量を算出し、当該寿命消費量の累積値が1に到達した時が破損時期に相当すると判断することができる。本実施形態に係る車輌ECU10は、例えば、以下の式(2)を用いて、インバータ装置7の寿命消費量からインバータ装置7の残存寿命を算出することができる。
残存寿命=1−寿命消費量の累積値 … 式(2)
尚、車輌ECU10には、インバータ装置7の寿命消費量及び残存寿命を算出するため、予め、当該パワーサイクルに係るデータが記憶されている。但し、当該パワーサイクルに係るデータは、1サイクルの稼働期間における温度変化幅と寿命消費量とを関連付けるものであれば、その記憶形式は任意であり、演算式として記憶されていてもよいし、テーブルデータとして記憶されていてもよい。
図3のフローチャートについて説明すると、まず、車輌ECU10(稼働期間判定部)は、駆動モータ3の稼働開始を識別するべく、駆動モータ3に対するトルク指令値を監視し、当該トルク指令値が所定値以上になるまで待ち受ける(ステップS1:NO)。
尚、ここでは、車輌ECU10がアクセル開度センサ9bの検出値等に基づいて、当該動作フローと並列処理により、逐次、駆動モータ3に対するトルク指令値を決定しているものとする。又、ステップS1においては、車輌ECU10は、駆動トルクと回生トルクの両方を監視するため、トルク指令値の絶対値(以下略)を監視する。
トルク指令値が所定値以上の場合(ステップS1:YES)、車輌ECU10は、稼働期間の開始タイミングと判断して、当該開始タイミングを示す時刻等を記憶する(ステップS2)。
次に、車輌ECU10(稼働期間判定部)は、駆動モータ3の稼働停止を監視するべく、トルク指令値を監視し、当該トルク指令値が所定値未満になるまで待ち受ける(ステップS3:NO)。尚、ステップS3においては、車輌ECU10は、ハンチング現象を防止する観点から、駆動モータ3の負荷トルクが所定の閾値未満の状態が一定期間(例えば、数秒間)継続した場合、当該稼働期間の終了タイミングとする。
次に、トルク指令値が所定値未満の状態が、一定期間継続した場合(ステップS3:YES)、車輌ECU10(稼働期間判定部)は、稼働期間の終了タイミングと判断して、当該終了タイミングを示す時刻等を記憶する(ステップS4)。
次に、車輌ECU10(消費寿命算出部)は、稼働期間中のインバータ装置7の温度変化幅を取得する(ステップS5)。ステップS5においては、車輌ECU10は、記憶部に記憶された上記稼働期間中におけるインバータ装置7の最低温度と最高温度の温度変化幅を取得する。
尚、本実施形態では、車輌ECU10の温度検出部10aは、当該動作フローと並列処理により、温度センサ9aからの検出信号を逐次取得して、検出時刻と関連付けて、記憶部(例えば、上記したRAMを表す。以下同じ)に格納しているものとする。但し、1サイクルの稼働期間中の温度変化幅を検出できればよく、温度の記憶形式は、任意である。例えば、1サイクルの稼働期間中に最低温度や最高温度が更新される毎に、当該温度を記憶することで、1サイクルの稼働期間中の温度変化幅を検出してもよい。
次に、車輌ECU10(消費寿命算出部)は、例えば、上記式(1)を用いてステップS5で取得した稼働期間中のインバータ装置7の温度変化幅に基づいて、寿命消費量を算出する(ステップS6)。
次に、車輌ECU10(残存寿命算出部)は、記憶部に記憶された現在の寿命消費量の累積値に対して、ステップS6で算出した寿命消費量を加算して、寿命消費量の累積値の更新を行う(ステップS7)。
次に、車輌ECU10(残存寿命算出部)は、例えば、上記式(2)を用いてインバータ装置7の残存寿命を算出し、当該残存寿命が閾値以下になったか否かを判定する(ステップS8)。そして、インバータ装置7の残存寿命が閾値以下になっていない場合(ステップS8:NO)、車輌ECU10は、ステップS1に戻って、再度、インバータ装置7の寿命監視処理を継続する。
一方、インバータ装置7の残存寿命が閾値以下になっている場合(ステップS8:YES)、車輌ECU10は、インバータ装置7を延命させるべく延命モードを設定した上で(ステップS9)、ステップS1に戻って、再度、インバータ装置7の寿命監視処理を継続する。以上のような処理を繰り返して、車輌ECU10は、インバータ装置7の寿命推定処理を行う。
ここで、インバータ装置7を延命させるための延命モードについて説明する。
図6は、インバータ装置7の延命モードの一例を示す図である。
インバータ装置7においては、上記したように、稼働期間中の温度変化幅が大きいほど、インバータ装置7のスイッチング素子7aの接合部に作用する熱応力が大きくなり、1サイクルの稼働期間における寿命消費量も大きくなる。従って、本実施形態に係るインバータ装置7は、延命モードにおいては、駆動モータ3の負荷トルクを制限することで、稼働期間中のインバータ装置7の温度変化幅を小さくし、寿命消費量を軽減する。換言すると、インバータ装置7は、スイッチング素子7aに通流する駆動電流を制限することで、インバータ装置7のスイッチング素子7aにおける発熱量を制限し、稼働期間中のインバータ装置7の温度変化幅を小さくする。
尚、車輌ECU10は、上記ステップS9で延命モードを設定する際、例えば、インバータ装置7のモータECUに対して、モード変更の指示及び制限率を示す制御信号(「保護指令信号」に相当)を出力する。そして、インバータ装置7のモータECUは、車輌ECU10からの制御信号を取得するに応じて、自身の有するレジスタに延命モードを設定し、延命モードに係る動作を実行する。
図6中の横軸は残存寿命[%]を表し、縦軸は負荷トルクの制限率[%]を表している。具体的には、図6では、残存寿命[%]が10%以下になった場合、負荷トルクの制限を開始し、残存寿命[%]の低下と共に、段階的に、負荷トルクを制限する制限率を大きくすることを表している。
ここで、制限率とは、出力可能(又は回生可能)なトルク[N・m]の上限値の制限率を意味する。つまり、制限率が50%に設定された場合、インバータ装置7は、トルク指令値が出力限界値の50%以上を示すものであっても、駆動モータ3の出力トルクを出力限界値の50%に制限するように、駆動モータ3を制御することになる。これによって、1サイクルの稼働期間中のインバータ装置7の温度変化幅を小さくし、当該稼働期間における寿命消費量を軽減することができる。
又、残存寿命[%]の低下と共に、段階的に、負荷トルクを制限する制限率を大きくすることによって、車輌Aの運転特性の低下回避の要求と、インバータ装置7の延命要求とのバランスをとることができる。
尚、ここでは、インバータ装置7に対して負荷トルクの制限率を設定する構成としているが、当該設定データは、駆動モータ3の負荷トルク又は駆動モータ3に対して通流させる電流値の制限値を示す値であれば任意である。
以上、本実施形態に係る車輌ECU10(寿命推定装置)によれば、駆動モータ3の負荷トルクに基づいて駆動モータ3の稼働期間を識別し、当該駆動モータ3の稼働期間毎のインバータ装置7の温度変化幅に基づいてインバータ装置7の寿命消費量を推定する。これによって、スイッチング素子7aの温度変化に伴う熱膨張又は熱収縮の度合い及び頻度を正確に検出することができる。特に、温度センサ9aの感度よりも速いタイミングで、インバータ装置7の温度変化を検出することができるため、より高精度に残存寿命を推定することが可能となる。
尚、インバータ装置7のスイッチング素子7aの温度は、駆動モータ3の稼働期間においても、駆動モータ3の負荷トルクの変動に応じて微小に上下動するが、当該温度変化は、寿命消費量としてはほぼ無視することが可能である。この点、本実施形態に係る車輌ECU10によれば、インバータ装置7の寿命消費量に影響を及ぼす駆動モータ3の稼働期間の温度変化幅だけを正確に検出することができるため、より高精度に残存寿命を推定することが可能となる。
又、本実施形態に係る車輌ECU10によれば、高精度に残存寿命を推定することができるため、インバータ装置7の残存寿命が短くなった場合には、適切なタイミングで、報知したり、延命処理を実行したりすることができる。
(第2の実施形態)
本実施形態に係る車輌ECU10は、延命モードを実行する際、インバータ装置7が有する冷却装置70に冷却能力を増大させる処理を行う点で、第1の実施形態と相違する。尚、第1の実施形態と共通する構成については、説明を省略する。
図7は、本実施形態に係るインバータ装置7が有する冷却装置70の一例を示す図である。
本実施形態に係る冷却装置70は、例えば、冷却水が流通する冷媒回路71、並びに、当該冷媒回路71に接続された循環ポンプ72及びラジエータ73を備えている。
冷媒回路71は、インバータ装置7のヒートシンクたる金属部材7h(以下、「ヒートシンク7h」と称する)に接続され、冷媒回路71を流通する冷却水により、ヒートシンク7hから吸熱することで、インバータ装置7のスイッチング素子7aを冷却する。
冷却水は、循環ポンプ72(以下、「ポンプ」とも称する)により冷媒回路71内を循環させられる。そして、冷却水は、ヒートシンク7hから吸熱した熱をラジエータ73から放熱して、再度、ヒートシンク7hから吸熱するようにして、冷媒回路71を循環する。
本実施形態においては、車輌ECU10は、図3のフローチャートのステップS9において、延命モードを設定する際、冷却装置70の循環ポンプ72の動作を制御するポンプECU(図示せず)に対して、モード変更に係る制御信号(「保護指令信号」に相当)を出力する。そして、循環ポンプ72のポンプECUは、車輌ECU10からの制御信号を取得するに応じて、自身の有するレジスタに延命モードを設定し、当該延命モードに係る動作を実行する。
尚、本実施形態に係る冷却装置70は、通常モードにおいては、例えば、車速が所定値以上の場合に、循環ポンプ72を稼働させ、インバータ装置7の冷却を実行する。又、冷却装置70は、循環ポンプ72の破損防止の観点から、通常モードにおいては、最大出力よりも低減した出力値(例えば、最大出力の80%程度の定格出力)で循環ポンプ72を稼働させている。換言すると、インバータ装置7の冷却装置70は、一般に、通常モードにおいては、最大出力に対して出力余力を有した状態で稼働している。
冷却装置70は、例えば、延命モードにおいては、循環させる冷却水の量が多量になるように、循環ポンプ72を最大出力で動作させてもよい。又、冷却装置70は、延命モードにおいては、循環ポンプ72の動作頻度を増加させ(例えば、車速によらず常時動作)、冷却能力を増大させてもよい。
尚、冷却装置70は、ファンを用いて空気冷媒によって、インバータ装置7のスイッチング素子7aを冷却してもよい。その場合も、冷却装置70は、延命モードにおいては、ファンの出力や動作頻度を増加させることで、冷却能力を増大させればよい。
このように、本実施形態に係る延命モードにおいては、インバータ装置7が冷却装置70を用いて、インバータ装置7のスイッチング素子7aの温度変化幅を小さくし、モータ3の稼働期間における寿命消費量を軽減する。これによって、インバータ装置7の延命を実現することができる。
(その他の実施形態)
本発明は、上記実施形態に限らず、種々に変形態様が考えられる。
上記実施形態では、インバータ装置7の残存寿命が短くなったときの処理の一例として、駆動モータ3の負荷トルクを制限したり、インバータ装置7のスイッチング素子7aを強制的に冷却する態様を示した。但し、インバータ装置7の残存寿命が短くなった場合に、インバータ装置7の保守を促し、インバータ装置7が突然故障する事態を避けることができればよく、車輌ECU10は、当該残存寿命を運転者に識別可能なようにインジケータに表示したり、インバータ装置7の残存寿命が短くなった場合に、音声や警告ランプ等で報知したりする態様としてもよい。
又、上記実施形態では、車輌ECU10の一例として、温度検出部10a、稼働期間判定部10b、消費寿命算出部10c、及び残存寿命算出部10dの機能が一のコンピュータによって実現されるものとして記載したが、複数のコンピュータによって実現されてもよいのは勿論である。
又、上記実施形態では、車輌ECU10の一例として、稼働期間判定部10b、消費寿命算出部10c、及び残存寿命算出部10dの処理を一連のフローの中で実行されるものとして示したが、これらの処理の一部が並列で実行されるものとしてもよい。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
本開示に係る寿命推定装置は、車輌のインバータ装置の寿命推定に好適に用いることができる。
1 エンジン
2 クラッチ
3 駆動モータ
4 トランスミッション
5 デファレンシャルギヤ
6 駆動輪
7 インバータ装置
8 バッテリ
9 各種センサ
10 車輌ECU
10a 温度検出部
10b 稼働期間判定部
10c 消費寿命算出部
10d 残存寿命算出部
70 冷却装置

Claims (8)

  1. 車輌の駆動モータを制御するインバータ装置に適用可能な寿命推定装置であって、
    前記インバータ装置のスイッチング素子の温度を検出する温度検出部と、
    前記駆動モータの負荷トルクに基づいて、前記駆動モータの稼働期間を判定する稼働期間判定部と、
    前記駆動モータの稼働期間毎に、当該稼働期間中の前記スイッチング素子の温度変化幅に基づいて、前記インバータ装置の寿命消費量を算出する消費寿命算出部と、
    累積した前記インバータ装置の寿命消費量に基づいて、前記インバータ装置の残存寿命を算出する残存寿命算出部と、を備える、
    寿命推定装置。
  2. 前記稼働期間判定部は、前記駆動モータの負荷トルクが第1の閾値以上に上昇してから、前記駆動モータの負荷トルクが第2の閾値未満に低下するまでの期間を前記駆動モータの稼働期間と判定する、
    請求項1に記載の寿命推定装置。
  3. 前記稼働期間判定部は、前記駆動モータの負荷トルクが前記第1の閾値以上に上昇した時点を前記駆動モータの稼働期間の開始タイミングと判定し、
    前記駆動モータの負荷トルクが前記第2の閾値未満に低下した後、当該状態が所定期間継続した時点を前記駆動モータの稼働期間の終了タイミングと判定する、
    請求項2に記載の寿命推定装置。
  4. 前記残存寿命算出部は、前記インバータ装置の残存寿命が所定の閾値以下となった場合、前記スイッチング素子の温度変化を抑制するべく、保護指令信号を生成する、
    請求項1乃至3のいずれか一項に記載の寿命推定装置。
  5. 前記インバータ装置は、前記保護指令信号を受信した場合、前記駆動モータの負荷トルク又は前記駆動モータに通流する電流の上限を制限する延命モードを実行する、
    請求項4に記載の寿命推定装置。
  6. 前記インバータ装置は、前記保護指令信号を受信した場合、前記スイッチング素子を冷却する冷却装置の冷却能力を増大させる延命モードを実行する、
    請求項1乃至5いずれか一項に記載の寿命推定装置。
  7. 前記インバータ装置は、前記延命モードにおいては、前記スイッチング素子に対して冷却媒体を流通させる前記冷却装置のポンプ又はファンの出力又は動作頻度を通常モードの場合よりも増大させる、
    請求項6に記載の寿命推定装置。
  8. 請求項1乃至7のいずれか一項に記載の寿命推定装置を搭載する車輌。
JP2017004973A 2017-01-16 2017-01-16 寿命推定装置、及び車輌 Pending JP2018115869A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017004973A JP2018115869A (ja) 2017-01-16 2017-01-16 寿命推定装置、及び車輌

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017004973A JP2018115869A (ja) 2017-01-16 2017-01-16 寿命推定装置、及び車輌

Publications (1)

Publication Number Publication Date
JP2018115869A true JP2018115869A (ja) 2018-07-26

Family

ID=62985028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017004973A Pending JP2018115869A (ja) 2017-01-16 2017-01-16 寿命推定装置、及び車輌

Country Status (1)

Country Link
JP (1) JP2018115869A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244476A1 (ja) 2018-06-19 2019-12-26 株式会社ブリヂストン 重荷重用タイヤ
CN111537856A (zh) * 2019-02-05 2020-08-14 三菱电机株式会社 半导体模块及半导体模块的寿命预测系统
WO2021084821A1 (ja) * 2019-10-31 2021-05-06 株式会社日立産機システム 圧縮機、監視システム、及び圧縮機の監視方法
KR102276013B1 (ko) * 2020-06-03 2021-07-12 주식회사 현대케피코 차량용 전자제어유닛의 수명 예측 장치 및 방법

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244476A1 (ja) 2018-06-19 2019-12-26 株式会社ブリヂストン 重荷重用タイヤ
CN111537856A (zh) * 2019-02-05 2020-08-14 三菱电机株式会社 半导体模块及半导体模块的寿命预测系统
CN111537856B (zh) * 2019-02-05 2024-03-08 三菱电机株式会社 半导体模块及半导体模块的寿命预测系统
WO2021084821A1 (ja) * 2019-10-31 2021-05-06 株式会社日立産機システム 圧縮機、監視システム、及び圧縮機の監視方法
JP2021072708A (ja) * 2019-10-31 2021-05-06 株式会社日立産機システム 圧縮機、監視システム、及び圧縮機の監視方法
JP7118940B2 (ja) 2019-10-31 2022-08-16 株式会社日立産機システム 圧縮機、監視システム、及び圧縮機の監視方法
US11933291B2 (en) 2019-10-31 2024-03-19 Hitachi Industrial Equipment Systems Co., Ltd. Compressor, monitoring system, and method of monitoring compressor
KR102276013B1 (ko) * 2020-06-03 2021-07-12 주식회사 현대케피코 차량용 전자제어유닛의 수명 예측 장치 및 방법

Similar Documents

Publication Publication Date Title
JP2018117400A (ja) 車輌の駆動装置、及び車輌
JP2018115869A (ja) 寿命推定装置、及び車輌
KR101039678B1 (ko) 하이브리드 차량의 전력변환장치 냉각 제어 방법
JP5621619B2 (ja) 電源装置
US20100111134A1 (en) Cooling capacity measurement method for inverter device
JP6070849B2 (ja) センサ異常判定装置
JP5032061B2 (ja) インバータ装置
JP2014187789A (ja) 異常検出機能を備えたモータ駆動装置
JP2007028741A (ja) 電力変換器とその管理システム
CN103718406A (zh) 变流器的热监测
JP2015167436A (ja) 放熱特性推定部を備えた数値制御装置
JP6402841B2 (ja) 電力変換装置の温度異常検出方法および電力変換装置の温度異常検出装置
JP6299368B2 (ja) 半導体素子温度推定装置
JP2012170211A (ja) 異常判定装置、異常素子検出装置および車両駆動システム
US11362580B2 (en) Power conversion device with temperature control
JP2018042414A (ja) 冷却異常検出装置
US9935527B2 (en) Temperature estimation apparatus for rotating electric machine
EP3661049B1 (en) Apparatus protection device and apparatus protection method
JP5476718B2 (ja) 電力用半導体モジュールの安全装置
JP4967868B2 (ja) ハイブリッド車両用駆動装置及び制御方法
JP2017050920A (ja) 回転電機制御装置
JP5875995B2 (ja) 鉄道車両用の駆動装置
JP2011087401A (ja) 電子部品の温度検出装置及び車載電力素子の駆動制御装置
CN115230483A (zh) 电动机的控制装置以及车辆
JP2009071912A (ja) 蓄電装置

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190612

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191024