WO2019124311A1 - モータ搭載自動車の駆動制御装置 - Google Patents

モータ搭載自動車の駆動制御装置 Download PDF

Info

Publication number
WO2019124311A1
WO2019124311A1 PCT/JP2018/046359 JP2018046359W WO2019124311A1 WO 2019124311 A1 WO2019124311 A1 WO 2019124311A1 JP 2018046359 W JP2018046359 W JP 2018046359W WO 2019124311 A1 WO2019124311 A1 WO 2019124311A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
temperature detection
temperature
coolant
motor
Prior art date
Application number
PCT/JP2018/046359
Other languages
English (en)
French (fr)
Inventor
剛志 神田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017241940A external-priority patent/JP7095984B2/ja
Priority claimed from JP2017242490A external-priority patent/JP7021927B2/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201880081472.0A priority Critical patent/CN111491821B/zh
Publication of WO2019124311A1 publication Critical patent/WO2019124311A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a drive control device for a motor-equipped vehicle, and relates to a technology capable of accurately detecting the temperature of a switching element of an inverter.
  • An automobile equipped with a drive motor such as an electric vehicle (EV) or a hybrid electric vehicle (HEV) is provided with a cooling device for cooling the motor and the inverter.
  • a cooling device for cooling the motor and the inverter.
  • the fan may be turned or the flow rate of the cooling water may be changed.
  • the temperature of the internal switching element is monitored, and if it is likely to reach the upper limit temperature, torque or current limit is performed or the driving is stopped to prevent the abnormality of the switching element.
  • torque or current limit is performed or the driving is stopped to prevent the abnormality of the switching element.
  • the detected temperature of the switching element deviates to a value higher than the actual temperature, the temperature at which the current is limited is immediately reached, and torque limitation may be excessive.
  • the current can not be limited even if the temperature should be originally limited, and an abnormality occurs in the switching element There is. Therefore, it is important that each temperature sensor operate normally.
  • Patent No. 5770649 gazette Patent No. 3409756 JP, 2017-100482, A JP, 2009-284597, A
  • a simple method determines that an open or short circuit or circuit failure has occurred as an abnormality. For example, when the temperature detection value is ⁇ 50 ° C. or less, or 200 ° C. or more, it is determined that the temperature sensor is abnormal.
  • the temperature detection value is actually a fixed value even if it is within the normal temperature range, or the temperature detection value is actually even if it is within a normal temperature range. It is an abnormality that seems to deviate from the temperature of
  • Patent Document 1 when it enters into an abnormal area
  • Patent Document 2 proposes a method of confirming whether the detected temperature changes by a predetermined value or more when the temperature estimated from the current integrated value changes by a predetermined value or more.
  • the amount of temperature change can be confirmed, it is possible that the detected temperature deviates from the actual temperature because it is not known whether the temperature before the temperature change is correct.
  • Patent Document 3 when the soak time has elapsed for a predetermined time or more by the abnormality determination means of the water temperature sensor, the absolute value of the difference between the measurement value of the temperature sensor of the inverter and the measurement value of the water temperature sensor there has been proposed a method of determining that the water temperature sensor is abnormal when the value of is a predetermined value or more.
  • the coolant temperature estimated value is calculated from the IGBT element temperature by the abnormality determination means of the coolant temperature sensor, and if the difference between the coolant temperature estimated value and the coolant temperature detected value is equal to or more than a predetermined value,
  • a method has been proposed for determining an abnormality. These methods are performed on the premise that the inverter (IGBT) temperature is correct. If the inverter temperature is not detected correctly, it is not possible to accurately determine the abnormality of the water temperature sensor.
  • IGBT inverter
  • the detected temperature of the switching element deviates to a value higher than the actual temperature, the temperature at which the current is limited may be reached immediately, and torque limitation may be excessive.
  • the detected temperature of the switching element deviates to a value lower than the actual temperature, the current can not be limited even when the temperature should be originally limited, and an abnormality may occur in the switching element. is there.
  • An object of the present invention is to provide a drive control device for a motor-equipped vehicle capable of accurately detecting the temperature of a switching element of an inverter.
  • the drive control device 16 for a motor mounted automobile is mounted on a vehicle capable of independently driving the first and second motors 6 and 6 for driving the left and right drive wheels 2 and 2, respectively.
  • a power control unit including a first and a second inverter 25a, 25a for converting a direct current power into an alternating current power used to drive each of the first and second motors 6, 6, which is a drive control device 16 of an automobile. 25 and 25.
  • the first and second inverters 25a and 25a are respectively provided with power circuit units 25 and 25 for converting DC power into AC power by opening and closing a plurality of switching elements 33, and command torques applied thereto.
  • a motor control unit 26 for controlling the first and second motors 6 and 6 via the power circuit units 25 and 25 according to A first temperature detection unit 29 provided in any one of the plurality of switching elements 33 of the first inverter 25a that drives the first motor 6, and the second one that drives the second motor 6
  • the second temperature detection unit 29 provided in any one of the plurality of switching elements 33 of the two inverters 25a, the first and second temperature detection values T1, which are the temperatures of the corresponding switching elements 33.
  • a temperature detection abnormality that determines whether or not there is an abnormality in the first and / or second temperature detection unit 29 by comparing the temperatures detected by the first and second temperature detection units 29, 29 with each other In the determination unit 30, the first and second temperature detection units 29, 29 detect when the first and second motors 6 are not energized when the command torque is not given to the motor control unit 26.
  • a temperature detection abnormality determination unit 30 that determines that one or both of the first and second temperature detection units 29 have an abnormality when the temperature difference does not fall within the defined normal range. .
  • the determined normal range is a range arbitrarily determined by design or the like, and is determined by, for example, finding an appropriate range by test and / or simulation.
  • the temperature detection abnormality determination unit 30 compares the temperatures of the two switching elements 33 and 33 with each other when the first and second motors 6 and 6 are not energized.
  • the non-energized state is the time when the motor-equipped vehicle is stopped, and the non-energized state does not increase the water temperature for cooling the switching element, the heat sink, and the inverter, for example.
  • the inverters 25a, 25a have substantially the same temperature if there is no abnormality. For this reason, the temperature detection abnormality determination unit 30 can determine whether the detected temperature before the temperature change is correct by simply comparing the temperatures of the two switching elements 33, 33 when the power is not supplied. Thereby, it can be accurately determined whether or not each temperature detection unit 29 has an abnormality.
  • the temperature detection abnormality determination unit 30 performs an abnormality determination when the first and second motors 6 are not energized after a lapse of a determined time after the command torque has become zero, or the command torque At the time of non-energization of the first and second motors 6 whose temperature decrease degree detected by the first and second temperature detection units 29, 29 becomes smaller than a predetermined decrease degree after becoming zero. An abnormality determination may be performed.
  • the descent degree refers to the temperature which falls per unit time.
  • the predetermined time, the predetermined falling degree is a time and a falling degree which are arbitrarily determined by design and the like, and is determined by obtaining an appropriate time and the falling degree by, for example, a test and / or simulation.
  • the temperature detection abnormality determination unit 30 causes the cooling water to cool, for example, a warmed heat sink or the like by passing a predetermined time after the command torque becomes zero, and performs two switching to a value close to a substantially water temperature.
  • the element temperature drops. Further, at that time, the degree of decrease in temperature becomes smaller as it approaches the cooling water temperature, so it can be inferred that the two switching element temperatures have become values close to the water temperature because the degree of decrease in temperature becomes smaller.
  • the temperature detection abnormality determination unit 30 may reduce the determined normal range as time passes after the command torque becomes zero. By making the normal range defined in this way variable, it is possible to accelerate the timing of determining the abnormality of the temperature detection unit 29. That is, even if the non-energization time is short, the abnormality of the temperature detection unit 29 can be determined.
  • a cooling mechanism Rk for cooling the first and second inverters 25a, 25a with a cooling fluid is provided, and the cooling mechanism Rk is configured to separately flow the cooling fluid to the first and second inverters 25a, 25a.
  • the temperature detection abnormality determination unit 30 is provided upstream of the circulation path 19 with respect to the radiator 23 when the first and second motors 6 and 6 are supplied with command torque from the motor control unit 26.
  • the temperature detection abnormality determination unit 30 A value obtained by subtracting the first switching element temperature rise estimated value T1u from the first temperature detection value T1; A difference between a value obtained by subtracting the second coolant temperature rise estimated value Tw1u from a value obtained by subtracting the second switching element temperature rise estimated value T2u from the second temperature detection value T2 is determined. When the temperature does not fall within the normal range, it may be determined that one or both of the first and second temperature detection units 29 have an abnormality.
  • the coolant temperature rise when passing through the upstream inverter 25a 1 is the first and second inverter 25a 1, of 25a 2 appears as a difference in temperature of the switching element. If the first and second motor 6, 6 of different torques (different current), in addition to the coolant temperature rise value, the temperature rise of the first and second inverters 25a 1, 25a 2 of the switching elements 33, 33 min appears as the difference of the first and second inverters 25a 1, 25a 2 of the switching element temperature.
  • the temperature detection abnormality determining unit 30 When the first and second current supplied to the inverter 25a 1, 25a 2 are the same, the temperature detection abnormality determining unit 30, The first temperature detection value T1; The first and second temperatures when the difference between the second temperature detection value T2 and a value obtained by subtracting the first coolant liquid temperature rise estimated value Tw1u does not fall within a defined normal range. It may be determined that one or both of the detection units 29 have an abnormality. If these upstream and current supplied to the inverter 25a 1, 25a 2 on the downstream side of the same, since the temperature rise value of the upstream and downstream of the two switching elements 33 and 33 are the same, the temperature of the switching element 33 It is not necessary to calculate the increase value, and simplification of the abnormality determination of the temperature detection unit 29 is possible.
  • a cooling mechanism Rk for cooling the first and second inverters 25a, a 25a with a cooling fluid the cooling mechanism Rk is, the coolant individually to the first and second inverters 25a 1, 25a 2 Cooling fluid is supplied to the first and second cooling passages 18, 18 in parallel, the first and second cooling passages 18, 18, and the circulation passage 19 extending over the first and second cooling passages 18.
  • a radiator 23 for cooling the coolant The temperature detection abnormality determination unit 30 is configured to apply the first and second inverters 25a 1 and 25a 2 when the first and second motors 6 and 6 are supplied with command torque from the motor control unit 26.
  • Temperature rise values of the switching elements 33 and 33 provided with the first and second temperature detection units are estimated from the command value or detection value of the current supplied to the first and second switching elements respectively
  • a switching element temperature increase value estimation unit 30b that estimates values T1u and T2u
  • the temperature detection abnormality determination unit 30 A value obtained by subtracting the first switching element temperature rise estimated value T1u from the first temperature detection value T1;
  • the difference between the second temperature detection value T2 and a value obtained by subtracting the second switching element temperature rise estimated value T2u does not fall within a defined normal range, the first and second It may be determined that one or both of the temperature detection units 29 have an abnormality.
  • the temperature detection units 29 and 29 can be performed even when power is supplied by estimating the temperature rise value of the switching elements 33 and 33. Can be determined. Furthermore, in the case of the parallel connection, since it is not necessary to estimate the coolant temperature increase value on the upstream side, the abnormality determination of the temperature detection unit 29 can be performed more easily than the serial connection.
  • the temperature detection abnormality determining unit 30, and the first temperature detection value T1, and the second temperature detection value T2 It may be determined that one or both of the first and second temperature detection units 29 have an abnormality if the difference between the two does not fall within the defined normal range.
  • the abnormality determination of the temperature detection unit 29 can be simplified.
  • a cooling mechanism Rk for cooling the first and second inverters 25a with a coolant A coolant temperature detection unit 24 for detecting the temperature of the coolant;
  • the temperature detection abnormality determination unit 30 may keep the three temperatures of the first and second temperature detection values T1 and T2 and the temperature Tw of the coolant detected by the coolant temperature detection unit 24 as it is or
  • the first and second temperature detection units 29, 29 and the cooling are performed when calculation is performed according to a defined condition, and the difference between each two temperatures of the three temperatures is all within the defined normal range.
  • the predetermined conditions are arbitrarily determined by design or the like, and are determined by, for example, testing and / or simulation to obtain appropriate conditions.
  • the temperature detection abnormality determination unit 30 detects the temperatures of the switching elements 33 and 33 of the inverters 25a and 25a that respectively drive the first and second motors 6 and 6, respectively.
  • Three temperatures of the temperature detected by the detection units 29 and 29 and the temperature of the coolant detected by the coolant temperature detection unit 24 are calculated as they are or according to defined conditions, and each of the three temperatures is calculated It is determined whether or not all the differences between the two temperatures are within the above defined normal range. The calculation is, for example, subtracting the switching element temperature increase value and the water temperature increase from the three temperatures.
  • the temperature of the coolant and the first and second inverters 25a and 25a should be approximately the same temperature.
  • the temperature detection parts 29, 29, 24 in which the abnormality has occurred can be identified by simply comparing the three temperatures two by two.
  • the temperature detection abnormality determination unit 30 detects two other temperatures for the temperature detected by one target temperature detection unit among the first and second temperature detection units and the coolant temperature detection unit. When the difference between the temperature detected by each unit and the temperature does not fall within the defined normal range, it may be determined that the target temperature detection unit has an abnormality. In this case, it is possible to simply and simply determine the abnormality of the temperature detection unit by simply comparing the temperature detection values of the target temperature detection unit with the temperature detection values of the other two temperature detection units.
  • the cooling mechanism Rk is the first and second cooling paths 18 and 18 for flowing the coolant individually to the first and second inverters 25a, and the first and second cooling paths connected in series 18, 18, a pump 22 for circulating a coolant through a circulation path 19 extending over the first and second cooling paths 18, and a radiator 23 for cooling the coolant, wherein the radiator 23 is provided in the circulation path 19
  • the coolant temperature detection unit 24 is provided upstream of the first and second cooling paths 18 and 18,
  • the temperature detection abnormality determination unit 30 is provided upstream of the circulation path 19 with respect to the radiator 23 when the first and second motors 6 and 6 are supplied with command torque from the motor control unit 26.
  • said first of said first temperature detection unit 29 in the inverter 25a 1 is provided the switching element 33, and before the inverter 25a 2 on the downstream side the second of the circulation path 19 to the radiator 23 It has switching element temperature rise value estimation part 30b which estimates the temperature rise value of the said switching element 33 in which the 2nd temperature detection part 29 was provided as the 1st and 2nd switching element temperature rise estimated value T1u and T2u, respectively. It may be one.
  • the temperature detection abnormality determination unit 30 For calculating a difference between a value obtained by subtracting the first switching element temperature rise estimated value T1u from the first temperature detection value T1 and the coolant temperature Tw detected by the coolant temperature detection unit 24.
  • the third equation (
  • the temperature of the switching elements 33, 33 is energized when the first and second cooling paths 18, 18 are in series and the coolant temperature detection unit 24 is present upstream of the cooling paths 18, 18.
  • the cooling mechanism Rk is the first and second cooling paths 18 and 18 for separately flowing the coolant to the first and second inverters 25a and 25a, and the first and second cooling paths connected in parallel. It has cooling paths 18 and 18, a pump 22 for circulating a cooling fluid in a circulation path 19 extending over the first and second cooling paths 18 and 18, and a radiator 23 for cooling the cooling fluid.
  • the coolant temperature detection unit 24 is provided upstream of the first and second cooling paths 18 and 18 in the circulation path 19;
  • the temperature detection abnormality determination unit 30 energizes the first and second inverters 25a 1 and 25a 2 when the first and second motors 6 are supplied with command torque from the motor control unit 26.
  • the temperature detection abnormality determination unit 30 For calculating a difference between a value obtained by subtracting the first switching element temperature rise estimated value T1u from the first temperature detection value T1 and the coolant temperature Tw detected by the coolant temperature detection unit 24. Fourth equation (
  • the first and second cooling paths 18 and 18 are in parallel, it is not necessary to estimate the temperature rise value of the coolant on the upstream side, so the first and second cooling paths 18 and 18 are in series.
  • the presence or absence of abnormality of the temperature detection unit can be determined more easily than in the case.
  • the cooling mechanism Rk is the first and second cooling paths 18 and 18 for separately flowing the coolant to the first and second inverters 25a and 25a, and the first and second cooling paths connected in series. It has cooling paths 18 and 18, a pump 22 for circulating a cooling fluid in a circulation path 19 extending over the first and second cooling paths 18 and 18, and a radiator 23 for cooling the cooling fluid.
  • the coolant temperature detection unit 24 is provided downstream of the first and second cooling paths 18 and 18 in the circulation path 19;
  • the temperature detection abnormality determination unit 30 From the command value or the detected value of the current supplied to the first and second inverters 25a, 25a when the first and second motors 6 are supplied with the command torque from the motor control unit 26, A coolant temperature rise value estimating unit 30a that estimates the temperature rise values of the coolant in the first and second inverters 25a, 25a as first and second coolant temperature rise estimated values Tw1u, Tw2u, respectively, and 1 1 and the second inverter 25a, the command value or the detection value of the current supplied to 25a 2, the first temperature detection in the inverter 25a 1 on the upstream side of the first of the circulation path 19 to the radiator 23
  • the switching element 33 provided with the portion 29 and the second downstream side of the circulation path 19 with respect to the radiator 23
  • the second temperature detector 29 is first respectively the temperature rise value of the switching element 33 provided and a second switching element temperature rise estimated value T1u in
  • the temperature detection abnormality determination unit 30 The value (T1-T1u) obtained by subtracting the first switching element temperature rise estimated value T1u from the first temperature detection value T1 and the coolant temperature Tw detected by the coolant temperature detection unit 24 A seventh equation (
  • Tw2u-Tw1u T1-T1u
  • T1-T1u A value (T2) obtained by subtracting the first estimated coolant temperature rise value Tw1u from a value (T2-T2u) obtained by subtracting the second switching element temperature rise estimated value T2u from the second temperature detection value T2
  • the second coolant temperature rise estimated value Tw2u and the first coolant liquid temperature rise estimated value Tw1u are subtracted from -T2u-Tw1u) and the coolant temperature Tw detected by the coolant temperature detection unit 24
  • the cooling mechanism Rk is the first and second cooling paths 18 and 18 for separately flowing the coolant to the first and second inverters 25a, and the first and second cooling paths connected in parallel 18 and 18, a pump 22 for circulating a coolant through a circulation path 19 extending over the first and second cooling paths 18 and 18, and a radiator 23 for cooling the coolant, the circulation path to the radiator 23
  • the coolant temperature detection unit 24 is provided downstream of the first and second cooling paths 18 and 18 in
  • the temperature detection abnormality determination unit 30 is configured to apply the first and second inverters 25a 1 and 25a 2 when the first and second motors 6 and 6 are supplied with command torque from the motor control unit 26.
  • Temperature rise values of the switching elements 33 and 33 provided with the first and second temperature detection units are estimated from the command value or detection value of the current supplied to the first and second switching elements respectively It may have the switching element temperature increase value estimation unit 30b estimated as the values T1u and T2u.
  • the temperature detection abnormality determination unit 30 The value (T1-T1u) obtained by subtracting the first switching element temperature rise estimated value T1u from the first temperature detection value T1 and the coolant temperature Tw detected by the coolant temperature detection unit 24 The tenth to calculate the difference with the value (
  • the second switching element temperature rise estimated value T2u is subtracted from the second temperature detected value T2 from a value obtained by subtracting the first switching element temperature rise estimated value T1u from the first temperature detected value T1. It is determined whether the differences respectively calculated by the twelfth equation (
  • the temperature rise of the coolant by the first and second inverters 25a 1 and 25a 2 is It is determined by averaging the estimated values of the coolant temperature rise in the first and second cooling paths 18 and 18. If the pressure loss and the flow rate are different, it is necessary to calculate the temperature rise of the coolant by the first and second inverters 25a 1 and 25a 2 using each flow rate and each coolant temperature rise estimated value. For example, it obtained from the following equation when the two flow inverters 25a 1, 25a 2 and La 1, La 2. ⁇ (Tw 1 u ⁇ La 1 ) + (Tw 2 u ⁇ La 2 ) ⁇ / (La 1 + La 2 )
  • the temperature increase value of the coolant in the first and second inverters 25a, 25a is estimated, and the temperature increase value of the coolant in the first and second inverters 25a, 25a is used to calculate the first and An estimated value of the coolant temperature rise in the two cooling paths 18 and 18 can be calculated.
  • the coolant temperature detection unit 24 is located downstream, it can be determined whether or not there is an abnormality in the temperature detection unit.
  • FIG. 7 is a diagram showing an example in which the abnormality determination is performed when the degree of decrease in temperature of the switching element becomes smaller than the determined degree of decrease after energization stop. It is a figure which shows the example which makes the normal range defined according to time progress after a current supply stop.
  • FIG. 1 It is a figure which shows the example of a connection of the cooling path of the inverter of the drive control apparatus which concerns on the 9th Embodiment of this invention. It is a block diagram of a conceptual composition which shows a motor loading car equipped with a drive control device concerning each embodiment of this invention by a top view.
  • FIG. 1 is a block diagram of a conceptual configuration showing, in a plan view, a motor vehicle equipped with a drive control device according to this embodiment.
  • This motor-equipped car is a four-wheeled electric car in which the wheels 2 serving as the left and right rear wheels of the vehicle body 1 are drive wheels and the wheels 3 serving as the left and right front wheels are driven wheels.
  • the front wheel 3 is a steered wheel.
  • the left and right wheels 2, 2 serving as drive wheels are driven by independent traveling motors 6, respectively.
  • Each motor 6 constitutes an in-wheel motor drive device IWM described later.
  • Each wheel 2 and 3 is provided with a brake.
  • the wheels 3 which are steered wheels serving as the left and right front wheels are steerable via a steering mechanism (not shown), and are steered by the steering means 15 such as a steering wheel.
  • the left and right in-wheel motor drive devices IWM respectively have a motor 6, a reduction gear 7 and a wheel bearing 4, and a part or all of these are disposed in the wheel.
  • the rotation of the motor 6 is transmitted to the wheel 2 which is a driving wheel via the reduction gear 7 and the wheel bearing 4.
  • the brake rotor 5 constituting the brake is fixed to the flange portion of the hub wheel 4 a of the wheel bearing 4, and the brake rotor 5 rotates integrally with the wheel 2.
  • the motor 6 is a three-phase motor, and is, for example, an embedded magnet synchronous motor in which a permanent magnet is built in the core portion of the rotor 6a.
  • the motor 6 is a motor in which a radial gap is provided between a stator 6 b fixed to the housing 8 and a rotor 6 a attached to the rotation output shaft 9.
  • the drive control device 16 includes an inverter device 13 that controls the first and second motors 6 and 6 that drive the left and right drive wheels, respectively.
  • the inverter device 13 includes a first and second cooling passages 18 and 18 to flow separately coolant to the first and second inverters 25a 1, 25a 2 corresponding respectively to the first and second motor 6 .
  • the drive control unit 16 is provided with a cooling mechanism Rk for cooling the inverters 25a 1, 25a 2 with a cooling fluid, the cooling mechanism Rk is, as shown in FIGS. 3 and 4, the first and second cooling channels
  • a pump 22 is provided to circulate the coolant in a circulation path 19 extending over 18 and a radiator 23 for cooling the coolant.
  • the radiator 23 is installed, for example, at a front portion of a vehicle body that is easily hit by traveling wind.
  • the pump 22 may be a so-called water pump.
  • first and second inverters 25a 1, 25a 2 of the cooling passage 18, the pump 22 is connected by piping in series.
  • the circulation path 19 is configured by connecting the radiator 23 to the pump 22 by piping.
  • a coolant temperature detection unit (water temperature sensor) 24 for detecting the water temperature of the coolant is provided in the circulation path immediately downstream of the radiator 23 and upstream of the cooling path 18 on the upstream side.
  • the ECU 14 (FIG. 1) controls to rotate the fan 23 a of the radiator 23 and to increase the flow rate by the pump 22 when, for example, the water temperature detected by the coolant temperature detection unit 24 becomes equal to or higher than the determined temperature. I do.
  • FIG. 5 is a block diagram of a control system of the drive control device 16.
  • the drive control device 16 has an ECU 14 that is an electric control unit that controls the entire vehicle, and an inverter device 13 that controls the left and right motors 6 and 6 for traveling in accordance with commands from the ECU 14.
  • the ECU 14 is also referred to as a VCU (vehicle control unit) in the case of an electric vehicle.
  • the inverter device 13 has power circuit units 25, 25 provided for the respective motors 6, and a motor control unit 26 for controlling the power circuit units 25, 25.
  • the motor control unit 26 includes motor drive control units 27 and 27, command current calculation units 28 and 28, temperature measurement circuits 29a and 29a, and a temperature detection abnormality determination unit 30, which correspond to the two motors 6 and 6, respectively. And a torque limiting unit 31.
  • the motor control unit 26 has a function of outputting each information such as each detection value and control value regarding the in-wheel motor drive device IWM (FIG. 1) held by the motor control unit 26 to the ECU 14.
  • Each power circuit unit 25 includes an inverter 25a that converts DC power of the battery 32 into three-phase AC power used to drive each motor 6, and a gate drive circuit 25b that drives the inverter 25a.
  • Each inverter 25 a is configured by a half bridge circuit including U-phase, V-phase, and W-phase semiconductor switching elements (plural switching elements) 33.
  • the gate drive circuit 25 b drives each semiconductor switching element (IGBT) 33 based on the input on / off command.
  • Each inverter 25a may be configured by a full bridge circuit.
  • the motor control unit 26 includes a computer, a program executed by the computer, and an electronic circuit.
  • the motor control unit 26 includes motor drive control units 27 and 27 as a control unit that is a basis of the motor control unit 26.
  • Each motor drive control unit 27 controls each system individually.
  • the command torque calculation unit 14a of the ECU 14 outputs the signal of the accelerator opening (acceleration command) output from the accelerator operation unit 20 and the deceleration command output from the brake operation unit 21 or Based on the acceleration command, the deceleration command, and the turning command output from the steering means 15, an acceleration / deceleration command to be given to the motors 6, 6 of the left and right rear wheels 2, 2 is generated as command torque. It outputs to each command current operation unit 28 via 31.
  • the torque limiting unit 31 applies torque limitation as necessary.
  • the torque limiting unit 31 limits the torque when the semiconductor switching element 33, the motor 6, and / or the oil temperature and the like become high, and in some cases, stops the driving of the motor. Also, as described later, when it is determined from the temperature detection abnormality determination unit 30 that the detected temperature is abnormal, the torque limiting unit 31 limits the torque to such an extent that the overheating does not occur (for example, half of the maximum torque) and performs control. You may continue. Alternatively, the motor may be stopped.
  • Each command current calculation unit 28 calculates a current command corresponding to an acceleration / deceleration command by a command torque or the like given from the ECU 14 via the torque limiting unit 31, and controls each motor drive control unit 27 and a temperature detection abnormality determination unit described later. Give to 30.
  • Each motor drive control unit 27 obtains the current flowing from the inverter 25a to each motor 6 from the current sensor 34, and performs current feedback control to make the detected current follow the current command.
  • the command voltage is calculated by feedback control, and the command voltage is converted to a pulse width modulation signal to give an on / off command to the gate drive circuit 25b.
  • the inverter device 13 is provided with first and second temperature detection units 29 1 and 29 2 (collectively 29).
  • the first temperature detection unit 291 is a first temperature detection unit provided in one of the plurality of semiconductor switching elements 33 of the first inverter 25a 1 (25a) that drives the first motor 6 1 (6).
  • a measuring unit 29 b 1 and (25b) and a temperature measuring circuit 29a 1 for converting the measured values consisting of the measured voltage or the like in the measuring unit 29 b 1 to a temperature (29a).
  • the first temperature detection unit 29 1 can detect the temperature of the corresponding semiconductor switching element 33.
  • the second temperature detection unit 292 is a second temperature detection unit provided in any one of the plurality of semiconductor switching elements 33 of the second inverter 25a 2 (25a) that drives the second motor 6 2 (6).
  • the second temperature detector 29 2 it can detect the temperature of the corresponding semiconductor switching element 33.
  • a diode or a thermistor for temperature sensing may be used as the measurement unit 29 b of each temperature detection unit 29.
  • the temperature measurement circuit 29a of each temperature detection unit 29 for example, means for linearizing the measured value, means for insulating the high voltage and the low voltage and transmitting a signal (insulator of high voltage and low voltage) , An amplifier for voltage amplification, a filter circuit, an AD converter, and the like.
  • each temperature detection part 29 adheres the measurement part 29b to the semiconductor switching element 33 of the U phase of the negative voltage side, for example, and detects the temperature of this semiconductor switching element 33, what is limited to this example Absent.
  • the temperature of the semiconductor switching element 33 may be detected by fixing the measuring unit 29b to the semiconductor switching element 33 of another phase on the negative voltage side or the semiconductor switching element 33 of any phase on the positive voltage side.
  • Temperature detection abnormality determining unit 30 when not energized and when energized, determines whether or not there is an abnormality in one or both of the temperature detecting portion 29 1, 29 2. At the time of the non-energization, the command torque is not given from the ECU 14 to the motor control unit 26 and the energization of each motor 6 is stopped. At the time of the energization, the command torque is given to the motor control unit 26 from the ECU 14 It is in the state of
  • determining unit 30 determines the first and second inverters 25a 1, 25a 2 abnormality in each temperature detector 29 1 and the temperature detecting section 29 2 by the respective switching elements tEMPERATURE COMPARISON. For example, (1) when the temperature detection value deviates from the normal temperature range, (2) when the temperature detection value falls within the normal temperature range but the temperature detection value becomes a fixed value, (3) This includes cases where the temperature detection value deviates from the actual temperature although the temperature is within the normal temperature range.
  • the temperature detection abnormality determination unit 30 detects any one of the temperature detection units 29 when the difference between the temperatures detected by the first and second temperature detection units 29 1 and 29 2 is not within the defined normal range. It is determined that there is an abnormality in This is because the first and second inverters 25a, 25a should have substantially the same temperature when not energized.
  • the temperature detection abnormality determination unit 30 may perform the abnormality determination after the elapse of a time t1 determined after the command torque has become zero. Instead, as shown in FIG. 7, after the command torque becomes zero, the first and second temperature detecting portions 29 1 and 29 2 (FIG. 5) (FIG. 5) lowers the temperature detected by the degree of falling The abnormality determination may be performed at time t2 when the value becomes smaller than the degree.
  • the descent degree refers to the temperature which falls per unit time.
  • the temperature detection abnormality determination unit 30 may reduce the normal range (threshold value) K determined as the time elapsed after the command torque has become zero.
  • the first threshold value K after the command torque in this case becomes zero may be determined from the current value immediately before or from the integrated value of the square of the current or the like.
  • the current value referred to here may be a current command given from each command current calculation unit 28, or alternatively, a current detected by the current sensor 34 may be used.
  • the upstream side of the first inverter 25a 1 and the downstream side of the second current supplied by the same to the inverter 25a 2 (i.e. the same torque to the first and second motors 6 and 6 when the cause) generating a temperature detection abnormality determining unit 30 includes a temperature detection value T1 detected by the first temperature detector 29 1 corresponding to the upstream side of the switching element 33, the corresponding switching element 33 on the downstream side
  • ) with the value (T2-Tw1u) obtained by subtracting the coolant temperature rise estimated value Tw1u from the temperature detection value T2 detected by the second temperature detection unit 292 is determined.
  • first and second inverters 25a 1, 25a 2 is integrally or separately, between separate the case of the on waterways 1 and second inverters 25a 1, 25a 2 is that other cooling object is not present, that is, include the second inverter 25a 2 is present in the first immediately downstream of the inverter 25a 1 on the upstream side.
  • the temperature detection abnormality determination unit 30 includes a coolant temperature increase value estimation unit 30a.
  • the coolant temperature rise value estimating unit 30a from the command value or the detection value of the current supplied to the first inverter 25a 1 on the upstream side, by using a calculation or map or the like, the coolant temperature rise in the coolant It estimates as temperature rise estimated value Tw1u.
  • the relationship between the command value or the detected value of the current and the coolant temperature rise estimated value Tw1 u is predetermined by the example of the map shown in FIG.
  • the coolant temperature rise estimated value Tw1u When the detected value of the current is used to estimate the coolant temperature rise estimated value Tw1u, it is possible to estimate the coolant temperature rise estimated value Tw1u accurately even when the current becomes larger or smaller than the command value due to some abnormality. On the other hand, when the command value of the current is used, the coolant temperature rise estimated value Tw1u can be stably calculated even when the current fluctuates due to load fluctuation, voltage fluctuation, noise, other disturbances and the like.
  • the abnormality determination is started at time t3 when the temperatures T1 and T2 of the two switching elements are saturated.
  • the time when the saturation occurs is when a certain amount of time has elapsed (a predetermined time has elapsed), or when the degree of temperature change becomes equal to or less than a specified value.
  • the predetermined time and the predetermined value are determined by a test and / or simulation.
  • the switching element temperature may be constantly estimated from the integral value of the square of the current value and the heat release amount.
  • first and second inverters 25a 1, current supplied to 25a 2 is (to generate i.e. different torque to the first and second motors 6 and 6) if different, the coolant temperature
  • the temperature rise of the switching element 33 of each inverter 25 a appears as the difference between the switching element temperatures of the first and second inverters 25 a 1 , 25 a 2 .
  • the temperature detection abnormality determination unit 30 subtracts a value (T1-T1u) obtained by subtracting the switching element temperature rise estimated value T1u from the temperature detection value T1 of the switching element 33 on the upstream side, and the temperature detection value of the switching element 33 on the downstream side.
  • the temperature detection abnormality determination unit 30 further includes a switching element temperature increase value estimation unit 30b.
  • the switching element temperature increase value estimation unit 30b uses the calculation or the map or the like from the command value or the detection value of the current supplied to the first and second inverters 25a, 25a, and uses the switching elements 33 on the upstream and downstream sides,
  • the temperature rise values of 33 are estimated as switching element temperature rise estimated values T1u and T2u, respectively.
  • the relationship between the command value or the detected value of the current and the switching element temperature rise estimated values T1u and T2u is determined in advance by, for example, the map example shown in FIG.
  • the switching element temperature rise estimated values T1u and T2u are accurately obtained even if the current becomes larger or smaller than the command value due to some abnormality. It is possible to estimate.
  • the switching element temperature rise estimated values T1u and T2u can be stably calculated even when the current fluctuates due to load fluctuation, voltage fluctuation, noise, other disturbances and the like.
  • the switching element temperature rise estimated values T1u and T2u are temperature rise values of the upstream and downstream switching elements 33, 33 from the coolant temperature immediately before entering the respective inverters 25a. Strictly speaking, there is a possibility that the coolant temperature is rising along the route to the temperature measurement point, but it is a temperature including the coolant temperature rise from immediately before the inverter to the temperature measurement point.
  • T1 Temperature detection value of the switching element of the first inverter 25a 1
  • T2 Temperature detection value of the switching element of the second inverter 25a 2
  • Tw1u Coolant liquid temperature rise estimated value in the first inverter on the upstream side
  • K Determination Normal range
  • T1u estimated switching element temperature rise of first inverter 25a 1
  • T2u estimated switching element temperature rise of second inverter 25a 2
  • the temperature detection abnormality determination unit 30 compares the temperatures of the two switching elements 33 and 33 with each other when the first and second motors 6 are not energized.
  • the non-energization time is when the motor vehicle equipped with the motor vehicle is stopped, and for example, the semiconductor switching element 33, the heat sink, and the water temperature for cooling the first and second inverters 25a and 25a rise when the motor-enclosure is stopped. Since the first and second inverters 25a and 25a do not have an abnormality, they have substantially the same temperature. For this reason, the temperature detection abnormality determination unit 30 can determine whether the detected temperature before the temperature change is correct by simply comparing the temperatures of the two switching elements 33, 33 when the power is not supplied. Thereby, it can be accurately determined whether or not each temperature detection unit 29 has an abnormality.
  • the temperature detection abnormality determination unit 30 performs an abnormality determination when the first and second motors 6 are not energized after a predetermined time has elapsed after the command torque has become zero, or the command torque has become zero.
  • the abnormality determination is performed when the first and second motors 6 are deenergized, in which the degree of decrease in temperature detected by the first and second rear temperature detectors 29, 29 is smaller than the predetermined degree of decrease. In this case, it is possible to take into consideration the temperature rise due to the current flowing until just before the power-off.
  • the temperature detection abnormality determination unit 30 causes the cooling water to cool, for example, a warmed heat sink or the like by passing a predetermined time after the command torque becomes zero, and performs two switching to a value close to a substantially water temperature.
  • the element temperature drops. Further, at that time, the degree of decrease in temperature becomes smaller as it approaches the cooling water temperature, so it can be inferred that the two switching element temperatures have become values close to the water temperature because the degree of decrease in temperature becomes smaller.
  • the temperature detection abnormality determination unit 30 reduces the normal range defined according to the elapse of time after the command torque is zero, the timing of determining the abnormality of the temperature detection unit 29 can be advanced. That is, even if the non-energization time is short, the abnormality of the temperature detection unit 29 can be determined.
  • the water temperature detected by the coolant temperature detection unit 24 is also used for abnormality determination by a temperature detection abnormality determination unit 30A described later.
  • the description of the first and second temperature detection units 29 and 29 of the inverter device 13 is omitted.
  • the coolant temperature detection unit (water temperature sensor) 24 includes a measurement unit 24 b provided in the middle of the circulation path 19 and a temperature measurement circuit 24 a provided in the ECU 14 and converting the measurement value measured by the measurement unit 24 b into a temperature.
  • a measurement unit 24b for example, a diode or a thermistor for temperature sensing may be used as in the measurement unit 29b of the temperature detection unit 29.
  • the temperature measurement circuit 24a for example, means for linearizing the measurement value, an amplifier for voltage amplification, a filter circuit, an AD converter, and the like are included.
  • the temperature detection abnormality determination unit 30A determines whether or not any one, two, or all of the first and second temperature detection units 29 and 29 and the coolant temperature detection unit 24 have an abnormality during non-energization and energization. Determine if At the time of the non-energization, the command torque is not given from the ECU 14 to the motor control unit 26 and the energization of each motor 6 is stopped. At the time of the energization, the command torque is given to the motor control unit 26 from the ECU 14 It is in the state of
  • the determination unit 30A compares the temperature of the coolant detected by the coolant temperature detection unit 24 with the switching element temperatures of the first and second inverters 25a, 25a, and the temperature detection units 29, 29, and the coolant temperature detection unit 24 Determine each anomaly.
  • the respective abnormalities of the temperature detection units 29, 29, and the coolant temperature detection unit 24 are collectively referred to as "the abnormality of the temperature detection unit". For example, (1) when the temperature detection value deviates from the normal temperature range, (2) when it falls within the normal temperature range but the temperature detection value becomes a fixed value, (3) normal. This includes the case where the temperature detection value deviates from the actual temperature although it falls within the temperature range.
  • the temperature detection abnormality determination unit 30A detects the temperatures of the two switching elements 33, 33 detected by the first and second temperature detection units 29, 29, and the temperature of the coolant detected by the coolant temperature detection unit 24. When the difference between the temperature detection values of (1) and (2) does not fall within the defined normal range, it is determined that any one of the temperature detection units 29, 29, 24 has an abnormality. This is because the temperature of the coolant and the temperature of the first and second inverters 25a and 25a should be substantially the same when the current is not supplied. Note that the method described with reference to FIGS. 6 to 8 may be used for abnormality determination at the time of non-energization.
  • the temperature difference between the temperature of the coolant detected by the coolant temperature detection unit 24 and the temperature of the switching element of the first and second inverters 25a 1 and 25a 2 when the power is supplied is a temperature rise when it passes through a certain first inverter 25a 1, generated by the temperature rise of the first and second inverters 25a 1, 25a 2 of the switching elements 33, 33.
  • the temperature detection abnormality determining unit 30A from the first and second switching element temperature, each of the switching element temperature rise estimated value T1U, subtracts the T2U, further temperature rise for the second inverter 25a 2 on the downstream side Check whether the difference between each of the two temperatures (that is, the three temperature differences) between the value obtained by subtracting the minutes and the temperature detected by the coolant temperature detection unit 24 falls within the defined normal range Do. When the temperature does not fall within the defined normal range, it is determined that at least one of the temperature detection units 29, 29, 24 has an abnormality. Any of the three temperature anomaly to become the first and second inverters 25a 1, upstream of the water temperature corresponding to 25a 2 match otherwise.
  • first and second inverters 25a 1, 25a 2 is integrally or separately, first and second inverters 25a in the case of separate on waterways 1, 25a 2 There is no other cooling object between them, that is, there is a second inverter 25a2 immediately downstream of the first inverter 25a1 on the upstream side.
  • the temperature detection abnormality determination unit 30A includes the coolant temperature increase value estimation unit 30a described in the context of the first embodiment, and the switching element temperature increase value estimation unit 30b. Coolant temperature rise value estimating unit 30a, like the first coolant temperature rise estimated value Tw1u inverter 25a 1, the second coolant temperature rise estimated value Tw2u inverter 25a 2 may be estimated.
  • the abnormality determination at the time of electricity supply may use the method demonstrated with reference to FIG.
  • the switching element temperature rise estimated values T1u and T2u are the temperature rise values described above.
  • T1 Temperature detection value of the switching element of the first inverter 25a 1
  • T2 Temperature detection value of the switching element of the second inverter 25a 2
  • Tw1u Coolant liquid temperature rise estimated value in the first inverter on the upstream side
  • K Determination Normal range
  • T1u estimated switching element temperature rise of first inverter 25a 1
  • T2u estimated switching element temperature rise of second inverter 25a 2
  • Tw temperature detection value of coolant temperature detection unit 24
  • Tw is compared with (T1-T1u) and (T2-T2u-Tw1u). Specifically, it is as follows.
  • Tw is compared with (T1-T1u) and (T2-T2u). Specifically, it is as follows.
  • the temperature detection abnormality determination unit 30A includes the switching element 33 of the inverter 25a that drives the first motor 6 and the switching element 33 of the inverter 25a that drives the second motor 6.
  • the three temperatures of the temperature detected by the first and second temperature detectors 29 and 29 which respectively detect the temperature and the temperature of the coolant detected by the coolant temperature detector 24 are as they are or determined. It calculates according to conditions (that is, it applies and correct
  • the temperature of the coolant for cooling the semiconductor switching element 33, the heat sink, and the inverters 25a, 25a has not risen.
  • the two inverters 25a and 25a have substantially the same temperature if there is no abnormality. Therefore, by simply comparing the three temperatures with each other, it is possible to specify the temperature detection units 29, 29, 24 in which the abnormality has occurred. At the time of energization, it is possible to specify the temperature detection units 29, 29, 24 in which the abnormality has occurred similarly to the above by comparing the value obtained by adding the switching element temperature rise value and the water temperature rise to the above three temperatures. it can. Therefore, the temperature of the switching element 33 of the inverters 25a, 25a can be detected with high accuracy.
  • first and second inverters 25a 1, 25a 2 are separate bodies, the first downstream inverter 25a 1 on the upstream side, the other cooling objects second inverter 25a 2 may be connected without intervention.
  • the first and second inverters 25a 1, 25a 2 is integral structure, the middle circulation path between the second inverter 25a 2 and the pump 22 on the downstream side
  • the coolant temperature detection unit 24 may be provided.
  • the first and second inverters 25a 1 and 25a 2 are separate bodies, and are disposed in the middle of the circulation path between the downstream second inverter 25a 2 and the pump 22.
  • the coolant temperature detection unit 24 may be provided.
  • FIG 14A as shown the sixth embodiment of the 14B, the first and second inverters 25a 1, 25a 2 is integral structure, these cooling channels 18, 18 may be connected in parallel.
  • the abnormality determination at the time of non-energization in parallel is the same as the above-mentioned abnormality determination at the time of non-energization in series.
  • the current to be supplied to the first and second inverters 25a 1, 25a 2 are identical (i.e. generating the same torque to the first and second motors 6, 6)
  • the temperature detection abnormality determination unit 30 does not fall within the normal range where the temperature difference (
  • the coolant added to the temperature rise estimated value Tw1u the temperature rise is the first and second inverters 25a of the switching element 33 of each inverter 25a 1, of 25a 2 appears as a difference in temperature of the switching element.
  • the temperature detection abnormality determination unit 30 subtracts a value (T1-T1u) obtained by subtracting the switching element temperature rise estimated value T1u from the temperature detection value T1 of the switching element 33 on the upstream side, and the temperature detection value of the switching element 33 on the downstream side.
  • the abnormality as a prerequisite for the determination, waterways and the like that there is no object to be cooled (superheated product) is before entering to the first and second inverters 25a from 1, 25a 2 branches.
  • the abnormality determination of the temperature detection unit 29 can be performed more easily than the serial connection.
  • the first and second cooling paths 18 and 18 may be connected in parallel separately from the first and second inverters 25a 1 and 25a 2 .
  • the first and second inverters 25a 1, 25a 2 is integral structure, the coolant during circulation path between the inverters 25a 1, 25a 2 and the pump 22 A temperature detection unit 24 may be provided.
  • the coolant temperature during circulation path between the first and second inverters 25a 1, 25a 2 are each inverter 25a 1 separately, 25a 2 and the pump 22
  • the detection unit 24 may be provided.
  • the temperature detection abnormality determination unit 30 subtracts each switching element temperature increase value from the temperature detection value of the switching element 33 of the first and second inverters 25a, and detects the temperature detection value of the coolant temperature detection unit 24. Make sure that the difference between each of the three temperatures included is within the defined normal range. Both are equivalent to the water temperature upstream of the first and second inverters 25a 1 and 25a 2 and match if there is no abnormality.
  • T1 Temperature detection value of the switching element of the first inverter 25a 1
  • T2 Temperature detection value of the switching element of the second inverter 25a 2
  • Tw 1 u Coolant liquid temperature rise estimated value in the first inverter on the upstream side
  • Tw 2 u Downstream Estimated value of the coolant temperature in the second inverter on the side
  • K normal range determined
  • T1 estimated switching element temperature rise of the first inverter 25a 1
  • T2u switching element temperature rise of the second inverter 25a 2
  • Tw Temperature detection value of coolant temperature detection unit 24
  • the control subject that determines the abnormality is the temperature detection abnormality determination unit 30A (FIG. 12).
  • the coolant temperature rise value estimating unit 30a from the command value or the detection value of the current supplied to the second inverter 25a 2 on the downstream side, to estimate the coolant temperature rise estimated value Tw2u using a calculation or map or the like.
  • the temperature rise of the coolant by the first and second inverters 25a 1 and 25a 2 can be determined It is obtained by averaging the estimated values of the coolant temperature rise in the cooling paths 18 and 18. If the pressure loss and the flow rate are different, it is necessary to calculate the temperature rise of the coolant by the first and second inverters 25a 1 and 25a 2 using each flow rate and each coolant temperature rise estimated value. For example, if the first and second flow rate of the inverter 25a 1, 25a 2 and La 1, La 2 obtained from the following equation. ⁇ (Tw 1 u ⁇ La 1 ) + (Tw 2 u ⁇ La 2 ) ⁇ / (La 1 + La 2 )
  • the coolant temperature detection unit 24 at the time of energization is The temperature difference between the temperature detection value and the temperature detection values of the switching elements 33 and 33 of the first and second inverters 25a 1 and 25a 2 is an increase in water temperature when passing through each inverter 25a and the temperature difference of each inverter 25a. It is generated by the temperature rise of the switching element 33.
  • the temperature detection abnormality determination unit 30A subtracts the respective switching element temperature increase values from the respective switching element temperatures, and further subtracts the temperature increase due to the second inverter 25a 2 on the downstream side, and the coolant check if respective differences of the three temperatures of the first and second inverters 25a 1, a value obtained by subtracting the temperature increase caused by 25a 2 from the temperature detection value of the temperature detecting portion 24 is within a normal range defined . Both are equivalent to the water temperature upstream of the first and second inverters 25a 1 and 25a 2 and match if there is no abnormality.
  • the coolant temperature detection unit 24 at the time of energization is The temperature difference between the temperature detection value and the temperature detection values of the switching elements 33 and 33 of the first and second inverters 25a 1 and 25a 2 is an increase in water temperature when passing through each inverter 25a and the temperature difference of each inverter 25a. It is generated by the temperature rise of the switching element 33.
  • the difference between the temperature after merging through the first and second inverters 25a 1, before the branch entering 25a 2 temperature and first and second inverters 25a 1, 25a 2 was raised by the inverter 25a 1, 25a 2
  • first and second water temperature was raised by the inverter 25a 1, 25a 2
  • the flow rate is divided is an average of the first and second inverters 25a 1, 25a temperature rise value was raised by 2. If the flow rates are different, they are calculated by calculation according to the ratio.
  • the temperature detection abnormality determination unit 30 determines the first and second inverters 25a 1 ,, and 25 from the values obtained by subtracting the respective switching element temperature increase values from the respective switching element temperatures and the temperature detection value of the coolant temperature detection unit 24. Check if the difference between each of the three temperatures obtained by subtracting the temperature rise due to 25a 2 (the average value of the two temperature rise values if the flow rate is the same) falls within the defined normal range. Both are equivalent to the water temperature upstream of the first and second inverters 25a 1 and 25a 2 and match if there is no abnormality.
  • a cycloid reducer In the in-wheel motor drive device, a cycloid reducer, a planetary reducer, a two-axis parallel reducer, and other reducers are applicable. Moreover, in the in-wheel motor drive device of the said embodiment, although rear-wheel drive was shown, it is good also as front-wheel drive or four-wheel drive.
  • the drive control device 16 may be provided in a two-motor on-board type motor-equipped automobile which is provided with the reduction gears 7, 7 corresponding to the motor 6 and drives the left and right wheels 3, 3 by these motors 6, 6.
  • the left and right wheels driven by the motor 6 may be any of the front and rear wheels 3 and 2.
  • four-wheel drive may be used.
  • a drive control device for a motor-equipped vehicle mounted on a vehicle capable of independently driving first and second motors for driving left and right drive wheels, respectively.
  • a power circuit unit including first and second inverters for respectively converting direct current power into alternating current power used to drive the first and second motors, wherein the first and second inverters are respectively A power circuit unit that converts DC power into AC power by opening and closing a plurality of switching elements;
  • a motor control unit that controls the first and second motors via the power circuit unit according to a command torque that is given;
  • a cooling mechanism for cooling each of the inverters with a coolant;
  • a plurality of first temperature detection units provided in any one of a plurality of switching elements of the first inverter for driving the first motor, and a plurality of second inverters for driving the second motor
  • a second temperature detection unit provided in any one of the switching devices, wherein the first and second temperature detection units detect the temperatures of the corresponding switching devices,
  • a coolant temperature detection unit that detects the temperature of the coolant; The three temperatures, the temperature of the corresponding switching element detected by each of the first and second temperature detectors and the temperature of the coolant detected by the coolant temperature
  • the first and second temperature detection units and the coolant temperature detection unit are operated according to the conditions and when the difference between each of the three temperatures is within the predetermined normal range.
  • the first and second temperature detectors and A drive control apparatus for a motor-equipped automobile comprising: a temperature detection abnormality determination unit that determines that any one, two, or all of the coolant temperature detection units have an abnormality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Multiple Motors (AREA)
  • Inverter Devices (AREA)

Abstract

インバータのスイッチング素子の温度を精度よく検出することができるモータ搭載自動車の駆動制御装置を提供する。このモータ搭載自動車の駆動制御装置(16)は、一方のモータ(6)を駆動するインバータ(25a)の複数のスイッチング素子(33)のいずれか一つ、および他方のモータ(6)を駆動するインバータ(25a)の複数のスイッチング素子(33)のいずれか一つに設けられて対応するスイッチング素子(33)の温度をそれぞれ検出する第1および第2の温度検出部(29,29)と、温度検出部(29,29)で検出された温度を互いに比較することで各温度検出部(29)に異常があるか否かを判定する温度検出異常判定部(30)と、を備える。温度検出異常判定部(30)は、各モータ(6)の非通電時に、第1および第2の温度検出部(29,29)で検出された温度の差が定められた正常範囲内に入っていないとき、いずれかの温度検出部(29)に異常があると判定する。

Description

モータ搭載自動車の駆動制御装置 関連出願
 本出願は、2017年12月18日出願の特願2017-241940および2017年12月19日出願の特願2017-242490の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、モータ搭載自動車の駆動制御装置に関し、インバータのスイッチング素子の温度を精度よく検出することができる技術に関する。
 電気自動車(EV)、ハイブリッド電気自動車(HEV)等の駆動用モータを搭載した自動車には、モータおよびインバータを冷却する冷却装置が設けられている。冷却装置では冷却水の温度によって、ファンを回すかまたは冷却水の流量を変更する場合がある。
 またインバータによっては、内部のスイッチング素子の温度をモニタし、上限温度に達しそうな場合は、トルク制限または電流制限を行うかあるいは駆動を停止させることでスイッチング素子の異常を防止する。ただし、スイッチング素子の検出温度が実際の温度より大きい方にずれた場合は、電流制限する温度に直ぐに達してしまい、過剰にトルク制限がかかってしまう。逆に、スイッチング素子の検出温度が実際の温度より小さい方にずれた場合は、本来、電流制限をかけるべき温度になっても電流制限をかけることができず、スイッチング素子に異常が発生する場合がある。よって、各温度センサが正常に動作することは重要である。
特許第5770649号公報 特許第3409756号公報 特開2017-100482号公報 特開2009-284597号公報
 温度センサの異常検出には、簡単な方法では、温度検出値が正常温度範囲から外れるような場合は、回路または配線のオープンまたはショート故障が発生したものとして異常だと判定する。例えば、温度検出値が-50℃以下の場合または200℃以上等の場合に温度センサの異常と判定する。
 但し、このような検出方法では、ある種の異常の検出ができない。このある種の異常としては、例えば、正常な温度範囲内に入っていても、温度検出値が固定値となっているか、または、正常な温度範囲内に入っていても、温度検出値が実際の温度からずれているような異常である。
 特許文献1では、電流積算値と温度変化量をそれぞれ座標軸として異常な領域に入る場合、異常と判定する方法が提案されている。特許文献2では、電流積算値から推定した温度が所定値以上変化したときに検出温度が所定値以上温度変化しているか確認する方法が提案されている。しかし、これらの方法では、温度変化量は確認できるが、温度変化前の温度が正しいか分からないため、検出温度が実際の温度よりずれている可能性がある。
 この他に、特許文献3では、水温センサの異常判定手段で、ソーク時間が所定の時間以上経過している場合に、インバータの温度センサの測定値と水温センサの測定値との差分の絶対値が所定値以上のとき、水温センサを異常と判定する方法が提案されている。特許文献4では、同じく水温センサの異常判定手段で、IGBT素子温度から冷却水温推定値を算出し、この冷却水温推定値と水温検出値との差が所定値以上であった場合、水温センサを異常と判定する方法が提案されている。これらの方法は、インバータ(IGBT)温度が正しいことを前提に行われている。インバータ温度が正しく検出されていなければ、水温センサの異常を正確に判定することができない。
 したがって、これら方法においても、スイッチング素子の検出温度が実際の温度より大きい方にずれた場合、電流制限する温度に直ぐに達してしまい、過剰にトルク制限がかかってしまう可能性がある。逆に、スイッチング素子の検出温度が実際の温度より小さい方にずれた場合、本来、電流制限をかけるべき温度になっても電流制限をかけることができず、スイッチング素子に異常が発生する場合がある。
 この発明の目的は、インバータのスイッチング素子の温度を精度よく検出することができるモータ搭載自動車の駆動制御装置を提供することである。
 以下、便宜上理解を容易にするために、実施形態の符号を参照して説明する。
 この発明のモータ搭載自動車の駆動制御装置16は、左右の駆動輪2,2をそれぞれ駆動する第1および第2のモータ6,6をそれぞれ独立して駆動可能な車両に搭載される、モータ搭載自動車の駆動制御装置16であって、直流電力を前記第1および第2のモータ6,6それぞれの駆動に用いる交流電力にそれぞれ変換する第1および第2のインバータ25a,25aを含むパワー回路部25,25であって、前記第1および第2のインバータ25a,25aは、それぞれ、複数のスイッチング素子33の開閉により直流電力を交流電力に変換するパワー回路部25,25と、与えられる指令トルクに従って前記パワー回路部25,25を介して前記第1および第2のモータ6,6を制御するモータコントロール部26と、
 前記第1のモータ6を駆動する前記第1のインバータ25aの複数のスイッチング素子33のいずれか一つに設けられた第1の温度検出部29、および前記第2のモータ6を駆動する前記第2のインバータ25aの複数のスイッチング素子33のいずれか一つに設けられた第2の温度検出部29であって、対応するスイッチング素子33の温度である第1および第2の温度検出値T1,T2をそれぞれ検出する第1および第2の温度検出部29,29と、
 前記第1および第2の温度検出部29,29で検出された温度を互いに比較することで前記第1および/または第2の温度検出部29に異常があるか否かを判定する温度検出異常判定部30であって、前記モータコントロール部26に指令トルクが与えられていない前記第1および第2のモータ6の非通電時に、前記第1および第2の温度検出部29,29で検出された温度の差が定められた正常範囲内に入っていないとき、前記第1および第2の温度検出部29のいずれか一方または両方に異常があると判定する温度検出異常判定部30とを備える。
 前記定められた正常範囲は、設計等によって任意に定める範囲であって、例えば、試験および/またはシミュレーションにより適切な範囲を求めて定められる。
 この構成によると、温度検出異常判定部30は、第1および第2のモータ6,6の非通電時に、二つのスイッチング素子33,33の温度を互いに比較する。前記非通電時は、このモータ搭載自動車の停車時であり、前記非通電時であれば、例えば、スイッチング素子、ヒートシンク、インバータを冷却する水温等が上昇していないため、第1および第2のインバータ25a,25aは異常がなければ略同じ温度となる。このため、温度検出異常判定部30は、前記非通電時において、単に二つのスイッチング素子33,33の温度を比較することで、温度変化前の検出温度が正しいかどうかを判定することができる。これにより各温度検出部29に異常があるか否かを精度よく判定し得る。
 前記温度検出異常判定部30は、前記指令トルクが零となった後定められた時間の経過後の前記第1および第2のモータ6の非通電時に異常判定を行うか、または前記指令トルクが零となった後前記第1および第2の温度検出部29,29で検出された温度の下降度合が定められた下降度合よりも小さくなった前記第1および第2のモータ6の非通電時に異常判定を行ってもよい。
 前記下降度合とは、単位時間当たりに下降する温度を言う。
 前記定められた時間、前記定められた下降度合は、それぞれ設計等によって任意に定める時間、下降度合であって、例えば、試験および/またはシミュレーション等により適切な時間、下降度合を求めて定められる。
 この構成によると、非通電時であっても直前まで電流を流していたことによる温度上昇分を考慮することができる。温度検出異常判定部30は、指令トルクが零となった後定められた時間を経過させることで、例えば、温められたヒートシンク等も冷却水により冷やされて、略水温に近い値まで二つのスイッチング素子温度が下がる。また、その際に温度の下降度合が冷却水温に近づくにつれて小さくなるため、温度の下降度合が小さくなったことで二つのスイッチング素子温度が水温に近い値になってきたことが推測できる。
 前記温度検出異常判定部30は、前記指令トルクが零となった後時間の経過に従って前記定められた正常範囲を小さくしてもよい。このように定められた正常範囲を可変とすることで、温度検出部29の異常を判定するタイミングを早めることができる。すなわち、非通電時間が短くても温度検出部29の異常を判定することができる。
 さらに、前記第1および第2のインバータ25a,25aを冷却液で冷却する冷却機構Rkを備え、前記冷却機構Rkは、前記第1および第2のインバータ25a,25aに冷却液を個別に流す第1および第2の冷却路18,18であって、直列に接続された第1および第2の冷却路18,18、これら第1および第2の冷却路18,18にわたる循環経路19に冷却液を循環させるポンプ22、および前記冷却液を冷却するラジエータ23を有し、
 前記温度検出異常判定部30は、前記モータコントロール部26から指令トルクが与えられている前記第1および第2のモータ6,6の通電時に、前記ラジエータ23に対し前記循環経路19の上流側の前記第1のインバータ25aに通電する電流の指令値または検出値から、前記第1のインバータにおける冷却液の温度上昇値を第1の冷却液温度上昇推定値Tw1uとして推定する冷却液温度上昇値推定部30a、および前記第1および第2のインバータ25a,25aに通電する電流の指令値または検出値から、前記第1のインバータ25aにおける前記第1の温度検出部29が設けられた前記スイッチング素子33、および前記ラジエータ23に対し前記循環経路19の下流側の前記第2のインバータ25aにおける前記第2の温度検出部29が設けられた前記スイッチング素子33の温度上昇値をそれぞれ第1および第2のスイッチング素子温度上昇推定値T1u,T2uとして推定するスイッチング素子温度上昇値推定部30b、を有し、
 前記温度検出異常判定部30は、
  前記第1の温度検出値T1から、前記第1のスイッチング素子温度上昇推定値T1uを減算した値と、
  前記第2の温度検出値T2から、前記第2のスイッチング素子温度上昇推定値T2uを減算した値に対し、前記第1の冷却液温度上昇推定値Tw1uを減算した値との差が、定められた正常範囲内に入っていないとき、前記第1および第2の温度検出部29のいずれか一方または両方に異常があると判定してもよい。
 この構成によると、第1および第2の冷却路18,18が直列に接続されている場合において、上流側のインバータ25aを通過したときの冷却液温度上昇分が、第1および第2のインバータ25a,25aのスイッチング素子温度の違いとして現れる。第1および第2のモータ6,6が異なるトルク(異なる電流)の場合は、冷却液温度上昇値に加え、第1および第2のインバータ25a,25aのスイッチング素子33,33の温度上昇分が第1および第2のインバータ25a,25aのスイッチング素子温度の違いとして現れる。よって、通電時においても、上流側のスイッチング素子33の温度検出値T1からスイッチング素子温度上昇推定値T1uを減算した値(T1-T1u)と、下流側のスイッチング素子33の温度検出値T2からスイッチング素子温度上昇推定値T2uを減算した上で冷却液温度上昇推定値Tw1uを減算した値(T2-T2u-Tw1u)との差(|(T1-T1u)-(T2-T2u-Tw1u)|)が定められた正常範囲内か否かで温度検出部29の異常を判定することができる。
 前記第1および第2のインバータ25a,25aに通電する電流が同一のとき、前記温度検出異常判定部30は、
  前記第1の温度検出値T1と、
  前記第2の温度検出値T2から、前記第1の冷却液温度上昇推定値Tw1uを減算した値との差が、定められた正常範囲内に入っていないとき、前記第1および第2の温度検出部29のいずれか一方または両方に異常があると判定してもよい。これら上流側および下流側のインバータ25a,25aに通電する電流が同一の場合、上流側および下流側の二つのスイッチング素子33,33の温度上昇値は同じであるため、スイッチング素子33の温度上昇値を計算する必要がなくなり、温度検出部29の異常判定の簡略化が可能となる。
 さらに、前記第1および第2のインバータ25a,25aを冷却液で冷却する冷却機構Rkを備え、前記冷却機構Rkは、前記第1および第2のインバータ25a,25aに冷却液を個別に流す第1および第2の冷却路18,18であって、並列に接続された第1および第2の冷却路18,18、これら第1および第2の冷却路18にわたる循環経路19に冷却液を循環させるポンプ22、および前記冷却液を冷却するラジエータ23を有し、
 前記温度検出異常判定部30は、前記モータコントロール部26から指令トルクが与えられている前記第1および第2のモータ6,6の通電時に、前記第1および第2のインバータ25a,25aに通電する電流の指令値または検出値から、前記第1および第2の温度検出部がそれぞれ設けられた前記スイッチング素子33,33の温度上昇値をそれぞれ第1および第2のスイッチング素子温度上昇推定値T1u,T2uとして推定するスイッチング素子温度上昇値推定部30bを有し、
 前記温度検出異常判定部30は、
  前記第1の温度検出値T1から、前記第1のスイッチング素子温度上昇推定値T1uを減算した値と、
  前記第2の温度検出値T2から、前記第2のスイッチング素子温度上昇推定値T2uを減算した値と、の差が、定められた正常範囲内に入っていないとき、前記第1および第2の温度検出部29のいずれか一方または両方に異常があると判定してもよい。
 この構成によると、第1および第2の冷却路18,18が並列に接続されている場合において、スイッチング素子33,33の温度上昇値を推定することで、通電時でも温度検出部29,29の異常判定を行うことができる。さらに並列接続の場合、上流側での冷却液温度上昇値を推定しなくてもよくなるため、直列接続よりも簡単に温度検出部29の異常判定を行うことができる。
 前記第1および第2のインバータ25a,25aに通電する電流が同一のとき、前記温度検出異常判定部30は、前記第1の温度検出値T1と、前記第2の温度検出値T2との差が定められた正常範囲内に入っていないとき、前記第1および第2の温度検出部29のいずれか一方または両方に異常があると判定してもよい。この第1および第2のインバータ25a,25aに通電する電流が同一の場合、二つのスイッチング素子33,33の温度上昇値は同じであるため、スイッチング素子33の温度上昇値を計算する必要がなくなり、温度検出部29の異常判定の簡略化が可能となる。
 さらに、前記第1および第2のインバータ25aを冷却液で冷却する冷却機構Rkと、
 前記冷却液の温度を検出する冷却液温度検出部24とを備え、
 前記温度検出異常判定部30が、前記第1および第2の温度検出値T1,T2と、前記冷却液温度検出部24で検出された前記冷却液の温度Twとの三つの温度を、そのまままたは定められた条件に従って演算し、前記三つの温度の各二つの温度の差が全て前記定められた正常範囲内に入っているとき、前記第1および第2の温度検出部29,29および前記冷却液温度検出部24が正常であると判定し、前記三つの温度の各二つの温度の差のいずれか一つまたは複数が前記定められた正常範囲内に入っていないとき、前記第1および第2の温度検出部29,29および前記冷却液温度検出部24のいずれか一つまたは二つまたは全てに異常があると判定してもよい。
 前記定められた条件は、設計等によって任意に定める条件であって、例えば、試験および/またはシミュレーションにより適切な条件を求めて定められる。
 この構成によると、温度検出異常判定部30は、第1および第2のモータ6,6をそれぞれ駆動するインバータ25a,25aのスイッチング素子33,33の温度をそれぞれ検出する第1および第2の温度検出部29,29で検出された温度と、冷却液温度検出部24で検出された冷却液の温度との三つの温度を、そのまままたは定められた条件に従って演算し、前記三つの温度の各二つの温度の差が全て前記定められた正常範囲内に入っているか否か判定する。前記演算は、例えば、前記三つの温度に対し、スイッチング素子温度上昇値および水温上昇分を減算することである。モータコントロール部26に指令トルクが与えられていない第1および第2のモータ6,6の非通電時であれば、例えば、スイッチング素子33,33、ヒートシンク、インバータ25aを冷却する冷却液の温度等が上昇していないため、冷却液と第1および第2のインバータ25a,25aは略同じ温度となるはずである。このため、単に前記三つの温度を二つずつ互いに比較することで、異常が発生した温度検出部29,29,24を特定することができる。通電時では、前記三つの温度に対しスイッチング素子温度上昇値および水温上昇分を加味した値を比較することで、前記と同様に異常が発生した温度検出部29,29,24を特定することができる。したがって、インバータ25aのスイッチング素子33の温度を精度よく検出することができる。
 前記温度検出異常判定部30は、前記第1および第2の温度検出部ならびに前記冷却液温度検出部のうち、対象とする一つの温度検出部によって検出された温度につき、他の二つの温度検出部それぞれによって検出された温度との差が共に定められた正常範囲内に入っていないとき、前記対象とする温度検出部に異常があると判定してもよい。この場合、非通電時に、対象とする温度検出部と他の二つの温度検出部の温度検出値とをそのまま比較するだけであり、簡単かつ単純に温度検出部の異常を判定することができる。
 前記冷却機構Rkは、前記第1および第2のインバータ25aに冷却液を個別に流す第1および第2の冷却路18,18であって、直列に接続された第1および第2の冷却路18,18、これら第1および第2の冷却路18にわたる循環経路19に冷却液を循環させるポンプ22、および前記冷却液を冷却するラジエータ23を有し、前記ラジエータ23に対し前記循環経路19における前記第1および第2の冷却路18,18の上流側に前記冷却液温度検出部24が設けられ、
 前記温度検出異常判定部30は、前記モータコントロール部26から指令トルクが与えられている前記第1および第2のモータ6,6の通電時に、前記ラジエータ23に対し前記循環経路19の上流側の前記第1のインバータ25aに通電する電流の指令値または検出値から、前記第1のインバータにおける冷却液の温度上昇値を第1の冷却液温度上昇推定値Tw1uとして推定する冷却液温度上昇値推定部30a、および前記第1および第2のインバータ25a,25aに通電する電流の指令値または検出値から、前記第1のインバータ25aにおける前記第1の温度検出部29が設けられた前記スイッチング素子33、および前記ラジエータ23に対し前記循環経路19の下流側の前記第2のインバータ25aにおける前記第2の温度検出部29が設けられた前記スイッチング素子33の温度上昇値をそれぞれ第1および第2のスイッチング素子温度上昇推定値T1u,T2uとして推定するスイッチング素子温度上昇値推定部30b、を有するものであってもよい。
 前記温度検出異常判定部30は、
  前記第1の温度検出値T1から、前記第1のスイッチング素子温度上昇推定値T1uを減算した値と、前記冷却液温度検出部24で検出した前記冷却液温度Twとの差を演算するための第1の式(|Tw-(T1-T1u)|)、
  前記第2の温度検出値T2から、前記第2のスイッチング素子温度上昇推定値T2uを減算した値に対し、前記第1の冷却液温度上昇推定値Tw1uを減算した値と、前記冷却液温度Twとの差を演算するための第2の式(|Tw-(T2-T2u-Tw1u)|)、
  前記第1の温度検出値T1から、前記第1のスイッチング素子温度上昇推定値T1uを減算した値と、前記第2の温度検出値T2から、前記第2のスイッチング素子温度上昇推定値T2uを減算した値に対し、前記第1の冷却液温度上昇推定値Tw1uを減算した値との差を演算するための第3の式(|(T1-T1u)-(T2-T2u-Tw1u)|)でそれぞれ演算される差がそれぞれ定められた正常範囲内に入っているか判定し、これら差のうちのいずれか二つの差が定められた正常範囲内に入っていないとき、前記二つの差を演算した式に共通して含まれる温度を検出する温度検出部に異常があると判定してもよい。
 この構成によると、第1および第2の冷却路18,18が直列で、これら冷却路18,18の上流側に冷却液温度検出部24がある場合の通電時に、スイッチング素子33,33の温度上昇と、上流側での冷却液の温度上昇値を推定することで、通電時でも温度検出部に異常があるか否かを判定することができる。
 前記冷却機構Rkは、前記第1および第2のインバータ25a,25aに冷却液を個別に流す第1および第2の冷却路18,18であって、並列に接続された第1および第2の冷却路18,18、これら第1および第2の冷却路18,18にわたる循環経路19に冷却液を循環させるポンプ22、および前記冷却液を冷却するラジエータ23を有し、前記ラジエータ23に対し前記循環経路19における前記第1および第2の冷却路18,18の上流側に前記冷却液温度検出部24が設けられ、
 前記温度検出異常判定部30は、前記モータコントロール部26から指令トルクが与えられている前記第1および第2のモータ6の通電時に、前記第1および第2のインバータ25a,25aに通電する電流の指令値または検出値から、前記第1および第2の温度検出部29,29がそれぞれ設けられた前記スイッチング素子33,33の温度上昇値をそれぞれ第1および第2のスイッチング素子温度上昇推定値T1u,T2uとして推定するスイッチング素子温度上昇値推定部30bを有するものであってもよい。
 前記温度検出異常判定部30は、
  前記第1の温度検出値T1から、前記第1のスイッチング素子温度上昇推定値T1uを減算した値と、前記冷却液温度検出部24で検出した前記冷却液温度Twとの差を演算するための第4の式(|Tw-(T1-T1u)|)、
  前記第2の温度検出値T2から、前記第2のスイッチング素子温度上昇推定値T2uを減算した値と、前記冷却液温度検出部24で検出した前記冷却液温度Twとの差を演算するための第5の式(|Tw-(T2-T2u)|)、および
  前記第1の温度検出値T1から、前記第1のスイッチング素子温度上昇推定値T1uを減算した値と、前記第2の温度検出値T2から、前記第2のスイッチング素子温度上昇推定値T2uを減算した値との差を演算するための第6の式(|(T1-T1u)-(T2-T2u)|)でそれぞれ演算される差がそれぞれ定められた正常範囲内に入っているか判定し、これら差のうちのいずれか二つの差が定められた正常範囲内に入っていないとき、前記二つの差を演算した式に共通して含まれる温度を検出する温度検出部に異常があると判定してもよい。
 この構成によると、第1および第2の冷却路18,18が並列でこれら冷却路18,18の上流側に冷却液温度検出部24がある場合の通電時に、スイッチング素子33,33の温度上昇値を推定することで、通電時でも温度検出部に異常があるか否かを判定することができる。また第1および第2の冷却路18,18が並列の場合、上流側での冷却液の温度上昇値を推定しなくてもよくなるため、第1および第2の冷却路18,18が直列の場合よりも簡単に温度検出部の異常の有無を判定することができる。
 前記冷却機構Rkは、前記第1および第2のインバータ25a,25aに冷却液を個別に流す第1および第2の冷却路18,18であって、直列に接続された第1および第2の冷却路18,18、これら第1および第2の冷却路18,18にわたる循環経路19に冷却液を循環させるポンプ22、および前記冷却液を冷却するラジエータ23を有し、前記ラジエータ23に対し前記循環経路19における前記第1および第2の冷却路18,18の下流側に前記冷却液温度検出部24が設けられ、
 前記温度検出異常判定部30は、
  前記モータコントロール部26から指令トルクが与えられている前記第1および第2のモータ6の通電時に、前記第1および第2のインバータ25a,25aに通電する電流の指令値または検出値から、前記第1および第2のインバータ25a,25aでの冷却液の温度上昇値をそれぞれ第1および第2の冷却液温度上昇推定値Tw1u,Tw2uとして推定する冷却液温度上昇値推定部30a、および
  前記第1および第2のインバータ25a,25aに通電する電流の指令値または検出値から、前記ラジエータ23に対し前記循環経路19の上流側の前記第1のインバータ25aにおける前記第1の温度検出部29が設けられた前記スイッチング素子33、および前記ラジエータ23に対し前記循環経路19の下流側の前記第2のインバータ25aにおける前記第2の温度検出部29が設けられた前記スイッチング素子33の温度上昇値をそれぞれ第1および第2のスイッチング素子温度上昇推定値T1u,T2uとして推定するスイッチング素子温度上昇値推定部30b、を有するものであってもよい。
 前記温度検出異常判定部30は、
  前記第1の温度検出値T1から、前記第1のスイッチング素子温度上昇推定値T1uを減算した値(T1-T1u)と、前記冷却液温度検出部24で検出した前記冷却液温度Twから、前記第2の冷却液温度上昇推定値Tw2uおよび前記第1の冷却液温度上昇推定値Tw1uを減算した値(Tw-Tw2u-Tw1u)との差を演算するための第7の式(|(Tw-Tw2u-Tw1u)-(T1-T1u)|)、
  前記第2の温度検出値T2から、前記第2のスイッチング素子温度上昇推定値T2uを減算した値(T2-T2u)に対し、前記第1の冷却液温度上昇推定値Tw1uを減算した値(T2-T2u-Tw1u)と、前記冷却液温度検出部24で検出した前記冷却液温度Twから、前記第2の冷却液温度上昇推定値Tw2uおよび前記第1の冷却液温度上昇推定値Tw1uを減算した値(Tw-Tw2u-Tw1u)を演算するための第8の式(|Tw-Tw2u-Tw1u)-(T2-T2u-Tw1u)|)、および
  前記第1の温度検出値T1から、前記第1のスイッチング素子温度上昇推定値T1uを減算した値(T1-T1u)と、前記第2の温度検出値T2から、前記第2のスイッチング素子温度上昇推定値T2uを減算した値に対し、前記第1の冷却液温度上昇推定値Tw1uを減算した値との差を演算するための第9の式(|(T1-T1u)-(T2-T2u-Tw1u)|)でそれぞれ演算される差がそれぞれ定められた正常範囲内に入っているか判定し、これら差のうちのいずれか二つの式で演算した値が定められた正常範囲内に入っていないとき、前記二つの差を演算した式に共通して含まれる温度を検出する温度検出部に異常があると判定してもよい。
 この構成によると、第1および第2の冷却路18,18が直列でこれら冷却路18,18の下流側に冷却液温度検出部24がある場合の通電時に、スイッチング素子33,33の温度上昇と、第1および第2のインバータ25a,25aでの冷却液の温度上昇値を推定することで、下流側に冷却液温度検出部24がある場合においても温度検出部に異常があるか否かを判定することができる。
 前記冷却機構Rkは、前記第1および第2のインバータ25aに冷却液を個別に流す第1および第2の冷却路18,18であって、並列に接続された第1および第2の冷却路18,18、これら第1および第2の冷却路18,18にわたる循環経路19に冷却液を循環させるポンプ22、および前記冷却液を冷却するラジエータ23を有し、前記ラジエータ23に対し前記循環経路における前記第1および第2の冷却路18,18の下流側に前記冷却液温度検出部24が設けられ、
 前記温度検出異常判定部30は、前記モータコントロール部26から指令トルクが与えられている前記第1および第2のモータ6,6の通電時に、前記第1および第2のインバータ25a,25aに通電する電流の指令値または検出値から、前記第1および第2の温度検出部がそれぞれ設けられた前記スイッチング素子33,33の温度上昇値をそれぞれ第1および第2のスイッチング素子温度上昇推定値T1u,T2uとして推定するスイッチング素子温度上昇値推定部30bを有するものであってもよい。
 前記温度検出異常判定部30は、
  前記第1の温度検出値T1から、前記第1のスイッチング素子温度上昇推定値T1uを減算した値(T1-T1u)と、前記冷却液温度検出部24で検出した前記冷却液温度Twから、前記第1および第2の冷却路18,18での冷却液温度上昇推定値Tw1u,Tw2uの平均を減算した値(|Tw-(Tw1u+Tw2u)/2|)との差を演算するための第10の式(|Tw-(Tw1u+Tw2u)/2-(T1-T1u)|)、
  前記第2の温度検出値T2から、前記第2のスイッチング素子温度上昇推定値T2uを減算した値と、前記冷却液温度検出部24で検出した前記冷却液温度Twから、前記第1および第2の冷却路18,18での冷却液温度上昇推定値Tw1u,Tw2uの平均を減算した値(|Tw-(Tw1u+Tw2u)/2|)との差を演算するための第11の式(|Tw-(Tw1u+Tw2u)/2-(T2-T2u)|)、
  前記第1の温度検出値T1から、前記第1のスイッチング素子温度上昇推定値T1uを減算した値と、前記第2の温度検出値T2から、前記第2のスイッチング素子温度上昇推定値T2uを減算した値との差を演算するための第12の式(|(T1-T1u)-(T2-T2u)|)でそれぞれ演算される差がそれぞれ定められた正常範囲内に入っているか判定し、これら差のうちのいずれか二つの差が定められた正常範囲内に入っていないとき、前記二つの差を演算した式に共通して含まれる温度を検出する温度検出部に異常があると判定してもよい。尚、前記第1および第2の冷却路18、18は圧力損失が同じで流量も同じになるものとしているため、第1および第2のインバータ25a、25aによる冷却液の温度上昇を第1および第2の冷却路18、18での冷却液温度上昇推定値の平均で求めている。もし圧力損失及び流量が異なる場合は、各流量と各冷却液温度上昇推定値を用いて第1および第2のインバータ25a、25aによる冷却液の温度上昇を算出する必要がある。例えば、2つのインバータ25a、25aの流量をLa、Laとすると次式より求められる。
{(Tw1u×La)+(Tw2u×La)}/(La+La)
 この構成によると、第1および第2の冷却路18,18が並列でこれら冷却路18,18の下流側に冷却液温度検出部24がある場合の通電時に、スイッチング素子33,33の温度上昇と、第1および第2のインバータ25a,25aでの冷却液の温度上昇値の推定を行い、第1および第2のインバータ25a,25aでの冷却液の温度上昇値を用いて第1および第2の冷却路18,18での冷却液温度上昇推定値を算出し得る。これらにより、下流側に冷却液温度検出部24がある場合においても温度検出部に異常があるか否かを判定することができる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1の実施形態に係る駆動制御装置を搭載したモータ搭載自動車を平面図で示す概念構成のブロック図である。 図1のモータ搭載自動車におけるインホイールモータ駆動装置の断面図である。 図1の駆動制御装置のインバータの冷却路の接続例を示す図である。 図3のインバータの冷却路を直列に接続した例を示す図である。 図1の駆動制御装置の制御系のブロック図である。 通電停止後、定められた時間経過後に異常判定を行う例を示す図である。 通電停止後、スイッチング素子の温度の下降度合が定められた下降度合よりも小さくなったときに異常判定を行う例を示す図である。 通電停止後時間経過に従って定められた正常範囲を小さくする例を示す図である。 通電時に二つのスイッチング素子の温度が飽和してきたときに異常判定を行う例を示す図である。 スイッチング素子の温度上昇を推定するマップ例を示す図である。 水温上昇を推定するマップ例を示す図である。 この発明の第2の実施形態に係る駆動制御装置の制御系のブロック図である。 この発明の第3の実施形態に係る駆動制御装置のインバータの冷却路の接続例を示す図である。 この発明の第4の実施形態に係る駆動制御装置のインバータの冷却路の接続例を示す図である。 この発明の第5の実施形態に係る駆動制御装置のインバータの冷却路の接続例を示す図である。 この発明の第6の実施形態に係る駆動制御装置のインバータの冷却路の接続例を示す図である。 図14Aの各インバータの冷却路を拡大して示す図である。 この発明の第7の実施形態に係る駆動制御装置のインバータの冷却路の接続例を示す図である。 この発明の第8の実施形態に係る駆動制御装置のインバータの冷却路の接続例を示す図である。 この発明の第9の実施形態に係る駆動制御装置のインバータの冷却路の接続例を示す図である。 この発明の各実施形態に係る駆動制御装置を搭載したモータ搭載自動車を平面図で示す概念構成のブロック図である。
 この発明の第1の実施形態を図1ないし図11と共に説明する。
 <このモータ搭載自動車の概念構成について>
 図1は、この実施形態に係る駆動制御装置を搭載したモータ搭載自動車を平面図で示す概念構成のブロック図である。このモータ搭載自動車は、車体1の左右の後輪となる車輪2が駆動輪とされ、左右の前輪となる車輪3が従動輪とされた4輪の電気自動車である。前輪となる車輪3は操舵輪とされている。駆動輪となる左右の車輪2,2は、それぞれ独立の走行用のモータ6により駆動される。各モータ6は、後述のインホイールモータ駆動装置IWMを構成する。各車輪2,3には、ブレーキが設けられている。また左右の前輪となる操舵輪である車輪3,3は、図示しない転舵機構を介して転舵可能であり、ハンドル等の操舵手段15により操舵される。
 <インホイールモータ駆動装置IWMの概略構成について>
 図2に示すように、左右のインホイールモータ駆動装置IWMは、それぞれ、モータ6、減速機7および車輪用軸受4を有し、これらの一部または全体が車輪内に配置される。モータ6の回転は、減速機7および車輪用軸受4を介して駆動輪である車輪2に伝達される。車輪用軸受4のハブ輪4aのフランジ部には前記ブレーキを構成するブレーキロータ5が固定され、同ブレーキロータ5は、車輪2と一体に回転する。
 モータ6は、三相のモータであり、例えば、ロータ6aのコア部に永久磁石が内蔵された埋込磁石型同期モータである。このモータ6は、ハウジング8に固定したステータ6bと、回転出力軸9に取り付けたロータ6aとの間にラジアルギャップを設けたモータである。
 <冷却系統について>
 図1および図3に示すように、この駆動制御装置16は、左右の駆動輪をそれぞれ駆動する第1および第2のモータ6,6の制御を行うインバータ装置13を有する。このインバータ装置13は、第1および第2のモータ6にそれぞれ対応する第1および第2のインバータ25a,25aに冷却液を個別に流す第1および第2の冷却路18,18を有する。この駆動制御装置16は、各インバータ25a,25aを冷却液で冷却する冷却機構Rkを備え、この冷却機構Rkは、図3および図4に示すように、第1および第2の冷却路18にわたる循環経路19に冷却液を循環させるポンプ22と、この冷却液を冷却するラジエータ23とを備える。ラジエータ23は、例えば、走行風に当たり易い車体の前部に設置される。ポンプ22は、いわゆるウォーターポンプであってもよい。
 ラジエータ23の下流に、順次、第1および第2のインバータ25a,25aの冷却路18,18、ポンプ22が直列に配管接続されている。このポンプ22にラジエータ23が配管接続されることで、循環経路19が構成されている。またこの例では、ラジエータ23の直ぐ下流で且つ上流側の冷却路18よりも上流の循環経路途中に、冷却液の水温を検出する冷却液温度検出部(水温センサ)24が設けられている。ECU14(図1)は、例えば、冷却液温度検出部24で検出される水温が定められた温度以上になると、ラジエータ23のファン23aを回転駆動させ、またポンプ22により流量を増加させる等の制御を行う。
 <制御系について>
 図5は、この駆動制御装置16の制御系のブロック図である。駆動制御装置16は、自動車全般の制御を行う電気制御ユニットであるECU14と、このECU14の指令に従って走行用の左右のモータ6,6の制御を行うインバータ装置13とを有する。ECU14は、電気自動車の場合、VCU(車両制御ユニット)とも称される。
 インバータ装置13は、各モータ6に対してそれぞれ設けられたパワー回路部25,25と、これらパワー回路部25,25を制御するモータコントロール部26とを有する。モータコントロール部26は、2つのモータ6、6にそれぞれ対応する、モータ駆動制御部27,27、指令電流演算部28,28、および温度測定回路29a,29aと、温度検出異常判定部30と、トルク制限部31とを備える。モータコントロール部26は、このモータコントロール部26が保持するインホイールモータ駆動装置IWM(図1)に関する各検出値および制御値等の各情報をECU14に出力する機能を有する。
 各パワー回路部25は、バッテリ32の直流電力を各モータ6の駆動に用いる三相の交流電力に変換するインバータ25aと、このインバータ25aを駆動するゲートドライブ回路25bとを有する。各インバータ25aは、U相,V相,W相の半導体スイッチング素子(複数のスイッチング素子)33を含むハーフブリッジ回路で構成される。ゲートドライブ回路25bは、入力されたオンオフ指令を基に各半導体スイッチング素子(IGBT)33を駆動する。なお各インバータ25aはフルブリッジ回路で構成してもよい。
 モータコントロール部26は、コンピュータとこれに実行されるプログラム、および電子回路により構成される。モータコントロール部26は、その基本となる制御部としてモータ駆動制御部27,27を有する。各モータ駆動制御部27は、各系統を個別に制御する。図1および図5に示すように、ECU14の指令トルク演算部14aが、アクセル操作部20の出力するアクセル開度の信号(加速指令)と、ブレーキ操作部21の出力する減速指令とから、あるいは加速指令と減速指令と操舵手段15の出力する旋回指令とから、左右の後輪2,2のモータ6,6に与える加速・減速指令を指令トルクとして生成し、モータコントロール部26のトルク制限部31を介して各指令電流演算部28へ出力する。
 図5に示すように、トルク制限部31は、ECU14の指令トルク演算部14aから指令トルクが送られてきた際に、必要に応じてトルク制限をかける。このトルク制限部31では、半導体スイッチング素子33、モータ6および/または油温度等が高温になった場合等にトルクを制限し、場合によってはモータの駆動を停止する。また、後述するように温度検出異常判定部30から検出温度が異常だと判定された場合、トルク制限部31は、過熱状態にならない程度(例えば最大トルクの半分)にトルクを制限して制御を継続してもよい。代わりに、モータを停止させてもよい。
 各指令電流演算部28は、ECU14からトルク制限部31を介して与えられる指令トルク等による加速・減速指令に対応する電流指令を演算し、各モータ駆動制御部27および後述する温度検出異常判定部30へ与える。各モータ駆動制御部27は、インバータ25aから各モータ6に流す電流を電流センサ34から得て、電流指令に対し、検出される電流を追従させる電流フィードバック制御を行う。フィードバック制御により指令電圧を算出し、指令電圧をパルス幅変調信号にして、ゲートドライブ回路25bにオンオフ指令を与える。
 <温度検出部、温度検出異常判定部等について>
 このインバータ装置13には、第1および第2の温度検出部29,29(総称して29)が設けられている。第1の温度検出部29は、第1のモータ6(6)を駆動する第1のインバータ25a(25a)の複数の半導体スイッチング素子33のいずれか一つに設けられた第1の測定部29b(25b)と、この測定部29bで測定された電圧等から成る測定値を温度に変換する温度測定回路29a(29a)とを有する。第1の温度検出部29により、対応する半導体スイッチング素子33の温度を検出し得る。
 第2の温度検出部29は、第2のモータ6(6)を駆動する第2のインバータ25a(25a)の複数の半導体スイッチング素子33のいずれか一つに設けられた第2の測定部29b(25b)と、この測定部29bで測定された測定値を温度に変換する温度測定回路29a(29a)とを有する。第2の温度検出部29により、対応する半導体スイッチング素子33の温度を検出し得る。
 各温度検出部29の測定部29bとして、例えば、温度センシング用のダイオードまたはサーミスタを用いてもよい。各温度検出部29の温度測定回路29aには、例えば、測定値をリニアライズする手段、高電圧と低電圧の間を絶縁して信号を伝達する手段(高電圧と低電圧との絶縁体)、電圧増幅用のアンプ、フィルタ回路およびADコンバータ等が含まれる。
 なお各温度検出部29は、例えば負電圧側のU相の半導体スイッチング素子33に測定部29bを固着してこの半導体スイッチング素子33の温度を検出しているが、この例に限定されるものではない。例えば、負電圧側の他の相の半導体スイッチング素子33、正電圧側のいずれかの相の半導体スイッチング素子33に測定部29bを固着してこの半導体スイッチング素子33の温度を検出してもよい。
 温度検出異常判定部30は、非通電時および通電時に、温度検出部29,29の一方または両方に異常があるか否かを判定する。前記非通電時は、ECU14からモータコントロール部26に指令トルクが与えられず、各モータ6が通電停止している状態であり、前記通電時は、ECU14からモータコントロール部26に指令トルクが与えられている状態である。
 図4に示すように、第1および第2のインバータ25a,25aの第1および第2の冷却路18,18が直列に接続されている場合、図5に示すように、温度検出異常判定部30は、第1および第2のインバータ25a,25aそれぞれのスイッチング素子温度の比較により温度検出部29および温度検出部29それぞれの異常を判定する。各温度検出部29の異常には、例えば、(1)温度検出値が正常温度範囲から外れる場合、(2)正常な温度範囲内に入るが温度検出値が固定値となる場合、(3)正常な温度範囲内に入るが温度検出値が実際の温度からずれる場合等が含まれる。
 <非通電時の異常判定について>
 温度検出異常判定部30は、第1および第2の温度検出部29,29でそれぞれ検出された温度の差が定められた正常範囲内に入っていないとき、いずれかの温度検出部29に異常があると判定する。非通電時には、第1および第2のインバータ25a,25aが略同じ温度となるはずだからである。
 但し、通電時から非通電時に移行した直後であると、スイッチング素子温度が下がりきるのに時間がかかる。そのため、温度検出異常判定部30は、図6に示すように、指令トルクが零となった後定められた時間t1の経過後異常判定を行ってもよい。代わりに、図7に示すように、指令トルクが零となった後第1および第2の温度検出部29,29(図5)それぞれで検出された温度の下降度合が定められた下降度合よりも小さくなった時点t2に異常判定を行ってもよい。前記下降度合とは、単位時間当たりに下降する温度を言う。
 また図5および図8に示すように、温度検出異常判定部30は、指令トルクが零となった後時間の経過に従って定められた正常範囲(閾値)Kを小さくしてもよい。この場合の指令トルクが零となった後の最初の閾値Kは、直前の電流値または電流の二乗の積算値等から決めてもよい。ここでいう電流値は、各指令電流演算部28から与えられる電流指令を用いてもよく、代わりに電流センサ34で検出される電流を用いてもよい。
 <通電時の異常判定について>
 図3および図5に示すように、上流側の第1のインバータ25aおよび下流側の第2のインバータ25aに通電する電流が同一(つまり第1および第2のモータ6,6に同一トルクを発生させる)のとき、温度検出異常判定部30は、上流側のスイッチング素子33を対応する第1の温度検出部29で検出した温度検出値T1と、下流側のスイッチング素子33を対応する第2の温度検出部29で検出した温度検出値T2から冷却液温度上昇推定値Tw1uを減算した値(T2-Tw1u)との差(|T1-(T2-Tw1u)|)が、定められた正常範囲内に入っていないとき、少なくともいずれかの温度検出部29に異常があると判定する。なお異常判定の前提条件として、第1および第2のインバータ25a,25aは一体もしくは別体で、別体の場合は水路上で第1および第2のインバータ25a,25a間には他の冷却対象物が存在しないこと、つまり、上流側の第1のインバータ25aの直ぐ下流に第2のインバータ25aが存在することが挙げられる。
 温度検出異常判定部30は冷却液温度上昇値推定部30aを有する。この冷却液温度上昇値推定部30aは、上流側の第1のインバータ25aに通電する電流の指令値または検出値から、演算またはマップ等を用いて、冷却液の温度上昇値を前記冷却液温度上昇推定値Tw1uとして推定する。電流の指令値または検出値と冷却液温度上昇推定値Tw1uとの関係は、図11に示すマップ例等により予め定められている。
 冷却液温度上昇推定値Tw1uの推定に、前記電流の検出値を用いた場合、何らかの異常により電流が指令値より大きくまたは小さくなった場合でも正確に冷却液温度上昇推定値Tw1uの推定が行える。一方、前記電流の指令値を用いた場合、負荷変動または電圧変動、ノイズ、その他の外乱等により電流が変動した場合でも安定して冷却液温度上昇推定値Tw1uを算出することができる。
 この通電時の異常判定では、図9に示すように、二つのスイッチング素子の温度T1,T2が飽和した時点t3に異常判定を開始する。前記飽和した時点とは、ある程度時間が経過した(所定時間経過した)とき、または温度変化の度合いが規定値以下になったときである。前記所定時間、前規定値は、試験および/またはシミュレーションにより定められる。なお通電時において、スイッチング素子温度が飽和する前の過渡期も異常判定を行う場合、電流値の二乗の積分値と放熱量から常時スイッチング素子温度を推定してもよい。
 図3および図5において、第1および第2のインバータ25a,25aに通電する電流が異なる(つまり第1および第2のモータ6,6に異なるトルクを発生させる)場合、上記冷却液温度上昇推定値Tw1uに加え、各インバータ25aのスイッチング素子33の温度上昇分が第1および第2のインバータ25a,25aのスイッチング素子温度の違いとして現れる。
 よって、温度検出異常判定部30は、上流側のスイッチング素子33の温度検出値T1からスイッチング素子温度上昇推定値T1uを減算した値(T1-T1u)と、下流側のスイッチング素子33の温度検出値T2からスイッチング素子温度上昇推定値T2uを減算(T2-T2u)したうえで冷却液温度上昇推定値Tw1uを減算した値(T2-T2u-Tw1u)との差(|(T1-T1u)-(T2-T2u-Tw1u)|)が、定められた正常範囲内に入っていないとき、少なくともいずれかの温度検出部29に異常があると判定する。
 温度検出異常判定部30は、さらにスイッチング素子温度上昇値推定部30bを有する。このスイッチング素子温度上昇値推定部30bは、第1および第2のインバータ25a,25aに通電する電流の指令値または検出値から、演算またはマップ等を用いて上流側および下流側のスイッチング素子33,33の温度上昇値をそれぞれスイッチング素子温度上昇推定値T1u,T2uとして推定する。電流の指令値または検出値と、スイッチング素子温度上昇推定値T1u,T2uとの関係は、例えば、図10に示すマップ例等により予め定められている。
 スイッチング素子温度上昇推定値T1u,T2uの推定に、前記電流の検出値を用いた場合、何らかの異常により電流が指令値より大きくまたは小さくなった場合でも正確にスイッチング素子温度上昇推定値T1u,T2uの推定が行える。一方、前記電流の指令値を用いた場合、負荷変動または電圧変動、ノイズ、その他の外乱等により電流が変動した場合でも安定してスイッチング素子温度上昇推定値T1u,T2uを算出することができる。
 なお図3および図5において、スイッチング素子温度上昇推定値T1u,T2uは、各インバータ25aに入る直前の冷却液温からの上流側および下流側のスイッチング素子33,33の温度上昇値である。厳密にいうと、温度測定ポイントまでの経路で冷却液温が上昇している可能性があるが、インバータ直前から温度測定ポイントまでの冷却液温上昇分も含めた温度である。
 以下に異常判定方法を纏めて示す。なお、水路上で第1および第2のインバータ25a,25aが直列に設置される場合、第1のインバータ25aが上流、第2のインバータ25aが下流に設置されているものとする。後述する他の実施形態についても同じである。
 各パラメータについては以下の通りである。
 T1:第1のインバータ25aのスイッチング素子の温度検出値
 T2:第2のインバータ25aのスイッチング素子の温度検出値
 Tw1u:上流側の第1のインバータでの冷却液温度上昇推定値
 K:定められた正常範囲
 T1u:第1のインバータ25aのスイッチング素子温度上昇推定値
 T2u:第2のインバータ25aのスイッチング素子温度上昇推定値
1.非通電時
 |T1-T2|>K が成立すると、異常と判定される。
2.通電時
 2-1.大きさが同じ電流の場合
 冷却路が直列の場合、|T1-(T2-Tw1u)|>K が成立すると、異常と判定される。
 冷却路が並列(後述する)の場合、|T1-T2|>K が成立すると、異常と判定される。
 2-2.大きさが異なる電流の場合
 冷却路が直列の場合、|(T1-T1u)-(T2-T2u-Tw1u)|>K が成立すると、異常と判定される。
 冷却路が並列(後述する)の場合、|(T1-T1u)-(T2-T2u)|>K が成立すると、異常と判定される。
 <作用効果について>
 以上説明した駆動制御装置16によれば、温度検出異常判定部30は、第1および第2のモータ6の非通電時に、二つのスイッチング素子33,33の温度を互いに比較する。前記非通電時は、このモータ搭載自動車の停車時であり、前記非通電時であれば、例えば、半導体スイッチング素子33、ヒートシンク、第1および第2のインバータ25a,25aを冷却する水温等が上昇していないため、第1および第2のインバータ25a,25aは異常がなければ略同じ温度となる。このため、温度検出異常判定部30は、前記非通電時において、単に二つのスイッチング素子33,33の温度を比較することで、温度変化前の検出温度が正しいかどうかを判定することができる。これにより各温度検出部29に異常があるか否かを精度よく判定し得る。
 温度検出異常判定部30は、指令トルクが零となった後定められた時間の経過後の第1および第2のモータ6の非通電時に異常判定を行うか、または指令トルクが零となった後第1および第2の温度検出部29,29で検出された温度の下降度合が定められた下降度合よりも小さくなった第1および第2のモータ6の非通電時に異常判定を行う。この場合、非通電時であっても直前まで電流を流していたことによる温度上昇分を考慮することができる。
 温度検出異常判定部30は、指令トルクが零となった後定められた時間を経過させることで、例えば、温められたヒートシンク等も冷却水により冷やされて、略水温に近い値まで二つのスイッチング素子温度が下がる。また、その際に温度の下降度合が冷却水温に近づくにつれて小さくなるため、温度の下降度合が小さくなったことで二つのスイッチング素子温度が水温に近い値になってきたことが推測できる。
 温度検出異常判定部30が、指令トルクが零の後時間の経過に従って定められた正常範囲を小さくする場合、温度検出部29の異常を判定するタイミングを早めることができる。すなわち、非通電時間が短くても温度検出部29の異常を判定することができる。
 この発明の第2の実施形態を説明する。以下の説明においては、第1の実施形態で先行して説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。
 <温度検出部、冷却液温度検出部、温度検出異常判定部等について>
 この第2の実施形態では、図12に示すように、冷却液温度検出部24で検出される水温は、後述する温度検出異常判定部30Aによる異常判定にも用いられる。インバータ装置13には、第1および第2の温度検出部29,29については、その説明を省略する。
 冷却液温度検出部(水温センサ)24は、循環経路19の途中に設けられる測定部24bと、ECU14に設けられ測定部24bで測定された測定値を温度に変換する温度測定回路24aとを有する。測定部24bとして、前記温度検出部29の測定部29bと同様に、例えば、温度センシング用のダイオードまたはサーミスタを用いてもよい。また温度測定回路24aとして、例えば、測定値をリニアライズする手段、電圧増幅用のアンプ、フィルタ回路およびADコンバータ等が含まれる。
 温度検出異常判定部30Aは、非通電時および通電時に、第1および第2の温度検出部29,29および冷却液温度検出部24のいずれか一つまたは二つまたは全てに異常があるか否かを判定する。前記非通電時は、ECU14からモータコントロール部26に指令トルクが与えられず、各モータ6が通電停止している状態であり、前記通電時は、ECU14からモータコントロール部26に指令トルクが与えられている状態である。
 図4に示すように、第1および第2のインバータ25a,25aの第1および第2の冷却路18,18が直列に接続されている場合、図12に示すように、温度検出異常判定部30Aは、冷却液温度検出部24で検出される冷却液の温度と第1および第2のインバータ25a,25aのスイッチング素子温度の比較により温度検出部29,29、および冷却液温度検出部24それぞれの異常を判定する。これら温度検出部29,29、冷却液温度検出部24それぞれの異常を総称して、「温度検出部の異常」という。各温度検出部の異常は、例えば、(1)温度検出値が正常温度範囲から外れる場合、(2)正常な温度範囲内に入るが温度検出値が固定値となる場合、(3)正常な温度範囲内に入るが温度検出値が実際の温度からずれる場合等が含まれる。
 <非通電時の異常判定について>
 温度検出異常判定部30Aは、第1および第2の温度検出部29,29で検出された二つのスイッチング素子33,33の温度および冷却液温度検出部24で検出された冷却液の温度のそれぞれの温度検出値の差が、定められた正常範囲内に入っていないとき、いずれかの温度検出部29,29,24に異常があると判定する。非通電時には、冷却液の温度と第1および第2のインバータ25a,25aで略同じ温度となるはずだからである。なお、非通電時の異常判定には、図6~8を参照して説明した手法が用いられてもよい。
 <通電時の異常判定について>
 図3および図12に示すように、通電時、冷却液温度検出部24で検出した冷却液の温度と第1および第2のインバータ25a,25aのスイッチング素子温の温度差は、上流にある第1のインバータ25aを通過したときの水温上昇分と、第1および第2のインバータ25a,25aのスイッチング素子33,33の温度上昇分により発生する。
 よって、温度検出異常判定部30Aは、第1および第2のスイッチング素子温から、それぞれのスイッチング素子温度上昇推定値T1u,T2uを減算し、下流側の第2のインバータ25aについてはさらに水温上昇分を減算した値と、冷却液温度検出部24で検出した温度を含めた三つの温度の各二つの温度の差(つまり三つの温度差)が、定められた正常範囲内に入っているか確認する。定められた正常範囲内に入っていないとき、少なくともいずれかの温度検出部29,29,24に異常があると判定する。前記三つの温度のいずれも、第1および第2のインバータ25a,25aの上流の水温相当になるため異常がなければ一致する。なおこの例の異常判定の前提条件として、第1および第2のインバータ25a,25aは一体もしくは別体で、別体の場合は水路上で第1および第2のインバータ25a,25a間には他の冷却対象物が存在しないこと、つまり、上流側の第1のインバータ25aの直ぐ下流に第2のインバータ25aが存在することが挙げられる。
 温度検出異常判定部30Aは、第1の実施形態に関連して説明した前記冷却液温度上昇値推定部30aと、前記スイッチング素子温度上昇値推定部30bとを有する。冷却液温度上昇値推定部30aは、第1のインバータ25aの冷却液温度上昇推定値Tw1uと同様に、第2のインバータ25aの冷却液温度上昇推定値Tw2uを推定してもよい。
 なお、この通電時の異常判定は、図9を参照して説明した手法が用いられてもよい。また、スイッチング素子温度上昇推定値T1u,T2uは、前述した温度上昇値である。
 以下に異常判定方法を纏めて示す。
 各パラメータについては以下の通りである。
 T1:第1のインバータ25aのスイッチング素子の温度検出値
 T2:第2のインバータ25aのスイッチング素子の温度検出値
 Tw1u:上流側の第1のインバータでの冷却液温度上昇推定値
 K:定められた正常範囲
 T1u:第1のインバータ25aのスイッチング素子温度上昇推定値
 T2u:第2のインバータ25aのスイッチング素子温度上昇推定値
 Tw:冷却液温度検出部24の温度検出値
1.非通電時
 |T1-T2|>K が成立すると、異常と判定される。
 |Tw-T1|>K が成立すると、異常と判定される。
 |Tw-T2|>K が成立すると、異常と判定される。
 温度検出値の二つの比較で異常と判定されると、これら二つともの比較の対象の温度の温度検出部は、異常と判定される。
2.通電時
 2-1.冷却路が直列の場合、Twと(T1-T1u)と(T2-T2u-Tw1u)を比較する。具体的には、以下の通りである。
 |Tw-(T1-T1u)|>K …式(1)
 |Tw-(T2-T2u-Tw1u)|>K …式(2)
 |(T1-T1u)-(T2-T2u-Tw1u)| …式(3)
 式1、式2および式3のうち二つの式が成立した場合、前記二つの式に共通して含まれる温度の温度検出部を異常と判定する。
 2-2.冷却路が並列の場合(後述する)、Twと(T1-T1u)と(T2-T2u)を比較する。具体的には、以下の通りである。
 |Tw-(T1-T1u)|>K …式(4)
 |Tw-(T2-T2u)|>K …式(5)
 |(T1-T1u)-(T2-T2u)|>K …式(6)
 式4、式5および式6のうち二つの式が成立した場合、前記二つの式に共通して含まれる温度の温度検出部を異常と判定する。
 <作用効果について>
 以上説明した駆動制御装置16によれば、温度検出異常判定部30Aは、第1のモータ6を駆動するインバータ25aのスイッチング素子33、および第2のモータ6を駆動するインバータ25aのスイッチング素子33の温度をそれぞれ検出する第1および第2の温度検出部29,29で検出された温度と、冷却液温度検出部24で検出された冷却液の温度との三つの温度を、そのまままたは定められた条件に従って演算し(つまり、所定の演算式を当てはめて修正し)、それぞれの値の差が定められた正常範囲内に入っているか否か判定する。モータ搭載自動車の停車時である非通電時であれば、例えば、半導体スイッチング素子33、ヒートシンク、インバータ25a,25aを冷却する冷却液の温度等が上昇していないため、冷却液と第1および第2のインバータ25a,25aは異常がなければ略同じ温度となる。このため、単に前記三つの温度を互いに比較することで、異常が発生した温度検出部29,29,24を特定することができる。通電時では、前記三つの温度に対しスイッチング素子温度上昇値および水温上昇分を加味した値を比較することで、前記と同様に異常が発生した温度検出部29,29,24を特定することができる。したがってインバータ25a,25aのスイッチング素子33の温度を精度よく検出することができる。
 その他の作用効果については、第1の実施形態に関して説明したものが当てはまる。
 <他の実施形態について>
 以下の説明においては、各実施の形態で先行して説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
 図3のインバータの冷却路の接続例に代えて、以下の構成であってもよい。
 図13Aに第3の実施形態を示すように、第1および第2のインバータ25a,25aが別体であり、上流側の第1のインバータ25aの下流に、他の冷却対象物を介在させることなく第2のインバータ25aが接続されてもよい。
 図13Bに第4の実施形態を示すように、第1および第2のインバータ25a,25aが一体構造で、下流側の第2のインバータ25aとポンプ22との間の循環経路途中に冷却液温度検出部24が設けられてもよい。
 図13Cに第5の実施形態を示すように、第1および第2のインバータ25a,25aが別体で、下流側の第2のインバータ25aとポンプ22との間の循環経路途中に冷却液温度検出部24が設けられてもよい。
 図14A,14Bに第6の実施形態を示すように、第1および第2のインバータ25a,25aが一体構造で、これらの冷却路18,18が並列に接続されてもよい。前記並列における非通電時の異常判定は、前述の直列における非通電時の異常判定と同じである。
 <第1および第2のインバータの温度に基づいた、通電時の異常判定について>
 図5および図14A,13Bに示すように、第1および第2のインバータ25a,25aに通電する電流が同一(つまり第1および第2のモータ6,6に同一トルクを発生させる)のとき、温度検出異常判定部30は、二つのスイッチング素子33,33の温度差(|T1-T2|)が定められた正常範囲内に入っていないとき、少なくともいずれかの温度検出部29に異常があると判定する。第1および第2のインバータ25a,25aに通電する電流が同一の場合、二つのスイッチング素子33,33の温度上昇値は同じであるため、スイッチング素子33の温度上昇値を計算する必要がなくなり、温度検出部29の異常判定の簡略化が可能となる。
 第1および第2のインバータ25a,25aに通電する電流が異なる場合、冷却液温度上昇推定値Tw1uに加え、各インバータ25aのスイッチング素子33の温度上昇分が第1および第2のインバータ25a,25aのスイッチング素子温度の違いとして現れる。
 よって、温度検出異常判定部30は、上流側のスイッチング素子33の温度検出値T1からスイッチング素子温度上昇推定値T1uを減算した値(T1-T1u)と、下流側のスイッチング素子33の温度検出値T2からスイッチング素子温度上昇推定値T2uを減算(T2-T2u)したうえで冷却液温度上昇推定値Tw1uを減算した値(T2-T2u-Tw1u)との差(|(T1-T1u)-(T2-T2u-Tw1u)|)が、定められた正常範囲内に入っていないとき、少なくともいずれかの温度検出部29に異常があると判定する。なお、異常判定の前提条件として、水路が分岐してから第1および第2のインバータ25a,25aに入るまでに冷却対象物(過熱物)がないことが挙げられる。
 第1および第2の冷却路18,18が並列に接続されている場合において、スイッチング素子33の温度上昇値を推定することで、通電時でも温度検出部29の異常判定を行うことができる。さらに並列接続の場合、上流側での冷却液温度上昇値を推定しなくてもよくなるため、直列接続よりも簡単に温度検出部29の異常判定を行うことができる。
 図14Aのインバータの冷却路の接続例に代えて、以下の構成であってもよい。
 図15Aに第7の実施形態を示すように、第1および第2のインバータ25a,25aが別体で第1および第2の冷却路18,18が並列に接続されていてもよい。
 図15Bに第8の実施形態を示すように、第1および第2のインバータ25a,25aが一体構造で、各インバータ25a,25aとポンプ22との間の循環経路途中に冷却液温度検出部24が設けられてもよい。
 図15Cに第9の実施形態を示すように、第1および第2のインバータ25a,25aが別体で各インバータ25a,25aとポンプ22との間の循環経路途中に冷却液温度検出部24が設けられてもよい。
 <冷却路18,18が並列で、第1および第2のインバータの温度ならびに冷却液温度に基づいた、通電時の異常判定について>
 図5,図14A,14Bおよび図15Aに示すように、通電時の冷却液温度検出部24の温度検出値と第1および第2のインバータ25a,25aのスイッチング素子33,33の温度検出値との温度差は、各インバータ25aのスイッチング素子33の温度上昇分により発生する。
 よって、温度検出異常判定部30は、第1および第2のインバータ25aのスイッチング素子33の温度検出値から、それぞれのスイッチング素子温度上昇値を減算し、冷却液温度検出部24の温度検出値を含めた三つの温度のそれぞれの差が定められた正常範囲内に入っているか確認する。いずれも、第1および第2のインバータ25a,25aの上流の水温相当になるため異常がなければ一致する。なお、異常判定の前提条件として、水路が分岐してから第1および第2のインバータ25a,25aに入るまでに冷却対象物(過熱物)がないこと、また、冷却液温度検出部24は第1および第2のインバータ25a,25aの上流かつ間に冷却対象物がないことが挙げられる。
 <下流に冷却液温度検出部24が設けられている場合の異常判定方法について>
 各パラメータについては以下の通りである。
 T1:第1のインバータ25aのスイッチング素子の温度検出値
 T2:第2のインバータ25aのスイッチング素子の温度検出値
 Tw1u:上流側の第1のインバータでの冷却液温度上昇推定値
 Tw2u:下流側の第2のインバータでの冷却液温度上昇推定値
 K:定められた正常範囲
 T1u:第1のインバータ25aのスイッチング素子温度上昇推定値
 T2u:第2のインバータ25aのスイッチング素子温度上昇推定値
 Tw:冷却液温度検出部24の温度検出値
 なお異常判定する制御主体は温度検出異常判定部30A(図12)である。また冷却液温度上昇値推定部30aは、下流側の第2のインバータ25aに通電する電流の指令値または検出値から、演算またはマップ等を用いて冷却液温度上昇推定値Tw2uを推定する。
1.非通電時
 直列、並列共に、上流に冷却液温度検出部24が設けられている場合(図3)と同様である。
2.通電時
 2-1.冷却路が直列(図13B,13C)の場合、(Tw-Tw2u-Tw1u)と(T1-T1u)と(T2-T2u-Tw1u)を比較する。
 |(Tw-Tw2u-Tw1u)-(T1-T1u)|>K …式(7)
 |(Tw-Tw2u-Tw1u)-(T2-T2u-Tw1u)|>K …式(8)
 |(T1-T1u)-(T2-T2u-Tw1u)|>K …式(9)
 式7、式8および式9のうち二つの式が成立した場合、前記二つの式に共通して含まれる温度の温度検出部を異常と判定する。
 2-2.冷却路が並列(図15B,図15C)の場合、(Tw-(Tw1u+Tw2u)/2)と(T1-T1u)と(T2-T2u)を比較する。
 |Tw-(Tw1u+Tw2u)/2-(T1-T1u)|>K …式(10)
 |Tw-(Tw1u+Tw2u)/2-(T2-T2u)|>K …式(11)
 |(T1-T1u)-(T2-T2u)|>K …式(12)
 式10、式11および式12のうち二つの式が成立した場合、前記二つの式に共通して含まれる温度の温度検出部を異常と判定する。尚、前記第1および第2の冷却路18、18は圧力損失が同じで流量も同じになるものとしているため、第1および第2のインバータ25a、25aによる冷却液の温度上昇を各冷却路18、18での冷却液温度上昇推定値の平均で求めている。もし圧力損失及び流量が異なる場合は、各流量と各冷却液温度上昇推定値を用いて第1および第2のインバータ25a、25aによる冷却液の温度上昇を算出する必要がある。例えば、第1および第2のインバータ25a、25aの流量をLa、Laとすると次式より求められる。
{(Tw1u×La)+(Tw2u×La)}/(La+La)
 図5,図13B,13Cに示すように、下流に冷却液温度検出部24が設けられ、第1および第2の冷却路18,18が直列の場合、通電時の冷却液温度検出部24の温度検出値と、第1および第2のインバータ25a,25aのスイッチング素子33,33の温度検出値との温度差は、各インバータ25aを通過したときの水温上昇分と、各インバータ25aのスイッチング素子33の温度上昇分により発生する。
 よって、温度検出異常判定部30Aは、各スイッチング素子温から、それぞれのスイッチング素子温度上昇値を減算し、下流側の第2のインバータ25aについてはさらに水温上昇分を減算した値と、冷却液温度検出部24の温度検出値から第1および第2のインバータ25a,25aによる水温上昇分を減算した値の三つの温度のそれぞれの差が定められた正常範囲内に入っているか確認する。いずれも、第1および第2のインバータ25a,25aの上流の水温相当になるため異常がなければ一致する。
 図5,図15B,15Cに示すように、下流に冷却液温度検出部24が設けられ、第1および第2の冷却路18,18が並列の場合、通電時の冷却液温度検出部24の温度検出値と、第1および第2のインバータ25a,25aのスイッチング素子33,33の温度検出値との温度差は、各インバータ25aを通過したときの水温上昇分と、各インバータ25aのスイッチング素子33の温度上昇分により発生する。ここで、第1および第2のインバータ25a,25aに入る分岐前の水温と第1および第2のインバータ25a,25aを通って合流した後の水温の差(第1および第2のインバータ25a,25aで上昇させた水温)は、流量が二分される場合は、第1および第2のインバータ25a,25aで上昇させた水温上昇値の平均となる。流量が異なる場合は、その割合に応じた計算により求める。
 よって、温度検出異常判定部30は、各スイッチング素子温から、それぞれのスイッチング素子温度上昇値を減算した値と、冷却液温度検出部24の温度検出値から第1および第2のインバータ25a,25aによる水温上昇分(流量が同じ場合は二つの水温上昇値の平均値)を減算した値の三つの温度のそれぞれの差が定められた正常範囲内に入っているか確認する。いずれも、第1および第2のインバータ25a,25aの上流の水温相当になるため異常がなければ一致する。
 インホイールモータ駆動装置においては、サイクロイド式の減速機、遊星減速機、2軸並行減速機、その他の減速機を適用可能である。また、前記の実施形態のインホイールモータ駆動装置においては、後輪駆動を示したが、前輪駆動でも4輪駆動としてもよい。
 前記の各実施形態においては、インホイールモータ駆動装置を備えた電気自動車に駆動制御装置を適用した例を説明したが、図16に示すように、車体1に二台のモータ6,6および各モータ6に対応する減速機7,7を設け、これらモータ6,6により左右の車輪3,3を駆動する二モータオンボードタイプのモータ搭載自動車に、駆動制御装置16を備えてもよい。図16において、モータ6で駆動する左右の車輪は前後輪3,2のいずれであってもよい。また、4輪駆動としてもよい。
 以上、実施形態に基づいてこの発明を実施するための形態を説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 以上説明したこの発明では、「非通電時に異常を判定する」を要件としたが、この要件を備えない応用例の態様として次のものがある。
〔態様1〕
 左右の駆動輪をそれぞれ駆動する第1および第2のモータをそれぞれ独立して駆動可能な車両に搭載される、モータ搭載自動車の駆動制御装置であって、
 直流電力を前記第1および第2のモータそれぞれの駆動に用いる交流電力にそれぞれ変換する第1および第2のインバータを含むパワー回路部であって、前記第1および第2のインバータは、それぞれ、複数のスイッチング素子の開閉により直流電力を交流電力に変換するパワー回路部と、
 与えられる指令トルクに従って前記パワー回路部を介して前記第1および第2のモータを制御するモータコントロール部と、
 前記各インバータを冷却液で冷却する冷却機構を備え、
 前記第1のモータを駆動する前記第1のインバータの複数のスイッチング素子のいずれか一つに設けられた第1の温度検出部、および前記第2のモータを駆動する前記第2のインバータの複数のスイッチング素子のいずれか一つに設けられた第2の温度検出部であって、それぞれ対応するスイッチング素子の温度を検出する第1および第2の温度検出部と、
 前記冷却液の温度を検出する冷却液温度検出部と、
 前記第1および第2の温度検出部でそれぞれ検出された前記対応するスイッチング素子の温度と、前記冷却液温度検出部で検出された前記冷却液温度との三つの温度を、そのまままたは定められた条件に従って演算し、前記三つの温度の各二つの温度の差が全て前記定められた正常範囲内に入っているときは、前記第1および第2の温度検出部および前記冷却液温度検出部が正常であると判定し、前記三つの温度の各二つの温度の差のいずれか一つまたは複数が前記定められた正常範囲内に入っていないとき、前記第1および第2の温度検出部および前記冷却液温度検出部のいずれか一つまたは二つまたは全てに異常があると判定する温度検出異常判定部と、を有するモータ搭載自動車の駆動制御装置。
2…車輪(駆動輪)
6…モータ
25…パワー回路部
25a…インバータ
26…モータコントロール部
29…温度検出部
30…温度検出異常判定部
33…スイッチング素子

Claims (17)

  1.  左右の駆動輪をそれぞれ駆動する第1および第2のモータをそれぞれ独立して駆動可能な車両に搭載される、モータ搭載自動車の駆動制御装置であって、
     直流電力を前記第1および第2のモータそれぞれの駆動に用いる交流電力にそれぞれ変換する第1および第2のインバータを含むパワー回路部であって、前記第1および第2のインバータは、それぞれ、複数のスイッチング素子の開閉により直流電力を交流電力に変換するパワー回路部と、
     与えられる指令トルクに従って前記パワー回路部を介して前記第1および第2のモータを制御するモータコントロール部と、
     前記第1のモータを駆動する前記第1のインバータの複数のスイッチング素子のいずれか一つに設けられた第1の温度検出部、および前記第2のモータを駆動する前記第2のインバータの複数のスイッチング素子のいずれか一つに設けられた第2の温度検出部であって、対応するスイッチング素子の温度である第1および第2の温度検出値T1,T2をそれぞれ検出する第1および第2の温度検出部と、
     前記第1および第2の温度検出部で検出された温度を互いに比較することで前記第1および/または第2の温度検出部に異常があるか否かを判定する温度検出異常判定部であって、前記モータコントロール部に指令トルクが与えられていない前記第1および第2のモータの非通電時に、前記第1および第2の温度検出部で検出された温度の差が定められた正常範囲内に入っていないとき、前記第1および第2の温度検出部のいずれか一方または両方に異常があると判定する温度検出異常判定部とを備えたモータ搭載自動車の駆動制御装置。
  2.  請求項1に記載のモータ搭載自動車の駆動制御装置において、前記温度検出異常判定部は、前記指令トルクが零となった後定められた時間の経過後の前記第1および第2のモータの非通電時に異常判定を行うか、または前記指令トルクが零となった後前記第1および第2の前記温度検出部で検出された温度の下降度合が定められた下降度合よりも小さくなった前記第1および第2のモータの非通電時に異常判定を行うモータ搭載自動車の駆動制御装置。
  3.  請求項1または請求項2に記載のモータ搭載自動車の駆動制御装置において、前記温度検出異常判定部は、前記指令トルクが零となった後時間の経過に従って前記定められた正常範囲を小さくするモータ搭載自動車の駆動制御装置。
  4.  請求項1ないし請求項3のいずれか1項に記載のモータ搭載自動車の駆動制御装置において、さらに、
     前記第1および第2のインバータを冷却液で冷却する冷却機構を備え、
     前記冷却機構は、
      前記第1および第2のインバータに冷却液を個別に流す第1および第2の冷却路であって、直列に接続された第1および第2の冷却路、
      これら第1および第2の冷却路にわたる循環経路に冷却液を循環させるポンプ、および
      前記冷却液を冷却するラジエータを有し、
     前記温度検出異常判定部は、
      前記モータコントロール部から指令トルクが与えられている前記第1および第2のモータの通電時に、前記ラジエータに対し前記循環経路の上流側の前記第1のインバータに通電する電流の指令値または検出値から、前記第1のインバータにおける冷却液の温度上昇値を第1の冷却液温度上昇推定値Tw1uとして推定する冷却液温度上昇値推定部、および
      前記第1および第2のインバータに通電する電流の指令値または検出値から、前記第1のインバータにおける前記第1の温度検出部が設けられた前記スイッチング素子、および前記ラジエータに対し前記循環経路の下流側の前記第2のインバータにおける前記第2の温度検出部が設けられた前記スイッチング素子の温度上昇値をそれぞれ第1および第2のスイッチング素子温度上昇推定値T1u,T2uとして推定するスイッチング素子温度上昇値推定部、を有し、
     前記温度検出異常判定部は、
      前記第1の温度検出値T1から、前記第1のスイッチング素子温度上昇推定値T1uを減算した値と、
      前記第2の温度検出値T2から、前記第2のスイッチング素子温度上昇推定値T2uを減算した値に対し、前記第1の冷却液温度上昇推定値Tw1uを減算した値との差が、定められた正常範囲内に入っていないとき、前記第1および第2の温度検出部のいずれか一方または両方に異常があると判定するモータ搭載自動車の駆動制御装置。
  5.  請求項4に記載のモータ搭載自動車の駆動制御装置において、前記第1および第2のインバータに通電する電流が同一のとき、前記温度検出異常判定部は、
      前記第1の温度検出値T1と、
      前記第2の温度検出値T2から、前記第1の冷却液温度上昇推定値Tw1uを減算した値との差が、定められた正常範囲内に入っていないとき、前記第1および第2の温度検出部のいずれか一方または両方に異常があると判定するモータ搭載自動車の駆動制御装置。
  6.  請求項1ないし請求項3のいずれか1項に記載のモータ搭載自動車の駆動制御装置において、さらに、
     前記第1および第2のインバータを冷却液で冷却する冷却機構を備え、
     前記冷却機構は、
      前記第1および第2のインバータに冷却液を個別に流す第1および第2の冷却路であって、並列に接続された第1および第2の冷却路、
      これら第1および第2の冷却路にわたる循環経路に冷却液を循環させるポンプ、および
      前記冷却液を冷却するラジエータを有し、
     前記温度検出異常判定部は、
      前記モータコントロール部から指令トルクが与えられている前記第1および第2のモータの通電時に、前記第1および第2のインバータに通電する電流の指令値または検出値から、前記第1および第2の温度検出部がそれぞれ設けられた前記スイッチング素子の温度上昇値をそれぞれ第1および第2のスイッチング素子温度上昇推定値T1u,T2uとして推定するスイッチング素子温度上昇値推定部を有し、
     前記温度検出異常判定部は、
      前記第1の温度検出値T1から、前記第1のスイッチング素子温度上昇推定値T1uを減算した値と、
      前記第2の温度検出値T2から、前記第2のスイッチング素子温度上昇推定値T2uを減算した値と、の差が、定められた正常範囲内に入っていないとき、前記第1および第2の温度検出部のいずれか一方または両方に異常があると判定するモータ搭載自動車の駆動制御装置。
  7.  請求項6に記載のモータ搭載自動車の駆動制御装置において、前記第1および第2のインバータに通電する電流が同一のとき、前記温度検出異常判定部は、
      前記第1の温度検出値T1と、
      前記第2の温度検出値T2との差が定められた正常範囲内に入っていないとき、前記第1および第2の温度検出部のいずれか一方または両方に異常があると判定するモータ搭載自動車の駆動制御装置。
  8.  請求項1ないし請求項3のいずれか1項に記載のモータ搭載自動車の駆動制御装置において、さらに、
     前記第1および第2のインバータを冷却液で冷却する冷却機構と、
     前記冷却液の温度を検出する冷却液温度検出部とを備え、
     前記温度検出異常判定部が、前記第1および第2の温度検出値T1,T2と、前記冷却液温度検出部で検出された前記冷却液の温度Twとの三つの温度を、そのまままたは定められた条件に従って演算し、前記三つの温度の各二つの温度の差が全て前記定められた正常範囲内に入っているとき、前記第1および第2の温度検出部および前記冷却液温度検出部が正常であると判定し、前記三つの温度の各二つの温度の差のいずれか一つまたは複数が前記定められた正常範囲内に入っていないとき、前記第1および第2の温度検出部および前記冷却液温度検出部のいずれか一つまたは二つまたは全てに異常があると判定する、モータ搭載自動車の駆動制御装置。
  9.  請求項8に記載のモータ搭載自動車の駆動制御装置において、前記温度検出異常判定部は、前記第1および第2の温度検出部ならびに前記冷却液温度検出部のうち、対象とする一つの温度検出部によって検出された温度につき、他の二つの温度検出部それぞれによって検出された温度との差が共に定められた正常範囲内に入っていないとき、前記対象とする温度検出部に異常があると判定するモータ搭載自動車の駆動制御装置。
  10.  請求項8または請求項9に記載のモータ搭載自動車の駆動制御装置において、
     前記冷却機構は、
      前記第1および第2のインバータに冷却液を個別に流す第1および第2の冷却路であって、直列に接続された第1および第2の冷却路、
      これら第1および第2の冷却路にわたる循環経路に冷却液を循環させるポンプ、および
      前記冷却液を冷却するラジエータを有し、
     前記ラジエータに対し前記循環経路における前記第1および第2の冷却路の上流側に前記冷却液温度検出部が設けられ、
     前記温度検出異常判定部は、
      前記モータコントロール部から指令トルクが与えられている前記第1および第2のモータの通電時に、前記ラジエータに対し前記循環経路の上流側の前記第1のインバータに通電する電流の指令値または検出値から、前記第1のインバータにおける冷却液の温度上昇値を第1の冷却液温度上昇推定値Tw1uとして推定する冷却液温度上昇値推定部、および
      前記第1および第2のインバータに通電する電流の指令値または検出値から、前記第1のインバータにおける前記第1の温度検出部が設けられた前記スイッチング素子、および前記ラジエータに対し前記循環経路の下流側の前記第2のインバータにおける前記第2の温度検出部が設けられた前記スイッチング素子の温度上昇値をそれぞれ第1および第2のスイッチング素子温度上昇推定値T1u,T2uとして推定するスイッチング素子温度上昇値推定部、を有するモータ搭載自動車の駆動制御装置。
  11.  請求項10に記載のモータ搭載自動車の駆動制御装置において、
     前記温度検出異常判定部は、
      前記第1の温度検出値T1から、前記第1のスイッチング素子温度上昇推定値T1uを減算した値と、前記冷却液温度検出部で検出した前記冷却液温度Twとの差を演算するための第1の式(|Tw-(T1-T1u)|)、
      前記第2の温度検出値T2から、前記第2のスイッチング素子温度上昇推定値T2uを減算した値に対し、前記第1の冷却液温度上昇推定値Tw1uを減算した値と、前記冷却液温度Twとの差を演算するための第2の式(|Tw-(T2-T2u-Tw1u)|)、および
      前記第1の温度検出値T1から、前記第1のスイッチング素子温度上昇推定値T1uを減算した値と、前記第2の温度検出値T2から、前記第2のスイッチング素子温度上昇推定値T2uを減算した値に対し、前記第1の冷却液温度上昇推定値Tw1uを減算した値との差を演算するための第3の式(|(T1-T1u)-(T2-T2u-Tw1u)|)でそれぞれ演算される差がそれぞれ定められた正常範囲内に入っているか判定し、これら差のうちのいずれか二つの差が定められた正常範囲内に入っていないとき、前記二つの差を演算した式に共通して含まれる温度を検出する温度検出部に異常があると判定するモータ搭載自動車の駆動制御装置。
  12.  請求項8または請求項9に記載のモータ搭載自動車の駆動制御装置において、
     前記冷却機構は、
      前記第1および第2のインバータに冷却液を個別に流す第1および第2の冷却路であって、並列に接続された第1および第2の冷却路、
      これら第1および第2の冷却路にわたる循環経路に冷却液を循環させるポンプ、および
      前記冷却液を冷却するラジエータを有し、
     前記ラジエータに対し前記循環経路における前記第1および第2の冷却路の上流側に前記冷却液温度検出部が設けられ、
     前記温度検出異常判定部は、
      前記モータコントロール部から指令トルクが与えられている前記第1および第2のモータの通電時に、前記第1および第2のインバータに通電する電流の指令値または検出値から、前記第1および第2の温度検出部がそれぞれ設けられた前記スイッチング素子の温度上昇値をそれぞれ第1および第2のスイッチング素子温度上昇推定値T1u,T2uとして推定するスイッチング素子温度上昇値推定部を有するモータ搭載自動車の駆動制御装置。
  13.  請求項12に記載のモータ搭載自動車の駆動制御装置において、
     前記温度検出異常判定部は、
      前記第1の温度検出値T1から、前記第1のスイッチング素子温度上昇推定値T1uを減算した値と、前記冷却液温度検出部で検出した前記冷却液温度Twとの差を演算するための第4の式(|Tw-(T1-T1u)|)、
      前記第2の温度検出値T2から、前記第2のスイッチング素子温度上昇推定値T2uを減算した値と、前記冷却液温度検出部で検出した前記冷却液温度Twとの差を演算するための第5の式(|Tw-(T2-T2u)|)、および
      前記第1の温度検出値T1から、前記第1のスイッチング素子温度上昇推定値T1uを減算した値と、前記第2の温度検出値T2から、前記第2のスイッチング素子温度上昇推定値T2uを減算した値との差を演算するための第6の式(|(T1-T1u)-(T2-T2u)|)でそれぞれ演算される差がそれぞれ定められた正常範囲内に入っているか判定し、これら差のうちのいずれか二つの差が定められた正常範囲内に入っていないとき、前記二つの差を演算した式に共通して含まれる温度を検出する温度検出部に異常があると判定するモータ搭載自動車の駆動制御装置。
  14.  請求項8または請求項9に記載のモータ搭載自動車の駆動制御装置において、
     前記冷却機構は、
      前記第1および第2のインバータに冷却液を個別に流す第1および第2の冷却路であって、直列に接続された第1および第2の冷却路、
      これら第1および第2の冷却路にわたる循環経路に冷却液を循環させるポンプ、および
      前記冷却液を冷却するラジエータを有し、
     前記ラジエータに対し前記循環経路における前記第1および第2の冷却路の下流側に前記冷却液温度検出部が設けられ、
     前記温度検出異常判定部は、
     前記モータコントロール部から指令トルクが与えられている前記第1および第2のモータの通電時に、前記第1および第2のインバータに通電する電流の指令値または検出値から、前記第1および第2のインバータでの冷却液の温度上昇値をそれぞれ第1および第2の冷却液温度上昇推定値Tw1u,Tw2uとして推定する冷却液温度上昇値推定部、および
      前記第1および第2のインバータに通電する電流の指令値または検出値から、前記ラジエータに対し前記循環経路の上流側の前記第1のインバータにおける前記第1の温度検出部が設けられた前記スイッチング素子、および前記ラジエータに対し前記循環経路の下流側の前記第2のインバータにおける前記第2の温度検出部が設けられた前記スイッチング素子の温度上昇値をそれぞれ第1および第2のスイッチング素子温度上昇推定値T1u,T2uとして推定するスイッチング素子温度上昇値推定部、を有するモータ搭載自動車の駆動制御装置。
  15.  請求項14に記載のモータ搭載自動車の駆動制御装置において、
     前記温度検出異常判定部は、
      前記第1の温度検出値T1から、前記第1のスイッチング素子温度上昇推定値T1uを減算した値(T1-T1u)と、前記冷却液温度検出部で検出した前記冷却液温度Twから、前記第2の冷却液温度上昇推定値Tw2uおよび前記第1の冷却液温度上昇推定値Tw1uを減算した値(Tw-Tw2u-Tw1u)との差を演算するための第7の式(|(Tw-Tw2u-Tw1u)-(T1-T1u)|)、
      前記第2の温度検出値T2から、前記第2のスイッチング素子温度上昇推定値T2uを減算した値(T2-T2u)に対し、前記第1の冷却液温度上昇推定値Tw1uを減算した値(T2-T2u-Tw1u)と、前記冷却液温度検出部で検出した前記冷却液温度Twから、前記第2の冷却液温度上昇推定値Tw2uおよび前記第1の冷却液温度上昇推定値Tw1uを減算した値(Tw-Tw2u-Tw1u)との差を演算するための第8の式(|(Tw-Tw2u-Tw1u)-(T2-T2u-Tw1u)|)、および
      前記第1の温度検出値T1から、前記第1のスイッチング素子温度上昇推定値T1uを減算した値(T1-T1u)と、前記第2の温度検出値T2から、前記第2のスイッチング素子温度上昇推定値T2uを減算した値に対し、前記第1の冷却液温度上昇推定値Tw1uを減算した値との差を演算するための第9の式(|(T1-T1u)-(T2-T2u-Tw1u)|)でそれぞれ演算される差がそれぞれ定められた正常範囲内に入っているか判定し、これら差のうちのいずれか二つの差が定められた正常範囲内に入っていないとき、前記二つの差を演算した式に共通して含まれる温度を検出する温度検出部に異常があると判定するモータ搭載自動車の駆動制御装置。
  16.  請求項8または請求項9に記載のモータ搭載自動車の駆動制御装置において、
     前記冷却機構は、
      前記第1および第2のインバータに冷却液を個別に流す第1および第2の冷却路であって、並列に接続された第1および第2の冷却路、
      これら第1および第2の冷却路にわたる循環経路に冷却液を循環させるポンプ、および
      前記冷却液を冷却するラジエータを有し、
      前記ラジエータに対し前記循環経路における前記第1および第2の冷却路の下流側に前記冷却液温度検出部が設けられ、
     前記温度検出異常判定部は、
     前記モータコントロール部から指令トルクが与えられている前記第1および第2のモータの通電時に、前記第1および第2のインバータに通電する電流の指令値または検出値から、前記第1および第2の温度検出部がそれぞれ設けられた前記スイッチング素子の温度上昇値をそれぞれ第1および第2のスイッチング素子温度上昇推定値T1u,T2uとして推定するスイッチング素子温度上昇値推定部を有するモータ搭載自動車の駆動制御装置。
  17.  請求項16に記載のモータ搭載自動車の駆動制御装置において、
     前記温度検出異常判定部は、
      前記第1の温度検出値T1から、前記第1のスイッチング素子温度上昇推定値T1uを減算した値(T1-T1u)と、前記冷却液温度検出部で検出した前記冷却液温度Twから、前記第1および第2の冷却路での冷却液温度上昇推定値Tw1u,Tw2uの平均を減算した値(|Tw-(Tw1u+Tw2u)/2|)との差を演算するための第10の式(|Tw-(Tw1u+Tw2u)/2-(T1-T1u)|)、
      前記第2の温度検出値T2から、前記第2のスイッチング素子温度上昇推定値T2uを減算した値と、前記冷却液温度検出部で検出した前記冷却液温度Twから、前記第1および第2の冷却路での冷却液温度上昇推定値Tw1u,Tw2uの平均を減算した値(|Tw-(Tw1u+Tw2u)/2|)との差を演算するための第11の式(|Tw-(Tw1u+Tw2u)/2-(T2-T2u)|)、
      前記第1の温度検出値T1から、前記第1のスイッチング素子温度上昇推定値T1uを減算した値と、前記第2の温度検出値T2から、前記第2のスイッチング素子温度上昇推定値T2uを減算した値との差を演算するための第12の式(|(T1-T1u)-(T2-T2u)|)でそれぞれ演算される差がそれぞれ定められた正常範囲内に入っているか判定し、これら差のうちのいずれか二つの差が定められた正常範囲内に入っていないとき、前記二つの差を演算した式に共通して含まれる温度を検出する温度検出部に異常があると判定するモータ搭載自動車の駆動制御装置。
     
PCT/JP2018/046359 2017-12-18 2018-12-17 モータ搭載自動車の駆動制御装置 WO2019124311A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880081472.0A CN111491821B (zh) 2017-12-18 2018-12-17 装载马达的汽车的驱动控制装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017241940A JP7095984B2 (ja) 2017-12-18 2017-12-18 モータ搭載自動車の駆動制御装置
JP2017-241940 2017-12-18
JP2017-242490 2017-12-19
JP2017242490A JP7021927B2 (ja) 2017-12-19 2017-12-19 モータ搭載自動車の駆動制御装置

Publications (1)

Publication Number Publication Date
WO2019124311A1 true WO2019124311A1 (ja) 2019-06-27

Family

ID=66992645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046359 WO2019124311A1 (ja) 2017-12-18 2018-12-17 モータ搭載自動車の駆動制御装置

Country Status (2)

Country Link
CN (1) CN111491821B (ja)
WO (1) WO2019124311A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286888A (ja) * 2002-03-27 2003-10-10 Honda Motor Co Ltd 温度センサの異常を検出する車両の制御装置
JP2007060866A (ja) * 2005-08-26 2007-03-08 Mitsubishi Electric Corp 車載用電動機制御装置
JP2010007530A (ja) * 2008-06-25 2010-01-14 Hitachi Ltd 温度センサ診断装置
JP2014002081A (ja) * 2012-06-20 2014-01-09 Denso Corp 温度検出装置
JP2015139333A (ja) * 2014-01-24 2015-07-30 Ntn株式会社 モータ搭載自動車の駆動制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075868A (ja) * 2012-10-03 2014-04-24 Ntn Corp 電気自動車のモータ異常検出装置
JP6070849B2 (ja) * 2013-08-28 2017-02-01 日産自動車株式会社 センサ異常判定装置
CN105934879B (zh) * 2014-03-11 2018-09-14 日本精工株式会社 马达控制装置、使用该马达控制装置的电动助力转向装置以及车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286888A (ja) * 2002-03-27 2003-10-10 Honda Motor Co Ltd 温度センサの異常を検出する車両の制御装置
JP2007060866A (ja) * 2005-08-26 2007-03-08 Mitsubishi Electric Corp 車載用電動機制御装置
JP2010007530A (ja) * 2008-06-25 2010-01-14 Hitachi Ltd 温度センサ診断装置
JP2014002081A (ja) * 2012-06-20 2014-01-09 Denso Corp 温度検出装置
JP2015139333A (ja) * 2014-01-24 2015-07-30 Ntn株式会社 モータ搭載自動車の駆動制御装置

Also Published As

Publication number Publication date
CN111491821A (zh) 2020-08-04
CN111491821B (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
JP7095984B2 (ja) モータ搭載自動車の駆動制御装置
US10516363B2 (en) Apparatus for controlling motor
US7495411B2 (en) Controller for an electric four-wheel-drive vehicle
Hu et al. Fault-tolerant traction control of electric vehicles
CN106998169B (zh) 电力变换装置
CN106330035A (zh) 旋转电机控制装置
JP2015100149A (ja) アンチロックブレーキ制御装置
US9692345B2 (en) Motor drive device
WO2016076142A1 (ja) 各輪独立駆動式車両の駆動制御装置
JP2014529985A (ja) 電動車両のための冷却システム
WO2016031696A1 (ja) 車輪独立駆動式車両の駆動制御装置
JP2015139333A (ja) モータ搭載自動車の駆動制御装置
CN104210382A (zh) 车辆以及控制电机的方法
JP6517089B2 (ja) 車輪独立駆動式車両の駆動制御装置
JP7021927B2 (ja) モータ搭載自動車の駆動制御装置
JP6795897B2 (ja) 車輪独立駆動式車両の駆動制御装置
WO2018173936A1 (ja) 異常診断装置
WO2019124311A1 (ja) モータ搭載自動車の駆動制御装置
JP2014093844A (ja) 電動車両制御装置
JP5462121B2 (ja) モータ制御装置
US20200317058A1 (en) Electric vehicle controller
JP2021005967A (ja) 駆動制御装置
JP2018088768A (ja) モータ搭載自動車の駆動制御装置
JP2013031365A (ja) 回転電機システム制御装置
JP6042163B2 (ja) モータ搭載自動車の低温時駆動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891590

Country of ref document: EP

Kind code of ref document: A1