WO2016076142A1 - 各輪独立駆動式車両の駆動制御装置 - Google Patents

各輪独立駆動式車両の駆動制御装置 Download PDF

Info

Publication number
WO2016076142A1
WO2016076142A1 PCT/JP2015/080706 JP2015080706W WO2016076142A1 WO 2016076142 A1 WO2016076142 A1 WO 2016076142A1 JP 2015080706 W JP2015080706 W JP 2015080706W WO 2016076142 A1 WO2016076142 A1 WO 2016076142A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
torque
temperature
drive
wheel
Prior art date
Application number
PCT/JP2015/080706
Other languages
English (en)
French (fr)
Inventor
剛志 神田
鈴木 健一
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2016076142A1 publication Critical patent/WO2016076142A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to, for example, a drive control device for each wheel independent drive type vehicle in which an in-wheel motor is mounted on each of the left and right wheels, and more specifically, a motor for any one of the left and right wheels or a power device for an inverter.
  • the present invention relates to a drive control technique when an abnormality occurs in the temperature detecting means.
  • Patent Document 1 In a vehicle driven by a motor such as an electric vehicle, when a power device of a motor or an inverter is overheated, it is proposed to perform protection control against overheating by limiting or stopping the output of the motor (Patent Document 1). ).
  • the temperature detecting means for detecting overheating of the motor or the like when an abnormality occurs in the temperature detecting means for detecting overheating of the motor or the like, the temperature cannot be accurately detected, and thus it is impossible to appropriately control the output or stop the motor. If the control is to be continued when the motor is overheated, the motor is driven only with an excessively limited output and speed to ensure that the power device of the motor or inverter does not exceed the allowable temperature. Can not do it.
  • An object of the present invention is to independently drive each wheel, which can provide a necessary and sufficient driving torque to the motor even when an abnormality occurs in the temperature detecting means for detecting the temperature of the motor or the inverter in each wheel independently driven vehicle. It is providing the drive control apparatus of a vehicle.
  • the drive control device 20 includes at least a pair of left and right drive wheels 2 and 2, wherein the pair of left and right drive wheels 2 and 2 are a first drive wheel 2 and a second drive wheel. 2 and drive wheels 2, 2 and a pair of left and right motors 6, 6 that respectively drive the first and second drive wheels 2, 2.
  • the drive control device 20 An ECU 21 that generates a command torque for each of the pair of left and right motors 6 and 6 according to the operation of the operation units 16 and 17; Two power circuit units each including an inverter 31 corresponding to the pair of left and right motors 6 and 6 and converting each of the pair of left and right motors 6 and 6 into direct current power into alternating current power.
  • an inverter device 22 having a motor control unit 29 for controlling torque of the pair of left and right motors 6 and 6 via the two power circuit units 28 according to the command torque generated by the ECU 21;
  • two temperature detecting means 49, 49 for detecting the temperature of one or both of the motor 6 and the inverter 31,
  • a torque upper limit setting unit 39 that limits the output of the corresponding motor 6 according to the temperature detected by each of the two temperature detection means 49;
  • an abnormality detecting means 51 for detecting each abnormality of the two temperature detecting means 49.
  • the torque upper limit setting unit 39 Limiting the upper limit of the outputtable torque of the motor 6 that drives the first driving wheel 2 to a set output torque based on the command torque of the motor 6 that drives the second driving wheel 2;
  • the command torque of the motor 6 that drives the second driving wheel 2 is set so as to be suppressed according to the temperature detected by the temperature detecting means 49 corresponding to the second driving wheel 2.
  • the output limitation by the torque upper limit setting unit 39 includes stopping the output of the motor 6.
  • the abnormality of the temperature detection means 49 detected by the abnormality detection means 51 may be, for example, not only an abnormality of the temperature detection element but also a disconnection or short circuit of a harness, an abnormality of a circuit, and the like.
  • the set output torque is determined by the result of a test or simulation, for example.
  • the temperature detecting means 49 detects the temperature of one or both of the motor 6 and the inverter 31 for each drive wheel 2.
  • the torque upper limit setting unit 39 limits the output of the corresponding motor 6 according to the temperature detected by each of the two temperature detection means 49 and 49.
  • the abnormality detection unit 51 detects each abnormality of the two temperature detection units 49.
  • the torque upper limit setting unit 39 The upper limit value of the outputtable torque of the motor 6 that drives the first drive wheel 2 is limited.
  • the torque upper limit setting unit 39 sets the upper limit value of the torque that can be output from the motor 6 that drives the first drive wheel 2 based on the command torque of the motor that drives the second drive wheel 2. Limit to output torque.
  • the command torque of the motor 6 that drives the second driving wheel is set so as to be suppressed according to the temperature detected by the temperature detecting means 49 corresponding to the second driving wheel 2.
  • the 1st driving wheel 2 The upper limit value of the output possible torque of the motor 6 that drives the motor is limited.
  • the torque for driving the motor 6 corresponding to the normal temperature detecting means 49 is set to the upper limit value of the torque for driving the motor 6 corresponding to the abnormal temperature detecting means 49.
  • the motor 6 corresponding to the abnormal temperature detecting means 49 is limited so as not to output a larger torque than the motor 6 corresponding to the normal temperature detecting means 49.
  • each temperature of the motor 6 and the inverter 31 corresponding to the abnormal temperature detecting means 49 does not become higher than each temperature of the motor 6 and the inverter 31 corresponding to the normal temperature detecting means 49.
  • the limited torque becomes the torque upper limit value of the motor 6 corresponding to the abnormal temperature detecting unit 49. Therefore, while suppressing the temperatures of the motor 6 and the inverter 31 corresponding to the temperature detecting means 49 in which an abnormality has been detected, the drive wheels 2 driven by the motor 6 can be given a driving torque necessary and sufficient for traveling. .
  • the torque upper limit setting unit 39 sets the upper limit value of the torque that can be output from the pair of left and right motors 6, 6.
  • the limit may be limited to a predetermined ratio.
  • the predetermined ratio is determined based on, for example, results of tests and simulations.
  • the torque upper limit setting unit 39 can prevent the vehicle from undesirably acting by significantly restricting the outputs of both the left and right motors 6 and 6.
  • the driver of this vehicle can take measures such as retreating the vehicle to a roadside belt or the like.
  • the torque upper limit setting unit 39 drives the second drive wheel 2.
  • the output of the motor 6 that drives the first driving wheel 2 based on the torque obtained by subtracting the torque amount corresponding to the temperature difference detected by the two temperature detecting means 49 from the command torque of the motor 6.
  • the torque amount corresponding to the temperature difference detected by the temperature detecting means 49 may be obtained by calculation using a function or may be set by a map, for example. These functions and maps are determined by the results of tests and simulations. Even when the temperatures detected by the two normal temperature detecting means 49 are shifted due to individual differences, the upper limit value of the outputtable torque of the motor 6 is limited as described above, so that the first drive A driving torque necessary and sufficient for traveling can be applied to the wheel 2.
  • the temperature detected by the temperature detector 49 corresponding to the first drive wheel 2 immediately before the abnormality is detected is detected by the temperature detector 49 corresponding to the second drive wheel 2 at that time.
  • the torque upper limit setting unit 39 subtracts the torque amount corresponding to the certain temperature difference from the command torque of the motor 6 that drives the second drive wheel 2. Based on the above, the upper limit value of the outputtable torque of the motor 6 that drives the first drive wheel 2 may be limited.
  • the amount of torque corresponding to the certain temperature difference may be obtained, for example, by calculation using a function, or may be set using a map. These functions and maps are determined by the results of tests and simulations.
  • the normal torque of the second drive wheel 2 is used as the first drive. It is good also as an upper limit of output possible torque of the motor 6 which drives the wheel 2.
  • Each of the at least one pair of left and right motors 6 includes this motor 6, a wheel bearing 4 that rotatably supports the driving wheel 2, and a speed reducer 7 that decelerates the rotation of the motor 6 and transmits it to the wheel bearing 4.
  • An in-wheel motor drive device IWM including the above may be configured.
  • FIG. 1 is a block diagram of a conceptual configuration showing, in plan view, an electric vehicle equipped with a drive control device according to a first embodiment of the present invention. It is sectional drawing of the in-wheel motor drive device in the electric vehicle of FIG.
  • FIG. 2 is a block diagram of a control system of the drive control device of FIG. 1.
  • FIG. 1 is a block diagram of a schematic configuration showing a plan view of an electric vehicle that is a vehicle equipped with a drive control device 20 according to this embodiment.
  • This electric vehicle is a four-wheeled vehicle in which the pair of left and right rear wheels 2 and 2 of the vehicle body 1 are drive wheels and the pair of left and right front wheels 3 and 3 are driven wheels.
  • the front wheels 3 and 3 are steering wheels.
  • the rear wheels 2 and 2 are driven by independent traveling motors 6.
  • Each motor 6 constitutes an in-wheel motor drive device IWM described later.
  • Each wheel 2, 2, 3, 3 is provided with a brake (not shown).
  • the front wheels 3 and 3 can be steered via a steering mechanism (not shown) and are steered by a steering means 15 such as a steering wheel.
  • FIG. 2 is a cross-sectional view of one of the two in-wheel motor drive devices IWM in this electric vehicle.
  • Each in-wheel motor drive unit IWM has a motor 6, a speed reducer 7, and a wheel bearing 4, and a part or all of these are arranged in the wheel.
  • the rotation of the motor 6 is transmitted to the drive wheel 2 via the speed reducer 7 and the wheel bearing 4.
  • a brake rotor 5 constituting the brake is fixed to a flange portion of the hub wheel 4 a of the wheel bearing 4, and the brake rotor 5 rotates integrally with the drive wheel 2.
  • the motor 6 is, for example, an embedded magnet type synchronous motor in which a permanent magnet is built in the core portion of the rotor 6a.
  • This motor 6 is a motor in which a radial gap is provided between a stator 6 b fixed to the housing 8 and a rotor 6 a attached to the rotation output shaft 9.
  • a drive control device 20 is mounted on the vehicle body 1.
  • the drive control device 20 includes an ECU 21 and a plurality (two in this embodiment) of inverter devices 22.
  • the ECU 21 is a higher-level control unit that performs overall control of the entire vehicle and gives commands to the inverter devices 22.
  • Each inverter device 22 controls the corresponding traveling motor 6 in accordance with a command from the ECU 21.
  • the ECU 21 includes a computer, a program executed by the computer, various electronic circuits, and the like.
  • the ECU21 has the command torque calculating part 47 and the torque distribution means 48.
  • the command torque calculation unit 47 mainly includes a motor 6 for driving the rear wheels 2 and 2 based on the accelerator opening signal output from the accelerator operation unit 16 and the deceleration command output from the brake operation unit 17. 6 is generated as a command torque.
  • the torque distribution unit 48 considers the acceleration / deceleration command calculated by the command torque calculation unit 47 in consideration of a turning command output from a steering angle sensor (not shown) that detects the steering angle of the steering unit 15. It outputs to each inverter apparatus 22 so that it may distribute to each motor 6 and 6 for driving
  • the command torque calculation unit 47 also includes a first braking torque command value that causes the motor 6 to function as a regenerative brake when there is a deceleration command output from the brake operation unit 17, and a second braking torque command (not shown). It has a function to distribute to values.
  • the first braking torque command value is reflected in the command torque of the acceleration / deceleration command given to each traveling motor 6, 6.
  • the accelerator operation unit 16 and the brake operation unit 17 include an accelerator pedal and a brake pedal, respectively, and an accelerator sensor 16a and a brake sensor 17a that detect the operation amount of the corresponding pedal, respectively.
  • the battery 19 is mounted on the vehicle body 1 and is used as a power source for driving the motor 6 and for the electrical system of the entire vehicle.
  • FIG. 3 is a block diagram of a control system of the drive control device 20.
  • Each inverter device 22 includes a power circuit unit 28 provided for the corresponding motor 6 and a motor control unit 29 that controls the power circuit unit 28.
  • the motor control unit 29 holds various information such as various detection values and control values related to the in-wheel motor drive device IWM (for example, status, motor rotation number, control torque, motor temperature, Inverter temperature, abnormality information, etc.) are output to the ECU 21.
  • the power circuit unit 28 includes an inverter 31 and a PWM driver 32 that drives the inverter 31.
  • the inverter 31 converts the DC power of the battery 19 (FIG. 1) into three-phase AC power used for driving the motor 6.
  • the inverter 31 is composed of a plurality of semiconductor switching elements (not shown).
  • the PWM driver 32 gives an on / off command to a semiconductor switching element (not shown) to drive the inverter 31.
  • the semiconductor switching element is composed of, for example, an insulated gate bipolar transistor (IGBT).
  • the motor control unit 29 has a motor drive control unit 30 as a basic control unit.
  • the motor drive control unit 30 converts this command torque into a current command and performs pulse width modulation in accordance with an acceleration / deceleration command as a command torque given from the ECU 21 which is the host control means, and a PWM driver 32 of the power circuit unit 28. Is given an on / off command.
  • the motor drive control unit 30 obtains a motor current flowing from the inverter 31 to the motor 6 from the current detection unit S1, and performs current feedback control. Further, the motor drive control unit 30 obtains the rotation angle of the rotor 6a (FIG. 2) of the motor 6 from a rotation angle detection unit (not shown) and performs vector control.
  • the drive control device 20 having the above configuration includes two temperature detection means 49, two abnormality detection means 51, and a torque upper limit value setting unit 39.
  • the temperature detecting means 49 is provided for each of the rear wheels 2 and 2 (FIG. 1).
  • Each temperature detection means 49 of this embodiment includes a motor temperature detection means 35 and a power device temperature detection means 38.
  • the motor temperature detection means 35 includes, for example, a motor temperature detection element 33 that is fixed to a motor coil and is a thermistor, and a motor temperature detection circuit 34 that is connected to the motor temperature detection element 33 and provided in the motor control unit 29.
  • the motor temperature detection circuit 34 converts a resistance change of the thermistor into a voltage change and converts it into a temperature. The temperature is similarly acquired for the following power device temperature detection circuit 37.
  • the power device temperature detecting means 38 is, for example, a power device temperature detecting element 36 comprising a thermistor or the like installed in a part of or near the semiconductor switching element in the inverter 31, and a motor control connected to the power device temperature detecting element 36. And a power device temperature detection circuit 37 provided in the unit 29.
  • the torque upper limit setting unit 39 is provided in the torque distribution means 48 of the ECU 21.
  • the torque upper limit setting unit 39 limits the output of the motor 6 based on the temperatures detected by the motor temperature detecting means 35 and the power device temperature detecting means 38.
  • the torque upper limit setting unit 39 is detected by the current detection unit S1 when, for example, at least one of values output from the motor temperature detection unit 35 and the power device temperature detection unit 38 is equal to or higher than the predetermined temperature threshold value.
  • the command torque for the motor 6 is limited so that the current is equal to or less than the predetermined current.
  • the determined current is determined by a result of a test or simulation. Note that the process of limiting the command torque according to the determination result using the temperature threshold is not performed after the temperature detection unit 49 is determined to be abnormal. The determination of abnormality of the temperature detecting means 49 will be described later.
  • the temperature threshold includes a motor temperature threshold and a power device temperature threshold. These temperature thresholds are determined for the motor temperature detecting means 35 and the power device temperature detecting means 38, respectively, based on the results of tests and simulations.
  • the motor temperature threshold is determined based on the motor temperature when demagnetization occurs in the permanent magnet of the motor 6, for example.
  • the power device temperature threshold value is determined based on, for example, the heat-resistant temperature of the semiconductor switching element. That is, the command torque is limited according to the determination results using these temperature thresholds, that is, the motor output is limited. Thereby, the motor 6 and the semiconductor switching element are prevented from being overloaded.
  • the abnormality detecting means 51 is provided for each of the rear wheels 2 and 2 (FIG. 1).
  • Each abnormality detection unit 51 includes a motor temperature / abnormality detection unit 41 and a power device temperature / abnormality detection unit 40.
  • Each motor temperature / abnormality detection means 41 detects whether or not an abnormality has occurred in the motor temperature detection means 35 for the corresponding wheel 2 (FIG. 1).
  • the abnormality of the motor temperature detection means 35 is not limited to the abnormality of the motor temperature detection element 33 itself, but may be a disconnection or short circuit of a harness extending from the motor temperature detection element 33, an abnormality of the motor temperature detection circuit 34, or the like.
  • the abnormality of the power device temperature detection means 38 includes abnormality other than the abnormality of the power device temperature detection element itself.
  • the motor temperature / abnormality detection unit 41 is configured such that the temperature detected by the motor temperature detection unit 35 is higher than the motor normal temperature upper limit, or the temperature detected by the motor temperature detection unit 35 is lower than the motor normal temperature upper limit. When the temperature is lower than the lower limit of the normal motor temperature, it is determined that an abnormality has occurred in the motor temperature detecting means 35. That is, the abnormality of the motor temperature detecting means 35 is detected when the temperature range that the motor can take is exceeded.
  • the motor temperature threshold is a value between the upper limit of the normal motor temperature and the lower limit of the normal motor temperature.
  • the motor normal temperature upper limit and the motor normal temperature lower limit are determined in advance by results of tests, simulations, and the like.
  • the power device normal temperature upper limit and the power device normal temperature lower limit in the power device temperature detecting means 38 to be described later are similarly determined.
  • the power device temperature / abnormality detection means 40 detects whether or not an abnormality has occurred in the power device temperature detection means 38 for the corresponding wheel 2 (FIG. 1).
  • the power device temperature / abnormality detection means 40 is configured such that when the temperature detected by the power device temperature detection means 38 is higher than the power device normal temperature upper limit, or the temperature detected by the power device temperature detection means 38 is normal. When the temperature is lower than the lower limit, it is determined that an abnormality has occurred in the power device temperature detection means 38. That is, an abnormality of the power device temperature detection means 38 is detected when the temperature range that the semiconductor switching element can take is exceeded.
  • the power device temperature threshold is also a value between the power device normal temperature upper limit and the power device normal temperature lower limit.
  • the torque upper limit setting unit 39 The upper limit value of the outputtable torque of the motor 6 is limited.
  • the drive wheel 2 in which an abnormality is detected in the corresponding temperature detection means 35 (38) is hereinafter referred to as a “first drive wheel”.
  • the torque upper limit setting unit 39 sets the upper limit value of the torque that can be output from the motor 6 that drives the first drive wheel 2 (FIG. 1) to the other drive in which no abnormality is detected in the temperature detection means 35 (38). Based on the command torque for the wheel 2 (FIG. 1), it is limited to the set output torque (that is, limited to the set output torque).
  • the drive wheel 2 in which no abnormality is detected in the corresponding temperature detection means 35 (38) is hereinafter referred to as a “second drive wheel”.
  • FIG. 4 is a diagram showing the relationship between the motor rotation speed N and the maximum output torque T.
  • the maximum torque of the motor that is, the upper limit value of torque that can be output
  • the maximum torque is determined for the motor.
  • the relationship indicated by the alternate long and short dash line is defined for the temperature Ta, whereas the temperature Tb higher than the temperature Ta.
  • the relationship shown by a two-dot chain line is defined for.
  • the torque upper limit value setting unit 39 sets the upper limit value of the outputtable torque of the motor 6 corresponding to the abnormal temperature detecting means 49 based on the command torque for the motor 6 corresponding to the normal temperature detecting means 49. Limit to torque.
  • the upper limit value of the outputtable torque may be obtained by calculation using a function, or may be set by a map. These functions and maps are determined by the results of tests and simulations, for example.
  • the torque upper limit setting unit 39 calculates a torque limit value for the temperature Ta detected by the normal temperature detecting means 49 when the command torque calculated by the torque distributing means 48 is calculated to a value at P1 in FIG. Is defined by a curve represented by a one-dot chain line in FIG. 4, the command torque is limited to the torque upper limit value T1a at the motor rotation speed N1.
  • the torque upper limit setting unit 39 sets the command torque at the motor rotational speed N1.
  • the upper limit value T1b which is the intersection with the two-dot chain line in FIG. However, Ta ⁇ Tb.
  • the torque upper limit setting unit 39 calculates the torque limit value for the temperature Ta detected by the normal temperature detecting means 49 when the calculated command torque is calculated to the value at P2 in FIG. 4, for example.
  • the upper limit value of the outputtable torque of the motor rotation speed N2 is not exceeded, and the command torque T2a is used as it is. That is, it is not necessary to suppress and limit the command torque, and the command torque is not limited.
  • the torque limit value for the temperature Tb detected by the normal temperature detecting means 49 is determined by a curve represented by a two-dot chain line in FIG. If so, the command torque at the motor rotation speed N2 is limited to the upper limit value T2b that is the intersection with the two-dot chain line in FIG.
  • FIG. 5 is a flowchart showing steps of the process of the drive control apparatus according to the first embodiment. The processing of FIG. 5 will be described with reference to FIG. First, after the main power supply of the vehicle is turned on, this process is started, and each abnormality detection means 51 determines whether or not an abnormality has occurred in at least one of the corresponding motor temperature detection means 35 and power device temperature detection means 38. Detect (step a1). If both of the abnormality detection means 51 determine that no abnormality has occurred in any of the corresponding motor temperature detection means 35 and power device temperature detection means 38 (step a1: No), this processing ends. If at least one abnormality detection means 51 determines that an abnormality has occurred in at least one of the corresponding motor temperature detection means 35 and power device temperature detection means 38 (step a1: Yes), the process proceeds to step a2.
  • step 1 Move to a3.
  • the torque upper value setting unit 39 limits the upper limit value of the torque that can be output from the motor 6 that drives the first drive wheel 2 to the set output torque based on the command torque for the motor 6 of the second drive wheel 2. (Step a3). Thereafter, this process is terminated.
  • step a2 when the ECU 21 determines that an abnormality has occurred in the motor temperature detecting means 35 and / or the power device temperature detecting means 38 corresponding to both drive wheels 2 and 2, the process proceeds to step a4.
  • the torque upper limit setting unit 39 can output a value smaller than the limit value defined for the pair of left and right motors 6, for example, a predetermined ratio (less than 1) of the limit values of these motors 6.
  • the upper limit value of torque Therefore, the torque upper limit setting unit 39 significantly limits the output of both the left and right motors.
  • the maximum output of the pair of left and right motors 6 is, for example, an output that can retract the vehicle to a roadside belt or the like. Thereafter, this process is terminated.
  • the torque upper limit value setting unit 39 detects that drive wheel 2.
  • the upper limit value of the output possible torque of the motor 6 that drives the motor is limited.
  • the torque upper value setting unit 39 sets the upper limit value of the outputtable torque of the motor 6 that drives the first driving wheel 2 as the motor 6 of the other driving wheel (second driving wheel) 2 in which no abnormality is detected. Based on the command torque to The command torque to the motor 6 of the second drive wheel 2 is set so as to suppress the temperature detected by the temperature detecting means 49 corresponding to the motor 6 as necessary.
  • the first drive wheel 2 is handled based on the command torque set to be suppressed as necessary according to the temperature detected by the normal temperature detecting means 49 corresponding to the second drive wheel 2.
  • the upper limit value of the output possible torque of the motor 6 is limited.
  • the torque for driving the motor 6 corresponding to the normal temperature detecting means 49 is set to the upper limit value of the torque for driving the motor corresponding to the abnormal temperature detecting means 49.
  • the motor 6 corresponding to the abnormal temperature detecting means 49 is limited so as not to output a larger torque than the motor 6 corresponding to the normal temperature detecting means 49.
  • each temperature of the motor 6 and the inverter 31 corresponding to the abnormal temperature detecting means 49 does not become higher than each temperature of the motor 6 and the inverter 31 corresponding to the normal temperature detecting means 49.
  • the limited torque is the torque upper limit of the motor 6 corresponding to the abnormal temperature detecting means 49. Value. Therefore, while suppressing the temperature of the motor 6 or the inverter 31 corresponding to the temperature detecting means 49 in which the abnormality is detected, the driving wheel 2 driven by the motor 6 is given a driving torque necessary and sufficient for its traveling. Can do.
  • each temperature detecting means 49 When the temperature detected by each temperature detecting means 49 varies due to individual differences of the motor temperature detecting element 33 and the power device temperature detecting element 36, the following control may be performed. If the variation occurs due to individual differences, even if the two detection elements 33 and 33 (36, 36) for the pair of left and right motors 6 and 6 are at the same temperature, a deviation occurs in the detected temperature.
  • the torque upper limit setting unit 39 obtains a torque obtained by subtracting a torque amount corresponding to a temperature difference detected by the two temperature detecting means 49 from the command torque of the motor 6 that drives the second drive wheel 2.
  • the upper limit value of the torque that can be output from the motor 6 that drives the driving wheel 2 is set as the upper limit value.
  • the upper limit value of the outputtable torque of the motor 6 of the first drive wheel 2 is set to the second drive wheel. This difference is compensated when setting the command torque of the second motor 6.
  • the torque amount corresponding to the temperature difference detected by the two temperature detecting means 49 may be obtained by calculation using a function or may be set by a map, for example. These functions and maps are determined by the results of tests and simulations.
  • the torque upper limit setting unit 39 The torque obtained by subtracting the amount of torque corresponding to the temperature difference detected by the two temperature detecting means 49 from the maximum torque of the motor 6 is set as the upper limit value of the output possible torque of the first motor 6 (step a3a). ). Thereafter, this process is terminated.
  • the first value can be obtained by compensating as described above and limiting the upper limit value of the output torque of the motor 6.
  • the drive wheel 2 can be provided with a drive torque necessary and sufficient for traveling.
  • FIG. 7 is a flowchart showing the processing of the drive control apparatus according to the third embodiment step by step.
  • FIG. 8 is a diagram showing the relationship between the temperature detected by the temperature detecting means 49 and time in this drive control device.
  • step a2 when the ECU 21 determines that an abnormality has occurred in the temperature detection means 49 corresponding to the first drive wheel 2, the process proceeds to step a3b.
  • step a3b: No When the temperature detected immediately before the abnormality is detected is equal to or lower than the temperature detected by the normal temperature detecting means 49 (step a3b: No), the torque upper limit value setting unit 39 instructs the second drive wheel 2 to The torque is set to the upper limit value of the torque that can be output from the motor 6 that drives the first drive wheel 2.
  • the weak electric system of each inverter device may be constituted by a common computer or an electronic circuit on a common substrate.
  • a two-wheel independent drive vehicle that independently drives the left and right front wheels may be applied.
  • a four-wheel independent drive vehicle that drives the left and right front wheels independently and drives the left and right rear wheels independently may be applied.
  • the in-wheel motor drive device IWM is a so-called direct motor type in which a cycloid reducer, a planetary reducer, a two-axis parallel reducer, and other reducers can be applied. Also good.
  • the command torque calculation unit 47 and the torque distribution means 48 in the ECU 21 are embodied by a program comprising these aforementioned algorithms, and each procedure is executed by the processor of the ECU 21.
  • the motor drive control unit 30, the power device temperature / abnormality detection means 40, and the motor temperature / abnormality detection means 41 of the motor control unit 29 are embodied by a program comprising the above-described algorithms, and each procedure is an inverter device. It is executed by 22 processors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

 各輪独立駆動式車両において、モータまたはインバータの温度を検出する温度検出手段に異常が発生した場合でも、モータに必要十分な駆動トルクを与えることができる、駆動制御装置を提供する。第1および第2の駆動輪(2,2)のそれぞれについて、モータ(6)とインバータ(31)の一方または両方の温度を検出する2つの温度検出手段(49,49)のうち、第1の駆動輪2に対応する温度検出手段(49)における異常のみを検出すると、トルク上限値設定部(39)が、第1の駆動輪2を駆動するモータ(6)の出力可能トルクの上限値を、第2の駆動輪2を駆動するモータ(6)の指令トルクに基づいて、設定された出力トルクに制限する。この第2の駆動輪(2)を駆動するモータ(6)の指令トルクは、第2の駆動輪(2)に対応する温度検出手段(49)で検出された温度に応じて抑制するように設定されている。

Description

各輪独立駆動式車両の駆動制御装置 関連出願
 本出願は、2014年11月12日出願の特願2014-229464の優先権を主張するものであり、それらの全体を参照により本願の一部をなすものとして引用する。
 この発明は、例えば、左右2輪それぞれにインホイールモータを搭載した各輪独立駆動式車両の駆動制御装置に関し、より詳細には、前記左右2輪のいずれか1輪のモータやインバータのパワーデバイスの温度検出手段に異常が発生した場合の駆動制御技術に関する。
 電気自動車等のモータで駆動する車両において、モータやインバータのパワーデバイスが過熱した場合には、モータの出力制限や出力停止を行って過熱に対する保護制御を行うことが提案されている(特許文献1)。
特開2012-186930号公報
 しかし、モータ等の過熱を検知する温度検出手段に異常が発生した場合には、正確に温度を検知できないため、適切なモータの出力制限や出力停止の制御ができなくなる。もし、モータ等が過熱した状態で制御を続けようとするなら、モータやインバータのパワーデバイスが許容温度を超えないことを保証するような、過度に制限された出力および回転数でしかモータを駆動することができない。
 この発明の目的は、各輪独立駆動式車両において、モータまたはインバータの温度を検出する温度検出手段に異常が発生した場合でも、モータに必要十分な駆動トルクを与えることができる、各輪独立駆動式車両の駆動制御装置を提供することである。
 以下、便宜上理解を容易にするために、実施形態の符号を参照して説明する。
 この発明の一構成に係る、駆動制御装置20は、少なくとも左右一対の駆動輪2,2であって、前記左右一対の駆動輪2,2が、第1の駆動輪2および第2の駆動輪2を含む、駆動輪2,2と、前記第1および第2の駆動輪2,2をそれぞれ駆動する、左右一対のモータ6,6とを有する各輪独立駆動式車両に搭載される。この駆動制御装置20は、
 操作部16,17の操作に応じて、前記左右一対のモータ6,6の各モータに対する指令トルクを生成するECU21と、
 前記左右一対のモータ6,6に対応するインバータ装置22であって、前記左右一対のモータ6,6にそれぞれ対応して直流電力を交流電力に変換するインバータ31をそれぞれ含む、2つのパワー回路部28,28、および、前記ECU21が生成した前記指令トルクに従って前記2つのパワー回路部28を介し前記左右一対のモータ6,6をトルク制御するモータコントロール部29を有するインバータ装置22と、
 前記第1および第2の駆動輪2,2のそれぞれについて、前記モータ6と前記インバータ31の一方または両方の温度を検出する2つの温度検出手段49,49と、
 前記2つの温度検出手段49のそれぞれで検出された温度に応じて、対応する前記モータ6の出力制限を行うトルク上限値設定部39と、
 前記2つの温度検出手段49の各異常を検出する異常検出手段51とを備える。
 前記異常検出手段51が、前記2つの温度検出手段49,49のうち、前記第1の駆動輪2に対応する前記温度検出手段49における異常のみを検出すると、前記トルク上限値設定部39が、前記第1の駆動輪2を駆動する前記モータ6の出力可能トルクの上限値を、前記第2の駆動輪2を駆動する前記モータ6の指令トルクに基づいて、設定した出力トルクに制限し、この前記第2の駆動輪2を駆動する前記モータ6の指令トルクは、前記第2の駆動輪2に対応する前記温度検出手段49で検出された温度に応じて抑制するように設定されている。
 トルク上限値設定部39による出力制限は、モータ6の出力停止も含む。
 異常検出手段51で検出する温度検出手段49の異常は、例えば、温度検出素子の異常だけでなく、ハーネスの断線またはショート、回路の異常等が考えられる。
 前記設定した出力トルクは、例えば、試験やシミュレーション等の結果により定められる。
 この構成によると、温度検出手段49は、駆動輪2毎にモータ6とインバータ31の一方または両方の温度を検出する。トルク上限値設定部39は、2つの温度検出手段49,49のそれぞれで検出された温度に応じて、対応するモータ6の出力制限を行う。異常検出手段51は、前記2つの温度検出手段49の各異常を検出する。
 前記異常検出手段51が、前記2つの温度検出手段のうち49,49のうち、前記第1の駆動輪2に対応する温度検出手段49における異常のみを検出すると、トルク上限値設定部39が、前記第1の駆動輪2を駆動するモータ6の出力可能トルクの上限値を制限する。このトルク上限値設定部39は、第1の駆動輪2を駆動するモータ6の出力可能トルクの上限値を、第2の駆動輪2を駆動する前記モータの指令トルクに基づいて、設定された出力トルクに制限する。この第2の駆動輪を駆動するモータ6の指令トルクは、第2の駆動輪2に対応する温度検出手段49で検出された温度に応じて抑制するように設定されている。
 このように、異常が検出されていない第2の駆動輪2に対応する温度検出手段49で検出された温度に応じて抑制するように設定された指令トルクに基づいて、第1の駆動輪2を駆動するモータ6の出力可能トルクの上限値を制限する。換言すれば、正常な温度検出手段49に対応するモータ6を駆動するトルクを、異常な温度検出手段49に対応するモータ6を駆動するトルクの上限値にする。つまり、異常な温度検出手段49に対応するモータ6では、正常な温度検出手段49に対応するモータ6よりも大きいトルクは出力しないように制限する。
 このように制限することで、正常な温度検出手段49に対応するモータ6およびインバータ31の各温度よりも、異常な温度検出手段49に対応するモータ6およびインバータ31の各温度が高くならない。例えば、正常な温度検出手段49に対応するモータ6のトルクが温度に応じて制限された場合、その制限されたトルクが、異常な温度検出手段49に対応するモータ6のトルク上限値となる。したがって、異常が検出された温度検出手段49に対応するモータ6およびインバータ31の温度を抑制しながら、このモータ6によって駆動される駆動輪2にも走行に必要十分な駆動トルクを与えることができる。
 前記異常検出手段51、51が、前記2つの温度検出手段49,49両方の異常を検出すると、前記トルク上限値設定部39は、前記左右一対のモータ6,6の出力可能トルクの上限値を、規定された制限値の定められた割合に制限しても良い。
 前記定められた割合は、例えば、試験やシミュレーション等の結果により定められる。この場合、トルク上限値設定部39は、左右のモータ6,6共に大幅な出力制限を行うことで、車両が不所望に挙動することを未然に防止し得る。ただし、この車両の運転者は、車両を路側帯等に退避させる等の措置を講じることができる。
 前記2つの温度検出手段49で検出される温度が、これら温度検出手段49の個体差に起因してずれている場合、前記トルク上限値設定部39は、前記第2の駆動輪2を駆動する前記モータ6の指令トルクから、前記2つの温度検出手段49で検出される温度のずれに応じたトルク量を減じたトルクに基づいて、前記第1の駆動輪2を駆動する前記モータ6の出力可能トルクの上限値を制限しても良い。
 前記温度検出手段49で検出される温度のずれに応じたトルク量は、例えば、関数による演算で求めても良いし、マップにより設定しても良い。これら関数、マップは、試験やシミュレーション等の結果により定められる。
 正常な2つの温度検出手段49で検出される温度が個体差に起因してずれる場合であっても、前記のようにモータ6の出力可能トルクの上限値を制限することで、第1の駆動輪2に走行に必要十分な駆動トルクを与えることができる。
 前記第1の駆動輪2に対応する温度検出手段49が、その異常が検出される直前に検出した温度が、その時点において、前記第2の駆動輪2に対応する温度検出手段49で検出された温度よりもある温度差分高い場合、前記トルク上限値設定部39は、前記ある温度差に応じたトルク量を、前記第2の駆動輪2を駆動する前記モータ6の指令トルクから減じたトルクに基づいて、前記第1の駆動輪2を駆動する前記モータ6の出力可能トルクの上限値を制限しても良い。
 前記ある温度差に応じたトルク量は、例えば、関数による演算で求めても良いし、マップにより設定しても良い。これら関数、マップは、試験やシミュレーション等の結果により定められる。なお異常が検出される直前に検出された温度が、正常な温度検出手段49で検出される温度以下の場合は、例えば、正常な前記第2の駆動輪2のトルクを、前記第1の駆動輪2を駆動するモータ6の出力可能トルクの上限値としても良い。
 前記少なくとも左右一対のモータ6のそれぞれが、このモータ6と、前記駆動輪2を回転支持する車輪用軸受4と、前記モータ6の回転を減速して前記車輪用軸受4に伝える減速機7とを含むインホイールモータ駆動装置IWMを構成しても良い。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1の実施形態に係る駆動制御装置を搭載した電気自動車を平面図で示す概念構成のブロック図である。 図1の電気自動車におけるインホイールモータ駆動装置の断面図である。 図1の駆動制御装置の制御系のブロック図である。 モータ回転数と最大出力トルク(出力可能トルクの上限値)との関係を示すグラフである。 図1の駆動制御装置の処理を段階的に示すフローチャートである。 この発明の第2の実施形態に係る駆動制御装置の処理を段階的に示すフローチャートである。 この発明の第3の実施形態に係る駆動制御装置の処理を段階的に示すフローチャートである。 図7の駆動制御装置における、温度検出手段で検出される温度と時間との関係を示すグラフである。
 この発明の第1の実施形態に係る駆動制御装置を、図1ないし図5と共に説明する。
 図1は、この実施形態に係る駆動制御装置20を搭載した車両である電気自動車を平面図で示す概略構成のブロック図である。この電気自動車は、車体1の左右一対の後輪2,2が駆動輪であり、左右一対の前輪3,3が従動輪である、4輪の自動車である。前輪3,3は操舵輪とされている。後輪2,2は、それぞれ独立の走行用のモータ6により駆動される。各モータ6は、後述のインホイールモータ駆動装置IWMを構成する。各車輪2,2,3,3には、図示外のブレーキが設けられている。また、前輪3,3は、図示しない転舵機構を介して転舵可能であり、ハンドル等の操舵手段15により操舵される。
 図2は、この電気自動車における2つのインホイールモータ駆動装置IWMのうちの1つの断面図である。各インホイールモータ駆動装置IWMは、それぞれ、モータ6、減速機7、および車輪用軸受4を有し、これらの一部または全体が車輪内に配置される。モータ6の回転は、減速機7および車輪用軸受4を介して駆動輪2に伝達される。車輪用軸受4のハブ輪4aのフランジ部には前記ブレーキを構成するブレーキロータ5が固定され、同ブレーキロータ5は駆動輪2と一体に回転する。モータ6は、例えば、ロータ6aのコア部に永久磁石が内蔵された埋込磁石型同期モータである。このモータ6は、ハウジング8に固定したステータ6bと、回転出力軸9に取り付けたロータ6aとの間にラジアルギャップを設けたモータである。
 制御系を説明する。
 図1に示すように、車体1には駆動制御装置20が搭載されている。駆動制御装置20は、ECU21と、複数(この実施形態では2つ)のインバータ装置22とを含む。ECU21は、自動車全般の統括制御を行い、各インバータ装置22に指令を与える上位制御手段である。各インバータ装置22は、ECU21の指令に従って、対応する走行用のモータ6の制御をそれぞれ行う。ECU21は、コンピュータとこれに実行されるプログラム、並びに各種の電子回路等で構成される。
 ECU21は、指令トルク演算部47と、トルク配分手段48とを有する。指令トルク演算部47は、主に、アクセル操作部16が出力するアクセル開度の信号と、ブレーキ操作部17が出力する減速指令とに基づいて、後輪2,2の走行用のモータ6,6に与える加速・減速指令を指令トルクとして生成する。トルク配分手段48は、指令トルク演算部47で演算された加速・減速指令を、操舵手段15の操舵角を検出する図示しない操舵角センサが出力する旋回指令を考慮して、駆動輪2,2それぞれの走行用のモータ6,6へ分配するように、各インバータ装置22へ出力する。
 また、指令トルク演算部47は、ブレーキ操作部17が出力する減速指令があったときに、モータ6を回生ブレーキとして機能させる第1の制動トルク指令値と、図示外の第2の制動トルク指令値とに配分する機能を有する。第1の制動トルク指令値は、各走行用のモータ6,6に与える加速・減速指令の指令トルクに反映される。アクセル操作部16およびブレーキ操作部17は、それぞれ、アクセルペダルおよびブレーキペダルと、対応するペダルの動作量をそれぞれ検出するアクセルセンサ16aおよびブレーキセンサ17aとを有する。バッテリ19は、車体1に搭載され、モータ6の駆動用、および車両全体の電気系統用の電源として用いられる。
 図3は、この駆動制御装置20の制御系のブロック図である。以後、図1も適宜参照しつつ説明する。各インバータ装置22は、対応するモータ6に対して設けられたパワー回路部28と、このパワー回路部28を制御するモータコントロール部29とを有する。モータコントロール部29は、このモータコントロール部29が保持する、そのインホイールモータ駆動装置IWMに関する各種検出値や制御値等の各種情報(例えば、ステータス、モータ回転数、制御トルク、モータ温度、後述のインバータの温度、異常情報等)をECU21に出力する機能を有する。
 パワー回路部28は、インバータ31と、このインバータ31を駆動するPWMドライバ32とを有する。インバータ31は、バッテリ19(図1)の直流電力をモータ6の駆動に用いる3相の交流電力に変換する。インバータ31は、複数の半導体スイッチング素子(図示せず)で構成される。PWMドライバ32が、半導体スイッチング素子(図示せず)に対してオンオフ指令を与えてインバータ31を駆動する。前記半導体スイッチング素子は、例えば、絶縁ゲートバイポーラトランジスタ(IGBT)からなる。
 モータコントロール部29は、その基本となる制御部としてモータ駆動制御部30を有している。モータ駆動制御部30は、上位制御手段であるECU21から与えられる、指令トルクとしての加速・減速指令に従い、この指令トルクを電流指令に変換してパルス幅変調し、パワー回路部28のPWMドライバ32にオンオフ指令を与える。モータ駆動制御部30は、インバータ31からモータ6に流すモータ電流を電流検出手段S1から得て、電流フィードバック制御を行う。また、モータ駆動制御部30は、モータ6のロータ6a(図2)の回転角を図示外の回転角度検出手段から得て、ベクトル制御を行う。
 この実施形態では、上記構成の駆動制御装置20は、2つの温度検出手段49および2つの異常検出手段51と、トルク上限値設定部39とを有する。
 温度検出手段49は、後輪2,2(図1)毎に設けられている。本実施形態の各温度検出手段49は、モータ温度検出手段35とパワーデバイス温度検出手段38とを有する。
 モータ温度検出手段35は、例えば、モータコイルに固着されサーミスタから成るモータ温度検出素子33と、このモータ温度検出素子33に接続されモータコントロール部29に設けられるモータ温度検出回路34とを有する。モータ温度検出回路34は、例えば、サーミスタの抵抗変化を電圧の変化に変換し、温度に換算する。なお、以下のパワーデバイス温度検出回路37についても、同様に温度が取得される。
 パワーデバイス温度検出手段38は、例えば、インバータ31における前記半導体スイッチング素子の一部またはその近傍に設置されサーミスタ等から成るパワーデバイス温度検出素子36と、このパワーデバイス温度検出素子36に接続されモータコントロール部29に設けられるパワーデバイス温度検出回路37とを有する。
 トルク上限値設定部39はECU21のトルク配分手段48に設けられている。このトルク上限値設定部39は、モータ温度検出手段35およびパワーデバイス温度検出手段38で検出された温度に基づいて、そのモータ6の出力制限を行う。トルク上限値設定部39は、例えば、モータ温度検出手段35およびパワーデバイス温度検出手段38から出力される値の少なくとも一方が、その定められた温度閾値以上のとき、電流検出手段S1で検出される電流が定められた電流以下となるように、そのモータ6に対する指令トルクを制限する。前記定められた電流は、試験やシミュレーション等の結果により定められる。なお、このように温度閾値を用いた判定の結果に応じて指令トルクを制限する処理は、温度検出手段49が異常と判定された後には行われない。温度検出手段49の異常の判定については後述する。
 前記温度閾値は、モータ温度閾値およびパワーデバイス温度閾値からなる。そして、これら温度閾値は、試験やシミュレーション等の結果により、モータ温度検出手段35およびパワーデバイス温度検出手段38に対してそれぞれ定められる。モータ温度閾値は、例えば、モータ6の永久磁石に減磁が生じるときのモータ温度を基準として定められる。パワーデバイス温度閾値は、例えば、半導体スイッチング素子の耐熱温度を基準として定められる。すなわち、これら温度閾値を用いた判定の結果に応じて指令トルクを制限し、つまりモータの出力制限を行う。これにより、モータ6や半導体スイッチング素子が過負荷となるのを防止する。
 異常検出手段51は、後輪2,2(図1)毎にそれぞれ設けられる。各異常検出手段51は、モータ温度・異常検出手段41と、パワーデバイス温度・異常検出手段40とを有する。各モータ温度・異常検出手段41は、対応する車輪2(図1)について、そのモータ温度検出手段35に異常が発生したか否かを検出する。
 モータ温度検出手段35の異常とは、モータ温度検出素子33自体の異常だけでなく、このモータ温度検出素子33から延びるハーネスの断線またはショート、モータ温度検出回路34の異常等が考えられる。なお、パワーデバイス温度検出手段38の異常についても、同様に、パワーデバイス温度検出素子自体の異常以外の異常も包含される。モータ温度・異常検出手段41は、モータ温度検出手段35で検出された温度がモータ正常温度上限よりも高いとき、または、モータ温度検出手段35で検出された温度が、モータ正常温度上限よりも低い温度であるモータ正常温度下限よりも低いとき、モータ温度検出手段35に異常が発生したと判定する。つまり、モータが取り得る温度の範囲を超えた場合に、モータ温度検出手段35の異常を検出する。なお、前記モータ温度閾値は、これらモータ正常温度上限とモータ正常温度下限との間の値である。
 前記モータ正常温度上限および前記モータ正常温度下限は、予め、試験やシミュレーション等の結果により定められる。後述のパワーデバイス温度検出手段38におけるパワーデバイス正常温度上限およびパワーデバイス正常温度下限についても同様に定められる。
 パワーデバイス温度・異常検出手段40は、対応する車輪2(図1)について、そのパワーデバイス温度検出手段38に異常が発生したか否かを検出する。このパワーデバイス温度・異常検出手段40は、パワーデバイス温度検出手段38で検出された温度がパワーデバイス正常温度上限よりも高いとき、または、パワーデバイス温度検出手段38で検出された温度がパワーデバイス正常温度下限よりも低いとき、パワーデバイス温度検出手段38に異常が発生したと判定する。つまり、半導体スイッチング素子が取り得る温度の範囲を超えた場合に、パワーデバイス温度検出手段38の異常を検出する。前記パワーデバイス温度閾値についても、これらパワーデバイス正常温度上限とパワーデバイス正常温度下限との間の値である。
 トルク上限値設定部39は、一方の異常検出手段51により、対応する駆動輪2について、そのモータ温度検出手段35およびパワーデバイス温度検出手段38の少なくともいずれか一方に異常が検出されると、前記モータ6の出力可能トルクの上限値を制限する。ここで、このように対応する温度検出手段35(38)に異常が検出された駆動輪2を、以下「第1の駆動輪」と称する。
 トルク上限値設定部39は、第1の駆動輪2(図1)を駆動するモータ6の出力可能トルクの上限値を、温度検出手段35(38)に異常が検出されていない、他方の駆動輪2(図1)用の指令トルクに基づいて、設定した出力トルクに制限する(つまり、設定した出力トルクに制限する)。なお、このように対応する温度検出手段35(38)に異常が検出されていない駆動輪2を、以下「第2の駆動輪」と称する。
 ここで図4は、モータ回転数Nと最大出力トルクTとの関係を示す図である。一般的にモータでは、ある程度以上の回転数になると、モータ回転数が大きくなるに従ってモータの最大トルク(つまり、出力可能なトルクの上限値)が小さくなる。このように、モータには、最大トルクが定められている。さらに、このモータ回転数Nと最大出力トルクTとの関係は温度に依存するため、温度Taに対しては一点鎖線で示す関係が定められているのに対して、温度Taよりも高い温度Tbに対しては二点鎖線で示す関係が定められている。
 トルク上限値設定部39は、異常な温度検出手段49に対応するモータ6の出力可能トルクの上限値を、正常な温度検出手段49に対応するモータ6用の指令トルクに基づいて、設定した出力トルクに制限する。
 なお、一般的に、正常な温度検出手段で検出された温度が高くなる程、モータへの過負荷を防止するために、そのモータの出力可能トルクの上限値はより大きく制限される。したがって、図4においても、モータ回転数Nと最大出力トルクTとの関係は、温度が高いほど、出力可能トルクの上限値が小さくなるように定められている。この出力可能トルクの上限値は、例えば、関数による演算で求めても良いし、マップにより設定しても良い。これら関数、マップは、例えば、試験やシミュレーション等の結果により定められる。
 この図4を参照して、出力可能トルクの上限値に対してトルク指令がいかに抑制されて制限されるかを以下に説明する。なお、ここでは、単にトルク指令が抑制されて制限されることについての説明にとどめる。したがって、温度検出手段35(38)に異常が検出された場合の処理については図5を参照して後述する。
 トルク上限値設定部39は、トルク配分手段48で演算される指令トルクが、例えば、図4のP1における値に演算されるとき、正常な温度検出手段49で検出された温度Taに対するトルク制限値が図4の一点鎖線で表す曲線で定められている場合、モータ回転数N1でのトルク上限値T1aに指令トルクを制限する。トルク上限値設定部39は、正常な温度検出手段49で検出された温度Tbに対するトルク制限値が図4の二点鎖線で表す曲線で定められている場合、モータ回転数N1での指令トルクを、図4の二点鎖線との交点である上限値T1bに制限する。但し、Ta<Tbである。
 トルク上限値設定部39は、演算される指令トルクが、例えば、同図4のP2における値に演算されるとき、正常な温度検出手段49で検出された温度Taに対するトルク制限値が図4の一点鎖線で表す曲線で定められている場合、モータ回転数N2の出力可能トルクの上限値を超えていないため、そのままの指令トルクT2aを用いる。つまり指令トルクを抑制して制限する必要がなく、指令トルクの制限を行わない。演算される指令トルクが、例えば、同図4のP2における値に演算されるとき、正常な温度検出手段49で検出された温度Tbに対するトルク制限値が図4の二点鎖線で表す曲線で定められている場合、モータ回転数N2での指令トルクを、図4の二点鎖線との交点である上限値T2bに制限する。
 図5は、第1の実施形態に係る駆動制御装置の処理を段階的に示すフローチャートである。この図5の処理を、図3を参照しながら説明する。まず、車両の主電源を投入後本処理が開始し、各異常検出手段51は、対応するモータ温度検出手段35およびパワーデバイス温度検出手段38の少なくともいずれか一方に異常が発生したか否かを検出する(ステップa1)。両方の異常検出手段51が、対応するモータ温度検出手段35およびパワーデバイス温度検出手段38のいずれにも異常が発生していないと判定すると(ステップa1:No)、本処理が終了する。少なくとも一方の異常検出手段51が、対応するモータ温度検出手段35およびパワーデバイス温度検出手段38の少なくともいずれか一方に異常が発生したと判定すると(ステップa1:Yes)、ステップa2に移行する。
 ステップa2において、一方の駆動輪2つまり第1の駆動輪2のみについて、対応するモータ温度検出手段35およびパワーデバイス温度検出手段38の少なくともいずれか一方に異常が発生したとECU21が判定すると、ステップa3に移行する。トルク上限値設定部39は、第1の駆動輪2を駆動するモータ6の出力可能トルクの上限値を、第2の駆動輪2のモータ6に対する指令トルクに基づいて、設定した出力トルクに制限する(ステップa3)。その後本処理を終了する。
 ステップa2において、両方の駆動輪2,2に対応する、モータ温度検出手段35および/またはパワーデバイス温度検出手段38に異常が発生したとECU21が判定すると、ステップa4に移行する。このステップa4において、トルク上限値設定部39は、左右一対のモータ6につき規定された制限値よりも小さい値、例えばこの制限値の定められた割合(1未満)を、それらモータ6の出力可能トルクの上限値とする。そのため、トルク上限値設定部39は、左右一対のモータ共に大幅な出力制限を行うことになる。具体的には、左右一対のモータ6の最大出力を、例えば、この車両を路側帯等に退避させ得るだけの出力とする。その後本処理を終了する。
 以上説明した駆動制御装置によると、トルク上限値設定部39は、いずれか一方の駆動輪(第1の駆動輪)2に対応する温度検出手段49に異常が検出されると、その駆動輪2を駆動するモータ6の出力可能トルクの上限値を制限する。トルク上限値設定部39は、その第1の駆動輪2を駆動するモータ6の出力可能トルクの上限値を、異常が検出されていない他方の駆動輪(第2の駆動輪)2のモータ6への指令トルクに基づいて、制限する。この第2の駆動輪2のモータ6への指令トルクは、このモータ6に対応する温度検出手段49で検出された温度を必要に応じて抑制するように、設定されている。
 このように、第2の駆動輪2に対応する正常な温度検出手段49で検出された温度に従って必要に応じて抑制するように設定された指令トルクに基づいて、第1の駆動輪2に対応するモータ6の出力可能トルクの上限値を制限する。換言すれば、正常な温度検出手段49に対応するモータ6を駆動するトルクを、異常な温度検出手段49に対応するモータを駆動するトルクの上限値にする。つまり、異常な温度検出手段49に対応するモータ6について、正常な温度検出手段49に対応するモータ6よりも大きなトルクは出力しないように制限する。
 このように制限することで、正常な温度検出手段49に対応するモータ6およびインバータ31の各温度よりも、異常な温度検出手段49に対応するモータ6およびインバータ31の各温度が高くならない。例えば、正常な温度検出手段49に対応するモータ6のトルクがその温度に応じて抑制されて制限された場合、その制限されたトルクが、異常な温度検出手段49に対応するモータ6のトルク上限値となる。したがって、異常が検出された温度検出手段49に対応するモータ6またはインバータ31の温度を抑制しながらも、そのモータ6が駆動する駆動輪2には、その走行に必要十分な駆動トルクを与えることができる。
 第2の実施形態に係る駆動制御装置について説明する。
 以下の説明においては、各形態で先行する形態で説明している事項に対応している部分には同一の参照符を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
 各温度検出手段49で検出される温度が、モータ温度検出素子33やパワーデバイス温度検出素子36の個体差によりばらつく場合、次のように制御しても良い。個体差に起因してばらつくと、左右一対のモータ6,6に対する2つの検出素子33,33(36,36)が同一の温度であっても、検出される温度に、ずれが生じる。トルク上限値設定部39は、第2の駆動輪2を駆動するモータ6の指令トルクから、2つの温度検出手段49で検出される温度のずれに応じたトルク量を減じたトルクを、第1の駆動輪2を駆動するモータ6の出力可能トルクの上限値とする。すなわち、2つの温度検出手段49が同一の温度に対して出力する値に差が生じることを考慮して、第1の駆動輪2のモータ6の出力可能トルクの上限値を第2の駆動輪2のモータ6の指令トルクに設定する際には、この差を補償する。
 2つの温度検出手段49で検出される温度のずれに応じたトルク量は、例えば、関数による演算で求めても良いし、マップにより設定しても良い。これら関数、マップは、試験やシミュレーション等の結果により定められる。この場合、図6に示すように、ステップa2において、第1の駆動輪2に対応する温度検出手段49に異常が発生したとECU21で判定されたとき、トルク上限値設定部39は、第2のモータ6の最大トルクから、2つの温度検出手段49で検出される温度のずれに応じたトルク量を減じたトルクを、第1のモータ6の出力可能トルクの上限値に設定する(ステップa3a)。その後本処理を終了する。
 この構成によると、2つの温度検出手段49の出力が、それらの個体差によりずれがある場合でも、前記のように補償してモータ6の出力可能トルクの上限値を制限することで、第1の駆動輪2に走行に必要十分な駆動トルクを与えることができる。
 図7は、第3の実施形態に係る駆動制御装置の処理を段階的に示すフローチャートである。図8は、この駆動制御装置において、温度検出手段49で検出される温度と時間との関係を示す図である。ステップa2において、第1の駆動輪2に対応する温度検出手段49に異常が発生したとECU21が判定すると、ステップa3bに移行する。
 このステップa3bにおいて、異常検出手段51により異常が検出された温度検出手段49に対応する第1の駆動輪2につき、異常が検出される直前に検出された温度TT1が、第2の駆動輪2に対応する、異常が検出されていない温度検出手段49で検出された温度TT2よりも高かった場合(ステップa3b:Yes)、トルク上限値設定部39は、その温度差δT(=TT1-TT2)に応じたトルク量を、第2の駆動輪2を駆動するモータ6の指令トルクから減じたトルクを、第1の駆動輪2を駆動するモータ6の出力可能トルクの上限値に設定する(ステップa3c)。このようにして、第1の駆動輪2を駆動するモータやそのパワーデバイスの温度が、第2の駆動輪2を駆動するモータやそのパワーデバイスの温度よりも高いことが推測される。そして、この温度差の補償が可能になる。
 異常が検出される直前に検出された温度が、正常な温度検出手段49で検出された温度以下の場合(ステップa3b:No)、トルク上限値設定部39は、第2の駆動輪2の指令トルクを、第1の駆動輪2を駆動するモータ6の出力可能トルクの上限値に設定する。
 各インバータ装置の弱電系を、互いに共通のコンピュータや共通の基板上の電子回路で構成しても良い。
 車両として、左右の前輪2輪を独立して駆動する2輪独立駆動車を適用しても良い。また車両として、左右の前輪2輪を独立して駆動し、左右の後輪2輪を独立して駆動する4輪独立駆動車を適用しても良い。
 インホイールモータ駆動装置IWMにおいては、サイクロイド式の減速機、遊星減速機、2軸並行減速機、その他の減速機を適用可能であり、また、減速機を採用しない、所謂ダイレクトモータタイプであってもよい。
 ECU21における指令トルク演算部47およびトルク配分手段48は、これらの前述のアルゴリズムからなるプログラムで具現化され、その各手順がECU21のプロセッサで実行される。また、モータコントロール部29のモータ駆動制御部30、パワーデバイス温度・異常検出手段40およびモータ温度・異常検出手段41は、これらの前述のアルゴリズムからなるプログラムで具現化され、その各手順がインバータ装置22のプロセッサで実行される。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。
2…車輪(駆動輪)
6…モータ
7…減速機
20…駆動制御装置
21…ECU
22…インバータ装置
28…パワー回路部
29…モータコントロール部
31…インバータ
39…トルク上限値設定部
49…温度検出手段
51…異常検出手段

Claims (5)

  1.  少なくとも左右一対の駆動輪であって、前記左右一対の駆動輪が、第1の駆動輪および第2の駆動輪を含む、駆動輪と、
     前記第1および第2の駆動輪をそれぞれ駆動する、左右一対のモータとを有する各輪独立駆動式車両に搭載される駆動制御装置であって、
     操作部の操作に応じて、前記左右一対のモータの各モータに対する指令トルクを生成するECUと、
     前記左右一対のモータに対応するインバータ装置であって、前記左右一対のモータにそれぞれ対応して直流電力を交流電力に変換するインバータをそれぞれ含む、2つのパワー回路部、および、前記ECUが生成した前記指令トルクに従って前記2つのパワー回路部を介し前記左右一対のモータをトルク制御するモータコントロール部を有する、インバータ装置と、
     前記第1および第2の駆動輪のそれぞれについて、前記モータと前記インバータの一方または両方の温度を検出する2つの温度検出手段と、
     前記2つの温度検出手段のそれぞれで検出された温度に応じて、対応する前記モータの出力制限を行うトルク上限値設定部と、
     前記2つの温度検出手段の各異常を検出する異常検出手段とを備え、
     前記異常検出手段が、前記2つの温度検出手段のうち、前記第1の駆動輪に対応する前記温度検出手段における異常のみを検出すると、前記トルク上限値設定部が、前記第1の駆動輪を駆動する前記モータの出力可能トルクの上限値を、前記第2の駆動輪を駆動する前記モータの指令トルクに基づいて、設定した出力トルクに制限し、この前記第2の駆動輪を駆動する前記モータの指令トルクは、前記第2の駆動輪に対応する前記温度検出手段で検出された温度に応じて抑制するように設定されている、各輪独立駆動式車両の駆動制御装置。
  2.  請求項1に記載の各輪独立駆動式車両の駆動制御装置において、前記異常検出手段が、前記2つの温度検出手段両方の異常を検出すると、前記トルク上限値設定部は、前記左右一対のモータの出力可能トルクの上限値を、規定された制限値の定められた割合に制限する、各輪独立駆動式車両の駆動制御装置。
  3.  請求項1または請求項2に記載の各輪独立駆動式車両の駆動制御装置において、前記2つの温度検出手段で検出される温度が、これら温度検出手段の個体差に起因してずれている場合、前記トルク上限値設定部は、前記第2の駆動輪を駆動する前記モータの指令トルクから、前記2つの温度検出手段で検出される温度のずれに応じたトルク量を減じたトルクに基づいて、前記第1の駆動輪を駆動する前記モータの出力可能トルクの上限値を制限する、各輪独立駆動式車両の駆動制御装置。
  4.  請求項1ないし請求項3のいずれか1項に記載の各輪独立駆動式車両の駆動制御装置において、前記第1の駆動輪に対応する温度検出手段が、その異常が検出される直前に検出した温度が、前記第2の駆動輪に対応する温度検出手段で検出された温度よりもある温度差分高い場合、前記トルク上限値設定部は、前記ある温度差に応じたトルク量を、前記第2の駆動輪を駆動する前記モータの指令トルクから減じたトルクに基づいて、前記第1の駆動輪を駆動する前記モータの出力可能トルクの上限値を制限する、各輪独立駆動式車両の駆動制御装置。
  5.  請求項1ないし請求項4のいずれか1項に記載の各輪独立駆動式車両の駆動制御装置において、前記少なくとも左右一対のモータのそれぞれが、このモータと、前記駆動輪を回転支持する車輪用軸受と、前記モータの回転を減速して前記車輪用軸受に伝える減速機とを含むインホイールモータ駆動装置を構成する、各輪独立駆動式車両の駆動制御装置。
PCT/JP2015/080706 2014-11-12 2015-10-30 各輪独立駆動式車両の駆動制御装置 WO2016076142A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014229464A JP6396180B2 (ja) 2014-11-12 2014-11-12 車輪独立駆動式車両の駆動制御装置
JP2014-229464 2014-11-12

Publications (1)

Publication Number Publication Date
WO2016076142A1 true WO2016076142A1 (ja) 2016-05-19

Family

ID=55954234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080706 WO2016076142A1 (ja) 2014-11-12 2015-10-30 各輪独立駆動式車両の駆動制御装置

Country Status (2)

Country Link
JP (1) JP6396180B2 (ja)
WO (1) WO2016076142A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210146786A1 (en) * 2019-10-10 2021-05-20 Texa S.P.A. Method and system to control at least two electric motors driving a vehicle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017889A (ja) 2015-07-02 2017-01-19 Ntn株式会社 モータ駆動装置
JP6788621B2 (ja) 2018-01-31 2020-11-25 株式会社Subaru 車両の駆動力制御装置
JP2021005967A (ja) * 2019-06-27 2021-01-14 Ntn株式会社 駆動制御装置
JP2021100300A (ja) * 2019-12-20 2021-07-01 Ntn株式会社 車輪独立駆動式車両の駆動制御装置および駆動制御方法
CN115003544A (zh) * 2020-01-14 2022-09-02 株式会社电装 车辆的驱动控制装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07298418A (ja) * 1994-04-19 1995-11-10 Shikoku Electric Power Co Inc 電気自動車
JP2010011610A (ja) * 2008-06-26 2010-01-14 Aisin Seiki Co Ltd モータ制御装置
JP2010268644A (ja) * 2009-05-18 2010-11-25 Nissan Motor Co Ltd モータ温度異常検出装置
JP2014075867A (ja) * 2012-10-03 2014-04-24 Ntn Corp 電気自動車の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07298418A (ja) * 1994-04-19 1995-11-10 Shikoku Electric Power Co Inc 電気自動車
JP2010011610A (ja) * 2008-06-26 2010-01-14 Aisin Seiki Co Ltd モータ制御装置
JP2010268644A (ja) * 2009-05-18 2010-11-25 Nissan Motor Co Ltd モータ温度異常検出装置
JP2014075867A (ja) * 2012-10-03 2014-04-24 Ntn Corp 電気自動車の制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210146786A1 (en) * 2019-10-10 2021-05-20 Texa S.P.A. Method and system to control at least two electric motors driving a vehicle
US11707990B2 (en) * 2019-10-10 2023-07-25 Texa S.P.A. Method and system to control at least two electric motors driving a vehicle

Also Published As

Publication number Publication date
JP6396180B2 (ja) 2018-09-26
JP2016096594A (ja) 2016-05-26

Similar Documents

Publication Publication Date Title
WO2016076142A1 (ja) 各輪独立駆動式車両の駆動制御装置
WO2016031696A1 (ja) 車輪独立駆動式車両の駆動制御装置
JP4961278B2 (ja) 電気自動車の制御装置
WO2012132188A1 (ja) 車両の制御装置及び制御方法
JP5886008B2 (ja) 電気自動車のモータ制御装置
WO2015033861A1 (ja) 電気自動車の制御装置
JP6184712B2 (ja) モータ駆動装置
JP6517089B2 (ja) 車輪独立駆動式車両の駆動制御装置
JP5060266B2 (ja) 電気車制御装置
WO2016031663A1 (ja) 車輪独立駆動式車両の駆動制御装置
JP2019110672A (ja) モータ搭載自動車の駆動制御装置
US10889188B2 (en) Drive control device for vehicle with independently driven wheels
JP2014093844A (ja) 電動車両制御装置
JP6216639B2 (ja) モータ制御装置
WO2015002033A1 (ja) 駆動トルク制御装置
JP6585446B2 (ja) 車両の制駆動力制御装置
WO2012043116A1 (ja) モータ制御装置
JP2016063597A (ja) 駆動制御装置
JP2021005967A (ja) 駆動制御装置
WO2021125218A1 (ja) 車輪独立駆動式車両の駆動制御装置および駆動制御方法
JP6671988B2 (ja) 左右輪独立制御の電気自動車の旋回等補助制御装置
JP2006042416A (ja) 電気自動車およびその制御方法
JP2007168680A (ja) 車両の駆動制御装置
JP2018085891A (ja) モータ駆動装置、及びモータ駆動装置の制御装置
JP6613172B2 (ja) 車両の制御装置及び車両の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15859117

Country of ref document: EP

Kind code of ref document: A1