WO2013073547A1 - 電気自動車のモータ制御装置 - Google Patents

電気自動車のモータ制御装置 Download PDF

Info

Publication number
WO2013073547A1
WO2013073547A1 PCT/JP2012/079453 JP2012079453W WO2013073547A1 WO 2013073547 A1 WO2013073547 A1 WO 2013073547A1 JP 2012079453 W JP2012079453 W JP 2012079453W WO 2013073547 A1 WO2013073547 A1 WO 2013073547A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
demagnetization
electric vehicle
magnetic force
unit
Prior art date
Application number
PCT/JP2012/079453
Other languages
English (en)
French (fr)
Inventor
尾崎孝美
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201280056205.0A priority Critical patent/CN103947100B/zh
Priority to US14/355,478 priority patent/US9172319B2/en
Priority to EP12849034.9A priority patent/EP2782241B1/en
Publication of WO2013073547A1 publication Critical patent/WO2013073547A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/12Monitoring commutation; Providing indication of commutation failure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time
    • H02P6/157Controlling commutation time wherein the commutation is function of electro-magnetic force [EMF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • B60K17/046Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel with planetary gearing having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/16DC brushless machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/24Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a motor control device for an electric vehicle using an embedded magnet type synchronous motor in an electric vehicle driven by a battery or a fuel cell.
  • an embedded magnet type synchronous motor (“IPM type DC brushless motor”) having high efficiency performance using a neodymium magnet is used to improve the cruising distance under a limited battery capacity. Also called).
  • IPM type DC brushless motor an embedded magnet type synchronous motor having high efficiency performance using a neodymium magnet is used to improve the cruising distance under a limited battery capacity.
  • the temperature of the motor, etc. is measured to monitor overload, and the motor drive current is limited or the motor speed is reduced according to the measured temperature value.
  • the heat resistance temperature of permanent magnets is low, and if the environmental temperature exceeds this, irreversible demagnetization results, and the motor drive capability is drastically inferior, In some cases, the vehicle may not be able to be driven.
  • the motor temperature is measured to monitor overload and drive limitation is performed.
  • the permanent magnet of the motor is controlled. Appropriate measures cannot be taken against performance degradation due to demagnetization.
  • the motor control apparatus 20 for an electric vehicle includes an electric drive control unit 33 that performs control in accordance with the magnetic pole position of the rotor 75 with respect to the embedded magnet type synchronous motor that is the motor 6 that drives the wheel 2.
  • the motor control device 20 for an automobile includes a plurality of sensors 35, 36, and 37 that detect at least two of the motor rotation speed, the motor voltage, and the motor current of the motor 6, and output of these sensors.
  • Magnetic force estimating means 38 for estimating the magnetic force of the permanent magnet 80 of the rotor 75 of the motor 6 from at least two detection signals of a certain motor speed, motor voltage, and motor current according to a predetermined rule, and this magnetic force
  • a determination means 39 for determining whether or not the magnetic force estimated by the estimation means 38 is within a set allowable range determined as a range where no demagnetization occurs; Demagnetization for changing the timing of supplying the maximum current with respect to the phase of the rotor 75 to the motor drive control unit 33 so that the reluctance torque of the motor 6 increases when the fixing means 39 determines that it is outside the setting allowable range.
  • Corresponding timing changing means 40 is provided.
  • the magnet torque decreases or becomes zero.
  • the motor can be driven to some extent by the reluctance torque.
  • the magnetic force estimating means 38 estimates the magnetic force of the permanent magnet 80 of the rotor 75, and the determining means 39 determines whether or not the estimated magnetic force is within the set allowable range.
  • the determination means 39 determines whether or not the estimated magnetic force is within the set allowable range.
  • the demagnetization corresponding timing changing means 40 sets the maximum current for the phase of the rotor 75 so that the reluctance torque increases. Change the flow timing. In this way, by changing the timing of flowing the maximum current with respect to the phase of the rotor 75 so that the reluctance torque increases when demagnetization occurs, the reduction in the driving force of the motor 6 is suppressed, and the electric vehicle is repaired. It can be moved to a factory or roadside by self-propelled.
  • Magnetic force estimation and demagnetization can be determined as follows.
  • an electromotive force is generated in the stator coil 78 by the rotation of the permanent magnet 80 of the rotor 75, and this electromotive force is a magnetic force (that is, magnetic flux density) of the permanent magnet 80. ) Is stronger and stronger. Therefore, the magnetic force of the permanent magnet can be understood by comparing the motor speed and the motor voltage. Since the electromotive force also affects the motor current, the magnetic force of the permanent magnet can be found by comparing the motor speed and the motor current.
  • the relationship between the electromotive force and the magnetic force of the permanent magnet also appears in the relationship between the waveform of the motor voltage and the waveform of the motor current, and the magnetic force of the permanent magnet can be understood by comparison.
  • the magnetic force estimating means 38 has at least two of the motor current, the motor voltage, and the motor speed by providing an appropriate rule that defines the relationship between the motor speed, the motor voltage, and the motor current. From the detection signal, the magnetic force of the permanent magnet 80 of the rotor 75 of the motor 6 is estimated according to a predetermined rule.
  • the estimated output of the magnetic force of the permanent magnet 80 does not have to be a unit indicating magnetic force such as magnetic flux density, and may be, for example, a value belonging to which stage of magnetic force determined as appropriate.
  • the determination means 39 compares the magnetic force estimated by the magnetic force estimation means 38 with a set allowable range to determine whether or not the motor rotor is demagnetized.
  • the demagnetization due to the heat of the permanent magnet 80 or the demagnetization due to chipping or cracking of the permanent magnet 80 may occur.
  • Such demagnetization sets the magnetic force estimated by the magnetic force estimation means 38 to the setting allowable range. It is determined by comparing with.
  • the allowable setting range may be set as appropriate according to the motor specifications and the like. For example, the allowable setting range may be determined as a range where the magnetic force can be regarded as a normal range, or a range where further safety is expected.
  • a demagnetization-compatible motor drive limiting unit 43 that limits the motor drive output of the motor drive control unit 33 when the determination unit 39 determines that it is outside the allowable setting range may be provided.
  • This limitation on driving may be, for example, a process of reducing the output of torque or current value serving as a drive command, or a process of stopping the output.
  • the motor control device 20 includes a power circuit unit that includes an ECU 21 that is an electric control unit that performs overall control of the entire vehicle, and an inverter 31 that converts the DC power of the battery 19 into AC power used to drive the motor 6. 28 and an inverter device 22 having a motor control unit 29 for controlling at least the power circuit unit 28 in accordance with the control of the ECU 21, the magnetic force estimation unit 38, the determination unit 39, and the demagnetization corresponding timing change unit 40. May be provided in the inverter device 22.
  • the demagnetization-compatible motor drive limiting means 43 may also be provided in the inverter device 22.
  • an ECU 21 and an inverter device 22 are generally provided, but the magnetic force estimation means 38, the determination means 39, and the demagnetization corresponding timing changing means 40 are provided in the inverter device 22 located closer to the motor 6. This simplifies the wiring system and leads to quick control. Further, it is possible to reduce the burden on the ECU 21 that is becoming more complicated due to higher functionality.
  • an abnormality report is output to the inverter device 22 when the determination means 39 determines that it is outside the setting allowable range, and the ECU 21 outputs information on the occurrence of demagnetization.
  • Means 41 may be provided in the inverter device 22.
  • the ECU 21 is a means for controlling the vehicle as a whole. When the drive control or the like is controlled by the inverter device 22 or the like, an appropriate overall control of the vehicle can be performed by receiving an abnormality report.
  • the motor control device 20 includes the ECU 21 and the inverter device 22
  • the magnetic force estimation means 38 and the determination means 39 may be provided in the ECU 21.
  • the configuration of the inverter device 22 can be simplified.
  • the ECU 21 be provided with an abnormality display means 42 for causing the display device 27 in the driver's seat to perform a display informing the abnormality when the determination means 39 determines that demagnetization.
  • an abnormality display means 42 for causing the display device 27 in the driver's seat to perform a display informing the abnormality when the determination means 39 determines that demagnetization.
  • the determination means 39 reveals a decrease in magnetic force, by limiting the drive output of the motor 6, for example, when the motor is in a high temperature state due to the motor drive, the output of the motor 6 is reduced or stopped.
  • the magnet 6 of the motor 6 is reduced or stopped.
  • the setting allowable range of the determination unit 39 is a range in which the setting allowable range when the demagnetization-compatible timing changing unit 40 is functioning and the setting allowable range when the demagnetization-compatible motor drive limiting unit 43 is functioning are different. May be.
  • the motor 6 may be a motor that individually drives the wheels 2 of the electric vehicle.
  • the wheels 2 are driven by the individual motors 6, it is necessary to obtain a balance between the driving torques of the left and right driving wheels. Even in the case of running when taking an emergency measure against demagnetization, it is desired to obtain the left and right torque balance as much as possible. Therefore, the effect of suppressing the reduction of the motor driving force due to the provision of the demagnetization countermeasure timing changing means 40 in the present invention becomes even more effective.
  • the motor 6 may be partly or wholly disposed in the wheel 2 to constitute the in-wheel motor drive device 8 including the motor 6, the wheel bearing 4, and the speed reducer 7.
  • the motor 6 having a high-speed rotation specification is used.
  • the motor 6 rotates at a high speed, eddy current loss is large, and heat generation due to eddy current loss is increased. Therefore, the permanent magnet 80 of the motor 6 is likely to become high temperature, and demagnetization of the permanent magnet 80 due to the high temperature is likely to occur. Therefore, the above-mentioned effects by providing the demagnetization corresponding timing changing means 40 in the present invention become even more effective.
  • a reduction gear 7 that reduces the rotation of the motor 6 may be provided, and the reduction gear 7 may have a high reduction ratio of 1/4 or more. Moreover, the reduction gear 7 which decelerates rotation of the said motor 6 is provided, and this reduction gear 7 may be a cycloid reduction gear. According to the cycloid reducer, a high reduction ratio can be obtained. When the reduction ratio is increased, a small motor 6 that rotates at high speed is used, so that heat generation due to the eddy current loss increases. For this reason, in the present invention, the above-described effects by providing the demagnetization-corresponding timing changing means 40 become even more effective.
  • the electric vehicle of the present invention is equipped with the motor control device 20 having any one of the above configurations of the present invention. Therefore, when the demagnetization of the permanent magnet 80 of the motor 6 by the motor control device 20 occurs, the advantage that the reduction of the motor driving force can be effectively exhibited, and the demagnetization occurs. It is possible to run to a position where maintenance is possible by itself.
  • FIG. 1 is a block diagram of a conceptual configuration showing an electric vehicle according to an embodiment of the present invention in a plan view. It is a block diagram of a conceptual structure of the inverter apparatus of the same electric vehicle. It is a fracture front view of the in-wheel motor drive device in the electric vehicle. It is sectional drawing of the motor part used as the IV-IV line cross section of FIG. FIG.
  • FIG. 5 is a cross-sectional view of a speed reducer portion taken along line VV in FIG. 3. It is a partial expanded sectional view of FIG. It is operation
  • FIG. 6 is a characteristic diagram that graphs the relationship between the magnet torque and reluctance torque of the motor and the current phase. It is a schematic diagram which shows the expansion
  • This electric vehicle is a four-wheeled vehicle in which the wheels 2 that are the left and right rear wheels of the vehicle body 1 are driving wheels and the wheels 3 that are the left and right front wheels are steering wheels of driven wheels.
  • the wheels 2 and 3 serving as driving wheels and driven wheels both have tires and are supported by the vehicle body 1 via wheel bearings 4 and 5, respectively.
  • the wheel bearings 4 and 5 are given the abbreviation “H / B” of the hub bearing in FIG.
  • the left and right wheels 2, 2 serving as driving wheels are driven by independent traveling motors 6, 6, respectively. The rotation of the motor 6 is transmitted to the wheel 2 via the speed reducer 7 and the wheel bearing 4.
  • the motor 6, the speed reducer 7, and the wheel bearing 4 constitute an in-wheel motor drive device 8 that is one assembly part, and the in-wheel motor drive device 8 is partially or entirely inside the wheel 2. Placed in.
  • the in-wheel motor drive device 8 is also referred to as an in-wheel motor unit.
  • the motor 6 may directly rotate and drive the wheels 2 without using the speed reducer 7.
  • Each wheel 2, 3 is provided with an electrically operated brake 9, 10.
  • Wheels 3 and 3 which are steering wheels serving as left and right front wheels can be steered via a steering mechanism 11 and are steered by a steering mechanism 12.
  • the steering mechanism 11 is a mechanism that changes the angle of the left and right knuckle arms 11b that hold the wheel bearings 5 by moving the tie rod 11a to the left and right.
  • An EPS (electric power steering) motor 13 is driven by a command from the steering mechanism 12. It is driven and moved left and right via a rotation / linear motion conversion mechanism (not shown).
  • the steering angle is detected by the steering angle sensor 15, and the sensor output is output to the ECU 21, and the information is used for acceleration / deceleration commands for the left and right wheels.
  • the in-wheel motor drive device 8 has a reduction gear 7 interposed between the wheel bearing 4 and the motor 6, and the wheel 2 that is a drive wheel supported by the wheel bearing 4 (FIG. 2). ) And the rotation output shaft 74 of the motor 6 (FIG. 3) are connected coaxially.
  • the reduction gear 7 should have a reduction ratio of 1/6 or more.
  • the speed reducer 7 is a cycloid speed reducer, in which eccentric portions 82a and 82b are formed on a rotational input shaft 82 that is coaxially connected to a rotational output shaft 74 of the motor 6, and bearings 85 are provided on the eccentric portions 82a and 82b, respectively.
  • the curvilinear plates 84a and 84b are attached to the discs, and the eccentric motion of the curvilinear plates 84a and 84b is transmitted to the wheel bearing 4 as rotational motion.
  • the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.
  • the wheel bearing 4 includes an outer member 51 in which a double row rolling surface 53 is formed on the inner periphery, an inner member 52 in which a rolling surface 54 facing each of the rolling surfaces 53 is formed on the outer periphery, and these
  • the outer member 51 and the inner member 52 are composed of double-row rolling elements 55 interposed between the rolling surfaces 53 and 54 of the inner member 52.
  • the inner member 52 also serves as a hub for attaching the drive wheels.
  • the wheel bearing 4 is a double-row angular ball bearing, and the rolling elements 55 are made of balls and are held by a cage 56 for each row.
  • the rolling surfaces 53 and 54 have a circular arc cross section, and the rolling surfaces 53 and 54 are formed so that the contact angles are aligned with the back surface.
  • An end on the outboard side of the bearing space between the outer member 51 and the inner member 52 is sealed with a seal member 57.
  • the outer member 51 is a stationary raceway, has a flange 51a attached to the housing 83b on the outboard side of the speed reducer 7, and is formed as an integral part as a whole.
  • the flange 51a is provided with bolt insertion holes 64 at a plurality of locations in the circumferential direction.
  • the housing 83b is provided with a bolt screw hole 94 whose inner periphery is threaded at a position corresponding to the bolt insertion hole 64.
  • the outer member 51 is attached to the housing 83b by screwing the mounting bolt 65 inserted into the bolt insertion hole 94 into the bolt screwing hole 94.
  • the inner member 52 is a rotating raceway, and the outboard side member 59 having a hub flange 59a for wheel mounting and the outboard side member 59 are fitted to the inner periphery of the outboard side member 59.
  • the inboard side material 60 is integrated with the outboard side material 59 by fastening.
  • the rolling surface 54 of each row is formed in each of the outboard side material 59 and the inboard side material 60.
  • a through hole 61 is provided in the center of the inboard side member 60.
  • the hub flange 59a is provided with press-fit holes 67 for hub bolts 66 at a plurality of locations in the circumferential direction.
  • a cylindrical pilot portion 63 that guides driving wheels and braking components (not shown) protrudes toward the outboard side.
  • a cap 68 that closes the outboard side end of the through hole 61 is attached to the inner periphery of the pilot portion 63.
  • the motor 6 is a radial gap type embedded magnet type synchronous motor (that is, an IPM motor) in which a radial gap is provided between a motor stator 73 fixed to a cylindrical motor housing 72 and a motor rotor 75 attached to the rotation output shaft 74. ).
  • the rotation output shaft 74 is cantilevered by two bearings 76 on the cylindrical portion of the housing 83 a on the inboard side of the speed reducer 7.
  • FIG. 4 shows a cross-sectional view of the motor (IV-IV cross section of FIG. 3).
  • the rotor 75 of the motor 6 includes a core portion 79 made of a soft magnetic material such as a laminated silicon steel plate, and a permanent magnet 80 built in the core portion 79.
  • the permanent magnets 80 are arranged such that two adjacent permanent magnets face each other in a V-shaped cross section on the same circumference in the rotor core portion 79.
  • the permanent magnet 80 is a neodymium magnet.
  • the stator 73 includes a core part 77 and a coil 78 made of a soft magnetic material.
  • the core portion 77 has a ring shape with an outer peripheral surface having a circular cross section, and a plurality of teeth 77a protruding inward on the inner peripheral surface are formed side by side in the circumferential direction.
  • the coil 78 is wound around each of the teeth 77 a serving as salient poles of the stator core portion 77.
  • the motor 6 is provided with an angle sensor 36 that detects a relative rotation angle between the motor stator 73 and the motor rotor 75.
  • the angle sensor 36 detects and outputs a signal representing a relative rotation angle between the motor stator 73 and the motor rotor 75, and an angle calculation circuit 71 that calculates an angle from the signal output from the angle sensor body 70.
  • the angle sensor main body 70 includes a detected portion 70a provided on the outer peripheral surface of the rotation output shaft 74, and a detecting portion 70b provided in the motor housing 72 and disposed in close proximity to the detected portion 70a, for example, in the radial direction. Become.
  • the detected part 70a and the detecting part 70b may be arranged close to each other in the axial direction.
  • the angle sensor 36 may be a resolver.
  • each phase of each wave of alternating current flowing through the coil 78 of the motor stator 73 based on the relative rotation angle between the motor stator 73 and the motor rotor 75 detected by the angle sensor 36. Is controlled by a motor drive control unit 33 (FIG. 2) of the motor control unit 29.
  • the motor current wiring of the in-wheel motor driving device 8 and various sensor system and command system wiring are collectively performed by a connector 99 provided in the motor housing 72 or the like.
  • the speed reducer 7 is a cycloid speed reducer, and two curved plates 84a and 84b formed with a wavy trochoidal curve having a gentle outer shape as shown in FIG.
  • the shaft 82 is attached to each eccentric part 82a, 82b.
  • a plurality of outer pins 86 for guiding the eccentric movements of the curved plates 84a and 84b on the outer peripheral side are provided across the housing 83b, and a plurality of inner pins 88 attached to the inboard side member 60 of the inner member 2 are provided.
  • the curved plates 84a and 84b are engaged with a plurality of circular through holes 89 provided in the inserted state.
  • the rotation input shaft 82 is spline-coupled with the rotation output shaft 74 of the motor 6 and rotates integrally.
  • the rotary input shaft 82 is supported at both ends by two bearings 90 on the inboard side housing 83a and the inner diameter surface of the inboard side member 60 of the inner member 52.
  • the curved plates 84a and 84b attached to the rotation input shaft 82 that rotates together with the motor 6 perform an eccentric motion.
  • the eccentric motions of the curved plates 84 a and 84 b are transmitted to the inner member 52 as rotational motion by the engagement of the inner pins 88 and the through holes 89.
  • the rotation of the inner member 52 is decelerated with respect to the rotation of the rotation output shaft 74. For example, a reduction ratio of 1/10 or more can be obtained with a single-stage cycloid reducer.
  • the two curved plates 84a and 84b are attached to the eccentric portions 82a and 82b of the rotary input shaft 82 so as to cancel out the eccentric motion with each other, and are mounted on both sides of the eccentric portions 82a and 82b.
  • a counterweight 91 that is eccentric in the direction opposite to the eccentric direction of the eccentric portions 82a and 82b is mounted so as to cancel the vibration caused by the eccentric movement of the curved plates 84a and 84b.
  • bearings 92 and 93 are mounted on the outer pins 86 and the inner pins 88, and outer rings 92a and 93a of these bearings 92 and 93 are respectively connected to the curved plates 84a and 84b. It comes into rolling contact with the outer periphery and the inner periphery of each through-hole 89. Therefore, the contact resistance between the outer pin 86 and the outer periphery of each curved plate 84a, 84b and the contact resistance between the inner pin 88 and the inner periphery of each through hole 89 are reduced, and the eccentric motion of each curved plate 84a, 84b is smooth. Can be transmitted to the inner member 52 as a rotational motion.
  • the wheel bearing 4 of the in-wheel motor drive device 8 is attached to the vehicle body via a suspension device (not shown) such as a knuckle on the outer periphery of the housing 83 b of the speed reducer 7 or the housing 72 of the motor 6. Fixed.
  • the vehicle body 1 includes an ECU 21 that is an electric control unit that performs overall control of the automobile, an inverter device 22 that controls the motor 6 for traveling in accordance with a command from the ECU 21, and a brake controller 23.
  • the ECU 21 and the inverter device 22 constitute a motor control device 20.
  • the ECU 21 includes a computer, a program executed by the computer, various electronic circuits, and the like.
  • the ECU 21 is roughly divided into a drive control unit 21a and a general control unit 21b when classified roughly by function.
  • the drive control unit 21a gives the left and right wheel motors 6 and 6 the acceleration command output from the accelerator operation unit 16, the deceleration command output from the brake operation unit 17, and the turning command output from the steering angle sensor 15.
  • the given acceleration / deceleration command is generated and output to the inverter device 22.
  • the drive control unit 21a outputs an acceleration / deceleration command to be output, information on the tire rotation speed obtained from the rotation sensor 24 provided on the wheel bearings 4 and 5 of the wheels 2 and 3, You may have the function to correct
  • the accelerator operation unit 16 includes an accelerator pedal and a sensor 16a that detects the amount of depression and outputs the acceleration command.
  • the brake operation unit 17 includes a brake pedal and a sensor 17a that detects the amount of depression and outputs the deceleration command.
  • the general control unit 21b of the ECU 21 processes a function of outputting a deceleration command output from the brake operation unit 17 to the brake controller 23, a function of controlling various auxiliary machine systems 25, and an input command from the console operation panel 26.
  • the display device 27 can display an image of a liquid crystal display device or the like.
  • the auxiliary machine system 25 is, for example, an air conditioner, a light, a wiper, a GPS, an airbag or the like, and is shown here as a representative block.
  • the brake controller 23 is means for giving a braking command to the brakes 9 and 10 of the wheels 2 and 3 according to the deceleration command output from the ECU 21.
  • the braking command output from the ECU 21 includes a command generated by means for improving the safety of the ECU 21.
  • the brake controller 23 includes an antilock brake system.
  • the brake controller 23 is configured by an electronic circuit, a microcomputer, or the like.
  • the inverter device 22 includes a power circuit unit 28 provided for each motor 6 and a motor control unit 29 that controls the power circuit unit 28.
  • the motor control unit 29 may be provided in common for each power circuit unit 28 or may be provided separately, but even if provided in common, each power circuit unit 28. For example, can be controlled independently so that the motor torque is different from each other.
  • the motor control unit 29 has a function of outputting information (referred to as “IWM system information”) such as detection values and control values related to the in-wheel motor 8 of the motor control unit 29 to the ECU.
  • FIG. 2 is a block diagram showing a conceptual configuration of the inverter device 22.
  • the power circuit unit 28 includes an inverter 31 that converts the DC power of the battery 19 into three-phase AC power that is used to drive the motor 6, and a PWM driver 32 that controls the inverter 31.
  • the inverter 31 is composed of a plurality of semiconductor switching elements (not shown), and the PWM driver 32 performs pulse width modulation on the input current command and gives an on / off command to each of the semiconductor switching elements.
  • the motor control unit 29 includes a computer, a program executed on the computer, and an electronic circuit, and has a motor drive control unit 33 as a basic control unit.
  • the motor drive control unit 33 is a unit that converts the current command into a current command in accordance with an acceleration / deceleration command by a torque command or the like given from the ECU that is the host control unit, and gives the current command to the PWM driver 32 of the power circuit unit 28.
  • the motor drive control unit 33 obtains a motor current value to be passed from the inverter 31 to the motor 6 from the current detection unit 35 and performs current feedback control.
  • the motor drive control unit 33 obtains the rotation angle of the rotor of the motor 6 from the angle sensor 36 and performs control according to the magnetic pole position, for example, vector control.
  • the motor control unit 29 configured as described above is provided with the following magnetic force estimation means 38, determination means 39, demagnetization correspondence timing change means 40, demagnetization correspondence motor drive restriction means 43, and abnormality report means 41, An abnormality display means 42 is provided in the ECU 21.
  • the magnetic force estimation means 38, the determination means 39, the demagnetization correspondence timing changing means 40, and the demagnetization correspondence motor drive restriction means 43 may be provided in the ECU 21.
  • the magnetic force estimation means 38 outputs at least two detection signals among an angle sensor 36 that detects the rotation angle of the motor rotation speed of the motor 6, a current sensor 35 that detects a motor current, and a voltage sensor 37 that detects a motor voltage. That is, it is a means for estimating the magnetic force of the permanent magnet of the rotor of the motor 6 from at least two detection signals among the motor rotation speed, the motor current, and the motor voltage according to a predetermined rule.
  • an electromotive force is generated in the stator coil 78 by the rotation of the permanent magnet of the rotor, and the electromotive force increases as the magnetic force of the permanent magnet 80, that is, the magnetic flux density increases. Therefore, the magnetic force of the permanent magnet can be understood by comparing the motor speed and the motor voltage. Since the electromotive force also affects the motor current, the magnetic force of the permanent magnet can be found by comparing the motor speed and the motor current. The magnetic force of the permanent magnet also appears in the relationship between the waveform of the motor voltage and the waveform of the motor current, and the magnetic force of the permanent magnet can be understood by comparison.
  • the magnetic force estimating means 38 has at least two of the motor current, the motor voltage, and the motor rotational speed by providing an appropriate rule that defines the relationship between the motor rotational speed, the motor voltage, and the motor current. From the detection signal, the magnetic force of the permanent magnet 70 of the rotor 75 of the motor 6 is estimated according to a predetermined rule.
  • the estimated output of the magnetic force of the permanent magnet 80 does not have to be a unit indicating magnetic force such as magnetic flux density, and may be, for example, a value belonging to any stage of magnetic force determined as appropriate.
  • the magnetic force estimation means 38 is configured to compare the motor rotation speed and the motor voltage, the motor rotation speed and the motor current, and the motor voltage waveform and the motor current waveform. Either may be used to estimate the magnetic force.
  • the determination means 39 is a means for determining whether or not the motor rotor 75 is demagnetized by comparing the magnetic force estimated by the magnetic force estimation means 38 with a set allowable range.
  • the setting allowable range may be appropriately set according to the specifications of the motor 6 and the like.
  • the setting allowable range may be set as a range equal to or more than one threshold, for example. Even if the magnetic force estimation means 38 outputs a binary value indicating whether or not demagnetization, the degree of demagnetization is determined by a stepwise or continuous value when it is determined to be demagnetized. The output may be possible.
  • the demagnetization correspondence timing changing means 40 is a means for changing the timing at which the maximum current is supplied with respect to the phase of the rotor 75 so that the reluctance torque of the motor 6 increases when the determination means 39 determines that it is outside the allowable setting range. is there.
  • the change in the timing for supplying the maximum current may be performed by changing the phase without changing the current waveform (sine wave or the like), for example, and the timing for supplying the maximum current may be changed by changing the current waveform. It ’s good.
  • the determination means 39 can determine the degree of demagnetization
  • the demagnetization-response timing changing means 40 determines the maximum current for the phase of the rotor 75 according to the degree of demagnetization output from the determination means 39. It is good also as what changes the change grade of the flow timing.
  • the demagnetization-compatible motor drive restricting means 43 is a means for restricting the output of the inverter device 22 when the judging means 39 judges that it is outside the set allowable range.
  • the limitation of the output of the inverter device 22 by the demagnetization-compatible motor drive limiting means 43 is, for example, a process of reducing the output of the torque or current value that is the drive command that is the output of the motor drive control unit 33 or the PWM driver 32. Further, it may be a process of stopping the output. Further, the output of the inverter 31 may be cut off. In the case of stopping driving, it is preferable that the motor 6 is rotatable.
  • the abnormality reporting means 41 is means for outputting abnormality occurrence information to the ECU 21 when the magnetic force estimated by the magnetic force estimating means 38 is determined to be demagnetized by the determining means 39.
  • the abnormality display unit 42 provided in the ECU 21 is a unit that receives the abnormality occurrence information output from the abnormality report unit 41 and causes the display device 27 in the driver's seat to perform a display notifying the abnormality.
  • the determination unit 39 determines that the demagnetization is determined, and displays the abnormality.
  • the display on the display device 27 is a display using characters or symbols, for example, an icon.
  • the magnetic force estimation by the above configuration and the demagnetization response operation according to the estimation result will be described.
  • the magnetic force estimation means 38 is always a permanent magnet of the rotor 75 of the motor 6 according to a predetermined rule from the outputs of the sensors 35, 36, 37 (two outputs of the sensors 35, 36, 37). Estimate a magnetic force of 80.
  • the determination unit 39 monitors the estimation result, compares the magnetic force estimated by the magnetic force estimation unit 38 with the setting allowable range, and determines that the magnetic field is demagnetized when it is out of the setting allowable range. When it is out of the setting allowable range, the degree of demagnetization may be determined.
  • the demagnetization-response timing changing unit 40 issues a command to change the timing for supplying the maximum current with respect to the phase of the rotor 75 so as to increase the reluctance torque of the motor 6. Part 33 is given. This timing change will be described.
  • the embedded magnet type synchronous motor In the synchronous motor, an alternating current is passed through the stator coil 78 to create a rotating magnetic field, and the rotor 75 is driven.
  • the embedded magnet type synchronous motor generates a magnet torque and a reluctance torque, and rotates with two types of torque.
  • the magnet torque is a torque generated by the interaction between the permanent magnet 80 on the rotor 75 side and the stator 73m.
  • the reluctance torque is a torque caused by the magnetic attractive force F (FIG. 7) between the core portion 79 on the rotor 75 side and the stator 73m.
  • the magnet torque Tm is proportional to the current, and becomes maximum when the phase ⁇ between the rotating magnetic field and the rotor permanent magnet 80 is zero as shown in FIG. 8.
  • the reluctance torque Tr is proportional to the square of the current, and becomes maximum when the phase ⁇ is 45 °. Therefore, the interior permanent magnet synchronous motor of this embodiment is always driven under a current application condition that maximizes the sum of both torques Tm and Tr (Tm + Tr). For example, if the sum Tm + Tr of both torques becomes maximum when the phase ⁇ (for example, 40 °) is maximized, control by the motor drive control unit 33 (FIG. 2) so that the maximum current flows at the phase ⁇ e (40 °). Is made. That is, the current is controlled so that the position where the amplitude of the alternating current such as a sine waveform becomes maximum is the phase ⁇ .
  • FIG. 9 shows the rotor rotational position where the phase ⁇ is zero degrees.
  • FIG. 10 shows the rotor rotational position where the phase ⁇ is 40 °.
  • 9 and 10 are schematic diagrams in which the facing portions of the stator 73 and the rotor 75 are linearly developed.
  • the demagnetization when the demagnetization is determined, the timing for supplying the maximum current with respect to the phase of the rotor 75 is changed so that the reluctance torque of the motor 6 increases. Therefore, it functions as a reluctance motor, and the influence of demagnetization can be suppressed to suppress the reduction in motor driving force as much as possible. For this reason, when demagnetization occurs, the vehicle can be driven by itself as the vehicle is moved to a repair shop or a place where treatment is possible.
  • the demagnetization-compatible motor drive restriction means 43 gives a restriction such as reducing the drive current to the output of the inverter device 22.
  • a restriction such as reducing the drive current to the output of the inverter device 22.
  • the capability is drastically inferior, and in some cases, there is a possibility that the vehicle cannot be driven.
  • the allowable setting range of the determining unit 39 is different between the case where the timing is changed by the demagnetization-compatible timing changing unit 40 and the case where the drive is limited by the demagnetization-compatible motor drive limiting unit 43.
  • a determination output may be performed.
  • the abnormality report means 41 further reports an abnormality to the ECU 21.
  • the ECU 21 can perform appropriate overall control of the vehicle.
  • the abnormality display means 42 of ECU21 displays an abnormality on the display device 27 of a driver's seat by the report of the abnormality. Therefore, when the running performance of the electric vehicle is poor, the driver knows that the cause is demagnetization and can take appropriate measures at an early stage.
  • the motor 6 constitutes the in-wheel motor drive device 8
  • a motor 6 having a high-speed rotation specification is used, and the speed reducer 7 is 1/4 or more.
  • a cycloid reducer that can obtain a high reduction ratio (more specifically, a high reduction ratio of 1/10 or more) is used.
  • the motor 6 rotates at a high speed, eddy current loss is large, and heat generation due to eddy current loss is increased.
  • the permanent magnet 80 of the motor 6 tends to become high temperature, and demagnetization of the permanent magnet due to high temperature tends to occur. Therefore, the effect obtained by providing the magnetic force estimation means 38, the determination means 39, the demagnetization corresponding timing changing means 40, and the like in this embodiment becomes even more effective.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

 モータ(6)のロータの永久磁石の磁力を推定する磁力推定手段(38)と、その判定手段(39)と、減磁対応タイミング変更手段(40)とを、インバータ装置(22)またはECU(21)に設ける。磁力推定手段(38)は、モータ回転数、モータ電圧、およびモータ電流の内の少なくとも2つの検出信号から、定められた規則に従い、磁力の推定を行う。判定手段(39)は、減磁であるか否かを判定する。減磁対応タイミング変更手段(40)は、判定手段(39)による減磁であるとの判定結果に応じて、インバータ装置(22)によるモータ駆動につき、モータのリラクタンストルクが増大するように、ロータの位相に対する最大電流を流すタイミングを変更する。

Description

電気自動車のモータ制御装置 関連出願
 本出願は、2011年11月18日出願の特願2011-252223の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、バッテリ駆動、燃料電池駆動等の電気自動車において、埋込磁石型同期モータを用いた電気自動車のモータ制御装置に関する。
 電気自動車では、車両駆動のためのモータの性能低下や故障は、走行性、安全性に大きく影響する。特に、バッテリ駆動の電気自動車駆動装置では、限られたバッテリ容量下で航続距離を向上させるため、ネオジウム系磁石を使った高効率性能を有する埋込磁石型同期モータ(「IPM型DCブラシレスモータ」とも言う)が利用される。また、従来、インホイールモータ装置において、信頼性確保のために、モータ等の温度を測定して過負荷を監視し、温度測定値に応じてモータの駆動電流の制限や、モータ回転数を低下させるものが提案されている(例えば、特許文献1~3)。
特開2006-258289号公報 特開2004-328819号公報 特開2008-168790号公報
 電気自動車に用いられるモータ、特にネオジウム系磁石を使ったモータでは、永久磁石の耐熱温度が低く、またその環境温度がこれを超えると、不可逆減磁となる結果、モータ駆動能力が急激に劣り、場合によっては車両駆動もできなくなる恐れがある。なお、上記のように、インホイールモータ装置において、モータ温度を測定して過負荷を監視し、駆動制限することは行われているが、モータの温度測定結果による制御では、モータの永久磁石の減磁等による性能低下に対して適切な対応は行えない。
 この発明の目的は、モータの永久磁石の減磁が生じた場合に、モータ駆動力の低下を抑えることのできる電気自動車のモータ制御装置を提供することであり、その他の目的は、モータの永久磁石の減磁が生じた場合に、モータ駆動力の低下を抑えることができて、保守が可能な位置への走行が自力で行える電気自動車を提供することである。以下、この発明の概要について、実施形態を示す図面中の符号を用いて説明する。
 この発明の電気自動車のモータ制御装置20は、車輪2を駆動するモータ6である埋込磁石型同期モータに対してロータ75の磁極位置に応じた制御を行うモータ駆動制御部33を備えた電気自動車のモータ制御装置20であって、前記のモータ6のモータ回転数、モータ電圧、およびモータ電流の内の少なくとも2つをそれぞれ検出する複数のセンサ35,36,37と、これらのセンサ出力であるモータ回転数、モータ電圧、およびモータ電流の内の少なくとも2つの検出信号から、定められた規則に従い、前記モータ6のロータ75の永久磁石80の磁力を推定する磁力推定手段38と、この磁力推定手段38で推定された磁力を、減磁が生じていない範囲として定めた設定許容範囲内であるか否かを判定する判定手段39と、この判定手段39が設定許容範囲外と判定した場合に、前記モータ駆動制御部33に対し、前記モータ6のリラクタンストルクが増大するように、ロータ75の位相に対する最大電流を流すタイミングを変更させる減磁対応タイミング変更手段40とを設けたものである。
 同期モータでは、ステータコイル78に交流電流を流して回転磁界を作り、ロータ75を駆動する。この場合に、埋込磁石型同期モータでは、ロータ側の永久磁石80とステータ73mの相互作用で発生するマグネットトルクと、ロータ側のコア部79と前記ステータ73mの間の吸引力に起因するリラクタンストルクとが発生し、2種類のトルクで回転する。マグネットトルクは、電流に比例し、回転磁界とロータ永久磁石80間の位相θが零のときに最大となる。一方、リラクタンストルクは、電流の2乗に比例し、上記位相θが45°で最大となる。そのため、埋込磁石型同期モータでは、通常では両トルクの和が最大となる電流印加条件で駆動する。
 モータ6の過昇温等により、ロータ側の永久磁石80の減磁が生じた場合は、マグネットトルクが低下し、あるいは零となる。しかし埋込磁石型同期モータでは、永久磁石80の減磁が生じても、リラクタンストルクによるモータ駆動が、ある程度は可能である。
 そこで、前記磁力推定手段38によりロータ75の永久磁石80の磁力を推定し、その推定された磁力が、設定許容範囲内であるか否かを判定手段39で判定する。判定手段39により設定許容範囲を外れると判定された場合、つまり減磁と判定された場合は、減磁対応タイミング変更手段40により、リラクタンストルクが増大するように、ロータ75の位相に対する最大電流を流すタイミングを変更する。このように、減磁が生じた場合にリラクタンストルクが増大するように、ロータ75の位相に対する最大電流を流すタイミングを変更することで、モータ6の駆動力の低下を抑え、電気自動車を、修理工場や道路脇等に自走により移動させることができる。
 磁力の推定、減磁の判定は、次のように行える。埋込磁石型同期モータ等の永久磁石を用いたモータ6では、ロータ75の永久磁石80の回転によりステータコイル78に起電力を発生し、この起電力は、永久磁石80の磁力(つまり磁束密度)が強いほど大きくなる。そのため、モータ回転数とモータ電圧を比較すると、永久磁石の磁力が分かる。上記起電力はモータ電流にも影響するため、モータ回転数とモータ電流の比較によっても、永久磁石の磁力が分かる。上記起電力と永久磁石の磁力の関係は、モータ電圧の波形とモータ電流の波形の関係にも現れ、その比較によって永久磁石の磁力が分かる。前記磁力推定手段38は、このようなモータ回転数、モータ電圧、モータ電流の関係を定めた適宜の規則を設けておくことで、モータ電流、モータ電圧、およびモータ回転数の内の少なくとも2つの検出信号から、定められた規則に従い、前記モータ6のロータ75の永久磁石80の磁力を推定する。この推定した永久磁石80の磁力の出力は、磁束密度等の磁力を示す単位でなくても良く、例えば、適宜定めた磁力の段階のどの段階に属するかの値等であっても良い。
 前記判定手段39は、磁力推定手段38で推定された磁力を設定許容範囲と比較してモータロータの減磁か否かを判定する。永久磁石80の熱による減磁や、永久磁石80の欠けや割れ等に起因する減磁が生じることがあるが、このような減磁が、磁力推定手段38で推定された磁力を設定許容範囲と比較することで判定される。前記設定許容範囲は、モータの仕様等に応じて適宜設定すれば良く、例えば、磁力が正常範囲と見做せる範囲、あるいはさらに安全を見込んだ範囲として適宜定めれば良い。
 この発明において、前記判定手段39が設定許容範囲外と判定した場合に、前記モータ駆動制御部33のモータ駆動出力を制限する減磁対応モータ駆動制限手段43を設けても良い。この駆動の制限は、例えば、駆動指令となるトルクや電流値の出力を下げる処理であっても、また出力を停止させる処理であっても良い。
 この発明において、前記モータ制御装置20は、車両全般を統括制御する電気制御ユニットであるECU21と、バッテリ19の直流電力を前記モータ6の駆動に用いる交流電力に変換するインバータ31を含むパワー回路部28および前記ECU21の制御に従って少なくとも前記パワー回路部28を制御するモータコントロール部29を有するインバータ装置22とで構成され、前記磁力推定手段38、前記判定手段39、および前記減磁対応タイミング変更手段40を前記インバータ装置22に設けても良い。前記減磁対応モータ駆動制限手段43についても、前記インバータ装置22に設けても良い。電気自動車では、一般的にECU21とインバータ装置22とが設けられるが、モータ6により近い位置にあるインバータ装置22に前記磁力推定手段38、判定手段39、および減磁対応タイミング変更手段40を設けることで、配線系が簡素化され、迅速な制御にも繋がる。また、高機能化により煩雑化が進むECU21の負担を軽減することができる。
 前記判定手段39等をインバータ装置22に設けた場合に、同インバータ装置22に、前記判定手段39が設定許容範囲外と判定したときに、前記ECU21に減磁が発生した情報を出力する異常報告手段41を前記インバータ装置22に設けてもよい。ECU21は車両全般の制御を行う手段であり、インバータ装置22等により駆動制限等の制御を行った場合は、その異常報告を受けることで、車両全般の適切な統括制御が行える。
 モータ制御装置20が前記ECU21とインバータ装置22とで構成される場合に、前記磁力推定手段38および前記判定手段39を前記ECU21に設けても良い。この場合は、インバータ装置22の構成を簡素化できる。
 また、前記判定手段39が減磁と判定したときに、運転席の表示装置27に、異常を知らせる表示を行わせる異常表示手段42を前記ECU21に設けるのが良い。運転席の表示装置27に異常の表示が行われることで、車両の停止や徐行、修理工場への走行など、運転者により迅速に適切な処置を行うことができる。
 前記判定手段39により磁力低下が判明したときに、モータ6の駆動出力に制限を加えることで、例えば、モータ駆動によって高温状態になっているときに、モータ6の出力低下や停止の処置を行うことで、現在以上に高温になることを回避し、モータ6の磁石がさらに劣化することを未然に防止できる。例えば、前記モータ6がネオジウム系の永久磁石を用いた埋込磁石型同期モータである場合、永久磁石80の耐熱温度が低く、またその環境温度がこれを超えると、不可逆減磁となる結果、モータ駆動能力が急激に劣り、場合によっては車両駆動もできなくなる恐れがある。しかし、モータ6の出力低下や停止の処置を行い、永久磁石80がさらに劣化することを未然に防止することで、モータ6の駆動不能を回避し、修理工場や、処置が可能な場所まで車両を走行させることができる。なお、判定手段39の設定許容範囲は、減磁対応タイミング変更手段40を機能させる場合の設定許容範囲と、減磁対応モータ駆動制限手段43を機能させる場合の設定許容範囲とが異なる範囲であっても良い。
 この発明において、前記モータ6は、電気自動車の車輪2を個別に駆動するモータであっても良い。車輪2を個別のモータ6で駆動する場合、左右の駆動輪の駆動トルクのバランスを得ることが必要となる。減磁に対して応急的な処置を採る場合の走行を行う場合においても、左右のトルクバランスをできるだけ得ることが望まれる。そのため、この発明における前記減磁対応タイミング変更手段40を設けたことによるモータ駆動力の低下抑制の効果が、より一層効果的となる。
 前記モータ6は、一部または全体が車輪2内に配置されて前記モータ6と車輪用軸受4と減速機7とを含むインホイールモータ駆動装置8を構成するものであってもよい。インホイールモータ駆動装置8では、コンパクト化が図られる結果、モータ6に高速回転仕様のものが用いられる。モータ6が高速回転すると、渦電流損失が大きく、渦電流損失による発熱が高くなる。そのため、モータ6の永久磁石80が高温となり易く、高温による永久磁石80の減磁が生じ易い。したがって、この発明における、減磁対応タイミング変更手段40を設けることによる前記各効果が、より一層効果的となる。
 この発明において、前記モータ6の回転を減速する減速機7を備え、この減速機7は、1/4以上の高減速比を有するものであっても良い。また、前記モータ6の回転を減速する減速機7を備え、この減速機7はサイクロイド減速機であっても良い。サイクロイド減速機によると、高い減速比が得られる。減速比を高くした場合、モータ6は小型で高速回転するものが用いられるため、前記渦電流損失による発熱が高くなる。そのため、この発明における、前記減磁対応タイミング変更手段40を設けることによる前記各効果が、より一層効果的となる。
 この発明の電気自動車は、この発明の上記いずれかの構成のモータ制御装置20を装備したものである。そのため、上記モータ制御装置20による、モータ6の永久磁石80の減磁が生じた場合にモータ駆動力の低下を抑えることができるという利点が、効果的に発揮され、減磁が生じた場合に、保守が可能な位置への走行を自力で行うことでができる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の一実施形態に係る電気自動車を平面図で示す概念構成のブロック図である。 同電気自動車のインバータ装置の概念構成のブロック図である。 同電気自動車におけるインホイールモータ駆動装置の破断正面図である。 図3のIV-IV 線断面となるモータ部分の断面図である。 図3のV-V線断面となる減速機部分の断面図である。 図5の部分拡大断面図である。 制御対象となるモータのリラクタンストルクの作用説明図である 同モータのマグネットトルクおよびリラクタンストルクと電流位相の関係をグラフ化した特性図である。 ロータの位相が零の状態を示す同モータの展開状態を示す模式図である。 ロータの位相が40°の状態を示す同モータの展開状態を示す模式図である。
 この発明の一実施形態を図1ないし図7と共に説明する。この電気自動車は、車体1の左右の後輪となる車輪2が駆動輪とされ、左右の前輪となる車輪3が従動輪の操舵輪とされた4輪の自動車である。駆動輪および従動輪となる車輪2,3は、いずれもタイヤを有し、それぞれ車輪用軸受4,5を介して車体1に支持されている。車輪用軸受4,5は、図1ではハブベアリングの略称「H/B」を付してある。駆動輪となる左右の車輪2,2は、それぞれ独立の走行用のモータ6,6により駆動される。モータ6の回転は、減速機7および車輪用軸受4を介して車輪2に伝達される。これらモータ6、減速機7、および車輪用軸受4は、互いに一つの組立部品であるインホイールモータ駆動装置8を構成しており、インホイールモータ駆動装置8は、一部または全体が車輪2内に配置される。インホイールモータ駆動装置8は、インホイールモータユニットとも称される。モータ6は、減速機7を介さずに直接に車輪2を回転駆動するものであっても良い。各車輪2,3には電動式等のブレーキ9,10が設けられている。
 左右の前輪となる操舵輪である車輪3,3は、転舵機構11を介して転舵可能であり、操舵機構12により操舵される。転舵機構11は、タイロッド11aを左右移動させることで、車輪用軸受5を保持した左右のナックルアーム11bの角度を変える機構であり、操舵機構12の指令によりEPS(電動パワーステアリング)モータ13を駆動させ、回転・直線運動変換機構(図示せず)を介して左右移動させられる。操舵角は操舵角センサ15で検出し、このセンサ出力はECU21に出力され、その情報は左右輪の加速・減速指令等に使用される。
 図3に示すように、インホイールモータ駆動装置8は、車輪用軸受4とモータ6との間に減速機7を介在させ、車輪用軸受4で支持される駆動輪である車輪2(図2)のハブとモータ6(図3)の回転出力軸74とを同軸上で連結してある。減速機7は、減速比が1/6以上のものであるのが良い。この減速機7は、サイクロイド減速機であって、モータ6の回転出力軸74に同軸に連結される回転入力軸82に偏心部82a,82bを形成し、偏心部82a,82bにそれぞれ軸受85を介して曲線板84a,84bを装着し、曲線板84a,84bの偏心運動を車輪用軸受4へ回転運動として伝達する構成である。なお、この明細書において、車両に取り付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。
 車輪用軸受4は、内周に複列の転走面53を形成した外方部材51と、これら各転走面53に対向する転走面54を外周に形成した内方部材52と、これら外方部材51および内方部材52の転走面53,54間に介在した複列の転動体55とで構成される。内方部材52は、駆動輪を取り付けるハブを兼用する。この車輪用軸受4は、複列のアンギュラ玉軸受とされていて、転動体55はボールからなり、各列毎に保持器56で保持されている。上記転走面53,54は断面円弧状であり、各転走面53,54は接触角が背面合わせとなるように形成されている。外方部材51と内方部材52との間の軸受空間のアウトボード側端は、シール部材57でシールされている。
 外方部材51は静止側軌道輪となるものであって、減速機7のアウトボード側のハウジング83bに取り付けるフランジ51aを有し、全体が一体の部品とされている。フランジ51aには、周方向の複数箇所にボルト挿通孔64が設けられている。また、ハウジング83bには,ボルト挿通孔64に対応する位置に、内周にねじが切られたボルト螺着孔94が設けられている。ボルト挿通孔94に挿通した取付ボルト65をボルト螺着孔94に螺着させることにより、外方部材51がハウジング83bに取り付けられる。
 内方部材52は回転側軌道輪となるものであって、車輪取付用のハブフランジ59aを有するアウトボード側材59と、このアウトボード側材59の内周にアウトボード側が嵌合して加締めによってアウトボード側材59に一体化されたインボード側材60とでなる。これらアウトボード側材59およびインボード側材60に、前記各列の転走面54が形成されている。インボード側材60の中心には貫通孔61が設けられている。ハブフランジ59aには、周方向複数箇所にハブボルト66の圧入孔67が設けられている。アウトボード側材59のハブフランジ59aの根元部付近には、駆動輪および制動部品(図示せず)を案内する円筒状のパイロット部63がアウトボード側に突出している。このパイロット部63の内周には、前記貫通孔61のアウトボード側端を塞ぐキャップ68が取り付けられている。
 モータ6は、円筒状のモータハウジング72に固定したモータステータ73と、回転出力軸74に取り付けたモータロータ75との間にラジアルギャップを設けたラジアルギャップ型の埋込磁石型同期モータ(すなわちIPMモータ)である。回転出力軸74は、減速機7のインボード側のハウジング83aの筒部に2つの軸受76で片持ち支持されている。
 図4は、モータの断面図(図3のIV-IV 断面)を示す。モータ6のロータ75は、積層珪素鋼板等の軟質磁性材料からなるコア部79と、このコア部79に内蔵される永久磁石80から構成される。永久磁石80は、隣り合う2つの永久磁石がロータコア部79内の同一円周上で断面V字状に向き合うように配列される。永久磁石80にはネオジウム系磁石が用いられている。ステータ73は軟質磁性材料からなるコア部77とコイル78で構成される。コア部77は外周面が断面円形とされたリング状で、その内周面に内径側に突出する複数のティース77aが円周方向に並んで形成されている。コイル78は、ステータコア部77の突極となる前記各ティース77aに巻回されている。
 図3に示すように、モータ6には、モータステータ73とモータロータ75の間の相対回転角度を検出する角度センサ36が設けられる。角度センサ36は、モータステータ73とモータロータ75の間の相対回転角度を表す信号を検出して出力する角度センサ本体70と、この角度センサ本体70の出力する信号から角度を演算する角度演算回路71とを有する。角度センサ本体70は、回転出力軸74の外周面に設けられる被検出部70aと、モータハウジング72に設けられ前記被検出部70aに例えば径方向に対向して近接配置される検出部70bとでなる。被検出部70aと検出部70bは軸方向に対向して近接配置されるものであっても良い。角度センサ36はレゾルバであっても良い。このモータ6では、その効率を最大にするため、角度センサ36の検出するモータステータ73とモータロータ75の間の相対回転角度に基づき、モータステータ73のコイル78へ流す交流電流の各波の各相の印加タイミングを、モータコントロール部29のモータ駆動制御部33(図2)によってコントロールするようにされている。なお、インホイールモータ駆動装置8のモータ電流の配線や各種センサ系,指令系の配線は、モータハウジング72等に設けられたコネクタ99により纏めて行われる。
 減速機7は、上記したようにサイクロイド減速機であり、図5のように外形がなだらかな波状のトロコイド曲線で形成された2枚の曲線板84a,84bが、それぞれ軸受85を介して回転入力軸82の各偏心部82a,82bに装着してある。これら各曲線板84a,84bの偏心運動を外周側で案内する複数の外ピン86を、それぞれハウジング83bに差し渡して設け、内方部材2のインボード側材60に取り付けた複数の内ピン88を、各曲線板84a,84bの内部に設けられた複数の円形の貫通孔89に挿入状態に係合させてある。回転入力軸82は、モータ6の回転出力軸74とスプライン結合されて一体に回転する。なお、回転入力軸82はインボード側のハウジング83aと内方部材52のインボード側材60の内径面とに2つの軸受90で両持ち支持されている。
 モータ6の回転出力軸74が回転すると、これと一体回転する回転入力軸82に取り付けられた各曲線板84a,84bが偏心運動を行う。この各曲線板84a,84bの偏心運動が、内ピン88と貫通孔89との係合によって、内方部材52に回転運動として伝達される。回転出力軸74の回転に対して内方部材52の回転は減速されたものとなる。例えば、1段のサイクロイド減速機で1/10以上の減速比を得ることができる。
 前記2枚の曲線板84a,84bは、互いに偏心運動が打ち消されるように180°位相をずらして回転入力軸82の各偏心部82a,82bに装着され、各偏心部82a,82bの両側には、各曲線板84a,84bの偏心運動による振動を打ち消すように、各偏心部82a,82bの偏心方向と逆方向へ偏心させたカウンターウエイト91が装着されている。
 図6に拡大して示すように、前記各外ピン86と内ピン88には軸受92,93が装着され、これらの軸受92,93の外輪92a,93aが、それぞれ各曲線板84a,84bの外周と各貫通孔89の内周とに転接するようになっている。したがって、外ピン86と各曲線板84a,84bの外周との接触抵抗、および内ピン88と各貫通孔89の内周との接触抵抗を低減し、各曲線板84a,84bの偏心運動をスムーズに内方部材52に回転運動として伝達することができる。
 図3において、このインホイールモータ駆動装置8の車輪用軸受4は、減速機7のハウジング83bまたはモータ6のハウジング72の外周部で、ナックル等の懸架装置(図示せず)を介して車体に固定される。
 図1を参照しながら制御系を説明する。自動車全般の制御を行う電気制御ユニットであるECU21と、このECU21の指令に従って走行用のモータ6の制御を行うインバータ装置22と、ブレーキコントローラ23とが、車体1に搭載されている。ECU21とインバータ装置22とで、モータ制御装置20が構成される。ECU21は、コンピュータとこれに実行されるプログラム、並びに各種の電子回路等で構成される。
 ECU21は、機能別に大別すると駆動制御部21aと一般制御部21bとに分けられる。駆動制御部21aは、アクセル操作部16の出力する加速指令と、ブレーキ操作部17の出力する減速指令と、操舵角センサ15の出力する旋回指令とから、左右輪の走行用モータ6,6に与える加速・減速指令を生成し、インバータ装置22へ出力する。駆動制御部21aは、上記の他に、出力する加速・減速指令を、各車輪2,3の車輪用軸受4,5に設けられた回転センサ24から得られるタイヤ回転数の情報や、車載の各センサの情報を用いて補正する機能を有していても良い。アクセル操作部16は、アクセルペダルとその踏み込み量を検出して前記加速指令を出力するセンサ16aとでなる。ブレーキ操作部17は、ブレーキペダルとその踏み込み量を検出して前記減速指令を出力するセンサ17aとでなる。
 ECU21の一般制御部21bは、前記ブレーキ操作部17の出力する減速指令をブレーキコントローラ23へ出力する機能、各種の補機システム25を制御する機能、コンソールの操作パネル26からの入力指令を処理する機能、表示装置27に表示を行う機能などを有する。表示装置27は、液晶表示装置等の画像を表示可能なものである。前記補機システム25は、例えば、エアコン、ライト、ワイパー、GPS、エアバッグ等であり、ここでは代表して一つのブロックとして示す。
 ブレーキコントローラ23は、ECU21から出力される減速指令に従って、各車輪2,3のブレーキ9,10に制動指令を与える手段である。ECU21から出力される制動指令には、ブレーキ操作部17の出力する減速指令によって生成される指令の他に、ECU21の持つ安全性向上のための手段によって生成される指令がある。ブレーキコントローラ23は、この他にアンチロックブレーキシステムを備える。ブレーキコントローラ23は、電子回路やマイコン等により構成される。
 インバータ装置22は、各モータ6に対して設けられたパワー回路部28と、このパワー回路部28を制御するモータコントロール部29とで構成される。モータコントロール部29は、各パワー回路部28に対して共通して設けられていても、別々に設けられていても良いが、共通して設けられた場合であっても、各パワー回路部28を、例えば互いにモータトルクが異なるように独立して制御可能なものとされる。モータコントロール部29は、このモータコントロール部29が持つインホイールモータ8に関する各検出値や制御値等の各情報(「IWMシステム情報」と称す)をECUに出力する機能を有する。
 図2は、インバータ装置22の概念構成を示すブロック図である。パワー回路部28は、バッテリ19の直流電力をモータ6の駆動に用いる3相の交流電力に変換するインバータ31と、このインバータ31を制御するPWMドライバ32とで構成される。インバータ31は、複数の半導体スイッチング素子(図示せず)で構成され、PWMドライバ32は、入力された電流指令をパルス幅変調し、前記各半導体スイッチング素子にオンオフ指令を与える。
 モータコントロール部29は、コンピュータとこれに実行されるプログラム、および電子回路により構成され、その基本となる制御部としてモータ駆動制御部33を有している。モータ駆動制御部33は、上位制御手段であるECUから与えられるトルク指令等による加速・減速指令に従い、電流指令に変換して、パワー回路部28のPWMドライバ32に電流指令を与える手段である。モータ駆動制御部33は、インバータ31からモータ6に流すモータ電流値を電流検出手段35から得て、電流フィードバック制御を行う。また、モータ駆動制御部33は、モータ6のロータの回転角を角度センサ36から得て、磁極位置に応じた制御、例えばベクトル制御を行う。
 この実施形態では、上記構成のモータコントロール部29に、次の磁力推定手段38、判定手段39、減磁対応タイミング変更手段40、減磁対応モータ駆動制限手段43、および異常報告手段41を設け、ECU21に異常表示手段42を設けている。なお、磁力推定手段38、判定手段39、減磁対応タイミング変更手段40、および減磁対応モータ駆動制限手段43は、ECU21に設けてもよい。
 磁力推定手段38は、前記モータ6のモータ回転数の回転角を検出する角度センサ36、モータ電流を検出する電流センサ35、およびモータ電圧を検出する電圧センサ37の内の少なくとも2つの検出信号出力、すなわちモータ回転数、モータ電流、およびモータ電圧の内の少なくとも2つの検出信号から、定められた規則に従い、前記モータ6のロータの永久磁石の磁力を推定する手段である。
 同期型のモータ6では、ロータの永久磁石の回転によりステータコイル78に起電力を発生し、この起電力は、永久磁石80の磁力、つまり磁束密度が高いほど大きくなる。そのため、モータ回転数とモータ電圧を比較すると、永久磁石の磁力が分かる。上記起電力はモータ電流にも影響するため、モータ回転数とモータ電流の比較によっても、永久磁石の磁力が分かる。永久磁石の磁力は、モータ電圧の波形とモータ電流の波形の関係にも現れ、その比較によって永久磁石の磁力が分かる。
 前記磁力推定手段38は、このようなモータ回転数、モータ電圧、モータ電流の関係を定めた適宜の規則を設けておくことで、モータ電流、モータ電圧、およびモータ回転数の内の少なくとも2つの検出信号から、定められた規則に従い、前記モータ6のロータ75の永久磁石70の磁力を推定する。この推定した永久磁石80の磁力の出力は、磁束密度等の磁力を示す単位でなくても良く、例えば、適宜定めた磁力の段階のどの段階に属するかの値等であっても良い。なお、磁力推定手段38は、永久磁石80の磁力の推定につき、上記のモータ回転数とモータ電圧の比較、モータ回転数とモータ電流の比較、およびモータ電圧の波形とモータ電流の波形の比較のいずれを行って磁力の推定を行うものであっても良い。
 判定手段39は、磁力推定手段38で推定された磁力を設定許容範囲と比較してモータロータ75の減磁か否かを判定する手段である。前記設定許容範囲は、モータ6の仕様等に応じて適宜設定すれば良い。前記設定許容範囲は、例えば一つの閾値以上の範囲として設定しても良い。磁力推定手段38は、減磁か否かの2値の出力を行うものであっても、また、減磁と判定した場合に、その減磁の程度を段階的または連続的な値で判定の出力が可能なものとしても良い。
 減磁対応タイミング変更手段40は、判定手段39が設定許容範囲外と判定した場合に、前記モータ6のリラクタンストルクが増大するように、ロータ75の位相に対する最大電流を流すタイミングを変更する手段である。この最大電流を流すタイミングの変更は、例えば電流波形(サイン波等)を変えずに位相を変更するようにしても良く、また電流波形を変えることで、最大電流を流すタイミングが変更されるようにてしも良い。なお、前記判定手段39が減磁の程度を判定可能である場合に、減磁対応タイミング変更手段40は、判定手段39の出力する減磁の程度に応じて、ロータ75の位相に対する最大電流を流すタイミングの変更程度を変えるものとしても良い。
 減磁対応モータ駆動制限手段43は、判定手段39が設定許容範囲の範囲外と判定したときに、前記インバータ装置22の出力に制限を与える手段である。減磁対応モータ駆動制限手段43によるインバータ装置22の出力の制限は、例えば、モータ駆動制御部33またはPWMドライバ32の出力となる駆動指令となるトルクや電流値の出力を下げる処理であっても、また出力を停止させる処理であっても良い。また、インバータ31の出力を遮断するものであっても良い。なお、駆動停止の場合は、モータ6を回転自在とすることが好ましい。
 異常報告手段41は、磁力推定手段38で推定された磁力が前記判定手段39により、減磁と判定されたときに、ECU21に異常発生情報を出力する手段である。ECU21に設けられた異常表示手段42は、異常報告手段41から出力され異常発生情報を受けて、運転席の表示装置27に、異常を知らせる表示を行わせる手段である。判定手段39がECU21に設けられた場合は、判定手段39により減磁と判定された旨の判定結果を受けて、前記異常を知らせる表示を行わせる。この表示装置27における表示は、文字や記号による表示、例えばアイコンによる表示とされる。
 上記構成による磁力推定およびその推定結果に応じた減磁対応動作につき説明する。磁力推定手段38は、常時、前記各センサ35,36,37の出力(これらセンサ35,36,37のうちの2つの出力)から、定められた規則に従い、前記モータ6のロータ75の永久磁石80の磁力を推定する。判定手段39は、この推定結果を監視し、磁力推定手段38で推定された磁力を設定許容範囲と比較し、設定許容範囲から外れるときは減磁と判定する。設定許容範囲外である場合に、減磁の程度まで判定しても良い。
 判定手段39が減磁と判定した場合、減磁対応タイミング変更手段40は、モータ6のリラクタンストルクが増大するように、ロータ75の位相に対する最大電流を流すタイミングを変更する指令を、モータ駆動制御部33に与える。このタイミング変更につき説明する。
 同期モータでは、ステータコイル78に交流電流を流して回転磁界を作り、ロータ75を駆動する。この場合に、埋込磁石型同期モータでは、マグネットトルクとリラクタンストルクとが発生し、2種類のトルクで回転する。マグネットトルクは、ロータ75側の永久磁石80とステータ73mの相互作用で発生するトルクである。リラクタンストルクは、図7のように、ロータ75側のコア部79とステータ73mの間の磁気吸引力F(図7)に起因するトルクである。
 図8において、マグネットトルクTmは電流に比例し、図8のように回転磁界とロータ永久磁石80間の位相θが零のときに最大となる。一方、リラクタンストルクTrは、電流の2乗に比例し、上記位相θが45°で最大となる。そのため、この実施形態の埋込磁石型同期モータでは、常時は、両トルクTm,Trの和(Tm+Tr)が最大となる電流印加条件で駆動する。例えば、両トルクの和Tm+Trが位相θ(例えば40°)のときに最大になるとすれば、この位相θe(40°)で最大電流を流すように、モータ駆動制御部33(図2)による制御がなされる。すなわち、サイン波形等の交流電流の振幅が最大となる位置が前記位相θとなるように電流制御される。
 図9は上記位相θが零度となるロータ回転位置を示す。図10は上記位相θが40°となるロータ回転位置を示す。なお、図9,10は、ステータ73およびロータ75の対向部分を直線状に展開した模式図である。
 減磁対応タイミング変更手段40は、常時は上記のようにトルク和Tm+Trが最大となるように電流位相の制御がなされていたところを、判定手段39が減磁と判定した場合、リラクタンストルクTrが増大するように、最大電流を流すタイミング(位相θ)を変更する。この変更は、リラクタンストルクTrが最大となる位相θに近づける変更であり、例えば、常時は40°であったところを、45°にΔθ(=5°)だけ進めるように変更する。なお、必ずしもリラクタンストルクTrが最大となるように変更しなくても良く、リラクタンストルクTrが増大するように変更すれば良い。
 このように、減磁と判定された場合に、モータ6のリラクタンストルクが増大するように、ロータ75の位相に対する最大電流を流すタイミングを変更する。そのため、リラクタンスモータとして機能し、減磁の影響を抑えてモータ駆動力の低下をできるだけ抑えることができる。このため、減磁が生じた場合に、修理工場や処置が可能な場所まで車両を移動させるにつき、自力で走行させることができる。
 また、判定手段39が減磁と判定したときは、減磁対応モータ駆動制限手段43がインバータ装置22の出力に、駆動電流を低下させる等の制限を与える。これにより、例えばモータ6が高温状態になっているときに、モータ6の出力低下の処置を行うことで、現在以上に高温になることを回避し、モータ6の磁石がさらに劣化することを未然に防止できる。前記モータ6がネオジウム系の永久磁石を用いた埋込磁石型同期モータである場合、永久磁石80の耐熱温度が低く、またその環境温度がこれを超えると、不可逆減磁となる結果、モータ駆動能力が急激に劣り、場合によっては車両駆動もできなくなる恐れがある。しかし、モータ6の出力低下や停止の処置を行い、永久磁石80がさらに劣化することを未然に防止することで、モータ6の駆動不能を回避し、修理工場や、処置が可能な場所まで車両を走行させることができる。なお、判定手段39の設定許容範囲は、減磁対応タイミング変更手段40によりタイミング変更させる場合と減磁対応モータ駆動制限手段43で駆動制限する場合とで異なる範囲とし、それぞれの設定許容範囲に対して判定出力を行うようにしても良い。
 判定手段39が減磁と判定したときは、さらに、異常報告手段41がECU21に異常の報告を行う。その異常の報告により、ECU21による車両全般の適切な統括制御が行える。また、その異常の報告により、ECU21の異常表示手段42が運転席の表示装置27に異常の表示を行う。そのため、電気自動車の走行性が悪い場合に、その原因が減磁であることが、運転者に分かり、適切な処置を早期に採ることができる。
 この実施形態では、モータ6がインホイールモータ駆動装置8を構成するものであるたは、コンパクト化が図られる結果、モータ6に高速回転仕様のものが用いられ、減速機7に1/4以上の高減速比(より具体的には1/10以上の高減速比)が得られるサイクロイド減速機が用いられる。モータ6が高速回転すると、渦電流損失が大きく、渦電流損失による発熱が高くなる。これにより、モータ6の永久磁石80が高温となり易く、高温による永久磁石の減磁が生じ易い。そのため、この実施形態における、磁力推定手段38や判定手段39、減磁対応タイミング変更手段40等を設けることによる効果が、より一層効果的となる。
 以上のとおり、図面を参照しながら好適な実施形態および応用形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。
1…車体
2,3…車輪
4,5…車輪用軸受
6…モータ
7…減速機
8…インホイールモータ駆動装置
9,10…電動式のブレーキ
11…転舵機構
12…操舵機構
20…モータ制御装置
21…ECU
22…インバータ装置
24…回転センサ
27…表示装置
28…パワー回路部
29…モータコントロール部
31…インバータ
32…PWMドライバ
33…モータ駆動制御部
35…電流センサ
36…角度センサ
37…電圧センサ
38…磁力推定手段
39…判定手段
40…減磁対応タイミング変更手段
41…異常報告手段
42…異常表示手段
43…減磁対応モータ駆動制御手段
73…ステータ
73m…ステータ側の磁石部
75…ロータ
77a…ティース

Claims (11)

  1.  車輪を駆動するモータである埋込磁石型同期モータに対してロータの磁極位置に応じた制御を行うモータ駆動制御部を備えた電気自動車のモータ制御装置であって、
     前記のモータのモータ回転数、モータ電圧、およびモータ電流の内の少なくとも2つをそれぞれ検出する複数のセンサと、これらのセンサ出力であるモータ回転数、モータ電圧、およびモータ電流の内の少なくとも2つの検出信号から、定められた規則に従い、前記モータのロータの永久磁石の磁力を推定する磁力推定手段と、この磁力推定手段で推定された磁力を、減磁が生じていない範囲として定めた設定許容範囲内であるか否かを判定する判定手段と、この判定手段が設定許容範囲外と判定した場合に、前記モータ駆動制御部に対し、前記モータのリラクタンストルクが増大するように、ロータの位相に対する最大電流を流すタイミングを変更させる減磁対応タイミング変更手段とを設けた電気自動車のモータ制御装置。
  2.  請求項1において、前記判定手段が設定許容範囲外と判定した場合に、前記モータ駆動制御部のモータ駆動出力を制限する減磁対応モータ駆動制限手段を設けた電気自動車のモータ制御装置。
  3.  請求項1において、前記モータ制御装置は、車両全般を統括制御する電気制御ユニットであるECUと、バッテリの直流電力を前記モータの駆動に用いる交流電力に変換するインバータを含むパワー回路部および前記ECUの制御に従って少なくとも前記パワー回路部を制御するモータコントロール部を有するインバータ装置とで構成され、前記磁力推定手段、前記判定手段、および前記減磁対応タイミング変更手段を前記インバータ装置に設けた電気自動車のモータ制御装置。
  4.  請求項3において、前記インバータ装置に、前記判定手段が設定許容範囲外と判定したときに、前記ECUに減磁が発生した情報を出力する異常報告手段を前記インバータ装置に設けた電気自動車のモータ制御装置。
  5.  請求項1において、前記モータ制御装置は、車両全般を統括制御する電気制御ユニットであるECUと、バッテリの直流電力を前記モータの駆動に用いる交流電力に変換するインバータを含むパワー回路部および前記ECUの制御に従って少なくとも前記パワー回路部を制御するモータコントロール部を有するインバータ装置とで構成され、前記磁力推定手段および前記判定手段を前記ECUに設けた電気自動車のモータ制御装置。
  6.  請求項3において、前記判定手段が設定許容範囲外と判定したときに、運転席の表示装置に、異常を知らせる表示を行わせる異常表示手段を前記ECUに設けた電気自動車のモータ制御装置。
  7.  請求項1において、前記モータが、ネオジウム系の永久磁石を用いた埋込磁石型同期モータである電気自動車のモータ制御装置。
  8.  請求項1において、前記モータは、電気自動車の車輪を個別に駆動するモータである電気自動車のモータ制御装置。
  9.  請求項8において、前記モータは、一部または全体が車輪内に配置されて前記モータと車輪用軸受と減速機とを含むインホイールモータ装置を構成する電気自動車のモータ制御装置。
  10.  請求項1において、前記モータの回転を減速する減速機を備え、この減速機は、1/4以上の高減速比を有するサイクロイド減速機である電気自動車のモータ制御装置。
  11.  請求項1に記載の電気自動車のモータ制御装置を備えた電気自動車。
PCT/JP2012/079453 2011-11-18 2012-11-14 電気自動車のモータ制御装置 WO2013073547A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280056205.0A CN103947100B (zh) 2011-11-18 2012-11-14 电动汽车的电动机控制装置
US14/355,478 US9172319B2 (en) 2011-11-18 2012-11-14 Motor control device for electric automobile
EP12849034.9A EP2782241B1 (en) 2011-11-18 2012-11-14 Motor control device for electric automobile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-252223 2011-11-18
JP2011252223A JP5886008B2 (ja) 2011-11-18 2011-11-18 電気自動車のモータ制御装置

Publications (1)

Publication Number Publication Date
WO2013073547A1 true WO2013073547A1 (ja) 2013-05-23

Family

ID=48429603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079453 WO2013073547A1 (ja) 2011-11-18 2012-11-14 電気自動車のモータ制御装置

Country Status (5)

Country Link
US (1) US9172319B2 (ja)
EP (1) EP2782241B1 (ja)
JP (1) JP5886008B2 (ja)
CN (1) CN103947100B (ja)
WO (1) WO2013073547A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011983A (ja) * 2015-06-18 2017-01-12 現代自動車株式会社Hyundai Motor Company 環境に優しい自動車のモーター減磁診断方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9027682B2 (en) * 2013-02-01 2015-05-12 Daniel James LAMBERT Self charging electric vehicle
JP6084893B2 (ja) * 2013-05-08 2017-02-22 富士重工業株式会社 車輪分力検出装置
JP6277013B2 (ja) 2014-02-21 2018-02-07 日立オートモティブシステムズ株式会社 アクチュエータの制御装置
WO2019084678A1 (en) * 2017-10-30 2019-05-09 Annexair System for controlling a plurality of synchronous permanent magnet electronically commutated motors
WO2019146076A1 (ja) * 2018-01-26 2019-08-01 日産自動車株式会社 インバータ制御方法、及びインバータ制御装置
KR102518904B1 (ko) * 2018-06-29 2023-04-06 에이치엘만도 주식회사 차량용 모터 제어 장치 및 방법
US10811946B1 (en) * 2019-04-02 2020-10-20 GM Global Technology Operations LLC Cycloidal reluctance motor with rotor permanent magnets
CN110319153A (zh) * 2019-06-13 2019-10-11 惠州市工藤智能技术有限公司 高精密耐磨损齿轮减速器
FR3098453B1 (fr) * 2019-07-12 2021-07-02 Renault Sas Motorisation electrique pour vehicule automobile et procede d’usinage de carters

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947994A (ja) * 1982-09-08 1984-03-17 Hitachi Ltd 永久磁石回転機の制御装置
JP2943657B2 (ja) * 1994-08-02 1999-08-30 トヨタ自動車株式会社 突極型永久磁石モータの制御装置
JP2004328819A (ja) 2003-04-21 2004-11-18 Toyoda Mach Works Ltd 埋込磁石型モータ
JP2006258289A (ja) 2005-02-16 2006-09-28 Ntn Corp インホイールモータ駆動装置
JP2008168790A (ja) 2007-01-12 2008-07-24 Ntn Corp インホイールモータ駆動装置
JP2010110042A (ja) * 2008-10-28 2010-05-13 Toyota Motor Corp モータ制御装置
JP2010268566A (ja) * 2009-05-13 2010-11-25 Nissan Motor Co Ltd 独立車輪駆動電動車の制御装置
WO2012114900A1 (ja) * 2011-02-25 2012-08-30 Ntn株式会社 電気自動車

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4223880B2 (ja) * 2003-07-31 2009-02-12 トヨタ自動車株式会社 モータ駆動装置
JP2005192325A (ja) * 2003-12-25 2005-07-14 Yaskawa Electric Corp 永久磁石電動機の減磁検出方法
EP1961602A4 (en) * 2005-12-12 2009-01-07 Bridgestone Corp MOTOR SYSTEM IN THE WHEEL
JP2008029082A (ja) * 2006-07-19 2008-02-07 Toyota Motor Corp 回転電機制御装置、回転電機制御方法及び回転電機制御プログラム
CN105871143B (zh) * 2006-07-24 2018-07-20 株式会社东芝 可变磁通电动机驱动器系统
JP4724070B2 (ja) * 2006-08-09 2011-07-13 本田技研工業株式会社 電動機の制御装置
JP4421603B2 (ja) * 2006-12-01 2010-02-24 本田技研工業株式会社 モータ制御方法およびモータ制御装置
JP5226276B2 (ja) * 2007-11-07 2013-07-03 株式会社東芝 洗濯機のインバータ装置
JP4762299B2 (ja) * 2008-12-10 2011-08-31 株式会社東芝 ドラム式洗濯機
EP2472716B1 (en) * 2009-08-28 2019-07-10 Nissan Motor Co., Ltd. Anomaly detection device for a permanent magnet synchronous electric motor
JP5420006B2 (ja) * 2012-03-22 2014-02-19 三菱電機株式会社 同期機制御装置
JP5970227B2 (ja) * 2012-04-17 2016-08-17 日立オートモティブシステムズ株式会社 同期電動機の駆動システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947994A (ja) * 1982-09-08 1984-03-17 Hitachi Ltd 永久磁石回転機の制御装置
JP2943657B2 (ja) * 1994-08-02 1999-08-30 トヨタ自動車株式会社 突極型永久磁石モータの制御装置
JP2004328819A (ja) 2003-04-21 2004-11-18 Toyoda Mach Works Ltd 埋込磁石型モータ
JP2006258289A (ja) 2005-02-16 2006-09-28 Ntn Corp インホイールモータ駆動装置
JP2008168790A (ja) 2007-01-12 2008-07-24 Ntn Corp インホイールモータ駆動装置
JP2010110042A (ja) * 2008-10-28 2010-05-13 Toyota Motor Corp モータ制御装置
JP2010268566A (ja) * 2009-05-13 2010-11-25 Nissan Motor Co Ltd 独立車輪駆動電動車の制御装置
WO2012114900A1 (ja) * 2011-02-25 2012-08-30 Ntn株式会社 電気自動車

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011983A (ja) * 2015-06-18 2017-01-12 現代自動車株式会社Hyundai Motor Company 環境に優しい自動車のモーター減磁診断方法

Also Published As

Publication number Publication date
EP2782241A4 (en) 2016-07-20
JP2013110804A (ja) 2013-06-06
EP2782241B1 (en) 2019-07-03
US20140285128A1 (en) 2014-09-25
US9172319B2 (en) 2015-10-27
JP5886008B2 (ja) 2016-03-16
CN103947100A (zh) 2014-07-23
EP2782241A1 (en) 2014-09-24
CN103947100B (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
JP5886008B2 (ja) 電気自動車のモータ制御装置
JP5657426B2 (ja) 電気自動車
JP5705585B2 (ja) 電気自動車
WO2012114902A1 (ja) 電気自動車
WO2012114901A1 (ja) 電気自動車、インホイールモータ駆動装置およびモータ制御方法
WO2013077407A1 (ja) モータの制御装置
JP5657425B2 (ja) 電気自動車
JP5936306B2 (ja) 電気自動車
JP5731233B2 (ja) 電気自動車
JP5735305B2 (ja) 電気自動車
JP5731593B2 (ja) 電気自動車
JP6199454B2 (ja) モータの制御装置
JP5731234B2 (ja) 電気自動車
JP5781326B2 (ja) 電気自動車
JP5731594B2 (ja) 電気自動車
JP5805406B2 (ja) インホイールモータ駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849034

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14355478

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012849034

Country of ref document: EP