WO2015033861A1 - 電気自動車の制御装置 - Google Patents

電気自動車の制御装置 Download PDF

Info

Publication number
WO2015033861A1
WO2015033861A1 PCT/JP2014/072691 JP2014072691W WO2015033861A1 WO 2015033861 A1 WO2015033861 A1 WO 2015033861A1 JP 2014072691 W JP2014072691 W JP 2014072691W WO 2015033861 A1 WO2015033861 A1 WO 2015033861A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
torque
torque command
electric vehicle
map
Prior art date
Application number
PCT/JP2014/072691
Other languages
English (en)
French (fr)
Inventor
李国棟
劉怡青
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201480048394.6A priority Critical patent/CN105555590B/zh
Priority to EP14842022.7A priority patent/EP3042800A4/en
Publication of WO2015033861A1 publication Critical patent/WO2015033861A1/ja
Priority to US15/054,680 priority patent/US9855858B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/32Control or regulation of multiple-unit electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0025Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control implementing a off line learning phase to determine and store useful data for on-line control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
    • H02P5/48Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another by comparing mechanical values representing the speeds
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
    • H02P5/50Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another by comparing electrical values representing the speeds
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/04Arrangements for controlling or regulating the speed or torque of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/42Control modes by adaptive correction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/46Control modes by self learning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention provides, for example, a torque command map for controlling a motor for driving driving in an electric vehicle including an in-wheel motor driving device for driving either one of two front wheels or two rear wheels of a vehicle or four wheels.
  • the present invention relates to a control device for an electric vehicle that automatically adjusts.
  • An electric vehicle in which left and right wheels serving as driving wheels are driven by independent driving motors (Patent Document 1).
  • the rotation of the motor is transmitted to the wheel via a reduction gear and a wheel bearing.
  • an IPM motor embedded magnet type synchronous motor
  • the motor is applied as the motor.
  • the control apparatus for an electric vehicle of the present invention includes an ECU 21 that is an electric control unit that controls the entire vehicle, a power circuit unit 28 that includes an inverter 31 that converts DC power into AC power used to drive the motor 6 for traveling, and An inverter device 22 having a motor control unit 29 for controlling the power circuit unit 28 in accordance with a torque command from the ECU 21; A rotation angle sensor 36 for detecting the rotation angle of the motor 6 is provided, and the motor control unit 29 obtains the rotation angle of the rotor of the motor 6 from the rotation angle sensor 36 and performs control according to the rotor rotation angle.
  • a control device for an electric vehicle that performs control in accordance with a torque command map 35 that defines the relationship between the motor rotational speed and the torque
  • the motor control unit 29 is provided with the torque command map 35 according to the vehicle speed obtained from the vehicle speed detection means based on the rotation angle detected by the rotation angle sensor 36 and the torque command from the ECU 21.
  • a torque command map adjusting unit 38 for adjusting according to a rule is provided. The “adjustment” is to change a value in the torque command map. For example, both the primary current Ia and the current advance angle ⁇ in the torque command map are adjusted.
  • Adjustment of the torque command map 35 by the torque command map adjustment unit 38 is performed according to a predetermined rule. For example, when the vehicle includes motors 6 that independently drive the left and right wheels 2, one motor 6 that adjusts the torque command map 35 based on an accelerator signal (a constant value) is executed by torque control. Then, the other motor 6 is controlled by the rotational speed control. For example, this adjustment is performed under the condition of a constant command torque value based on a constant rotational speed.
  • the torque command map adjustment unit 38 adjusts during the “during vehicle travel”, for example, at a low speed travel of 30 km / h or less immediately after starting from the vehicle stop state.
  • the vehicle speed detecting means calculates the vehicle speed by differentiating the rotation angle of the motor 6 detected by the rotation angle sensor 36, for example.
  • the torque command map adjustment unit 38 takes in the effective value of the phase command voltage of the one motor 6 from the motor drive command voltage map 39 in which the phase command voltage corresponding to the motor rotation speed and torque is determined, and this phase command voltage
  • the motor drive command voltage map 39 and the corresponding torque command map (Ia, ⁇ ) are automatically adjusted so that the effective value matches the phase drive voltage effective value in the same phase.
  • the torque command map (Ia, ⁇ ) is adjusted by adjusting the primary current Ia and the current advance angle ⁇ in the increasing direction.
  • the adjusted primary current Ia and current advance angle ⁇ are recorded in the torque command map (Ia, ⁇ ). Thereafter, the command value is taken from the torque command map 35 and the one motor 6 is controlled.
  • the torque command map 35 of the other motor 6 When the torque command map 35 of the other motor 6 is adjusted, the rotation speed of one motor 6 is controlled, the torque of the other motor 6 is controlled, and the same adjustment as described above can be performed. Therefore, when the motor 6 has a problem due to secular change or the like, a desired motor torque can be output by adjusting the torque command map 35 of the motor 6. For example, when the output values of the motor torques of the left and right wheels are different, the same motor torque can be output from the left and right motors 6 to reduce the influence on the vehicle travel. Specifically, the straight running stability of the vehicle can be improved.
  • the vehicle may include a plurality of the motors 6 that independently drive the left and right wheels 2, and the motor control unit 29 may be provided for each motor.
  • the torque command map adjustment unit 38 in each motor control unit 29 generates an equivalent motor torque from the left and right motors 6 during vehicle travel.
  • the torque command map 35 of each motor 6 is adjusted so as to output. Therefore, it is possible to reduce the influence on the vehicle travel caused by the difference between the output values of the left and right motor torques.
  • the motor control unit 29 controls the torque of the one motor 6 and controls the rotation speed of the other motor 6. It is good to do. For example, when the torque command map of the right motor 6 that drives the right wheel 2 is adjusted, the left motor 6 that drives the left wheel 2 is controlled by rotational speed control, and the right motor 6 is controlled by torque control. Conversely, when adjusting the torque command map 35 of the left motor 6, the right motor 6 is controlled by rotation speed control, and the left motor 6 is controlled by torque control.
  • the motor control unit 29 is provided with a motor drive command voltage map 39 in which a phase command voltage corresponding to the motor rotation speed and torque is determined.
  • the torque command map adjustment unit 38 is configured such that the one motor 6 has a constant motor rotation speed. In the state where the motor rotates, the phase command voltage of the one motor 6 is taken from the motor drive command voltage map 39, and the torque command map 35 so that the fetched phase command voltage matches the corresponding phase drive voltage. It is good also as what adjusts.
  • the torque command map adjustment unit 38 in a state where one motor 6 rotates at a constant motor speed, from the motor drive command voltage map 39, the phase command voltage effective value (for example, U-phase command) Voltage effective value) is taken in, and the motor command voltage map 39 and the corresponding torque command map (Ia, ⁇ ) are automatically adjusted so that the U-phase command voltage effective value Vu matches.
  • the U-phase command voltage effective value Vu can be calculated from, for example, an instantaneous value recorded by a CPU and recorded data.
  • the torque command map adjustment unit subtracts the phase drive voltage from the phase command voltage.
  • the torque command map may be adjusted on the assumption that the phase command voltage and the phase drive voltage coincide with each other.
  • the motor 6 drives one of the front wheels and the rear wheels of the vehicle, or four wheels, and constitutes an in-wheel motor drive device 8 including the motor 6, the wheel bearing 4, and the speed reducer 7. good.
  • FIG. 1 is a block diagram of a conceptual configuration showing an electric vehicle according to an embodiment of the present invention in a plan view. It is a block diagram of conceptual composition, such as an inverter device of the electric vehicle. It is a conceptual block diagram of the IPM motor of the same electric vehicle. It is a conceptual block diagram of the IPM motor of the same electric vehicle. It is a block diagram of the torque control system of the motor control part of the electric vehicle. It is a figure which shows the torque command map of the motor in the control apparatus of the same electric vehicle. It is a figure which shows the motor drive command voltage map of the same control apparatus. It is a flowchart which shows the automatic adjustment method of the torque command map which controls the motor. It is a figure which shows schematically the operating method of the throttle opening of the control apparatus of an electric vehicle. It is a figure which shows schematically the operating method of the throttle opening of the control apparatus of an electric vehicle.
  • FIG. 1 is a block diagram of a conceptual configuration showing the electric vehicle according to this embodiment in a plan view.
  • this electric vehicle is a four-wheeled vehicle in which the left and right rear wheels 2 of the vehicle body 1 are drive wheels, and the left and right front wheels 3 are driven wheels. is there.
  • Each of the wheels 2 and 3 serving as the driving wheel and the driven wheel has a tire and is supported by the vehicle body 1 via wheel bearings 4 and 5, respectively.
  • the wheel bearings 4 and 5 are abbreviated as “H / B” in FIG.
  • the left and right wheels 2, 2 serving as driving wheels are driven by independent traveling motors 6, 6, respectively.
  • the rotation of the motor 6 is transmitted to the wheel 2 via the speed reducer 7 and the wheel bearing 4.
  • the motor 6, the speed reducer 7, and the wheel bearing 4 constitute an in-wheel motor driving device 8 that is one assembly part, and the in-wheel motor driving device 8 is partially or entirely inside the wheel 2.
  • the motor 6 is a synchronous or induction type AC motor.
  • the speed reducer 7 is a cycloid speed reducer, for example.
  • the wheels 2 and 3 are provided with electric brakes 9 and 10, respectively. Further, the wheels 3 and 3 which are the steering wheels as the left and right front wheels can be steered via the steering mechanism 11 and are steered by the steering means 12.
  • FIG. 2 is a block diagram of a conceptual configuration of an inverter device and the like of the electric vehicle.
  • the electric vehicle includes an ECU 21 that is an electric control unit that controls the entire vehicle, and an inverter device 22 that controls the motor 6 for traveling in accordance with a command from the ECU 21.
  • the ECU 21 includes a computer, a program executed on the computer, various electronic circuits, and the like.
  • the ECU 21 includes a torque distribution unit 21a and a power running / regeneration control command unit 21b.
  • the torque distribution means 21a gives to the motors 6 and 6 for traveling of the left and right wheels from the acceleration command output from the accelerator operation means 16, the deceleration command output from the brake operation means 17, and the turning command from the steering means 12. Acceleration / deceleration commands are respectively generated as torque command values and output to the inverter device 22.
  • the torque distribution unit 21a distributes the braking torque command value for causing the motor 6 to function as a regenerative brake and the braking torque command value for operating the brakes 9 and 10 when a deceleration command output from the brake operation unit 17 is received. Has function.
  • the braking torque command value that functions as a regenerative brake is reflected in the torque command value by the acceleration / deceleration commands given to the motors 6 and 6 for the left and right wheels.
  • a braking torque command value for operating the brakes 9 and 10 is output to the brake controller 23.
  • the power running / regeneration control command unit 21b gives a command flag for switching between acceleration (power running) and deceleration (regeneration) to a motor power running / regeneration control unit 33 of the motor control unit 29 described later.
  • the inverter device 22 includes a power circuit unit 28 provided for each motor 6 and a motor control unit 29 that controls the power circuit unit 28. Although not shown, the inverter device 22 is provided for each motor. In FIG. 2, only one inverter device 22, power circuit unit 28, and motor control unit 29 are shown for convenience, but there are two each in this embodiment.
  • the power circuit unit 28 includes an inverter 31 that converts the DC power of the battery 19 into three-phase AC power used for powering and regeneration of the motor 6, and a PWM driver 32 that controls the inverter 31.
  • the motor 6 is composed of a three-phase synchronous motor or the like.
  • the motor 6 is provided with a rotation angle sensor 36 that detects a rotation angle for calculating the electrical angle of the rotor of the motor.
  • the inverter 31 is composed of a plurality of semiconductor switching elements, and the PWM driver 32 performs pulse width modulation on the input current command and gives an on / off command to each of the semiconductor switching elements.
  • the motor control unit 29 includes a computer, a program executed on the computer, and an electronic circuit, and has a motor power running (drive) / regeneration control unit 33 as a basic control unit.
  • the motor power running (drive) / regeneration control unit 33 converts the command into a current command in accordance with an acceleration (power running) / deceleration (regeneration) command based on a torque command or the like given from the ECU 21 that is the higher-level control means. This is means for giving a current command to the PWM driver 32 of the unit 28.
  • the motor power running / regeneration control unit 33 includes a power running control unit 33a and a regeneration control unit 33b, and either the power running control unit 33a or the regeneration control unit 33b is controlled by a command flag from the power running / regeneration control command unit 21b. Used selectively.
  • the motor power running / regenerative control unit 33 generates a command current value to the motor 6 by using the torque command map 35 (FIG. 5) preset in the inverter by the command flag. At this time, the current actually flowing through the motor 6 is detected, and the motor 6 is controlled by PI control in order to make this current coincide with the command current value.
  • the motor control unit 29 includes a control parameter adjustment unit 34 and a torque command map adjustment unit 38.
  • the control parameter adjustment unit 34 adjusts the PI control gain used when controlling the motor 6.
  • the torque command map adjustment unit 38 automatically adjusts the torque command map of each motor 6 in the ROM 46 so that the output values of the left and right motor torques are equal, as will be described later.
  • the signal rolling between the four members of the ECU 21, the inverter device 22, the brake controller 23, and the steering means 12 is performed by controller area network (CAN) communication.
  • CAN controller area network
  • FIG. 3 is a conceptual configuration diagram of the IPM motor of the electric vehicle.
  • the motor 6 that drives the wheel is an IPM motor, that is, an embedded magnet type synchronous motor
  • the magnetic resistance in the q-axis direction orthogonal to the d-axis direction, which is the magnet axis, is smaller.
  • the motor 6 has a salient pole structure, and the q-axis inductance Lq is larger than the d-axis inductance Ld.
  • reluctance torque Tr can be used together with magnet torque Tm, and high torque and high efficiency can be achieved.
  • Magnet torque Tm Torque generated by attracting and repelling the magnetic field generated by the permanent magnet of the rotor and the rotor magnetic field generated by the winding.
  • Reluctance torque Tr A torque generated when a salient pole portion of a rotor is attracted to a rotating magnetic field by a winding.
  • Ld Motor d-axis inductance
  • Lq Motor q-axis inductance
  • Ke Motor induced voltage constant effective value
  • Iq Torque generation current q-axis current
  • Id Magnetic flux generation current d-axis current
  • a vector control method is known in which a primary current Ia flowing through an IPM motor is separated into a torque generation current q-axis current Iq and a magnetic flux generation current d-axis current Id and can be controlled independently.
  • FIG. 4 is a block diagram of the torque control system of the motor control unit 29 of the electric vehicle. This will be described with reference to FIG.
  • the motor control unit 29 is means for controlling the motor drive current, and includes a current command unit 40 (FIG. 4).
  • the current command unit 40 is based on the vehicle speed calculated by the speed calculation unit (vehicle speed detection unit) 37 based on the rotor angle detected by the rotation angle sensor 36, and the acceleration / deceleration command generated by the torque distribution unit 21a of the ECU 21. From the torque command value, a corresponding command current is generated using a torque command map 35 (FIG. 5) preset in the inverter of the inverter device 22.
  • a torque command map 35 (FIG. 5) preset in the inverter of the inverter device 22.
  • PI feedback control is performed to eliminate the deviation of the command current value generated inside the inverter.
  • the direction of the command current is switched by a command flag given from the power running / regenerative control command unit 21b of the ECU 21, and a signed torque command value is generated.
  • the motor power running / regeneration control unit 33 obtains the rotation angle of the rotor of the motor 6 from the rotation angle sensor 36 via the torque command map adjustment unit 38 and performs vector control.
  • the motors 6 provided on the left and right rear wheels 2 of the vehicle body have different directions of torque generation during power running and during regeneration. That is, when the motor 6 for driving the left rear wheel generates torque in the CW direction when the motor 6 is viewed from the direction of the output shaft, the motor 6 for driving the right rear wheel generates torque in the CCW direction. (Left and right sides are determined by the direction seen from the rear of the vehicle).
  • the left and right torque directions are reversed via the speed reducer 7 and the wheel bearing 4 so that the tires May be communicated. Further, the direction of torque generation during regeneration in the motor 6 for the left and right tires is different from the direction of torque generation during power running.
  • the torque command value is calculated from the torque command map 35 (see FIG. 5), which is a maximum torque control table, according to the accelerator signal and the rotational speed of the motor 6.
  • the current command unit 40 generates a primary current (Ia) and a current advance angle ( ⁇ ) of the motor 6 based on the calculated torque command value. Based on the values of the primary current (Ia) and the current advance angle ( ⁇ ) (FIG. 3B), the current command unit 40 determines two command currents, a d-axis current (field component) O_Id and a q-axis current O_Iq. Generate.
  • the current PI control unit 41 is a two-phase current calculated by the three-phase / two-phase conversion unit 42 from the values of the d-axis current O_Id and q-axis current O_Iq output from the current command unit 40 and the motor current and the rotor angle. Control amounts Vd and Vq based on voltage values by PI control are calculated from Id and Iq.
  • Iv ⁇ (Iu + Iw)
  • a phase current (Iv) is calculated, and a three-phase current of Iu, Iv, and Iw is converted into a two-phase current of Id and Iq.
  • the rotor angle of the motor 6 used for this conversion is acquired from the rotation angle sensor 36.
  • the detected (phase) value of the rotation angle is corrected by a rotation angle (phase) correction unit (not shown), and the motor 6 can be controlled with high accuracy.
  • the two-phase / three-phase conversion unit 44 determines the three-phase PWM duty voltage values Vu, Vv from the input two-phase voltage control amounts Vd, Vq and the rotation angle value corrected by the rotation angle correction unit. , Vw.
  • the power conversion unit 45 corresponding to the power circuit unit 28 (FIG. 2) performs PWM control of the inverter 31 (FIG. 2) according to the PWM duty values Vu, Vv, Vw, and drives the motor 6.
  • FIG. 5 is a diagram showing a motor torque command map 35.
  • the torque command map 35 shown in FIG. 5 is created in advance by a motor bench test and is written in the ROM 46 (FIG. 2) existing in the CPU or the like in the inverter device.
  • the characters in the table of FIG. 5 are as follows. N: Number of revolutions T: Torque command value Rot_0, Rot_1, ... Rot_m: Each number of revolutions Trq0, Trq1, ... Trqn: Each torque command value (Ia, ⁇ ) _ij: Torque command value T is Trqi, Command value at Rot_j, primary current Ia and current advance angle ⁇
  • FIG. 6 is a diagram showing a motor drive command voltage map 39.
  • the torque command map adjustment unit 38 (FIG. 2) records the effective value of the corresponding command voltage in the motor drive command voltage map 39 in accordance with the command values (Ia, ⁇ ) fetched from the torque command map 35 (FIG. 5). To do.
  • the effective value Vu of the U-phase command voltage is recorded as shown in FIG.
  • Vu * _ij is an effective value of the U-phase command voltage when the torque command value T is Trqi and the rotation speed N is Rot_j.
  • FIG. 7 is a flowchart showing an automatic adjustment method of a torque command map for controlling the motor in the electric vehicle control apparatus.
  • This adjustment method is executed by the torque command map adjustment unit 38 when the vehicle is traveling.
  • step S1: YES if it is determined in step S1 that there is an input signal from an external operation signal (eg, switch, button, etc.) (step S1: YES), the process proceeds to step S2 to automatically adjust the torque command map. The mode is activated. If it is determined in step S1 that there is no input signal (step S1: NO), the process returns to step S1 again.
  • an external operation signal eg, switch, button, etc.
  • step S2 the process proceeds to step S3, and based on the accelerator signal (maintains a constant value), for example, the left motor is controlled by rotation speed control and the right motor is controlled by torque control. In this case, the right motor torque command map is automatically adjusted.
  • the accelerator signal maintains a constant value
  • This adjustment method is a method of adjusting under the condition of a constant command torque value based on a constant rotation speed.
  • the adjustable state is a stable state in which the rotational speed control of the left motor and the torque control of the right motor are balanced.
  • the absolute value of the value obtained by taking the phase command voltage effective value (for example, U phase command voltage effective value) of the right motor from the motor drive command voltage map 39 and subtracting the U phase drive voltage effective value from this U phase command voltage effective value is It is determined whether it is smaller than the threshold value A (step S4).
  • the U-phase driving voltage effective value Vu is calculated from the recorded data by the CPU recording an instantaneous value.
  • the threshold A is determined to be a value that reduces the difference between the U-phase command voltage effective value and the U-phase drive voltage effective value within a practically possible range, for example, from a motor bench test or simulation.
  • step S4 NO
  • the primary current Ia and the current advance angle ⁇ in the torque command map 35 are increased.
  • the direction is adjusted (step S5).
  • the adjustment in the unstable state where the rotational speed control of the left motor and the torque control of the right motor are not balanced uses the adjustment rate in the state where both balances, and the unadjusted (Ia, A method of adjusting ⁇ ).
  • the adjustment rate is obtained by dividing Ia and ⁇ before adjustment from Ia and ⁇ after adjustment, respectively. The smaller the adjustment rate, the finer the torque command map can be adjusted. Thereafter, the process returns to step S4.
  • step S4 when the absolute value is smaller than the threshold value A (step S4: YES), the adjusted command value (Ia, ⁇ ) is recorded in the torque command map 35 (step S6).
  • step S7 it is determined whether or not the torque command map 35 is continuously adjusted (step S7).
  • step S7: NO the process returns to step S3.
  • step S7: NO this process is terminated.
  • FIG. 8 is a diagram schematically showing an operation method of the accelerator opening degree of the control device of the electric vehicle.
  • FIG. 8A in the method in which the accelerator opening is monotonously increased with time and is continuously set to a constant value, it is difficult to control the rotational speed of the motor.
  • FIG. 8B in the accelerator opening signal processing method in which the operation of keeping the accelerator opening constant after increasing the accelerator opening within a certain time is performed a plurality of times, it is easy to perform the rotational speed control. For this reason, the data after signal processing does not vibrate with respect to fluctuations in the accelerator opening signal within a certain time.
  • the rotational speed of one motor to be adjusted in the torque command map is controlled by the accelerator opening signal processing method shown in FIG. 8B.
  • the torque command map adjustment unit 38 receives the torque command map 35 (in accordance with the vehicle speed obtained from the vehicle speed detection means 37 (FIG. 4) and the torque command from the ECU 21 based on an input signal from an external operation signal during vehicle travel. Adjust FIG. For example, the torque command map adjusting unit 38 takes in the phase command voltage effective value of the motor 6 from the motor drive command voltage map 39 (FIG. 6) in which the phase command voltage corresponding to the motor rotation speed and the torque is determined.
  • the command value (Ia) in the torque command map 35 corresponding to the motor drive command voltage map 39 is set so that the voltage effective value matches the phase drive voltage effective value in the same phase, that is, YES in step S4 of FIG. , ⁇ ) is automatically adjusted.
  • a desired motor torque can be output by adjusting the torque command map 35 of the motor 6.
  • the same motor torque can be output from the left and right motors 6 to reduce the influence on the vehicle travel. Specifically, the straight running stability of the vehicle can be improved.
  • the torque command map adjustment unit 38 in each motor control unit 29 outputs an equivalent motor torque from the left and right motors 6 when the vehicle is running. In this manner, the torque command map 35 of each motor 6 is adjusted. Therefore, it is possible to reduce the influence on the vehicle travel caused by the difference between the output values of the left and right motor torques.
  • the left and right rear wheels are drive wheels, but the present invention is not limited to this example.
  • the left and right front wheels may be drive wheels, the drive wheels may be driven by individual motors, and the left and right rear wheels may be driven wheels.
  • the present invention can be applied to an electric vehicle in which all four wheels are driven by individual motors.
  • the ECU and the inverter device may be stored in the same casing, for example, or may be provided separately.
  • the primary current Ia and the current advance angle ⁇ may be adjusted to decrease.
  • the determination in step S7 in FIG. 7 may be omitted.

Abstract

 電気自動車の走行用のモータが経年変化等に起因する問題を生じた場合に、所望のモータトルクを出力し得る電気自動車の制御装置を提供する。この電気自動車の制御装置は、ECU21と、インバータ31を含むパワー回路部28およびモータコントロール部29を有するインバータ装置22とを備える。またモータ6の回転角度を検出する回転角度センサ36を設け、モータコントロール部29は、モータ6のローターの回転角度を回転角度センサ36から得てローター回転角度に応じた制御を行い、かつモータ回転数とトルクとの関係を定めたトルク指令マップ35に従って制御を行う。モータコントロール部29に、回転角度センサ36で検出された前記回転角度に基づき車速検出手段から得られる車両の速度およびECU21からのトルク指令に応じ、トルク指令マップを調整するトルク指令マップ調整部38を設けた。

Description

電気自動車の制御装置 関連出願
 本出願は、2013年9月3日出願の特願2013-181803の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、例えば、車両の前輪2輪および後輪2輪のいずれか一方、もしくは4輪を駆動するインホイールモータ駆動装置を備えた電気自動車において、走行駆動用のモータを制御するトルク指令マップを自動調整する電気自動車の制御装置に関する。
 電気自動車において、駆動輪となる左右の車輪が、それぞれ独立の走行用のモータにより駆動される自動車が公知である(特許文献1)。前記モータの回転は、減速機および車輪用軸受を介して車輪に伝達される。前記モータとして、例えば、IPMモータ(埋込磁石型同期モータ)が適用される。
特開2012-178919号公報
 しかし、モータは経年変化により、永久磁石の磁力減衰などの問題が生じる。その影響で、モータから出力されるトルクがトルク指令通りに出力できずに、減少していく傾向がある。さらに、アクセル信号に対して、左右のモータトルクの出力値が異なることがある。これは、例えば左右輪のモータの走行環境などにより、劣化の程度が異なるためと考えられる。左右のモータトルクの出力値が異なることによって、車両走行への影響がある。
 この発明の目的は、電気自動車の走行用のモータに経年変化等に起因する問題が生じた場合に、所望のモータトルクを出力し得る電気自動車の制御装置を提供することである。この発明の他の目的は、左右のモータから同等なモータトルク、すなわち各モータトルクの出力値の差が所定値より小さいようなモータトルクを出力して車両走行への影響を緩和することができる電気自動車の制御装置を提供することである。
 以下、本発明について、理解を容易にするために、便宜上実施形態の符号を参照して説明する。
 この発明の電気自動車の制御装置は、車両全般を制御する電気制御ユニットであるECU21と、直流電力を走行用のモータ6の駆動に用いる交流電力に変換するインバータ31を含むパワー回路部28、および前記ECU21からのトルク指令に従って前記パワー回路部28を制御するモータコントロール部29を有するインバータ装置22とを備え、
 前記モータ6の回転角度を検出する回転角度センサ36を設け、前記モータコントロール部29は、前記モータ6のローターの回転角度を前記回転角度センサ36から得てローター回転角度に応じた制御を行い、かつモータ回転数とトルクとの関係を定めたトルク指令マップ35に従って制御を行う電気自動車の制御装置であって、
 前記モータコントロール部29に、前記回転角度センサ36で検出された前記回転角度に基づき車速検出手段から得られる前記車両の速度および前記ECU21からのトルク指令に応じ、前記トルク指令マップ35を定められた規則に従って調整するトルク指令マップ調整部38を設けている。
 前記「調整する」とは、トルク指令マップ内の値を変更することであり、例えば、トルク指令マップ内における1次電流Iaおよび電流進角βのいずれも調整する。
 この構成によると、車両走行時に外部の操作信号、例えば、スイッチ、ボタン等からの入力信号により、車速検出手段から得られる車両の速度およびECU21からのトルク指令に応じて、下記に示すように、トルク指令マップ調整部38によるトルク指令マップ35の調整を定められた規則に従って行う。前記車両が、例えば、左右の車輪2を独立して駆動するモータ6をそれぞれ備える場合に、アクセル信号(一定値)に基づき、トルク指令マップ35を調整する一方のモータ6をトルク制御で実施し、他方のモータ6を回転数制御で実施する。この調整は、例えば、一定の回転数を元に、一定指令トルク値の条件下で調整する。
 前記「車両走行時」のうち、車両停止状態から発進直後の例えば、時速30km/h以下の低速走行時において、トルク指令マップ調整部38により調整することが好ましい。前記車速検出手段は、例えば、回転角度センサ36で検出されたモータ6の回転角度を微分することにより車両速度を計算する。
 1.トルク指令マップ調整部38は、例えば、モータ回転数およびトルクに応じた相指令電圧を定めたモータ駆動指令電圧マップ39から、前記一方のモータ6の相指令電圧実効値を取り込み、この相指令電圧実効値と同相における相駆動電圧実効値とが一致するように、モータ駆動指令電圧マップ39と相応するトルク指令マップ(Ia,β)を自動的に調整する。
 2.トルク指令マップ(Ia,β)の調整方法は、例えば、1次電流Iaと電流進角βを増大方向へ調整する。調整後の1次電流Iaと電流進角βをトルク指令マップ(Ia,β)に記録する。その後、トルク指令マップ35から指令値を取り込み、前記一方のモータ6を制御する。
 前記他方のモータ6のトルク指令マップ35を調整するとき、一方のモータ6を回転数制御し、他方のモータ6をトルク制御し、前記と同様に調整し得る。したがって、モータ6が経年変化等に起因する問題を生じた場合に、モータ6のトルク指令マップ35を調整することで所望のモータトルクを出力し得る。例えば、左右輪のモータトルクの出力値が異なる場合、左右のモータ6から同等なモータトルクを出力して車両走行への影響を緩和することができる。具体的には、車両の直進安定性の向上を図ることができる。
 前記車両は、それぞれ左右の車輪2を独立して駆動する複数の前記モータ6を備え、かつ各モータ毎に前記モータコントロール部29を設けても良い。例えば、左右のモータ6について、経年変化等に起因する劣化の程度に差がある場合、各モータコントロール部29におけるトルク指令マップ調整部38は、車両走行時左右のモータ6から同等なモータトルクを出力するように、各モータ6のトルク指令マップ35をそれぞれ調整する。したがって、左右のモータトルクの出力値の差異に起因する車両走行への影響を緩和することができる。
 前記トルク指令マップ調整部38がいずれか一方のモータ6における前記トルク指令マップ35を調整するとき、前記モータコントロール部29は、前記一方のモータ6をトルク制御し、他方のモータ6を回転数制御するものとしても良い。例えば、右車輪2を駆動する右側モータ6のトルク指令マップを調整するとき、左車輪2を駆動する左側モータ6を回転数制御で制御し、前記右側モータ6をトルク制御で制御する。逆に、左側モータ6のトルク指令マップ35を調整するとき、右側モータ6を回転数制御で制御し、前記左側モータ6をトルク制御で制御する。
 前記モータコントロール部29に、モータ回転数およびトルクに応じた相指令電圧を定めたモータ駆動指令電圧マップ39を設け、前記トルク指令マップ調整部38は、前記一方のモータ6が一定のモータ回転数で回転する状態で、前記モータ駆動指令電圧マップ39から前記一方のモータ6の相指令電圧を取り込み、この取り込んだ相指令電圧が、対応する相駆動電圧と一致するように、前記トルク指令マップ35を調整するものとしても良い。この場合、トルク指令マップ調整部38は、一方のモータ6が一定のモータ回転数で回転する状態で、モータ駆動指令電圧マップ39から一方のモータ6の相指令電圧実効値(例えば、U相指令電圧実効値)を取り込み、このU相指令電圧実効値Vuとが一致するように、モータ駆動指令電圧マップ39と相応するトルク指令マップ(Ia、β)を自動的に調整する。前記U相指令電圧実効値Vuは、例えば、CPUにて瞬時値を記録し、記録データから計算し得る。
 上記の、取り込んだ相指令電圧が対応する相駆動電圧と一致するように、前記トルク指令マップ35を調整する場合、前記トルク指令マップ調整部は、前記相指令電圧から前記相駆動電圧を減じた値の絶対値が所定の閾値よりも小さいとき、前記相指令電圧と前記相駆動電圧とが一致したとして、前記トルク指令マップを調整するものとしても良い。
 前記モータ6は、車両の前輪および後輪のいずれか一方、または4輪を駆動し、前記モータ6と車輪用軸受4と減速機7とを含むインホイールモータ駆動装置8を構成するものとしても良い。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 本発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、本発明の範囲を定めるために利用されるべきものではない。本発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の実施形態に係る電気自動車を平面図で示す概念構成のブロック図である。 同電気自動車のインバータ装置等の概念構成のブロック図である。 同電気自動車のIPMモータの概念構成図である。 同電気自動車のIPMモータの概念構成図である。 同電気自動車のモータコントロール部のトルク制御系のブロック図である。 同電気自動車の制御装置におけるモータのトルク指令マップを示す図である。 同制御装置のモータ駆動指令電圧マップを示す図である。 同モータを制御するトルク指令マップの自動調整方法を示すフローチャートである。 電気自動車の制御装置のアクセル開度の操作方法を概略示す図である。 電気自動車の制御装置のアクセル開度の操作方法を概略示す図である。
 この発明の実施形態に係る電気自動車の制御装置を図1ないし図8と共に説明する。図1は、この実施形態に係る電気自動車を平面図で示す概念構成のブロック図である。図1に示すように、この電気自動車は、車体1の左右の後輪となる車輪2が駆動輪とされ、左右の前輪となる車輪3が従動輪の操舵輪とされた4輪の自動車である。駆動輪および従動輪となる車輪2,3は、いずれもタイヤを有し、それぞれ車輪用軸受4,5を介して車体1に支持されている。
 車輪用軸受4,5は、図1にてハブベアリングの略称「H/B」が付されている。駆動輪となる左右の車輪2,2は、それぞれ独立の走行用のモータ6,6により駆動される。モータ6の回転は、減速機7および車輪用軸受4を介して車輪2に伝達される。これらモータ6、減速機7、および車輪用軸受4は、互いに一つの組立部品であるインホイールモータ駆動装置8を構成しており、インホイールモータ駆動装置8は、一部または全体が車輪2内に配置される。モータ6は、同期型または誘導型の交流モータである。減速機7は例えばサイクロイド減速機である。各車輪2,3には、各々電動式のブレーキ9,10が設けられている。また左右の前輪となる操舵輪である車輪3,3は、転舵機構11を介して転舵可能であり、操舵手段12により操舵される。
 図2は、同電気自動車のインバータ装置等の概念構成のブロック図である。図2に示すように、この電気自動車は、自動車全般の制御を行う電気制御ユニットであるECU21と、このECU21の指令に従って走行用のモータ6の制御を行うインバータ装置22とを有する。ECU21は、コンピュータとこれに実行されるプログラム、および各種の電子回路等で構成される。ECU21は、トルク配分手段21aと、力行・回生制御指令部21bとを有する。
 トルク配分手段21aは、アクセル操作手段16の出力する加速指令と、ブレーキ操作手段17の出力する減速指令と、操舵手段12からの旋回指令とから、左右輪の走行用のモータ6,6に与える加速・減速指令をトルク指令値として各々生成し、インバータ装置22へ出力する。トルク配分手段21aは、ブレーキ操作手段17の出力する減速指令があったときに、モータ6を回生ブレーキとして機能させる制動トルク指令値と、ブレーキ9,10を動作させる制動トルク指令値とに配分する機能を持つ。回生ブレーキとして機能させる制動トルク指令値は、左右輪のモータ6,6に与える加速・減速指令によるトルク指令値に反映される。ブレーキ9,10を動作させる制動トルク指令値は、ブレーキコントローラ23へ出力される。力行・回生制御指令部21bは、加速(力行)・減速(回生)の切換えを行うための指令フラグを、後述するモータコントロール部29のモータ力行・回生制御部33に与える。
 インバータ装置22は、各モータ6に対して設けられたパワー回路部28と、このパワー回路部28を制御するモータコントロール部29とを有する。インバータ装置22は、図示しないが、各モータ毎にそれぞれ設けられている。図2では、便宜上、インバータ装置22、パワー回路部28およびモータコントロール部29は各々1つしか描かれていないが、本実施形態では各々2つ存在している。パワー回路部28は、バッテリ19の直流電力をモータ6の力行および回生に用いる3相の交流電力に変換するインバータ31と、このインバータ31を制御するPWMドライバ32とを有する。モータ6は、3相の同期モータ等からなる。このモータ6には、同モータのローターの電気角を算出するための回転角度を検出する回転角度センサ36が設けられている。インバータ31は、複数の半導体スイッチング素子で構成され、PWMドライバ32は、入力された電流指令をパルス幅変調し、前記各半導体スイッチング素子にオンオフ指令を与える。
 モータコントロール部29は、コンピュータとこれに実行されるプログラム、および電子回路により構成され、その基本となる制御部としてモータ力行(駆動)・回生制御部33を有している。このモータ力行(駆動)・回生制御部33は、上位制御手段であるECU21から与えられるトルク指令等による加速(力行)・減速(回生)指令に従い、当該指令を電流指令に変換して、パワー回路部28のPWMドライバ32に電流指令を与える手段である。
 加速(力行)・減速(回生)の切換は、ECU21の力行・回生制御指令部21bからの指令フラグにより行う。モータ力行・回生制御部33は、力行制御手段33aと、回生制御手段33bとを有し、力行・回生制御指令部21bからの指令フラグにより力行制御手段33aおよび回生制御手段33bのいずれか一方が選択的に用いられる。モータ力行・回生制御部33は、前記指令フラグにより、インバータ内部に予め設定したトルク指令マップ35(図5)を用い、モータ6への指令電流値を生成する。このときモータ6に実際に流れる電流を検出し、この電流を指令電流値と一致させるために、モータ6をPI制御で制御する。
 またモータコントロール部29は、制御パラメータ調整部34およびトルク指令マップ調整部38を備えている。制御パラメータ調整部34は、モータ6を制御するときに用いるPI制御ゲインを調整する。一方、トルク指令マップ調整部38は、後述のように、左右のモータトルクの出力値が同等になるように、ROM46中の各モータ6のトルク指令マップを自動調整する。なお、ECU21、インバータ装置22、ブレーキコントローラ23、および操舵手段12の4者間の信号転走は、コントローラー・エリア・ネットワーク(CAN)通信で行われている。
 図3は、この電気自動車のIPMモータの概念構成図である。図3Aに示すように、車輪を駆動するモータ6がIPMモータつまり埋込磁石型同期モータの場合は、磁石軸であるd軸方向より、それと直交するq軸方向の磁気抵抗が小さくなるため、モータ6は突極構造となり、d軸インダクタンスLdよりq軸インダクタンスLqが大きくなる。この突極構造により、磁石トルクTm以外にリラクタンストルクTrが併用でき、高トルクおよび高効率とすることもできる。
 磁石トルクTm:回転子の永久磁石による磁界と巻線による回転子磁界と吸引反発して発生するトルクである。
 リラクタンストルクTr:巻線による回転磁界に回転子の突極部が吸引されて発生するトルクである。
 モータが発生する総トルクは下記のようになる。
 T=p×{Ke×Iq+(Ld-Lq)×Id×Iq}
  =Tm+Tr
  p:極対数
 Ld:モータのd軸インダクタンス
 Lq:モータのq軸インダクタンス
 Ke:モータ誘起電圧定数実効値
 Iq:トルク生成電流q軸電流
 Id:磁束生成電流d軸電流
 図3Bに示すように、IPMモータに流す1次電流Iaを、トルク生成電流q軸電流Iqと、磁束生成電流d軸電流Idとに分離し、それぞれ独立に制御できるベクトル制御手法が周知である。
 Id=-Ia×sinβ
 Iq=Ia×cosβ
 β:電流進角
 図4は、この電気自動車のモータコントロール部29のトルク制御系のブロック図である。図2も参照しつつ説明する。モータコントロール部29は、モータ駆動電流を制御する手段であって、電流指令部40を含む(図4)。この電流指令部40は、回転角度センサ36で検出された回転子角度に基づき速度計算部(車速検出手段)37で計算される車速と、ECU21のトルク配分手段21aで生成した加速・減速指令によるトルク指令値とから、インバータ装置22のインバータ内部に予め設定したトルク指令マップ35(図5)を用い、相応の指令電流を生成する。つまりECU21からのトルク指令値に応じて、インバータ内部に生成された指令電流値の偏差を無くすためのPIフィードバック制御を行う。前記指令電流の方向は、ECU21の力行・回生制御指令部21bから与えられる指令フラグにより切換えられ、符号付きトルク指令値が生成される。
 モータ力行・回生制御部33は、トルク指令マップ調整部38を介して、モータ6のローターの回転角を回転角度センサ36から得て、ベクトル制御を行う。ここで車体の左右の後輪2に設けられた各モータ6は、力行時と回生時とにおいて、トルク発生方向が互いに異なる。つまり前記モータ6をこの出力軸の方向から見たとき、左側の後輪駆動用のモータ6がCW方向のトルクを発生した場合には、右側の後輪駆動用のモータ6はCCW方向のトルクが発生する(左、右側は車両の後方から見た方向で決定される)。なお、左、右側のモータ6でそれぞれ発生したトルクが出力軸方向から見て同じ方向の場合は、減速機7および車輪用軸受4を介して、左右どちらかのトルク方向を反転し、タイヤに伝達してもよい。また、左、右タイヤのモータ6における回生時のトルク発生方向は、力行時のトルク発生方向と異なっている。
 トルク指令値は、アクセル信号とモータ6の回転数とに応じて、最大トルク制御テーブルであるトルク指令マップ35(図5参照)から、相応な値が算出される。電流指令部40は、算出された前記トルク指令値に基づき、モータ6の1次電流(Ia)と電流進角(β)を生成する。電流指令部40は、これら1次電流(Ia)と電流進角(β)の値に基づき(図3B)、d軸電流(界磁成分)O_Idと、q軸電流O_Iqの二つの指令電流を生成する。
 電流PI制御部41は、電流指令部40から出力されたd軸電流O_Id、q軸電流O_Iqの値と、モータ電流および回転子角度から3相・2相変換部42で計算された2相電流Id,Iqとから、PI制御による電圧値による制御量Vd,Vqを算出する。3相・2相変換部42は、電流センサ43で検出されたモータ6のu相電流(Iu)とw相電流(Iw)の検出値から、次式Iv=-(Iu+Iw)で求められるv相電流(Iv)を算出し、Iu,Iv,Iwの3相電流をId,Iqの2相電流に変換する。この変換に使われるモータ6の回転子角度は、回転角度センサ36から取得する。検出された回転角度の(位相)値は、回転角度(位相)補正部(図示せず)により補正され、モータ6を精度良く制御し得る。
 2相・3相変換部44は、入力された2相の電圧制御量Vd,Vqと、前記回転角度補正部により補正された回転角度の値とから、3相のPWMデューティ電圧値Vu,Vv,Vwに変換する。パワー回路部28(図2)に相当する電力変換部45は、PWMデューティ値Vu,Vv,Vwに従ってインバータ31(図2)をPWM制御し、モータ6を駆動する。
 図5は、モータのトルク指令マップ35を示す図である。図5に示すトルク指令マップ35は、予めモータ台上試験により作成され、インバータ装置におけるCPU等に存在するROM46(図2)に書き込まれる。
 図5の表中の文字は、以下のとおりである。
 N:回転数
 T:トルク指令値
 Rot_0,Rot_1,…Rot_m:各々の回転数
 Trq0,Trq1,…Trqn:各々のトルク指令値
 (Ia,β)_ij:トルク指令値TがTrqi、回転数NがRot_jのときの指令値、1次電流Iaおよび電流進角β
 モータのトルク制御時、アクセル信号に基づき、トルク指令マップ35から相応な1次電流(Ia)と電流進角(β)とを取り出して、モータを制御している。また、1次電流(Ia)と電流進角(β)から、トルク生成電流q軸電流Iqと磁束生成電流d軸電流Idを生成する。
 Id=-Ia×sinβ
 Iq=Ia×cosβ
 図6は、モータ駆動指令電圧マップ39を示す図である。トルク指令マップ調整部38(図2)は、トルク指令マップ35(図5)から取り込んだ指令値(Ia,β)に合わせて、相応な指令電圧の実効値をモータ駆動指令電圧マップ39に記録する。例えば、U相の指令電圧の実効値Vuは、図6のように記録される。ここで、Vu*_ijは、トルク指令値TがTrqi、回転数NがRot_jのときのU相指令電圧の実効値である。
 図7は、この電気自動車の制御装置における、モータを制御するトルク指令マップの自動調整方法を示すフローチャートである。本調整方法は、車両走行時にトルク指令マップ調整部38にて実行される。本処理開始後、ステップS1にて外部の操作信号(例えば、スイッチ、ボタン等)からの入力信号があったと判定された場合(ステップS1:YES)、ステップS2に移行してトルク指令マップ自動調整モードが起動される。ステップS1にて入力信号がないと判定されると(ステップS1:NO)、再度ステップS1に戻る。
 ステップS2の後、ステップS3に移行し、アクセル信号(一定値保持)に基づき、例えば、左側モータを回転数制御で制御し、右側モータをトルク制御で制御する。この場合、右モータのトルク指令マップを自動調整する。
 調整方法を次に示す。本調整方法は、一定の回転数を元に、一定指令トルク値の条件下で、調整する方法である。調整できる状態は、左側モータの回転数制御と、右側モータのトルク制御とが釣り合っている安定な状態とする。
 1.モータ駆動指令電圧マップ39から右側モータの相指令電圧実効値(例えばU相指令電圧実効値)を取り込み、このU相指令電圧実効値からU相駆動電圧実効値を減じた値の絶対値が、閾値Aよりも小さいか否かを判定する(ステップS4)。前記U相駆動電圧実効値Vuは、CPUが瞬時値を記録し、この記録データから計算される。前記閾値Aは、例えば、モータ台上試験やシミュレーション等から、U相指令電圧実効値とU相駆動電圧実効値との差を、実用上可能な範囲で小さくする値が定められる。
 2.U相指令電圧実効値からU相駆動電圧実効値を減じた値の絶対値が、閾値A以上のとき(ステップS4:NO)、トルク指令マップ35における1次電流Iaと電流進角βを増大方向へ調整する(ステップS5)。この場合に、左側モータの回転数制御と右側モータのトルク制御とが釣り合っていない不安定な状態での調整は、両者が釣り合っている状態での調整率を使用し、未調整の(Ia,β)を調整する方法とする。調整率とは、調整後の各Ia,βから調整前の各Ia,βをそれぞれ除して求められる。この調整率を小さくすればする程、トルク指令マップを木目細かく調整することができる。その後ステップS4に戻る。
 ステップS4において、前記絶対値が閾値Aより小さいとき(ステップS4:YES)、調整後の指令値(Ia,β)をトルク指令マップ35に記録する(ステップS6)。次に、このトルク指令マップ35を継続して調整するか否かを判定し(ステップS7)、継続して調整するとの判定のときは(ステップS7:YES)、ステップS3に戻る。継続して調整しないとの判定のときは(ステップS7:NO)、本処理を終了する。
 左側モータのトルク指令マップを調整するときは、右側モータを回転数制御し、左側モータをトルク制御することで、前記と同様に調整し得る。
 図8は、この電気自動車の制御装置のアクセル開度の操作方法を概略示す図である。図8Aに示すように、時間の経過に従ってアクセル開度を単調に増加させて途中から継続して一定値とする方式では、モータの回転数制御を実施し難い。図8Bに示すように、一定時間内に、アクセル開度を増加させてからアクセル開度を一定に保持する操作を複数回行うアクセル開度信号処理方法では、回転数制御を実施しやすい。このため、一定時間内におけるアクセル開度信号の変動に対して、信号処理後のデータは振動しない特徴を持つ。この実施形態では、トルク指令マップを調整しようとする一方のモータに対して、他方のモータを図8Bに示すアクセル開度信号処理方法にて回転数制御する。
 作用効果について説明する。トルク指令マップ調整部38は、車両走行時に外部の操作信号からの入力信号により、車速検出手段37(図4)から得られる車両の速度およびECU21からのトルク指令に応じて、トルク指令マップ35(図5)を調整する。トルク指令マップ調整部38は、例えば、モータ回転数およびトルクに応じた相指令電圧を定めたモータ駆動指令電圧マップ39(図6)から、モータ6の相指令電圧実効値を取り込み、この相指令電圧実効値と同相における相駆動電圧実効値とが一致するように、すなわち図7のステップS4でYESとなるように、モータ駆動指令電圧マップ39と相応するトルク指令マップ35での指令値(Ia,β)を自動的に調整する。
 したがって、モータ6が経年変化等に起因する問題を生じた場合に、モータ6のトルク指令マップ35を調整することで所望のモータトルクを出力し得る。例えば、左右輪のモータトルクの出力値が異なる場合、左右のモータ6から同等なモータトルクを出力して車両走行への影響を緩和することができる。具体的には、車両の直進安定性の向上を図ることができる。
 左右のモータ6について、経年変化等に起因する劣化の程度に差がある場合、各モータコントロール部29におけるトルク指令マップ調整部38は、車両走行時左右のモータ6から同等なモータトルクを出力するように、各モータ6のトルク指令マップ35をそれぞれ調整する。したがって、左右のモータトルクの出力値の差異に起因する車両走行への影響を緩和することができる。
 本実施形態では、左右の後輪を駆動輪としているが、この例に限定されるものではない。例えば、左右の前輪を駆動輪として、これら駆動輪を個別のモータで駆動し、左右の後輪を従動輪とする形式としても良い。また、4輪とも個別のモータで駆動される電気自動車にも適用することができる。
 ECUとインバータ装置とは、例えば、同一のケーシング内に格納された形態であっても良いし、別々に設けられていても良い。トルク指令マップを調整するとき、1次電流Iaと電流進角βを低下する方向へ調整しても良い。図7のステップS7の判定を省略しても良い。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。
2、3…車輪
4…車輪用軸受
6…モータ
7…減速機
8…インホイールモータ駆動装置
21…ECU
22…インバータ装置
28…パワー回路部
29…モータコントロール部
31…インバータ
35…トルク指令マップ
36…回転角度センサ
37…速度計算部(車速検出手段)
38…トルク指令マップ調整部
39…モータ駆動指令電圧マップ

Claims (6)

  1.  車両全般を制御する電気制御ユニットであるECUと、直流電力を走行用のモータの駆動に用いる交流電力に変換するインバータを含むパワー回路部、および前記ECUからのトルク指令に従って前記パワー回路部を制御するモータコントロール部を有するインバータ装置とを備え、
     前記モータの回転角度を検出する回転角度センサを設け、前記モータコントロール部は、前記モータのローターの回転角度を前記回転角度センサから得てローター回転角度に応じた制御を行い、かつモータ回転数とトルクとの関係を定めたトルク指令マップに従って制御を行う電気自動車の制御装置であって、
     前記モータコントロール部に、前記回転角度センサで検出された前記回転角度に基づき車速検出手段から得られる前記車両の速度および前記ECUからのトルク指令に応じ、前記トルク指令マップを定められた規則に従って調整するトルク指令マップ調整部を設けた電気自動車の制御装置。
  2.  請求項1記載の電気自動車の制御装置において、前記車両は、それぞれ左右の車輪を独立して駆動する複数の前記モータを備え、かつ各モータ毎に前記モータコントロール部を設けたことを特徴とする電気自動車の制御装置。
  3.  請求項2記載の電気自動車の制御装置において、前記トルク指令マップ調整部がいずれか一方のモータにおける前記トルク指令マップを調整するとき、前記モータコントロール部は、前記一方のモータをトルク制御し、他方のモータを回転数制御する電気自動車の制御装置。
  4.  請求項3記載の電気自動車の制御装置において、前記モータコントロール部に、モータ回転数およびトルクに応じた相指令電圧を定めたモータ駆動指令電圧マップを設け、前記トルク指令マップ調整部は、前記一方のモータが一定のモータ回転数で回転する状態で、前記モータ駆動指令電圧マップから前記一方のモータの相指令電圧を取り込み、この取り込んだ相指令電圧が、対応する相駆動電圧と一致するように、前記トルク指令マップを調整する電気自動車の制御装置。
  5.  請求項4記載の電気自動車の制御装置において、前記トルク指令マップ調整部は、前記相指令電圧から前記相駆動電圧を減じた値の絶対値が所定の閾値よりも小さいとき、前記相指令電圧と前記相駆動電圧とが一致したとして、前記トルク指令マップを調整する電気自動車の制御装置。
  6.  請求項1ないし請求項5のいずれか1項に記載の電気自動車の制御装置において、前記モータは、車両の前輪および後輪のいずれか一方、または両方を駆動し、前記モータと車輪用軸受と減速機とを含むインホイールモータ駆動装置を構成する電気自動車の制御装置。
PCT/JP2014/072691 2013-09-03 2014-08-29 電気自動車の制御装置 WO2015033861A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480048394.6A CN105555590B (zh) 2013-09-03 2014-08-29 电动汽车的控制装置
EP14842022.7A EP3042800A4 (en) 2013-09-03 2014-08-29 Control device for electric vehicle
US15/054,680 US9855858B2 (en) 2013-09-03 2016-02-26 Control device for electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-181803 2013-09-03
JP2013181803A JP6211353B2 (ja) 2013-09-03 2013-09-03 電気自動車の制御装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/054,680 Continuation US9855858B2 (en) 2013-09-03 2016-02-26 Control device for electric vehicle

Publications (1)

Publication Number Publication Date
WO2015033861A1 true WO2015033861A1 (ja) 2015-03-12

Family

ID=52628335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072691 WO2015033861A1 (ja) 2013-09-03 2014-08-29 電気自動車の制御装置

Country Status (5)

Country Link
US (1) US9855858B2 (ja)
EP (1) EP3042800A4 (ja)
JP (1) JP6211353B2 (ja)
CN (1) CN105555590B (ja)
WO (1) WO2015033861A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113824357A (zh) * 2021-11-22 2021-12-21 之江实验室 一种机器人多电机驱动系统及其控制方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108136935B (zh) * 2015-10-26 2021-06-25 三菱电机株式会社 车速控制装置
KR101855764B1 (ko) 2016-04-08 2018-05-09 현대자동차 주식회사 차량용 모터 제어 장치 및 방법
WO2017204323A1 (ja) * 2016-05-27 2017-11-30 本田技研工業株式会社 電動車両
EP3565105B1 (en) * 2016-12-27 2023-11-01 Kawasaki Jukogyo Kabushiki Kaisha Power generation system and method for controlling same
JP2018144576A (ja) * 2017-03-03 2018-09-20 Ntn株式会社 車両制御装置
WO2019017231A1 (ja) * 2017-07-19 2019-01-24 株式会社ジェイテクト モータ制御装置
WO2019084678A1 (en) 2017-10-30 2019-05-09 Annexair System for controlling a plurality of synchronous permanent magnet electronically commutated motors
CN108082004A (zh) * 2017-12-19 2018-05-29 中国铁路总公司 用于轨道交通装备的牵引控制方法及系统
CN109831128A (zh) * 2019-01-07 2019-05-31 北京致行慕远科技有限公司 电机转速的控制方法、装置、电动车及存储介质
DE102019100324A1 (de) * 2019-01-08 2020-07-09 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur Kalibrierung zweier auf einer Achse angeordneter Elektromotoren in zweiachsigen Kraftfahrzeugen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000152409A (ja) * 1998-09-08 2000-05-30 Toyota Motor Corp 発電機および蓄電器を備えた車両の制御装置
JP2012178919A (ja) 2011-02-25 2012-09-13 Ntn Corp 電気自動車
JP2013074769A (ja) * 2011-09-29 2013-04-22 Hitachi Automotive Systems Ltd 電動機の制御データ更新方法と制御装置
JP2013158123A (ja) * 2012-01-30 2013-08-15 Ntn Corp 電気自動車

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4443747A (en) * 1982-04-01 1984-04-17 General Electric Company Transitioning between multiple modes of inverter control in a load commutated inverter motor drive
US5083039B1 (en) * 1991-02-01 1999-11-16 Zond Energy Systems Inc Variable speed wind turbine
JPH04372770A (ja) 1991-06-21 1992-12-25 Omron Corp カードリーダ
DE69313744T2 (de) * 1992-06-10 1998-04-09 Fuji Electric Co Ltd Wechselstrom-Antriebseinrichting mit veränderbarer Geschwindigkeit und Elektrofahrzeug hierfür
US5629567A (en) * 1995-06-26 1997-05-13 General Electric Company Speed control system for an AC locomotive
JP3086409B2 (ja) * 1996-02-21 2000-09-11 財団法人鉄道総合技術研究所 車両走行制御装置
JP3684661B2 (ja) * 1996-03-04 2005-08-17 日産自動車株式会社 交流電動機の制御装置
JP3411878B2 (ja) * 2000-03-06 2003-06-03 株式会社日立製作所 同期モータの回転子位置推定方法、位置センサレス制御方法及び制御装置
US6831432B2 (en) * 2001-12-05 2004-12-14 Matsushita Electric Industrial Co., Ltd. Motor driving device and motor driving method
EP1583219A2 (en) * 2004-03-30 2005-10-05 Japan Servo Co. Ltd. Stepping motor driver
JP4648054B2 (ja) * 2005-03-31 2011-03-09 日立オートモティブシステムズ株式会社 ハイブリッド車両,電動駆動装置用制御装置及び電動駆動装置
JP4561616B2 (ja) * 2005-10-27 2010-10-13 トヨタ自動車株式会社 モータ駆動システム
JP4372770B2 (ja) * 2006-06-26 2009-11-25 本田技研工業株式会社 モータを備える車両の制御装置
US7609014B2 (en) 2006-10-19 2009-10-27 Rockwell Automation Technologies, Inc. System and method for universal adaptive torque control of permanent magnet motors
US7586286B2 (en) * 2006-11-17 2009-09-08 Continental Automotive Systems Us, Inc. Method and apparatus for motor control
JP4270275B2 (ja) * 2006-12-26 2009-05-27 トヨタ自動車株式会社 車両およびその制御方法
US7459874B2 (en) * 2007-02-20 2008-12-02 Gm Global Technology Operations, Inc. System and method for controlling electric drive systems
JP4984236B2 (ja) * 2007-04-17 2012-07-25 株式会社デンソー 電気自動車の制御装置
CN101883708B (zh) * 2007-07-27 2012-08-15 通用汽车环球科技运作公司 电动助力转向控制
JP4986755B2 (ja) * 2007-07-27 2012-07-25 本田技研工業株式会社 複数駆動源の駆動制御装置
JP4582168B2 (ja) * 2008-03-21 2010-11-17 株式会社デンソー 回転機の制御装置、及び回転機の制御システム
EP2472716B1 (en) * 2009-08-28 2019-07-10 Nissan Motor Co., Ltd. Anomaly detection device for a permanent magnet synchronous electric motor
DE112010005325B4 (de) * 2010-03-01 2021-05-06 Denso Corporation Elektrisch betriebenes Fahrzeug und Verfahren zur Steuerung desselben
JP2011201370A (ja) * 2010-03-25 2011-10-13 Aisin Aw Co Ltd ハイブリッド車輌の制御装置
JP5516081B2 (ja) * 2010-05-31 2014-06-11 日産自動車株式会社 車両用電動モータのトルク応答制御装置
JP5692569B2 (ja) * 2010-08-23 2015-04-01 株式会社ジェイテクト 車両用操舵装置
JP5353867B2 (ja) * 2010-12-02 2013-11-27 株式会社デンソー 回転機の制御装置
JP5494979B2 (ja) * 2011-01-26 2014-05-21 三菱自動車工業株式会社 電動車両
WO2012144058A1 (ja) * 2011-04-21 2012-10-26 パイオニア株式会社 トルク配分装置、トルク配分方法、トルク配分値生成方法およびプログラム
JP5329685B2 (ja) 2011-12-22 2013-10-30 本田技研工業株式会社 車両用駆動装置
JP6003814B2 (ja) * 2013-06-07 2016-10-05 東芝三菱電機産業システム株式会社 同期電動機の駆動システム
JP2015002567A (ja) * 2013-06-13 2015-01-05 Ntn株式会社 電気自動車の制御装置
US9344026B2 (en) * 2013-07-23 2016-05-17 Atieva, Inc. Induction motor flux and torque control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000152409A (ja) * 1998-09-08 2000-05-30 Toyota Motor Corp 発電機および蓄電器を備えた車両の制御装置
JP2012178919A (ja) 2011-02-25 2012-09-13 Ntn Corp 電気自動車
JP2013074769A (ja) * 2011-09-29 2013-04-22 Hitachi Automotive Systems Ltd 電動機の制御データ更新方法と制御装置
JP2013158123A (ja) * 2012-01-30 2013-08-15 Ntn Corp 電気自動車

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113824357A (zh) * 2021-11-22 2021-12-21 之江实验室 一种机器人多电机驱动系统及其控制方法

Also Published As

Publication number Publication date
US9855858B2 (en) 2018-01-02
EP3042800A4 (en) 2017-04-05
JP6211353B2 (ja) 2017-10-11
JP2015050857A (ja) 2015-03-16
US20160176313A1 (en) 2016-06-23
CN105555590B (zh) 2017-11-14
CN105555590A (zh) 2016-05-04
EP3042800A1 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
JP6211353B2 (ja) 電気自動車の制御装置
US10266198B2 (en) Motor control device
US7489099B2 (en) Electrical drive control device and electrical drive control method
JP4284355B2 (ja) 永久磁石モータの高応答制御装置
JP4985956B2 (ja) 電動機の制御装置
WO2015080021A1 (ja) 電気自動車の制御装置
JP6246496B2 (ja) 電気自動車の制御装置
JP2008259302A (ja) 電動機の制御装置
US9956890B2 (en) Device for controlling electric automobile
WO2016052234A1 (ja) 電気自動車の制御装置
US7741792B2 (en) Motor control device
WO2017018335A1 (ja) モータ駆動装置
US9586484B2 (en) Electric-vehicle control device
JP2019050684A (ja) パワーステアリング装置の制御装置
WO2016043077A1 (ja) 車両の駆動制御装置
JP2016067147A (ja) 電気自動車制御装置
JP6663724B2 (ja) 電動モータ装置
JP2015154528A (ja) 電気自動車の制御装置
JP2015035875A (ja) 電気自動車の制御装置
JP4380650B2 (ja) 電動駆動制御装置及び電動駆動制御方法
JP2014230384A (ja) 電気自動車の制御装置
JP2005020954A (ja) 車両用電動機の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480048394.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014842022

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014842022

Country of ref document: EP