JP3684661B2 - 交流電動機の制御装置 - Google Patents

交流電動機の制御装置 Download PDF

Info

Publication number
JP3684661B2
JP3684661B2 JP07326296A JP7326296A JP3684661B2 JP 3684661 B2 JP3684661 B2 JP 3684661B2 JP 07326296 A JP07326296 A JP 07326296A JP 7326296 A JP7326296 A JP 7326296A JP 3684661 B2 JP3684661 B2 JP 3684661B2
Authority
JP
Japan
Prior art keywords
phase
command value
current
torque
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07326296A
Other languages
English (en)
Other versions
JPH09238492A (ja
Inventor
一真 大蔵
康彦 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP07326296A priority Critical patent/JP3684661B2/ja
Publication of JPH09238492A publication Critical patent/JPH09238492A/ja
Application granted granted Critical
Publication of JP3684661B2 publication Critical patent/JP3684661B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、交流電動機の電流制御装置に関する。
【0002】
【従来の技術】
近年、誘導電動機や同期電動機等の交流電動機は、高速なトルク応答を得るために、ベクトル制御と呼ばれる制御技術により制御されるようになっている。ベクトル制御では、電動機の固定子と回転子の電圧、電流を両方とも直線で扱えるγ−δ座標系で考え、例えば、「ACサーボシステムの理論と設計の実際」(総合電子出版社、1990年5月発行)に詳細に説明されている。
このようなベクトル制御による誘導電動機の電流制御装置として、例えば図10や、「電気学会研究資料SPC−90 No.42〜49、p.53〜61」(電気学会、1990年発行)に記載されたようなものがある。
【0003】
すなわち、図10の電流制御装置では、トルク指令値T* を入力とするベクトル制御指令値演算器101が、すべり角速度指令値ωse* 、励磁電流指令値iγs* 、およびトルク電流指令値iδs* を演算して出力する。 一方、速度検出器1002はエンコーダ103からの信号を基に誘導電動機の回転子の回転角速度ωreを検出する。
電源角速度演算器1004が、回転子の回転角速度ωreとスベリ角速度指令値ωse* とを加算して、電源角速度ωを算出し、積分器1005がこの電源角速度ωを積分して電源角位相θを求める。電源角位相θは3相/2相変換器108とPWM発生器110へ出力される。
【0004】
インバータ111から誘導電動機100へ供給される電流の検出のため、u相電流センサ106およびv相電流センサ107が設けられ、3相/2相変換器108は各電流センサからのu相電流iuおよびv相電流iv、ならびに積分器1005からの電源角位相θとから励磁電流iγsとトルク電流iδsを演算出力する。
そして、電流制御器109が、励磁電流指令値iγs* と励磁電流iγsおよびトルク電流指令値iδs* とトルク電流iδsとから、それぞれ励磁成分電圧指令値vγs* およびトルク成分電圧指令値vδs* を演算出力する。
【0005】
PWM発生器110は、電源角位相θ、励磁成分電圧指令値vγs* およびトルク成分電圧指令値vδs* から3相PWM信号を演算してインバータ111へ出力し、インバータ111は誘導電動機100へ3相交流電流を供給する。
これにより、誘導電動機100の出力トルクをトルク指令値T* に合致するよう制御するものである。
【0006】
【発明が解決しようとする課題】
しかしながら、このような従来の交流電動機の電流制御装置にあっては、エンコーダからの信号によって回転子の回転角速度の検出を行っていたため、速度検出に遅れが生じやすく、特に加減速のときにその遅れが大きくなっていた。
すなわち、エンコーダによる速度検出は、ある期間の平均速度しか得ることができないため、加減速時には、速度検出の誤差が大きくなる。
【0007】
例えば、極対数3の誘導電動機に分解能360°/2000のエンコーダを用いて、上記ベクトル制御を行った結果を図11に示す。これは、エンコーダからの出力パルスを周波数計測して、回転子の回転角速度を検出している場合である。周波数計測により、回転子の回転角速度を1rpm分解能で得るためには、30ms間のパルス数をカウントすればよい。しかし、エンコーダでは30ms間の平均回転角速度しか得られないために、加速時には、実際の回転子の回転角速度より小さい値を検出することになる。このため、実際のすべり角速度ωseが、すべり角速度指令値ωse* より小さくなり、ベクトル制御が成り立たなくなる。したがって、実際の誘導電動機出力トルクも指令値とずれることになる。
また、回転子の回転角速度の周波数計測の周期を、例えば、3msにした場合を図12に示す。計測周期を短くすると、計測分解能が10rpmとなり、つまり、すべり角速度ωseの制御分解能も落ちるため、実際の誘導電動機出力トルクが指令値から大きくずれることになる。
【0008】
また、例えば、電気自動車への適用を考えると、このトルク制御のずれにより、ガクガク振動と呼ばれる車両の前後加速度が増大され、運転者に多大な不快感を与えるもとになる。
速度計測を周波数計測でなく、周期計測にしたとしても、計測周期と分解能は相反する条件となるので、同様の問題がある。また、回転子の回転角速度ωre計測誤差を小さくするためには、エンコーダの分解能を高くしなければならず、コストの増大を招く。
さらに、比較的高回転ではディジタル制御の制御遅れの影響が大きくなる。図13はトルク、励磁電流およびトルク電流の制御結果を示し、過渡時の電流制御に発振が起き、その結果、トルクの振動が発生する。この問題は、誘導電動機のみならず、同期電動機でも同様である。
したがって本発明は、上記従来の問題点に鑑み、エンコーダの分解能を高くすることなく、電動機出力トルクが精度良く指令値に制御されるようにした交流電動機の電流制御装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
このため請求項1に記載の本発明は、すべり角速度、励磁電流およびトルク電流のベクトル制御により3相PWM信号を発生させ、誘導電動機の出力トルクをトルク指令値に追従させる交流電動機の制御装置において、回転角位置とすべり角位相とを加算して電源角位相を算出し、この電源角位相を用いて3相PWM信号を発生させるものとした。
【0010】
より詳細には、回転子の回転角位置を検出する回転位置検出手段と、トルク指令値に応じたすべり角速度指令値、励磁電流指令値およびトルク電流指令値を演算するベクトル制御指令値演算手段と、すべり角速度指令値を積分してすべり角位相を演算する積分手段と、回転角位置とすべり角位相とを加算して電源角位相を演算する電源角位相演算手段と、電動機の3相電流を検出する電流検出手段と、電源角位相を用いて3相電流を励磁電流とトルク電流とに変換する3相/2相変換手段と、励磁電流指令値と励磁電流、およびトルク電流指令値とトルク電流から、それぞれ励磁成分電圧指令値およびトルク成分電圧指令値とを演算する電流制御手段と、電源角位相を用いて、励磁成分電圧指令値とトルク成分電圧指令値を3相電圧指令値にし、この3相電圧指令値に応じて3相PWM信号を出力するPWM発生手段とを有する。
【0011】
そしてさらに、回転角位置と3相電流とをサンプリングしてそれぞれのサンプリング値を出力するサンプリング手段と、回転子の回転角速度を演算する回転角速度検出手段と、回転角速度とすべり角速度とを加算し、電源角速度を演算する電源角速度演算手段と、回転角位置のサンプリング値とすべり角位相とを加算して第1の電源角位相を演算する電源角位相演算手段とを備えて、3相/2相変換手段では第1の電源角位相を用いて3相電流のサンプリング値を励磁電流とトルク電流とに変換するようにし、また、第1の電源角位相に対して電源角速度を用いて補償された第2の電源角位相を演算する電源角位相補償手段を備えて、PWM発生手段はこの第2の電源角位相を用いて、励磁成分電圧指令値とトルク成分電圧指令値を3相電圧指令値に変換するものとした
【0012】
上記の電源角位相補償手段は、上記サンプリングから3相PWM信号の出力までの遅れ時間に対応して第1の電源角位相を進めることにより、第2の電源角位相を求めるのが望ましい。
また、電源角位相補償手段は、サンプリングから3相PWM信号の出力までの遅れ時間と、3相PWM信号の周期の1/2の時間とを加算した時間に対応して第1の電源角位相を進めて、第2の電源角位相を求めるものとすればさらに好ましい。
【0013】
請求項4に記載の発明は、励磁電流およびトルク電流のベクトル制御により3相PWM信号を発生させ、同期電動機の出力トルクをトルク指令値に追従させる交流電動機の制御装置において、回転子の回転角位置を回転角速度で補償した回転角位置補償値を用いて3相PWM信号を発生させる。
【0014】
請求項5の発明はより具体的に、回転子の回転角位置を検出する回転位置検出手段と、トルク指令値に応じた励磁電流指令値およびトルク電流指令値を演算するベクトル制御指令値演算手段と、電動機の3相電流を検出する電流検出手段と、回転角位置と3相電流とをサンプリングしてそれぞれのサンプリング値を出力するサンプリング手段と、回転角速度を演算する回転角速度検出手段と、回転角位置のサンプリング値に対して回転角速度を用いて補償された回転角位置補償値を演算する回転角位置補償手段と、回転角位置のサンプリング値を用いて、3相電流のサンプリング値を励磁電流とトルク電流とに変換する3相/2相変換手段と、励磁電流指令値と励磁電流、およびトルク電流指令値とトルク電流から、それぞれ励磁成分電圧指令値およびトルク成分電圧指令値とを演算する電流制御手段と、回転角位置補償値を用いて、励磁成分電圧指令値とトルク成分電圧指令値を3相電圧指令値に変換し、この3相電圧指令値に応じて3相PWM信号を出力するPWM発生手段とを有するものとした。
【0015】
上記の回転角位置補償手段は、上記サンプリングから3相PWM信号の出力までの遅れ時間に対応して回転角位置のサンプリング値を進めることにより、回転角位置補償値を求めるのが望ましい。
また、回転角位置補償手段は、サンプリングから3相PWM信号の出力までの遅れ時間と、3相PWM信号の周期の1/2の時間とを加算した時間に対応して回転角位置のサンプリング値を進めることにより、回転角位置補償値を求めるものとすればさらに好ましい。
【0016】
【作用】
請求項1のものでは、誘導電動機のベクトル制御が、たとえばベクトル制御指令値演算手段ですべり角速度、励磁電流およびトルク電流の各指令値を演算し、電動機の実際の3相電流を励磁電流とトルク電流との2相に変換し、上記励磁電流およびトルク電流の指令値と実際値から、励磁成分電圧指令値およびトルク成分電圧指令値とを求め、これらをPWM発生手段で2相3相変換して3相PWM信号を発生させることにより行なわれる。 そして、電源角位相演算手段が上記PWM発生手段での2相3相変換にあたって用いられる電源角位相として、回転位置検出手段で検出した回転子の回転角位置をサンプリング手段でサンプリングしたサンプリング値とベクトル制御指令値演算手段で演算されるすべり角速度指令値を積分して求めたすべり角位相とを加算して第1の電源角位相を演算するとともに、電源角速度演算手段で回転角速度とすべり角速度とを加算して電源角速度を演算し、電源角位相補償手段において第1の電源角位相に対して電源角速度を用いて補償された第2の電源角位相が求められる。
回転子の回転角位置はたとえばエンコーダなどを用いて常に最新の値を正確に得ることができるので、計測に所定の時間を要ししかもその速度変化時に計測誤差が大きくなる回転角速度から電源角位相を求めるのに対して、電動機出力トルクが精度良く指令値に制御される。
また、PWM発生手段が上記第2の電源角位相を用いて、励磁成分電圧指令値とトルク成分電圧指令値を2相3相変換することにより、過度時の制御の振れが抑制される。
【0017】
とくに、上記の第2の電源角位相を、上記サンプリングから3相PWM信号の出力までの遅れ時間に対応して第1の電源角位相を進めたもの、あるいは、遅れ時間と3相PWM信号の周期の1/2の時間とを加算した時間に対応して第1の電源角位相を進めたものとすることにより、過度時の制御の振れが効果的に低減される。
【0018】
請求項4のものでは、同期電動機のベクトル制御において、回転子の回転角位置を回転角速度で補償した回転角位置補償値を用いて3相PWM信号を発生させるから、電動機出力トルクが精度良く指令値に制御される。
請求項5のものでは、ベクトル制御指令値演算手段で励磁電流およびトルク電流の各指令値を演算し、サンプリング手段で回転角位置と実際の3相電流とをサンプリングし、3相/2相変換手段で3相電流のサンプリング値を励磁電流とトルク電流との2相に変換し、上記励磁電流およびトルク電流の指令値と実際値から、励磁成分電圧指令値およびトルク成分電圧指令値とを求め、これらをPWM発生手段で2相3相変換して3相PWM信号を発生させることにより行なわれる。 そして、上記PWM発生手段では、回転角位置補償手段により回転子の回転角位置のサンプリング値に対して回転角速度を用いて補償された回転角位置補償値を用いて上記2相3相変換が行なわれる。
これにより、電動機出力トルクが精度良く指令値に制御されるとともに、過度時の制御の振れが抑制される。
とくに、上記の回転角位置補償値を、上記サンプリングから3相PWM信号の出力までの遅れ時間に対応して回転角位置のサンプリング値を進めたもの、あるいは、サンプリングから3相PWM信号の出力までの遅れ時間と3相PWM信号の周期の1/2の時間とを加算した時間に対応して回転角位置のサンプリング値を進めたものとすることにより、過度時の制御の振れが効果的に低減される。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を実施例により説明する。
図1は、本発明の第1の実施例の構成を示すブロック図である。
誘導電動機100はインバータ111からの3相交流電流により駆動される。ベクトル制御指令値演算器101は、外部から与えられるトルク指令値T* を入力として、励磁電流指令値iγs* 、トルク電流指令値iδs* およびすべり角速度指令値ωse* を演算して出力する。 ベクトル制御指令値演算器101の出力したすべり角速度指令値ωse* は、積分器115に入力される。また、励磁電流指令値iγs* とトルク電流指令値iδs* とは、電流制御器109に入力される。
【0020】
積分器115は、すべり角速度指令値ωse* を積分してすべり角位相θseを求め、このすべり角位相θseを加算器からなる電源角位相演算器114へ出力する。
一方、回転位置検出器113がエンコーダ103からの信号を基に誘導電動機の回転子の回転角位置θreを求め、電源角位相演算器114へ出力する。ここでは、エンコーダ103と回転位置検出器113とで発明の回転位置検出手段が構成されている。
そして、電源角位相演算器114は、回転角位置θreとすべり角位相θseとを加算して、電源角位相θを算出する。
【0021】
U相電流センサ106は、誘導電動機100の固定子のU相電流iuを検出出力し、V相電流センサ107は、固定子V相電流ivを検出出力する。 3相/2相変換器108は、これらU相電流iu、V相電流iv、ならびに電源角位相θから、励磁電流iγsとトルク電流iδsとを演算して出力する。
ここでは、U相電流センサ106とV相電流センサ107が発明の電流検出手段を構成している。
電流制御器109は、励磁電流iγsと励磁電流指令値iγs* 、およびトルク電流iδsとトルク電流指令値iδs* とから、それぞれ励磁成分電圧指令値vγs* およびトルク成分電圧指令値vδs* を演算して出力する。
【0022】
PWM発生器110は、電源角位相θを用いて、励磁成分電圧指令値vγs* とトルク成分電圧指令値vδs* を3相電圧指令値へ2相/3相変換し、3相PWM信号をインバータへ出力する。
そして、インバータ111は、3相PWM信号に応じて誘導電動機100へ3相交流電流(iu、iv、iw)を供給する。
【0023】
上記構成において、直交するγ軸(励磁成分)およびδ軸(トルク成分)からなるγ−δ座標系でのベクトル制御された誘導電動機の状態方程式は、式(1)で表わされる。
【数1】
Figure 0003684661
ただし、iγs:γ軸固定子電流(励磁電流)
iδs:δ軸固定子電流(トルク電流)
φγr:γ軸回転子磁束
φδr:δ軸回転子磁束
Rs :固定子巻線抵抗
Rr :回転子巻線抵抗
Ls :固定子巻線インダクタンス
Lr :回転子巻線インダクタンス
M :巻線間の相互インダクタンス
δ :漏れ係数(1−M2 /LsLr)
ω :電源角速度
ωre:回転角速度
P :微分演算子
vδs:δ軸固定子電圧
【0024】
また、出力トルクTは式(2)で表わされる。
T=p(M/Lr)(iδs・φγr−iγs・φδr) (2)
ただし、pは極対数である。
ここで、δ軸回転子磁束をφδr=0に制御すると、式(3)のようになり、出力トルクTは、γ軸回転子磁束φγrとδ軸固定子電流iδsとの積に比例する。
T=p(M/Lr)・iδs・φγr (3)
【0025】
φδr=0とするためには、すべり角速度ωseを式(4)のように制御すればよく、また、γ軸回転子磁束φγrの微分値Pφγrは式(5)で表わされるものとなる。
ωse=ω−ωre=(MRr/Lr)(iδs/φγr) (4)
Pφγr=−(Rr/Lr)φγr+(MRr/Lr)iγs(5)
【0026】
したがって、励磁電流(γ軸固定子電流)iγs、トルク電流(δ軸固定子電流)iδs、およびすべり角速度ωseを制御することにより、誘導電動機の出力トルクTはトルク指令値T* に制御されることになる。
なお、励磁電流iγsおよびトルク電流iδsは、3相/2相変換器108において、式(6)により演算される。
【数2】
Figure 0003684661
【0027】
そして、本実施例では、電源角位相θが、積分器115および電源角位相演算器114を用いて、式(7)のように、すべり角位相θseと回転角位置θreの加算により求められている。
【数3】
Figure 0003684661
【0028】
本実施例は以上のように構成され、図10に示した従来例との相違点は、電源角位相θの演算方法にある。従来例では、式(8)に示すように、回転子の回転角速度ωreとスベリ角速度指令値ωse* とを加算して電源角速度ωを算出し、この電源角速度ωを積分して電源角位相θを求めるのに対して、本実施例では、式(7)に示す演算で電源角位相θが求められる。
【数4】
Figure 0003684661
ここで、エンコーダの特性を考慮すると、回転子の回転角速度ωreは、前述のように、その速度変化時に計測誤差が大きくなるなどの問題があるが、回転角位置θreの計測の場合には、例えばカウンタによってエンコーダからのパルスをカウントするだけで常に最新の値を正確に得ることができ、計測誤差はエンコーダの分解能だけによる。
【0029】
図2は従来例との比較のため、360°/2000の分解能のエンコーダを用いてベクトル制御を行った結果を示す。電流制御が良好に行われているため、従来の図11、図12と比較して、電動機の出力トルクがトルク指令値T* の通りに制御されている。このように、本実施例ではエンコーダの分解能が電流制御すなわちトルク制御に与える影響は小さい。これに対して従来例で本実施例と同等のトルク制御性能を得るためには、エンコーダの分解能が1000倍程度必要となる。
したがって、エンコーダの分解能を高くすることなく、電動機出力トルクが精度良く指令値に制御されるという効果を有する。
なお、式(7)と式(8)は、その演算において双方とも加算1回、積分1回で行なうことができ、本実施例で式(7)を用いてもハードウェアあるいはソフトウェアの面でなんら増加するものはない。
【0030】
図3は、本発明の第2の実施例の構成を示す図である。なお、第1の実施例と同一部分には同じ符号を付して、その詳しい説明を省略する。
本実施例では、図1に示される第1の実施例の構成に加えて、サンプリング器301、速度検出器302、加算器からなる電源角速度演算器304、電源角位相補償器305が設けられている。
【0031】
ベクトル制御指令値演算器101は、トルク指令値T* に、応じて励磁電流指令値iγs* 、トルク電流指令値iδs* 、およびすべり角速度指令値ωse* を出力する。積分器115は、すべり角速度指令値ωse* を積分してすべり角位相θseを出力する。
速度検出器302は、エンコーダ103からの信号に基づいて回転角位置の変化から回転子の回転角速度ωreを演算し出力する。
電源角速度演算器304は、すべり角速度指令値ωse* と、回転子の回転角速度ωreとを加算して電源角速度ωを算出する。
【0032】
サンプリング器301は、U相電流センサ106で得たU相電流iu、V相電流センサ107で得たV相電流iv、および回転位置検出器113の出力する回転角位置θreの信号を所定の周期ごとにサンプリングして、U相電流サンプリング値iu’、V相電流サンプリング値iv’、および回転角位置サンプリング値θre’を出力する。
【0033】
電源角位相演算器114は、回転角位置サンプリング値θre’とすべり角位相θseとを加算して第1の電源角位相θ1を求め、3相/2相変換器108と電源角位相補償器305へ出力する。
3相/2相変換器108は、サンプリング器301からのU相電流サンプリング値iu’、V相電流サンプリング値iv’、および電源角位相演算器114からの第1の電源角位置θ1から、励磁電流iγsとトルク電流iδsとを演算して電流制御器109へ出力する。
電流制御器109は、励磁電流iγsと励磁電流指令値iγs* 、およびトルク電流iδsとトルク電流指令値iδs* とから、それぞれ励磁成分電圧指令値vγs* およびトルク成分電圧指令値vδs* を演算してPWM発生器110へ出力する。
【0034】
電源角位相補償器305は、サンプリング器301のサンプリング時刻からPWM発生器110が3相PWM信号を出力する時刻までの制御むだ時間ΔT、第1の電源角位相θ1および電源角速度ωから、式(9)にしたがって、第2の電源角位相θ2を演算してPWM発生器110へ出力する。
θ2=θ1+ωΔT (9)
【0035】
PWM発生器110は、入力される第2の電源角位相θ2を用いて、励磁成分電圧指令値vγs* 、トルク成分電圧指令値vδs* を3相電圧指令値へ2相/3相変換し、3相PWM信号をインバータへ出力する。
そして、インバータ111は、3相PWM信号に応じて誘導電動機100へ3相交流電流(iu、iv、iw)を供給する。
【0036】
図4には、本実施例におけるトルク、励磁電流およびトルク電流の制御結果を示す。
PWM発生器110が、制御むだ時間ΔTを考慮した第2の電源角位相θ2、すなわち3相PWM信号を出力する時刻に想定される値、を用いて2相/3相変換を行うので、励磁成分電圧指令値vγs* とトルク成分電圧指令値vδs* の2相信号を精度良く3相PWM信号に変換することができる。
このため、第1の実施例の効果に加えて、ベクトル制御をディジタル電流制御で行なう際の電流制御性能が改善され、図4に明らかなように、過渡時の電流制御およびトルク制御の振動が大幅に減少するという効果が得られる。
【0037】
なお、変形例として、電源角位相補償器(305)における演算のパラメータをさらに増すことにより、電流制御性能を一層向上させることができる。
すなわち前述と同様に、まず電源角位相演算器114が、回転角位置サンプリング値θre’とすべり角位相θseとを加算して第1の電源角位相θ1を電源角位相補償器へ出力する。
【0038】
次に、電源角位相補償器は、第1の電源角位相θ1、電源角速度ω、サンプリング器301のサンプリング時刻からPWM発生器110が3相PWM信号を出力する時刻までの制御むだ時間ΔT、そしてさらにPWM発生器110の発生する3相PWM信号の周期Tpwmを基に、第2の電源角位相θ2’を式(10)により演算してPWM発生器110へ出力する。すなわち、電源角位相は上記制御むだ時間と3相PWM信号の周期の1/2の時間とを加算した時間だけ補償される。
θ2’=θ1+ω(ΔT+Tpwm/2) (10)
PWM発生器110は、この第2の電源角位相θ2’を用いて3相PWM信号を演算し、インバータ111へ出力する。
【0039】
図5は、この変形例における電流およびトルクの制御結果を示す。
ΔTの制御むだ時間だけでなく、PWM信号による電圧印加の遅れ時間も考慮されているため、励磁成分電圧指令値vγs* とトルク成分電圧指令値vδs* の2層信号が精度良く3相PWM信号に変換され、過渡時の電流制御およびトルク制御の振動が、一層効果的に抑制されていることが分かる。
このPWM信号による電圧印加の遅れ時間考慮の有無による相違は図6のように示される。すなわち、2相の励磁成分電圧指令値vγs* とトルク成分電圧指令値vδs* に対する3相電圧指令値の理想値が例えば図中(a)のように変化しているとすると、PWM信号の出力時刻での第2電源角位相θ2を用いた場合、PWM周期Tpwm間の平均出力電圧は(b)となる。一方、変形例による第2電源角位相θ2’を用いれば、PWM周期Twm間の平均出力電圧は(c)のようになるため、理想値(a)との誤差が(b)の場合よりも明らかに減少する。これにより一層精度が向上するものである。
【0040】
図7は、本発明の第3の実施例の構成を示すブロック図である。本実施例は、誘導電動機のかわりに同期電動機に本発明を適用したものである。
ベクトル制御指令値演算器401はトルク指令値T* から、励磁電流指令値iγs* およびトルク電流指令値iδs* を算出して電流制御器109へ出力する。
速度検出器302は、同期電動機400に付設されたエンコーダ103からの信号に基づいて回転角位置の変化から回転子の回転角速度ωreを演算し、回転位置補償器402へ出力する。
【0041】
また、回転位置検出器113がエンコーダ103からの信号を基に回転子の回転角位置θreを求め、サンプリング器301へ出力する。
サンプリング器301は、U相電流計106の計測したU相電流iu、V相電流計の計測したV相電流iv、および回転位置検出器113からの回転角位置θreを所定の周期ごとにサンプリングして、U相電流サンプリング値iu’、V相電流サンプリング値iv’、および回転角位置サンプリング値θre’を3相/2相変換器602へ出力するとともに、回転位置補償器402へ回転子の回転角位置サンプリング値θre’を出力する。
【0042】
回転位置補償器402は、サンプリング器301のサンプリング時刻からPWM発生器110が3相PWM信号を出力する時刻までの制御むだ時間ΔT、回転子の回転角速度ωreおよび回転角位置サンプリング値θre’から、式(11)により回転角位置補償値θre2を算出して、PWM発生器110へ向けて出力する。
θre2=θre’+ωreΔT (11)
【0043】
電流制御器109は、3相/2相変換器108からの励磁電流iγs、トルク電流iδs、およびベクトル制御指令値演算器401からの励磁電流指令値iγs* 、トルク電流指令値iδs* から、励磁成分電圧指令値vγs* およびトルク成分電圧指令値vδs* を演算して出力する。
PWM発生器110は、回転角位置補償値θre2を用いて励磁成分電圧指令値vγs* とトルク成分電圧指令値vδs* から3相PWM信号を演算してインバータ111へ出力し、インバータ111は同期電動機400へ3相交流電流iu、iv、iwを供給する。このようにして同期電動機400の出力トルクをトルク指令値T* に制御する。
【0044】
図8に本実施例における制御むだ時間ΔTを考慮した回転位置補償を行ったときの電流およびトルクの制御結果を示し、図9には上記回転位置補償を行わないときの電流およびトルクの制御結果を比較のため示す。
本実施例によれば、同期電動機の場合にも過渡の振動が抑制されていることが分かる。また、前述第2実施例の変形例と同様に、ΔTの制御むだ時間だけでなく、さらにPWM信号による電圧印加の遅れ時間も考慮した回転位置補償を行なえば一層精度が向上し電流制御およびトルク制御の振動抑制される。
【0045】
【発明の効果】
以上のとおり、本発明は、ベクトル制御による3相PWM信号に基づいて駆動される交流電動機、とくに誘導電動機において、回転角位置とすべり角位相とを加算して電源角位相を算出し、この電源角位相を用いて3相PWM信号を発生させるものとしたので、速度変化時にも計測誤差が大きくなることなく、電動機出力トルクが精度良く指令値に制御される。
【0046】
より詳細には、サンプリング手段でサンプリングした回転角位置のサンプリング値とすべり角位相とを加算して第1の電源角位相を演算するとともに、回転角速度とすべり角速度とを加算して電源角速度を演算して、第1の電源角位相に対して電源角速度を用いて補償された第2の電源角位相を用いて上記3相PWM信号を発生させることにより、過度時の制御の振れも抑制される。
とくに、上記の第2の電源角位相を、上記サンプリングから3相PWM信号の出力までの遅れ時間に対応して第1の電源角位相を進めたもの、あるいは、遅れ時間と3相PWM信号の周期の1/2の時間とを加算した時間に対応して第1の電源角位相を進めたものとすることにより、過度時の制御の振れが効果的に低減される。
【0047】
また、同様に励磁電流およびトルク電流のベクトル制御による3相PWM信号に基づいて駆動される同期電動機においても、ディジタル制御でサンプリングされる回転角位置を回転角速度で補償した回転角位置補償値を用いて3相PWM信号を発生させることにより、速度変化時にも計測誤差が大きくなることなく、電動機出力トルクが精度良く指令値に制御されるとともに、過度時の制御の振れも抑制される。
とくに、上記の回転角位置補償値を、サンプリングから3相PWM信号の出力までの遅れ時間に対応して回転角位置のサンプリング値を進めたもの、あるいは、遅れ時間と3相PWM信号の周期の1/2の時間とを加算した時間に対応して回転角位置のサンプリング値を進めたものとすることにより、過度時の制御の振れが効果的に低減される。
【図面の簡単な説明】
【図1】本発明の第1の実施例の構成を示すブロック図である。
【図2】第1の実施例の出力トルクの制御結果を説明する図である。
【図3】第2の実施例の構成を示すブロック図である。
【図4】第2の実施例におけるトルク、励磁電流およびトルク電流の制御結果を示す図である。
【図5】第2の実施例の変形例における電流およびトルクの制御結果を示す図である。
【図6】電源角位相の補償を説明する図である。
【図7】第3の実施例の構成を示すブロック図である。
【図8】回転角位置補償を行ったときの電流およびトルクの制御結果を示す図である。
【図9】回転角位置補償を行わないときの電流およびトルクの制御結果を示す図である。
【図10】従来例の構成を示すブロック図である。
【図11】従来例のトルク制御結果を示す図である。
【図12】従来例において回転角速度の計測周期を短くしたときのトルク制御結果を示す図である。
【図13】従来例におけるトルク変動を示す図である。
【符号の説明】
100 誘導電動機
101 ベクトル制御指令値演算器(ベクトル制御指令値演算手段)
103 エンコーダ
106 u相電流センサ
107 v相電流センサ
108 3相/2相変換器(3相/2相変換手段)
109 電流制御器(電流制御手段)
110 PWM発生器(PWM発生手段)
111 インバータ
113 回転位置検出器
114 電源角位相演算器(電源角位相演算手段)
115 積分器(積分手段)
301 サンプリング器(サンプリング手段)
302 速度検出器(回転角速度検出手段)
304 電源角速度演算器(電源角速度演算手段)
305 電源角位相補償器(電源角位相補償手段)
400 同期電動機
401 ベクトル制御指令値演算器(ベクトル制御指令値演算手段)
402 回転位置補償器(回転角位置補償手段)
1002 速度検出器
1004 電源角速度演算器
1005 積分器
iu、iv、iw 3相交流電流
iu’ U相電流サンプリング値
iv’ V相電流サンプリング値
iγs 励磁電流
iδs トルク電流
iγs* 励磁電流指令値
iδs* トルク電流指令値
vγs* 励磁成分電圧指令値
vδs* トルク成分電圧指令値
ΔT 制御むだ時間
* トルク指令値
Tpwm PWM周期
θ 電源角位相
θ1 第1の電源角位相
θ2、θ2’ 第2の電源角位相
θre 回転角位置
θre’ 回転角位置サンプリング値
θse すべり角位相
θγe2 回転角位置補償値
ω 電源角速度
ωre 回転角速度
ωse* すべり角速度指令値

Claims (7)

  1. すべり角速度、励磁電流およびトルク電流のベクトル制御により3相PWM信号を発生させ、誘導電動機の出力トルクをトルク指令値に追従させる交流電動機の制御装置において、
    回転子の回転角位置を検出する回転位置検出手段と、
    前記トルク指令値に応じたすべり角速度指令値、励磁電流指令値およびトルク電流指令値を演算するベクトル制御指令値演算手段と、
    前記すべり角速度指令値を積分してすべり角位相を演算する積分手段と、
    電動機の3相電流を検出する電流検出手段と、
    前記回転角位置と3相電流とをサンプリングしてそれぞれのサンプリング値を出力するサンプリング手段と、
    回転子の回転角速度を演算する回転角速度検出手段と、
    前記回転角速度とすべり角速度とを加算し、電源角速度を演算する電源角速度演算手段と、
    前記回転角位置のサンプリング値とすべり角位相とを加算して第1の電源角位相を演算する電源角位相演算手段と、
    前記第1の電源角位相を用いて前記3相電流のサンプリング値を励磁電流とトルク電流とに変換する3相/2相変換手段と、
    前記励磁電流指令値と励磁電流、およびトルク電流指令値とトルク電流から、それぞれ励磁成分電圧指令値およびトルク成分電圧指令値とを演算する電流制御手段と、
    前記第1の電源角位相に対して前記電源角速度を用いて補償された第2の電源角位相を演算する電源角位相補償手段と、
    前記第2の電源角位相を用いて、励磁成分電圧指令値とトルク成分電圧指令値を3相電圧指令値に変換し、該3相電圧指令値に応じて3相PWM信号を出力するPWM発生手段とを有することを特徴とする交流電動機の制御装置。
  2. 前記電源角位相補償手段は、前記サンプリングから3相PWM信号の出力までの遅れ時間に対応して前記第1の電源角位相を進めて、前記第2の電源角位相を求めるものであることを特徴とする請求項1記載の交流電動機の制御装置。
  3. 前記電源角位相補償手段は、前記サンプリングから3相PWM信号の出力までの遅れ時間と、3相PWM信号の周期の1/2の時間とを加算した時間に対応して前記第1の電源角位相を進めて、前記第2の電源角位相を求めるものであることを特徴とする請求項1記載の交流電動機の制御装置。
  4. 励磁電流およびトルク電流のベクトル制御により3相PWM信号を発生させ、同期電動機の出力トルクをトルク指令値に追従させる交流電動機の制御装置において、回転子の回転角位置を角速度で補償した回転角位置補償値を用いて3相PWM信号を発生させるよう構成したことを特徴とする交流電動機の制御装置。
  5. 励磁電流およびトルク電流のベクトル制御により3相PWM信号を発生させ、同期電動機の出力トルクをトルク指令値に追従させる交流電動機の制御装置において、
    回転子の回転角位置を検出する回転位置検出手段と、
    前記トルク指令値に応じた励磁電流指令値およびトルク電流指令値を演算するベクトル制御指令値演算手段と、
    電動機の3相電流を検出する電流検出手段と、
    前記回転角位置と3相電流とをサンプリングしてそれぞれのサンプリング値を出力するサンプリング手段と、
    回転子の回転角速度を演算する回転角速度検出手段と、
    前記回転角位置のサンプリング値に対して回転角速度を用いて補償された回転角位置補償値を演算する回転角位置補償手段と、
    前記回転角位置のサンプリング値を用いて、前記3相電流のサンプリング値を励磁電流とトルク電流とに変換する3相/2相変換手段と、
    前記励磁電流指令値と励磁電流、およびトルク電流指令値とトルク電流から、それぞれ励磁成分電圧指令値およびトルク成分電圧指令値とを演算する電流制御手段と、
    前記回転角位置補償値を用いて、励磁成分電圧指令値とトルク成分電圧指令値を3相電圧指令値に変換し、該3相電圧指令値に応じて3相PWM信号を出力するPWM発生手段とを有することを特徴とする交流電動機の制御装置。
  6. 前記回転角位置補償手段は、前記サンプリングから3相PWM信号の出力までの遅れ時間に対応して前記回転角位置のサンプリング値を進めて、前記回転角位置補償値を求めるものであることを特徴とする請求項5記載の交流電動機の制御装置。
  7. 前記回転角位置補償手段は、前記サンプリングから3相PWM信号の出力までの遅れ時間と、3相PWM信号の周期の1/2の時間とを加算した時間に対応して前記回転角位置のサンプリング値を進めて、前記回転角位置補償値を求めるものであることを特徴とする請求項5記載の交流制御装置。
JP07326296A 1996-03-04 1996-03-04 交流電動機の制御装置 Expired - Fee Related JP3684661B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07326296A JP3684661B2 (ja) 1996-03-04 1996-03-04 交流電動機の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07326296A JP3684661B2 (ja) 1996-03-04 1996-03-04 交流電動機の制御装置

Publications (2)

Publication Number Publication Date
JPH09238492A JPH09238492A (ja) 1997-09-09
JP3684661B2 true JP3684661B2 (ja) 2005-08-17

Family

ID=13513096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07326296A Expired - Fee Related JP3684661B2 (ja) 1996-03-04 1996-03-04 交流電動機の制御装置

Country Status (1)

Country Link
JP (1) JP3684661B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004040906A (ja) * 2002-07-03 2004-02-05 Meidensha Corp 同期電動機のベクトル制御装置
JP2005171843A (ja) * 2003-12-10 2005-06-30 Toshiba Kyaria Kk ファン制御装置
JP4604493B2 (ja) * 2004-01-13 2011-01-05 日本精工株式会社 電動パワーステアリング装置の制御装置
JP4661183B2 (ja) 2004-10-07 2011-03-30 トヨタ自動車株式会社 モータ駆動装置
CN100346572C (zh) * 2004-10-07 2007-10-31 丰田自动车株式会社 对输出转矩具有振动减小控制功能的电机驱动装置
JP5545871B2 (ja) * 2010-12-24 2014-07-09 株式会社小野測器 制御装置
JP6211353B2 (ja) * 2013-09-03 2017-10-11 Ntn株式会社 電気自動車の制御装置
AU2013404555B2 (en) 2013-10-28 2017-02-16 Jaguar Precision Industry Co., Ltd. Control apparatus for DC variable frequency motor

Also Published As

Publication number Publication date
JPH09238492A (ja) 1997-09-09

Similar Documents

Publication Publication Date Title
JP5130031B2 (ja) 永久磁石モータの位置センサレス制御装置
JP2858692B2 (ja) 永久磁石型同期電動機のセンサレス制御方法及び装置
JP4395313B2 (ja) モータ駆動制御装置および電動パワーステアリング装置
JP3645509B2 (ja) 誘導電動機のセンサレスベクトル制御システムおよびセンサレスベクトル制御方法
JP3755424B2 (ja) 交流電動機の駆動制御装置
JP4519864B2 (ja) 交流回転機の電気的定数測定方法およびこの測定方法の実施に使用する交流回転機の制御装置
JP4067949B2 (ja) モータ制御装置
JPWO2003081765A1 (ja) シンクロナスリラクタンスモータの制御装置
JP2003018875A (ja) モータの回転速度制御装置
JP2006304478A (ja) モータ駆動制御装置及びそれを用いた電動パワーステアリング装置
JP4010195B2 (ja) 永久磁石式同期モータの制御装置
JP6166601B2 (ja) モータ制御装置及び発電機制御装置
JP2002136197A (ja) センサレスベクトル制御装置およびその方法
JP3684661B2 (ja) 交流電動機の制御装置
JPH05308793A (ja) 電力変換装置の制御回路
JP6030511B2 (ja) モータ制御装置、発電機制御装置及びモータ制御方法
JP2008206330A (ja) 同期電動機の磁極位置推定装置および磁極位置推定方法
JP2580101B2 (ja) 誘導電動機制御システムの制御演算定数設定方法
JP3707659B2 (ja) 同期電動機の定数同定方法
JP2006158046A (ja) 交流電動機のセンサレス制御方法および装置
JP5744151B2 (ja) 電動機の駆動装置および電動機の駆動方法
JP3674638B2 (ja) 誘導電動機の速度推定方法および誘導電動機駆動装置
JP6848680B2 (ja) 同期電動機の制御装置
JP3161237B2 (ja) 誘導電動機制御装置
JP3687331B2 (ja) 誘導機可変速駆動装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees