WO2015029597A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2015029597A1
WO2015029597A1 PCT/JP2014/067872 JP2014067872W WO2015029597A1 WO 2015029597 A1 WO2015029597 A1 WO 2015029597A1 JP 2014067872 W JP2014067872 W JP 2014067872W WO 2015029597 A1 WO2015029597 A1 WO 2015029597A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
current
power conversion
power
value
Prior art date
Application number
PCT/JP2014/067872
Other languages
English (en)
French (fr)
Inventor
奥田 達也
喜久夫 泉
貴洋 嘉藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/911,509 priority Critical patent/US10084315B2/en
Priority to CN201480042829.6A priority patent/CN105409107B/zh
Priority to JP2015534066A priority patent/JP6058147B2/ja
Priority to DE112014004002.9T priority patent/DE112014004002B4/de
Publication of WO2015029597A1 publication Critical patent/WO2015029597A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • This invention relates to a power conversion device with a self-sustaining operation function.
  • a comparison means for detecting that the output of the current detection means for detecting the inverter current exceeds a predetermined value and an overcurrent is generated, and an overcurrent generated by the comparison means.
  • Overcurrent control means for restricting the output current of the inverter in response to detection of the inverter, and means for switching the semiconductor switch for supplying power from the power system to the load in response to detection of the overcurrent by the comparison means.
  • the conversion device By supplying insufficient power from the power system even when the conversion device is overloaded, the conversion device breaks down against a short overcurrent within one cycle of the output voltage, without stopping protection, And the uninterruptible power supply device which can continue the load electric power feeding without the fall of an output voltage and a momentary interruption is comprised (for example, refer the following patent document 2).
  • JP 2009-131056 A Japanese Patent No. 3473924
  • Patent Document 1 when using a power generation element such as a solar cell that greatly changes the generated power as the power supplied to the power converter, it is difficult to set the current suppression value, and the operation continues. It was extremely difficult to achieve both capacity and output power.
  • the present invention has been made to solve the above-described problems, and on the premise of a power conversion device having a function capable of independent operation, an overdischarge state while minimizing unnecessary operation stop.
  • An object of the present invention is to provide a power conversion device that can suppress the continuation of the noise and has a high tolerance for disturbance.
  • the power conversion device includes a power conversion circuit that converts DC power supplied from a DC power source into AC power, and the above-described power generation for generating a self-sustaining operation as an AC voltage source in a state of being disconnected from the power system.
  • a power conversion control unit for controlling the operation of the power conversion circuit The power conversion circuit includes a DC-DC power conversion circuit that converts a DC voltage of the DC power source into a DC link voltage, and a DC-AC power conversion circuit that converts the DC link voltage into an AC voltage
  • the power conversion control unit includes an AC voltage control unit that controls the AC voltage of the DC-AC power conversion circuit, and an AC that limits the AC current of the DC-AC power conversion circuit to a preset current limit value or less.
  • a current suppression unit; and a DC voltage shortage suppression unit that reduces the current limit value applied to the AC current suppression unit when the DC link voltage of the power conversion circuit decreases.
  • the DC voltage shortage suppression unit lowers the current limit value given to the AC current suppression unit.
  • the current suppression unit limits the supply current to the load. As a result, the power supplied to the load decreases, but the maximum power that can be output from the storage battery can be continuously supplied to the load, and the continuation of the overdischarge state is suppressed. It is possible to avoid unnecessary operation stop.
  • the alternating current suppression unit when the inrush current is increased for a short time due to the inrush current, if the inrush current is equal to or less than the current limit value, the alternating current suppression unit does not operate, so that an alternating voltage without voltage fluctuation can be supplied to the load.
  • the AC current suppression unit operates to limit the supply current to the load to protect the power conversion circuit, thereby preventing the apparatus from being stopped due to the DC voltage drop. .
  • FIG. 1 is a block diagram showing a power conversion apparatus according to Embodiment 1 of the present invention.
  • the power conversion device 2 includes a DC-DC power conversion circuit (hereinafter referred to as DC / DC conversion circuit) 21 and a DC-AC power conversion circuit (hereinafter referred to as DC / AC conversion circuit) 22.
  • a conversion circuit 20 a power conversion control unit 23 for controlling the operation of the power conversion circuit 20, a protection circuit 24 for protecting the power conversion circuit 20, a switch 25, and a voltage detection circuit for detecting an AC voltage Voltage sensors 201 and 202, a voltage sensor 203 as a voltage detection circuit for detecting a DC voltage common to the DC / DC conversion circuit 21 and the DC / AC conversion circuit 22 (hereinafter referred to as DC link voltage), and an AC current
  • a current sensor 211 as a current detection circuit for detecting current and a current sensor 212 as a current detection circuit for detecting a direct current.
  • a storage battery 1 serving as a DC power source is connected to the DC side of the power converter 2
  • a load 3 is connected to the AC side
  • a power system 5 is connected
  • the power converter 2 converts the AC power of the power system 5 into DC power and charges the storage battery 1, and converts the DC power of the storage battery 1 into AC power and supplies it to the load 3 or the power system 5. It has a function to do.
  • the switch 4 When the power system 5 is normal, the switch 4 is closed and power is supplied from the power system 5 to the load 3.
  • the power conversion device 2 operates in the interconnected operation mode, and is current-controlled in synchronization with the AC voltage of the power system 5.
  • the DC power of the storage battery 1 When the storage battery 1 is discharged, the DC power of the storage battery 1 is converted to AC power and power is supplied to the load 3, and when the storage battery 1 is charged, the AC power of the power system 5 is converted to DC power. Power is supplied to the storage battery 1.
  • the switch 4 is opened, and the power converter 2 and the load 3 are disconnected from the power system 5. Then, when a stand-alone operation mode command is input to the power conversion device 2 by manual operation or automatic operation such as sequence control, the power conversion device 2 operates in voltage control operation in response to this, and the DC power of the storage battery 1 is reduced. The AC power is converted into AC power and supplied to the load 3.
  • the power conversion control unit 23 has a function of outputting a command for generating power for self-sustaining operation as an AC voltage source in a state disconnected from the power system 5, and the DC of the DC / DC conversion circuit 21.
  • DC voltage control unit 30 that controls the output voltage
  • AC voltage control unit 31 that controls the AC voltage of the DC / AC conversion circuit 22, and AC current that limits the AC current of the DC / AC conversion circuit 22 to a predetermined current limit value or less.
  • the DC voltage shortage suppression unit 33 is provided to reduce the current limit value applied to the AC current suppression unit 32 accordingly.
  • FIG. 2 is a control block diagram of the DC voltage control unit 30.
  • the DC voltage control unit 30 includes a DC voltage controller including a subtractor 30a and a DC voltage control circuit 30b, and a DC current controller including a subtractor 30c and a DC current control circuit 30d.
  • the DC voltage controller detects a DC link voltage by the voltage sensor 203, and calculates a difference between the DC link voltage detection value Vdc and a preset DC link voltage command value Vdc * by the subtractor 30a.
  • the DC voltage control circuit 30b eliminates the difference between the DC link voltage detected value Vdc and the DC link voltage command value Vdc *, that is, the DC link voltage detected value Vdc matches the DC link voltage command value Vdc *, for example.
  • General feedback control such as proportional-integral control is performed to generate a charge / discharge current command value Idc * for the storage battery 1.
  • the DC current controller detects the charge / discharge current of the storage battery 1 by the current sensor 212, and calculates the difference between the charge / discharge current detection value Idc and the charge / discharge current command value Idc * by the subtractor 30c.
  • the direct current control circuit 30d eliminates the difference between the charge / discharge current detection value Idc and the charge / discharge current command value Idc *, that is, the charge / discharge current detection value Id matches the charge / discharge current command value Idc *.
  • General feedback control such as proportional-integral control is performed to generate a drive signal S21 for the DC / DC conversion circuit 21.
  • the direct current control circuit 30d is provided with a current limiter for limiting it to a maximum charge / discharge current Idcmax that the storage battery 1 can tolerate.
  • the DC link voltage is maintained at a predetermined value (DC link voltage command value Vdc *) by the DC / DC conversion circuit 21.
  • the maximum discharge power of the storage battery 1 is exceeded (that is, when the discharge current of the storage battery 1 is limited by the current limiter of the DC current control circuit 30d), the DC link voltage decreases.
  • FIG. 3 is a control block diagram of the AC voltage control unit 31 and the AC current suppression unit 32.
  • the AC voltage control unit 31 detects the AC voltage output from the DC / AC conversion circuit 22 by the voltage sensor 202, calculates the effective value by the effective value calculator 31a from the AC voltage detection value Vac, and is thus obtained.
  • the subtractor 31c calculates the difference between the effective value and the preset voltage effective value command value Ve *.
  • the voltage controller 31d, the adder 31e, the ⁇ 2 squarer 31f, the voltage phase generator 31b, and the multiplier 31g eliminate the difference between the effective value of the AC voltage and the voltage effective value command value Ve *. That is, general feedback control such as proportional-integral control and feedforward control are performed so that the effective value matches the voltage effective value command value Ve *, and the AC voltage command signal V1 is generated.
  • the alternating current suppression unit 32 detects the alternating current output from the DC / AC conversion circuit 22 of the power conversion device 2 by the current sensor 211 and gives the alternating current detection value Iac and the direct current voltage shortage suppression unit 33 described later.
  • the difference from the predetermined current limit value Ilim is calculated by the subtractor 32a.
  • general feedback control such as proportional-integral control is performed by the current limit controller 32b so that the AC current detection value Iac does not exceed the current limit value Ilim, and the voltage correction signal V2 is generated.
  • the AC voltage command signal V1 and the voltage correction signal V2 correspond to the command values in the claims (Claim 5).
  • the AC voltage command value Vref thus obtained is given to a PWM (Pulse Width Modulation) circuit 38 at the next stage.
  • the PWM circuit 38 performs pulse width modulation on the AC voltage command value Vref, performs dead time correction (not shown) as necessary, and generates a drive signal S22 for the DC / AC conversion circuit 22.
  • the DC / AC conversion circuit 22 generates an alternating voltage by performing a switching operation according to the drive signal S22.
  • the AC current suppression unit 32 rises only when the absolute value of the AC current detection value Iac exceeds the current limit value Ilim, and limits the AC current output from the DC / AC conversion circuit 22 to limit the AC voltage command signal. It works to reduce the amplitude of V1, and generally does not operate when the AC current detection value Iac is less than or equal to the current limit value Ilim.
  • the AC voltage control unit 31 sets the desired voltage effective value (voltage effective value command value Ve *). Maintained.
  • FIG. 4 is a control block diagram of the DC voltage shortage suppression unit 33.
  • the DC voltage shortage suppression unit 33 detects the DC link voltage by the voltage sensor 203, and calculates the difference between the DC link voltage detection value Vdc and a preset DC voltage threshold Vdcsh by the subtractor 33a.
  • the undervoltage suppression controller 33b eliminates the difference between the DC link voltage detection value Vdc and the DC voltage threshold value Vdcsh, that is, prevents the DC link voltage detection value Vdc from being equal to or less than the DC voltage threshold value Vdcsh.
  • General feedback control is performed to calculate the current correction signal Ilim2.
  • the AC current upper limit value Ilim1 is an upper limit value of the AC current output from the DC / AC conversion circuit 22, and is set to a fixed value for protecting the power conversion device 2.
  • the predetermined DC voltage threshold value Vdcsh is a voltage for starting the operation of the DC voltage shortage suppression unit 33, and is a DC link voltage command value Vdc * (see FIG. 2) preset in the DC voltage control unit 30 described above. ) Is set to a smaller value.
  • the DC voltage shortage suppression unit 33 operates only when the DC link voltage detection value Vdc is lower than the predetermined DC voltage threshold Vdcsh, that is, the power consumption of the load 3 becomes equal to or greater than the maximum discharge power of the storage battery 1. Only when the current limit value Ilim is reduced, the AC current suppression unit 32 operates so as to limit the AC current supplied to the load 3. In principle, it does not operate when the maximum discharge power is not exceeded.
  • Inrush current may occur when a load 3 is connected so that excessive current flows for a short time.
  • the DC link voltage detection value Vdc is a short time that does not fall below the DC voltage threshold value Vdcsh
  • the DC voltage shortage suppression unit 33 does not operate and the current limit value Ilim is equal to the AC current upper limit value Ilim1.
  • Ilim Ilim1
  • the alternating current suppression unit 32 also does not operate, and thus it is possible to supply an alternating voltage with no voltage fluctuation to the load 3.
  • the DC link voltage detection value Vdc drops below the DC voltage threshold Vdcsh. Operates to reduce the current limit value Ilim.
  • the AC output suppression unit 32 operates to limit the AC output current by lowering the AC voltage command value Vref.
  • the current limit value Ilim decreases until the DC link voltage detection value Vdc can be maintained at the DC voltage threshold value Vdcsh, that is, until the power supplied to the load 3 and the maximum discharge power of the storage battery 1 become substantially the same value.
  • the power supplied to the load 3 decreases, but the maximum power that can be output from the storage battery 1 can be continuously supplied to the load 3.
  • the AC voltage output from the DC / AC conversion circuit 22 decreases, but the operation can be continued with the maximum charge / discharge current Idcmax of the storage battery 1.
  • the operation can be continued even when the maximum charge / discharge current Idcmax of the storage battery 1 changes suddenly.
  • the protection circuit 24 In order to prevent damage to the power conversion circuit 20, the protection circuit 24 detects the voltage, current, temperature, etc. of the power conversion circuit 20, and protects the operation of the power conversion circuit 20 when an abnormality such as overload or overvoltage occurs. In addition to having a function, it also has a load protection function for preventing the load 3 from being damaged.
  • the operation of the protection circuit 24, particularly the load protection function will be described.
  • Some motor loads such as vacuum cleaners and compressors, and capacitor input type non-linear loads, flow an inrush current several times greater than the rated current at startup.
  • the inrush current of these loads 3 is equal to or greater than the current limit value Ilim
  • the AC current output from the DC / AC conversion circuit 22 by the AC current suppression unit 32 is limited to the current limit value Ilim.
  • the current limit value Ilim is set to be equal to or less than the current required for starting the motor, the motor does not start but an overcurrent flows in a locked state. Will continue. As a result, a motor stall state may occur and the motor may be burned out.
  • the protection circuit 24 is configured so that the alternating current suppressing unit 32 continues the operation of limiting the alternating current to the current limit value Ilim or less for a predetermined time or longer, in other words, alternating current.
  • the current suppression unit 32 continues to output the voltage correction signal V2 for a predetermined time or longer, it is determined that the load 3 is in an overload state, and the operation of the power conversion circuit 20 is stopped.
  • this load protection function of the protection circuit 24 even when a motor is connected as the load 3, it is possible to avoid burnout of the load 3 due to continued motor stall, and a highly reliable power conversion device can be configured. it can.
  • the alternating current suppression unit 32 is assumed to continue operating for a predetermined time or more, but is not limited thereto.
  • the determination condition of the overload protection function is a case where a state where the AC voltage effective value obtained based on the AC voltage detection value Vac detected by the voltage sensor 202 is equal to or lower than a predetermined threshold voltage that is set in advance continues for a predetermined time or more. Also good. Further, a state in which the voltage difference between the AC voltage command value Vref generated by the AC voltage control unit 31 and the AC voltage instantaneous value based on the AC voltage detection value Vac detected by the voltage sensor 202 is equal to or higher than a predetermined threshold voltage set in advance. May be determined as a condition for determining the overload protection function.
  • the load protection function of the protection circuit 24 stops the operation of the power conversion circuit 20 when the inrush current continues due to the motor stall continuation or the like, so that the burnout of the load 3 can be avoided.
  • a highly reliable power conversion device 2 can be configured.
  • FIG. 5 is a time chart for explaining the operation of the power conversion device according to Embodiment 1 of the present invention.
  • a capacitor input type non-linear load or a motor load through which an inrush current flows at start-up is connected as the load 3 will be described.
  • the AC current upper limit value Ilim1 can be set to a relatively large value, so that it is difficult to limit the current against the inrush current for a short time, and the current is supplied to the load 3 without distortion of the AC voltage.
  • the DC link voltage detection value Vdc decreases to the DC voltage threshold Vdcsh and is output from the DC / AC conversion circuit 22 by the AC current suppression unit 32.
  • AC current is limited. As a result, the AC voltage amplitude decreases, but the operation continues with the maximum discharge power of the storage battery 1.
  • the alternating current output from the DC / AC conversion circuit 22 is limited by the alternating current suppression unit 32, so that the alternating voltage amplitude further decreases. If the AC voltage amplitude falls below the allowable operating voltage range of the load 3, the load 3 may not be able to operate normally. Therefore, in this example, a state where the AC voltage effective value obtained based on the AC voltage detection value Vac detected by the voltage sensor 202 is equal to or lower than the preset effective value threshold voltage continues for a predetermined time To or more and reaches time TD. When this occurs, the protection circuit 24 is activated to stop the operation of the power conversion circuit 20.
  • the power conversion control unit 23 includes the AC voltage control unit 31 that controls the AC voltage, and the AC current that suppresses the AC current to be equal to or less than the preset current limit value Ilim.
  • a suppression unit 32 and a DC voltage shortage suppression unit 33 that decreases the current limit value Ilim given to the AC current suppression unit 32 when the DC voltage of the power conversion circuit 20 decreases are provided.
  • the suppression unit 33 reduces the current limit value Ilim when the DC link voltage detection value Vdc is equal to or less than a preset DC voltage threshold Vdcsh, thereby preventing the apparatus from being stopped due to a DC voltage drop during an overload. It is possible to supply power to the load 3 having a large current.
  • the protection circuit 24 not only has a protection function for preventing damage to the power conversion circuit 20, but also stops the operation of the power conversion circuit 20 when the alternating current suppression control by the alternating current suppression unit 32 continues for a predetermined time. Since it has a load protection function with a timed element, if the overcurrent continues for reasons such as motor stall continuation, the operation of the power conversion circuit 20 is stopped to avoid burning of the load 3 Can do.
  • this Embodiment 1 demonstrated the case where the storage battery 1 was connected as DC power supply, it is not restricted to this, DC power supply using natural energy, such as a solar cell and a wind power generation, or diode rectification of AC power It may be a direct current power source that is converted to direct current by a circuit, a PFC (Power Factor Correction) circuit, a high power factor converter, or the like.
  • the DC voltage control unit 30 is not limited to the configuration shown in FIG. 2, and may be configured only by a DC voltage controller including a subtractor 30a and a DC voltage control circuit 30b.
  • FIG. FIG. 6 is a control block diagram of the DC voltage shortage suppression unit according to the second embodiment of the present invention, and the same or corresponding components as those of the DC voltage shortage suppression unit according to the first embodiment shown in FIG. A sign is attached.
  • the second embodiment is different from the first embodiment in that the method of generating the current limit value Ilim by the DC voltage shortage suppression unit 33 is different. Since the configuration of other power conversion devices 2 is the same as that of the first embodiment, detailed description thereof is omitted here.
  • the DC voltage shortage suppression unit 33 of the second embodiment operates only when the DC link voltage detection value Vdc is lower than a predetermined DC voltage threshold Vdcsh. That is, the DC voltage shortage suppression unit 33 detects the DC link voltage by the voltage sensor 203, and calculates the difference between the DC link voltage detection value Vdc and a preset DC voltage threshold Vdcsh by the subtractor 33a. Next, general feedback control such as proportional-integral control is performed by the undervoltage suppression controller 33b so that the DC link voltage detection value Vdc does not fall below the DC voltage threshold Vdcsh, and the current correction signal Ilim2 is calculated.
  • the DC voltage shortage suppression unit 33 multiplies the peak current limit value Ilim3 by the multiplier 33e by a sine wave signal sin ⁇ synchronized with the AC voltage command value Vref obtained by the voltage phase generator 33d, and the multiplication.
  • the limiter 33f limits the absolute value of the current limit value Ilim so that it does not drop below a predetermined value ⁇ . Therefore, the current limit value Ilim in this case is not a fixed value as in the first embodiment, but becomes a sine wave waveform with a limiter synchronized with the AC voltage command value Vref.
  • FIG. 7 is a time chart for explaining the operation of the power conversion device 2 according to the second embodiment of the present invention.
  • the basic operation in this case is the same as that of the first embodiment, but the current limit value Ilim is not a fixed value, is synchronized with the AC voltage command value Vref as described above, and the magnitude of the absolute value is predetermined.
  • This is a sine wave waveform with a limiter that is limited so as not to fall below the value ⁇ .
  • FIG. FIG. 8 is a control block diagram of the AC voltage control unit and the AC current suppression unit in the third embodiment of the present invention, corresponding to the AC voltage control unit and the AC current suppression unit in the first embodiment shown in FIG. Corresponding components are denoted by the same reference numerals.
  • the third embodiment is different from the first embodiment in that the AC voltage control unit 31 does not control the effective voltage value but controls the instantaneous voltage. Since the configuration of other power conversion devices 2 is the same as that of the first embodiment, detailed description thereof is omitted here.
  • the AC voltage control unit 31 detects the AC voltage output from the DC / AC conversion circuit 22 of the power converter 2 by the voltage sensor 202, and the AC voltage detection value Vac and a preset AC instantaneous voltage command value Vi *. Is calculated by the subtractor 31c. Next, the voltage controller 31d and the adder 31e eliminate the difference between the AC voltage detection value Vac and the AC instantaneous voltage command value Vi *, that is, the AC voltage detection value Vac matches the AC instantaneous voltage command value Vi *. Thus, for example, general feedback control such as proportional-integral control and feedforward control are performed to generate the AC voltage command signal V11.
  • the AC current suppression unit 32 rises only when the absolute value of the AC current detection value Iac exceeds the current limit value Ilim, and the AC current output from the DC / AC conversion circuit 22 is the same as in the first embodiment. Is limited so that the amplitude of the AC voltage command signal V11 is reduced. That is, the alternating current suppression unit 32 detects the alternating current output from the DC / AC conversion circuit 22 of the power converter 2 by the current sensor 211, and the alternating current detection value Iac and the current supplied from the direct current voltage shortage suppression unit 33. The difference from the limit value Ilim is calculated by the subtractor 32a.
  • the voltage correction signal V2 is generated by general feedback control such as proportional-integral control so that the AC current detection value Iac does not exceed the current limit value Ilim by the current limit controller 32b.
  • the AC voltage control unit 31 does not control the effective voltage value as described above, but controls the instantaneous voltage. Therefore, in order to reliably correct the AC voltage command signal V11 from the AC voltage control unit 31 with the voltage correction signal V2 from the AC current suppression unit 32, the feedback control response of the AC current suppression unit 32 is the AC voltage control unit 31. Is set to be sufficiently faster than the feedback control response. For this purpose, for example, the integration time constant of the current limit controller 32b constituting the alternating current suppression unit 32 is set to be smaller than the integration time constant of the voltage controller 31d constituting the alternating voltage control unit 31. Can do.
  • FIG. 9 is a control block diagram showing a modification of the AC voltage control unit and the AC current suppression unit according to Embodiment 3 of the present invention, and corresponds to or corresponds to the AC voltage control unit and the AC current suppression unit shown in FIG.
  • the same reference numerals are given to the constituent parts.
  • FIG. 9 the difference from the configuration shown in FIG. 8 is that a current limit determination unit 31h is added to the AC voltage control unit 31, and a voltage correction signal output from the AC current suppression unit 32 to this current limit determination unit 31h. V2 is input.
  • the other configurations of the AC voltage control unit 31 and the AC current suppressing unit 32 are the same as those in FIG. 8, and thus detailed description thereof is omitted here.
  • the current limit determination unit 31h determines whether or not the voltage correction signal V2 from the alternating current suppression unit 32 is input, that is, whether the alternating current suppression unit 32 is operating or not. While the current is limited by operating, the integral gain in the voltage controller 31d of the AC voltage control unit 31 is reduced or set to zero to stop the integral control.
  • the AC voltage command signal V11 is effectively changed by the integration operation of the feedback control of the AC voltage control unit 31 while the AC current suppression unit 32 is operating. Since it is possible to prevent problems such as increased control overflow and hunting, voltage oscillation by the AC voltage control unit 31 can be prevented immediately after the current suppression operation of the AC current suppression unit 32 is completed. It becomes possible to output a more stable alternating voltage to the load 3.
  • FIG. 10 is a control block diagram of AC voltage control unit 31 and AC current suppressing unit 32 according to Embodiment 4 of the present invention, and the AC voltage control unit and AC current suppressing unit according to Embodiment 1 shown in FIG. Corresponding or corresponding components are given the same reference numerals.
  • the fourth embodiment is different from the first embodiment in that the method of generating the AC voltage command signal V1 by the AC voltage control unit 31 is different. Since the configuration of other power conversion devices 2 is the same as that of the first embodiment, detailed description thereof is omitted here.
  • the AC voltage control unit 31 detects the AC voltage output from the DC / AC conversion circuit 22 by the voltage sensor 202, calculates the effective value by the effective value calculator 31a from the AC voltage detection value Vac, and is thus obtained.
  • the subtractor 31c calculates the difference between the effective value and the preset voltage effective value command value Ve *.
  • the voltage controller 31d, the adder 31e, the ⁇ 2 squarer 31f, the voltage phase generator 31b, and the multiplier 31g eliminate the difference between the effective value of the AC voltage and the voltage effective value command value Ve *. That is, general feedback control such as proportional-integral control and feedforward control are performed so that the effective value of the AC voltage matches the voltage effective value command value Ve *, and the AC component V1ac of the AC voltage command signal V1 is generated. .
  • the AC voltage control unit 31 calculates an average value from the AC voltage detection value Vac by the average value calculator 31i, and an average value obtained thereby and a preset voltage average command value (zero in FIG. 10) and Is calculated by the subtractor 31j, and general feedback control such as proportional-integral control is performed by the voltage controller 31k so that the AC voltage average value becomes zero, and the DC component V1dc of the AC voltage command signal V1 is generated.
  • the average value calculator 31i, the subtractor 31j, and the voltage controller 31k of the AC voltage detection value Vac correspond to the “DC component suppression unit” in the claims.
  • the AC voltage control unit 31 adds the AC component V1ac of the generated AC voltage command signal V1 and the DC component V1dc of the AC voltage command signal V1 by the adder 31l to generate the AC voltage command signal V1.
  • “adding / subtracting the offset voltage to / from the AC voltage command value” in the claims means adding the DC component V1dc of the AC voltage command signal V1 by the adder 31l to generate the AC voltage command signal V1. It corresponds to.
  • the AC current suppression unit 32 rises only when the absolute value of the AC current detection value Iac exceeds the current limit value Ilim, and the AC current output from the DC / AC conversion circuit 22 is the same as in the first embodiment. Is limited so that the amplitude of the AC voltage command signal V1 is reduced. That is, the alternating current suppression unit 32 detects the alternating current output from the DC / AC conversion circuit 22 of the power converter 2 by the current sensor 211, and the alternating current detection value Iac and the current supplied from the direct current voltage shortage suppression unit 33. The difference from the limit value Ilim is calculated by the subtractor 32a.
  • FIG. 11 is a control block diagram showing a modification of the AC voltage control unit and the AC current suppression unit according to Embodiment 4 of the present invention, and corresponds to or corresponds to the AC voltage control unit and the AC current suppression unit shown in FIG.
  • the same reference numerals are given to the constituent parts.
  • the AC voltage control unit 31 detects the AC voltage output from the DC / AC conversion circuit 22 by the voltage sensor 202, calculates the effective value by the effective value calculator 31a from the AC voltage detection value Vac, and is thus obtained.
  • the subtractor 31c calculates the difference between the effective value and the preset voltage effective value command value Ve *.
  • general feedback control such as proportional-integral control and feedforward control are performed by the voltage controller 31d and the adder 31e so that the AC voltage effective value matches the voltage effective value command value Ve *.
  • An effective value component V1rms of the command signal V1 is generated.
  • the AC voltage control unit 31 calculates an average value from the AC voltage detection value Vac by the average value calculator 31i, and an average value obtained thereby and a preset voltage average command value (zero in FIG. 11) Is calculated by the subtractor 31j, and general feedback control such as proportional-integral control is performed by the voltage controller 31k so that the AC voltage average value becomes zero, and the DC component V1dc of the AC voltage command signal V1 is generated. To do.
  • the gain corrector 31m of the AC voltage control unit 31 corrects the effective value component V1rms of the AC voltage command signal V1 according to the DC component V1dc of the AC voltage command signal V1. Specifically, the voltage effective value component V1rmsP when the AC voltage command signal V1 is positive and the voltage effective value component V1rmsN when the AC voltage command signal V1 is negative are divided into V1rmsP and V1rmsN. ), And corrected so as to satisfy the formula (2).
  • k is an arbitrary coefficient larger than 0 and smaller than 1.
  • V1rmsP V1rms ⁇ (1 + k) ⁇ V1dc Expression (1)
  • V1rmsN V1rms ⁇ (1-k) ⁇ V1dc Expression (2)
  • an AC voltage command signal V1 is generated by the squarer 31f, the voltage phase generator 31b, and the multiplier 31g.
  • V1rmsN V1rms ⁇ (1 ⁇ k) ⁇ V1dc in equation (2)
  • the “first correction gain” corresponds to (1 + k)
  • the “second correction gain” corresponds to (1 ⁇ k).
  • the AC current suppression unit 32 rises only when the absolute value of the AC current detection value Iac exceeds the current limit value Ilim, and the AC current output from the DC / AC conversion circuit 22 is the same as in the first embodiment. Is limited so that the amplitude of the AC voltage command signal V1 is reduced. That is, the alternating current suppression unit 32 detects the alternating current output from the DC / AC conversion circuit 22 of the power converter 2 by the current sensor 211, and the alternating current detection value Iac and the current supplied from the direct current voltage shortage suppression unit 33. The difference from the limit value Ilim is calculated by the subtractor 32a.
  • the present invention is not limited to the configurations of the first to fourth embodiments described above, and the configurations of the first to fourth embodiments may be combined or the respective embodiments may be combined without departing from the spirit of the present invention. Various modifications can be made to the first to fourth embodiments, or a part of the configuration can be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

 直流電源(1)から供給される直流電力を交流電力に変換する電力変換回路(20)と、電力系統(5)から解列した状態で交流電圧源として自立運転用電力を発生するように電力変換回路(20)の動作を制御する電力変換制御部(23)とを備え、電力変換制御部(23)は、交流電圧を制御する交流電圧制御部(31)と、交流電流を所定の電流制限値(Ilim)以下に制限する交流電流抑制部(32)と、電力変換回路(20)の直流電圧が低下した場合にはこれに応じて交流電流抑制部(32)に与える電流制限値(Ilim)を小さくする直流電圧不足抑制部(33)とを備えている。

Description

電力変換装置
 この発明は、自立運転機能付きの電力変換装置に関するものである。
 従来の電力変換装置では、インバータから取り出される電流を直接または間接的に検知する電流検知部と、この電流検知部で検知された電流が設定値よりも高いとき、インバータの出力電流を低下させるための電流抑制部とを設け、電源系統からの電力供給が途絶えた場合のような自立運転時において、突入電流が発生し易い掃除機などや遅れ負荷が接続されている場合であっても運転可能となるようにしたものが提案されている(例えば、下記の特許文献1参照)。
 また、別の従来の電力変換装置では、インバ―タの電流を検出する電流検出手段の出力が所定の値を超えて過電流となったことを検出する比較手段と、この比較手段による過電流の検出に応答してインバ―タの出力電流を絞る過電流制御手段と、前記比較手段による過電流の検出に応答して電力系統から負荷に給電する半導体スイッチを導通状態へ切換える手段とを備えることで、変換装置が過負荷となった場合でも不足電力を電力系統から供給することで、出力電圧の一周期以内の短時間の過電流に対して変換装置を故障、保護停止させることなく、かつ出力電圧の低下や瞬断のない負荷給電を継続することができる無停電電源装置を構成している(例えば、下記の特許文献2参照)。
特開2009-131056号公報 特許第3473924号公報
 特許文献1に記載の先行例では、電流抑制部の電流抑制値が高く設定されていると、発電要素や電力変換装置の定格出力以上の負荷が接続された場合にはインバータの出力電流を低下させる効果が小さくて過放電状態となり、動作継続ができなかった。これとは逆に、電流抑制値が低く設定されていると、インバータの出力電流を低下させる効果が大きくなり過ぎて出力可能電力が過剰に制限されるだけでなく、突入電流が発生し易い掃除機等が使用される場合、電流抑制部が動作継続することで、モータが回転せずにロックされた状態のまま大きな電流が流れ続ける、いわゆるモータストール状態が発生し、モータが焼損する恐れがあった。
 さらに、特許文献1の場合、電力変換装置への供給電力として、太陽電池のように発電電力が大きく変化するような発電要素を用いる場合には、電流抑制値の設定が困難であり、動作継続能力と出力可能電力とを両立させることが極めて難しかった。
 また、特許文献2に記載の先行例では、過電流が検出された場合、負荷に対する不足電力を電力系統から供給することを前提としているので、電力系統が停電中のために自立運転が必要となる場合には運転継続ができなかった。また、モータのような負荷が接続された場合、電流制限回路で過電流が検出されない状態で電力供給が継続することでモータストール状態が継続し、モータが焼損する恐れがあった。
 この発明は、上記のような問題点を解決するためになされたものであり、自立運転可能な機能を備えた電力変換装置を前提として、不要な動作停止を最小限に抑えつつ、過放電状態の継続を抑制できて、擾乱に対する耐量の高い電力変換装置を提供することを目的とする。
 この発明に係る電力変換装置は、直流電源から供給される直流電力を交流電力に変換する電力変換回路と、電力系統から解列した状態で交流電圧源として自立運転用電力を発生するように上記電力変換回路の動作を制御する電力変換制御部とを備え、
 上記電力変換回路は、上記直流電源の直流電圧を直流リンク電圧に変換する直流-直流電力変換回路と、上記直流リンク電圧を交流電圧に変換する直流-交流電力変換回路とを備え、
 上記電力変換制御部は、上記直流-交流電力変換回路の上記交流電圧を制御する交流電圧制御部と、上記直流-交流電力変換回路の交流電流を予め設定された電流制限値以下に制限する交流電流抑制部と、上記電力変換回路の上記直流リンク電圧が低下した場合にはこれに応じて上記交流電流抑制部に与える上記電流制限値を小さくする直流電圧不足抑制部と、を備えている。
 この発明によれば、過負荷状態が継続して直流電圧が所定値以下になるような場合、直流電圧不足抑制部は、交流電流抑制部に与える電流制限値を下げるので、これに応じて交流電流抑制部は、負荷への供給電流を制限する。これにより、負荷への供給電力は低下するが、蓄電池の出力しうる最大電力を負荷に継続して供給することができるとともに、過放電状態の継続が抑制されるので直流電圧低下による電力変換装置の不要な動作停止を回避することができる。
 また、突入電流による短時間の負荷電力増加時において、突入電流が上記の電流制限値以下の場合は交流電流抑制部は動作しないので、電圧変動のない交流電圧を負荷に供給することができる一方、突入電流が上記の電流制限値以上となる場合は、電力変換回路を保護すべく交流電流抑制部が動作して負荷への供給電流を制限することで、直流電圧低下による装置停止を回避する。これにより、擾乱に対する耐量の高い電力変換装置を提供することが可能となる。
この発明の実施の形態1における電力変換装置を示すブロック図である。 この発明の実施の形態1における直流電圧制御部の制御ブロック図である。 この発明の実施の形態1における交流電圧制御部と交流電流抑制部の制御ブロック図である。 この発明の実施の形態1における直流電圧不足抑制部の制御ブロック図である。 この発明の実施の形態1における電力変換装置の動作説明に供するタイムチャートである。 この発明の実施の形態2における電力変換装置の直流電圧不足抑制部の制御ブロック図である。 この発明の実施の形態2における電力変換装置の動作説明に供するタイムチャートである。 この発明の実施の形態3における電力変換装置の交流電圧制御部と交流電流抑制部の制御ブロック図である。 この発明の実施の形態3における電力変換装置の交流電圧制御部と交流電流抑制部の変形例を示す制御ブロック図である。 この発明の実施の形態4における電力変換装置の交流電圧制御部と交流電流抑制部の制御ブロック図である。 この発明の実施の形態4における電力変換装置の交流電圧制御部と交流電流抑制部の変形例を示す制御ブロック図である。
実施の形態1.
 図1は、この発明の実施の形態1における電力変換装置を示すブロック図である。
 この実施の形態1における電力変換装置2は、直流-直流電力変換回路(以下、DC/DC変換回路と呼ぶ)21及び直流-交流電力変換回路(以下、DC/AC変換回路)22からなる電力変換回路20と、この電力変換回路20の動作を制御する電力変換制御部23と、電力変換回路20を保護するための保護回路24と、開閉器25と、交流電圧を検出する電圧検出回路としての電圧センサ201、202と、DC/DC変換回路21とDC/AC変換回路22の共通の直流電圧(以下、直流リンク電圧と称する)を検出する電圧検出回路としての電圧センサ203と、交流電流を検出する電流検出回路としての電流センサ211と、直流電流を検出するための電流検出回路としての電流センサ212とを備えている。そして、電力変換装置2の直流側には直流電源としての蓄電池1が接続され、交流側には負荷3が接続されるとともに、負荷3にはスイッチ4を介して電力系統5が接続されている。
 ここに、電力変換装置2は、電力系統5の交流電力を直流電力に変換して蓄電池1を充電する機能と、蓄電池1の直流電力を交流電力に変換して負荷3または電力系統5に供給する機能を備えている。
 電力系統5が正常な場合は、スイッチ4は閉路しており、電力系統5から負荷3に電力供給される。電力変換装置2は連系運転モードで動作し、電力系統5の交流電圧に同期して電流制御運転される。そして、蓄電池1を放電する場合には蓄電池1の直流電力を交流電力に変換して負荷3に電力供給を行い、蓄電池1を充電する場合は電力系統5の交流電力を直流電力に変換して蓄電池1に電力供給を行う。
 一方、電力系統5が停電した場合には、スイッチ4は開路し、電力変換装置2及び負荷3は電力系統5から切り離される。そして、手動操作又はシーケンス制御等の自動操作により、電力変換装置2に自立運転モード指令が入力されると、これに応じて電力変換装置2は電圧制御運転で動作し、蓄電池1の直流電力を交流電力に変換して負荷3に交流電力を供給する。
 したがって、上記の電力変換制御部23は、電力系統5から解列した状態で交流電圧源として自立運転用電力を発生させる指令を出力する機能を有しており、DC/DC変換回路21の直流出力電圧を制御する直流電圧制御部30、DC/AC変換回路22の交流電圧を制御する交流電圧制御部31、DC/AC変換回路22の交流電流を所定の電流制限値以下に制限する交流電流抑制部32、および電力変換回路20の直流リンク電圧が低下した場合にはこれに応じて交流電流抑制部32に与える電流制限値を小さくする直流電圧不足抑制部33を備えている。
 以下、上記の直流電圧制御部30、交流電圧制御部31、交流電流抑制部32、直流電圧不足抑制部33の詳細について説明する。
 図2は、直流電圧制御部30の制御ブロック図である。
 この直流電圧制御部30は、減算器30aと直流電圧制御回路30bとからなる直流電圧制御器、および減算器30cと直流電流制御回路30dとからなる直流電流制御器とを備えている。
 上記直流電圧制御器は、電圧センサ203により直流リンク電圧を検出し、その直流リンク電圧検出値Vdcと予め設定された直流リンク電圧指令値Vdc*との差を減算器30aで算出する。次いで、直流電圧制御回路30bで直流リンク電圧検出値Vdcと直流リンク電圧指令値Vdc*の差が無くなるように、つまり直流リンク電圧検出値Vdcが直流リンク電圧指令値Vdc*に一致するように例えば比例積分制御などの一般的なフィードバック制御を行い、蓄電池1の充放電電流指令値Idc*を生成する。
 また、上記直流電流制御器は、電流センサ212により蓄電池1の充放電電流を検出し、その充放電電流検出値Idcと充放電電流指令値Idc*との差を減算器30cで算出する。次いで、直流電流制御回路30dで充放電電流検出値Idcと充放電電流指令値Idc*の差が無くなるように、つまり充放電電流検出値Idが充放電電流指令値Idc*に一致するように例えば比例積分制御などの一般的なフィードバック制御を行い、DC/DC変換回路21の駆動信号S21を生成する。なお、直流電流制御回路30dには、蓄電池1が許容できる最大充放電電流Idcmax以下に制限するために電流リミッタが設けられている。
 電力系統5の停電時、負荷3の消費電力が蓄電池1の最大放電電力以下であれば、直流リンク電圧はDC/DC変換回路21によって所定の値(直流リンク電圧指令値Vdc*)に維持されるが、蓄電池1の最大放電電力以上となった場合(すなわち直流電流制御回路30dの電流リミッタにより蓄電池1の放電電流が制限される場合)には、直流リンク電圧は低下することになる。
 図3は、交流電圧制御部31と交流電流抑制部32の制御ブロック図である。
 交流電圧制御部31は、電圧センサ202によりDC/AC変換回路22が出力する交流電圧を検出し、その交流電圧検出値Vacから実効値計算器31aで実効値演算を行い、これにより得られた実効値と予め設定された電圧実効値指令値Ve*との差を減算器31cで算出する。次いで、電圧制御器31d、加算器31e、√2乗器31f、電圧位相生成器31b、および乗算器31gによって、交流電圧の実効値と電圧実効値指令値Ve*との差が無くなるように、つまり実効値が電圧実効値指令値Ve*に一致するように例えば比例積分制御などの一般的なフィードバック制御、およびフィードフォワード制御を行い、交流電圧指令信号V1を生成する。
 一方、交流電流抑制部32は、電流センサ211により電力変換装置2のDC/AC変換回路22が出力する交流電流を検出し、この交流電流検出値Iacと後述の直流電圧不足抑制部33から与えられる所定の電流制限値Ilimとの差を減算器32aで算出する。次いで、電流制限制御器32bで交流電流検出値Iacが電流制限値Ilimを超えないように例えば比例積分制御などの一般的なフィードバック制御を行い、電圧補正信号V2を生成する。続いて、上記の交流電圧制御部31からの交流電圧指令信号V1からこの電圧補正信号V2を減算器32cで減算することで、DC/AC変換回路22に対する交流電圧指令値Vref(=V1-V2)を生成する。なお、交流電圧指令信号V1、電圧補正信号V2は、請求の範囲(請求項5)における各指令値に対応している。
 こうして得られた交流電圧指令値Vrefは、次段のPWM(Pulse Width Moduration)回路38に与えられる。PWM回路38は、交流電圧指令値Vrefをパルス幅変調し、必要に応じて図示していないデッドタイム補正を行ってDC/AC変換回路22の駆動信号S22を生成する。DC/AC変換回路22は、この駆動信号S22に応じたスイッチング動作を行うことで交流電圧を発生する。
 なお、交流電流抑制部32は、交流電流検出値Iacの絶対値が電流制限値Ilimを超えたときのみ立ち上がり、DC/AC変換回路22から出力される交流電流を制限することで交流電圧指令信号V1の振幅を低減させるように働くものであり、交流電流検出値Iacが電流制限値Ilim以下の場合は原則動作しない。
 また、交流電流抑制部32が動作する期間中、交流電圧指令信号V1の振幅が瞬間的に低下するが、交流電圧制御部31により電圧実効値は所望の値(電圧実効値指令値Ve*)に維持される。
 図4は、直流電圧不足抑制部33の制御ブロック図である。
 直流電圧不足抑制部33は、電圧センサ203により直流リンク電圧を検出し、その直流リンク電圧検出値Vdcと予め設定された直流電圧閾値Vdcshとの差を減算器33aで算出する。次いで、不足電圧抑制制御器33bで直流リンク電圧検出値Vdcと直流電圧閾値Vdcshの差が無くなるように、つまり直流リンク電圧検出値Vdcが直流電圧閾値Vdcsh以下にならないように例えば比例積分制御などの一般的なフィードバック制御を行い、電流補正信号Ilim2を演算する。そして、予め設定された交流電流上限値Ilim1からこの電流補正信号Ilim2を減算器33cで減算することで電流制限値Ilim(=Ilim1-Ilim2)を生成する。
 ここで、交流電流上限値Ilim1は、DC/AC変換回路22から出力される交流電流の上限値であり、電力変換装置2を保護するための固定値に設定される。また、所定の直流電圧閾値Vdcshは、直流電圧不足抑制部33が動作を開始するための電圧であり、前述の直流電圧制御部30に予め設定される直流リンク電圧指令値Vdc*(図2参照)よりも小さな値に設定される。
 このように、直流電圧不足抑制部33は、直流リンク電圧検出値Vdcが所定の直流電圧閾値Vdcshよりも低下した時のみ動作、すなわち、負荷3の消費電力が蓄電池1の最大放電電力以上となった場合のみ動作し、電流制限値Ilimを低減することで、交流電流抑制部32によって負荷3へ供給される交流電流を制限するように動作するものであり、負荷3の消費電力が蓄電池1の最大放電電力以下の場合は原則動作しない。
 次に、上記の交流電流抑制部32と直流電圧不足抑制部33とによる相互の関連制御動作について説明する。
 短時間だけ過大電流が流れるような負荷3が接続された場合、突入電流が発生する可能性がある。しかし、この場合、直流リンク電圧検出値Vdcが直流電圧閾値Vdcsh以下にならない程度の短時間であれば、直流電圧不足抑制部33は動作せず、電流制限値Ilimは交流電流上限値Ilim1と等しくなる(Ilim=Ilim1)。この場合、突入電流が電流制限値Ilim以下であれば、交流電流抑制部32も動作しないので、電圧変動のない交流電圧を負荷3に供給することが可能となる。また、突入電流が電流制限値Ilim以上となる場合は、電力変換装置2を保護すべく交流電流抑制部32が動作し、負荷への供給電流を電流制限値Ilim(=Ilim1)に制限する。
 これに対して、比較的長い時間に渡って過大電流が流れるような負荷3が接続された場合、直流リンク電圧検出値Vdcが直流電圧閾値Vdcsh以下に低下するため、直流電圧不足抑制部33が動作して電流制限値Ilimを低減する。このとき、交流電流検出値Iacが電流制限値Ilimを越えている場合には、交流電流抑制部32が動作して交流電圧指令値Vrefを下げることで交流出力電流を制限する。その結果、電流制限値Ilimは直流リンク電圧検出値Vdcが直流電圧閾値Vdcshに維持できる値、すなわち、負荷3への供給電力と蓄電池1の最大放電電力がほぼ同じ値となるまで低下する。これにより、負荷3への供給電力は低下するが、蓄電池1の出力しうる最大電力を負荷3に継続して供給することが可能となる。
 また、蓄電池1のSOC(State Of Charge)低下や、蓄電池1の温度上昇により蓄電池1が許容できる最大充放電電流Idcmaxが低下すると、直流電圧制御部30の直流電流制御回路30dによるリミッタ動作により、蓄電池1の放電電流が低下する。これに伴い、DC/DC変換回路21からDC/AC変換回路22へ流入する電力は低下する。このような場合、直流リンク電圧検出値Vdcも低下するので、これに応じて直流電圧不足抑制部33によって電流制限値Ilimが低減されるため、負荷3への供給電力が小さくなり、直流リンク電圧は一定値を維持する。その結果、DC/AC変換回路22から出力される交流電圧は低下するが、蓄電池1の最大充放電電流Idcmaxで動作継続することが可能となる。
 このように、この実施の形態1では蓄電池1の最大充放電電流Idcmaxが急変した場合でも動作継続可能である。
 次に、保護回路24について説明する。
 保護回路24は、電力変換回路20の破損を防止するために、電力変換回路20の電圧、電流、温度等を検出して過負荷や過電圧などの異常時に電力変換回路20の動作を停止する保護機能を備えるだけでなく、負荷3の破損を防止するための負荷保護機能も備えている。以下、ここでは保護回路24の特に負荷保護機能の動作について説明する。
 掃除機やコンプレッサ等のモータ負荷や、コンデンサインプット型の非線形負荷には、起動時に定格電流の数倍以上の突入電流が流れるものがある。これらの負荷3の突入電流が電流制限値Ilim以上となる場合は、交流電流抑制部32によりDC/AC変換回路22から出力される交流電流は電流制限値Ilimに制限される。このとき、負荷3がモータの場合を例にとれば、電流制限値Ilimがモータ起動に必要な電流以下に設定されていると、モータは起動されずにロックされた状態のまま過電流が流れ続けることになる。その結果、モータストール状態が発生し、モータが焼損する恐れがある。
 このようなモータ焼損を防止するため、保護回路24は、交流電流抑制部32が交流電流を上記電流制限値Ilim以下に制限する動作を予め設定した所定時間以上にわたって継続した場合、換言すれば交流電流抑制部32が電圧補正信号V2を所定時間以上にわたって出力し続けた場合に、負荷3が過負荷状態であると判定し、電力変換回路20の動作を停止する。この保護回路24の負荷保護機能により、負荷3としてモータが接続された場合においても、モータストール継続による負荷3の焼損を回避することが可能となり、信頼性の高い電力変換装置を構成することができる。
 保護回路24による負荷保護機能の判定条件として、上記の説明では交流電流抑制部32が予め設定された所定時間以上にわたって動作を継続した場合としたが、これに限らない。例えば電圧センサ202で検出した交流電圧検出値Vacに基づいて得られる交流電圧実効値が予め設定した所定の閾値電圧以下となる状態が所定時間以上にわたって継続した場合を過負荷保護機能の判定条件としてもよい。また、交流電圧制御部31が生成する交流電圧指令値Vrefと、電圧センサ202により検出した交流電圧検出値Vacに基づく交流電圧瞬時値との差電圧が予め設定した所定の閾値電圧以上となる状態が所定時間以上にわたって継続した場合を過負荷保護機能の判定条件としてもよい。
 このように、保護回路24の負荷保護機能により、モータストール継続等により突入電流が継続する場合には、電力変換回路20の動作が停止されるので、負荷3の焼損を回避することが可能となり、信頼性の高い電力変換装置2を構成することができる。
 図5は、この発明の実施の形態1による電力変換装置の動作説明に供するタイムチャートである。なお、ここでは負荷3として、起動時に突入電流が流れるコンデンサインプット型の非線形負荷あるいはモータ負荷が接続されている場合について説明する。
 時刻TAにおいて負荷3が起動すると、負荷3の定格電流以上の突入電流が流れる。この発明の実施の形態によれば、交流電流上限値Ilim1は比較的大きな値に設定できるので、短時間の突入電流に対する電流制限はかかりにくく、交流電圧の歪みなく負荷3に電流を供給する。
 時刻TBにおいて負荷3の消費電力が蓄電池1の最大放電電力以上に増加すると、直流リンク電圧検出値Vdcが直流電圧閾値Vdcshまで低下し、交流電流抑制部32によりDC/AC変換回路22から出力される交流電流が制限される。その結果、交流電圧振幅は低下するが、蓄電池1の最大放電電力で動作継続する。
 時刻TCにおいて負荷3の消費電力が更に増加すると、交流電流抑制部32によってDC/AC変換回路22から出力される交流電流が制限されるので、交流電圧振幅が更に低下する。交流電圧振幅が負荷3の許容動作電圧範囲以下となると、負荷3が正常に動作できなるくなる恐れがある。そのため、この例では電圧センサ202で検出した交流電圧検出値Vacに基づいて得られる交流電圧実効値が予め設定した実効値閾値電圧以下となる状態が所定時間To以上にわたって継続して時刻TDに到達した際に、保護回路24が作動して電力変換回路20の動作を停止する。
 以上のように、この実施の形態1によれば、電力変換制御部23は、交流電圧を制御する交流電圧制御部31と、交流電流を予め設定された電流制限値Ilim以下に抑制する交流電流抑制部32と、電力変換回路20の直流電圧が低下した場合にはこれに応じて交流電流抑制部32に与える上記電流制限値Ilimを小さくする直流電圧不足抑制部33とを備え、直流電圧不足抑制部33は、直流リンク電圧検出値Vdcが予め設定された直流電圧閾値Vdcsh以下になる場合に電流制限値Ilimを下げることで、過負荷時の直流電圧低下による装置停止を回避しつつ、突入電流の大きな負荷3にも電力供給することが可能となる。
 また、保護回路24は、電力変換回路20の破損防止のための保護機能だけでなく、交流電流抑制部32による交流電流抑制制御が所定時間継続した場合には電力変換回路20の動作を停止する時限要素を備えた負荷保護機能を備えているので、モータストール継続等の理由で過電流が継続する場合には、電力変換回路20の動作を停止することで、負荷3の焼損を回避することができる。
 なお、この実施の形態1では、直流電源として蓄電池1が接続された場合について説明したが、これに限らず、太陽電池や風力発電等の自然エネルギーを利用した直流電源や、交流電力をダイオード整流回路やPFC(Power Factor Correction)回路、高力率コンバータ等で直流化した直流電源であってもよい。また、直流電圧制御部30は図2に示した構成に限らず、減算器30aと直流電圧制御回路30bとからなる直流電圧制御器のみで構成したものであってもよい。
実施の形態2.
 図6は、この発明の実施の形態2における直流電圧不足抑制部の制御ブロック図であり、図4に示した実施の形態1における直流電圧不足抑制部と対応もしくは相当する構成部分には同一の符号を付す。
 この実施の形態2において、先の実施の形態1との相違点は、直流電圧不足抑制部33による電流制限値Ilimの生成方法が異なる点である。その他の電力変換装置2の構成は実施の形態1と同じであるから、ここでは詳しい説明は省略する。
 実施の形態2の直流電圧不足抑制部33は、実施の形態1の場合と同様、直流リンク電圧検出値Vdcが所定の直流電圧閾値Vdcshよりも低下した時のみ動作するものである。すなわち、直流電圧不足抑制部33は、電圧センサ203により直流リンク電圧を検出し、その直流リンク電圧検出値Vdcと予め設定された直流電圧閾値Vdcshとの差を減算器33aで算出する。次に、不足電圧抑制制御器33bで直流リンク電圧検出値Vdcが直流電圧閾値Vdcsh以下にならないように例えば比例積分制御などの一般的なフィードバック制御を行い、電流補正信号Ilim2を演算する。そして、予め設定された交流電流上限値Ilim1からこの電流補正信号Ilim2を減算器33cで減算することでピーク電流制限値Ilim3(=Ilim1-Ilim2)を生成する。なお、この場合の交流電流上限値Ilim1や直流電圧閾値Vdcshの制約についても実施の形態1の場合と同じである。
 続いて、直流電圧不足抑制部33は、乗算器33eによりピーク電流制限値Ilim3に対して、電圧位相生成器33dで得られる交流電圧指令値Vrefに同期した正弦波信号sinθを乗算し、その乗算した値を電流制限値Ilim(=Ilim3×sinθ)として出力する。次いで、リミッタ33fによりこの電流制限値Ilimの絶対値の大きさが所定の値Δ以下まで低下しないように制限する。したがって、この場合の電流制限値Ilimは、実施の形態1のような固定値ではなく、交流電圧指令値Vrefに同期したリミッタ付き正弦波波形となる。
 図7は、この発明の実施の形態2による電力変換装置2の動作説明に供するタイムチャートである。
 この場合の基本動作は先の実施の形態1と同じであるが、電流制限値Ilimが固定値ではなく、上述のように交流電圧指令値Vrefに同期し、かつその絶対値の大きさが所定の値Δ以下まで低下しないように制限されたリミッタ付き正弦波波形となっている。
 このような構成とすることで、コンデンサインプット型の非線形負荷がコンデンサ初期電圧ゼロで起動した場合でも、電力変換回路20のDC/AC変換回路22が出力する交流電流の抑制を迅速に行うことが可能となるため、ソフトスタートのように滑らかに起動することができる。
 また、電力変換装置2が出力する有効電力よりも無効電力を積極的に制限することが可能となるため、無効電力出力による有効電力出力低下を最小限に抑えることができ、電力変換装置2の定格容量を最大限に利用することが可能となる。
実施の形態3.
 図8は、この発明の実施の形態3における交流電圧制御部と交流電流抑制部の制御ブロック図であり、図3に示した実施の形態1における交流電圧制御部と交流電流抑制部に対応もしくは相当する構成部分には同一の符号を付す。
 この実施の形態3において、先の実施の形態1との相違点は、交流電圧制御部31が電圧実効値を制御するのではなく、瞬時電圧を制御する点である。その他の電力変換装置2の構成は実施の形態1と同じであるから、ここでは詳しい説明は省略する。
 交流電圧制御部31は、電圧センサ202により電力変換装置2のDC/AC変換回路22が出力する交流電圧を検出し、その交流電圧検出値Vacと予め設定された交流瞬時電圧指令値Vi*との差を減算器31cで算出する。次いで、電圧制御器31d、加算器31eによって、交流電圧検出値Vacと交流瞬時電圧指令値Vi*との差が無くなるように、つまり交流電圧検出値Vacが交流瞬時電圧指令値Vi*に一致するように例えば比例積分制御などの一般的なフィードバック制御、およびフィードフォワード制御を行い、交流電圧指令信号V11を生成する。
 一方、交流電流抑制部32は、実施の形態1の場合と同様、交流電流検出値Iacの絶対値が電流制限値Ilimを超えたときのみ立ち上がり、DC/AC変換回路22から出力される交流電流を制限することで交流電圧指令信号V11の振幅を低減させるように働くものである。すなわち、交流電流抑制部32は、電流センサ211により電力変換装置2のDC/AC変換回路22が出力する交流電流を検出し、この交流電流検出値Iacと直流電圧不足抑制部33から与えられる電流制限値Ilimとの差を減算器32aで算出する。次に、電流制限制御器32bで交流電流検出値Iacが電流制限値Ilimを超えないように例えば比例積分制御などの一般的なフィードバック制御により電圧補正信号V2を生成する。続いて、上記の交流電圧制御部31からの交流電圧指令信号V11からこの電圧補正信号V2を減算器32cで減算することで、DC/AC変換回路22に対する交流電圧指令値Vref(=V11-V2)を生成する。
 この実施の形態3において、交流電圧制御部31は、上記のように電圧実効値を制御するのではなく、瞬時電圧を制御するようにしている。そのため、交流電圧制御部31からの交流電圧指令信号V11を交流電流抑制部32からの電圧補正信号V2で確実に補正する上で、交流電流抑制部32のフィードバック制御応答は、交流電圧制御部31のフィードバック制御応答よりも十分速くなるように設定する。そのためには、例えば交流電流抑制部32を構成する電流制限制御器32bの積分時定数を、交流電圧制御部31を構成する電圧制御器31dの積分時定数よりも小さく設定することで対処することができる。
 このようにすることで、通常時は所定の交流電圧を負荷3に印加しつつ、過負荷時の過電流を抑制することが可能となり、過負荷耐量の高い電力変換装置2を構成することができる。
 図9は、この発明の実施の形態3における交流電圧制御部と交流電流抑制部の変形例を示す制御ブロック図であり、図8に示した交流電圧制御部と交流電流抑制部に対応もしくは相当する構成部分には同一の符号を付す。
 図9において、図8に示した構成との相違点は、交流電圧制御部31に電流制限判定器31hが追加され、この電流制限判定器31hに交流電流抑制部32から出力される電圧補正信号V2が入力されるようになっている点である。その他の交流電圧制御部31および交流電流抑制部32の構成は図8の場合と同じであるから、ここでは詳しい説明は省略する。
 ここで、電流制限判定器31hは、交流電流抑制部32からの電圧補正信号V2が入力されているか否か、すなわち交流電流抑制部32の動作、非動作を判定し、交流電流抑制部32が動作して電流制限をしている間は、交流電圧制御部31の電圧制御器31dにおける積分ゲインを低下させたり、又はゼロにして積分制御を停止する。
 これにより、交流電圧制御部31が瞬時電圧を制御する場合において、交流電流抑制部32が動作している間に、交流電圧制御部31のフィードバック制御の積分動作により交流電圧指令信号V11が徒に増加して制御オーバーフローやハンチングが発生するなどの不具合を防止することができるため、交流電流抑制部32の電流抑制動作が終了した直後に、交流電圧制御部31による電圧振動を防止することができ、より安定した交流電圧を負荷3に出力することが可能となる。
実施の形態4.
 図10は、この発明の実施の形態4における交流電圧制御部31と交流電流抑制部32の制御ブロック図であり、図3に示した実施の形態1における交流電圧制御部と交流電流抑制部と対応もしくは相当する構成部分には同一の符号を付す。
 この実施の形態4において、先の実施の形態1との相違点は、交流電圧制御部31による交流電圧指令信号V1の生成方法が異なる点である。その他の電力変換装置2の構成は実施の形態1と同じであるから、ここでは詳しい説明は省略する。
 交流電圧制御部31は、電圧センサ202によりDC/AC変換回路22が出力する交流電圧を検出し、その交流電圧検出値Vacから実効値計算器31aで実効値演算を行い、これにより得られた実効値と予め設定された電圧実効値指令値Ve*との差を減算器31cで算出する。次いで、電圧制御器31d、加算器31e、√2乗器31f、電圧位相生成器31b、および乗算器31gによって、交流電圧の実効値と電圧実効値指令値Ve*との差が無くなるように、つまり交流電圧の実効値が電圧実効値指令値Ve*に一致するように例えば比例積分制御などの一般的なフィードバック制御、およびフィードフォワード制御を行い、交流電圧指令信号V1の交流成分V1acを生成する。
 また、交流電圧制御部31は、交流電圧検出値Vacから平均値計算器31iで平均値演算を行い、これにより得られた平均値と予め設定された電圧平均指令値(図10ではゼロ)との差を減算器31jで算出し、電圧制御器31kによって交流電圧平均値がゼロとなるように例えば比例積分制御などの一般的なフィードバック制御を行い、交流電圧指令信号V1の直流成分V1dcを生成する。なお、ここで、上記の交流電圧検出値Vacの平均値計算器31i、減算器31j及び電圧制御器31kは、請求の範囲の「直流分抑制部」に相当する。
 そして、交流電圧制御部31は、前記生成された交流電圧指令信号V1の交流成分V1acと、交流電圧指令信号V1の直流成分V1dcを加算器31lによって加算して、交流電圧指令信号V1を生成する。なお、ここで、請求の範囲の「交流電圧指令値にオフセット電圧を加減算する」ことは、交流電圧指令信号V1の直流成分V1dcを加算器31lによって加算して交流電圧指令信号V1を生成することに相当する。
 一方、交流電流抑制部32は、実施の形態1の場合と同様、交流電流検出値Iacの絶対値が電流制限値Ilimを超えたときのみ立ち上がり、DC/AC変換回路22から出力される交流電流を制限することで交流電圧指令信号V1の振幅を低減させるように働くものである。すなわち、交流電流抑制部32は、電流センサ211により電力変換装置2のDC/AC変換回路22が出力する交流電流を検出し、この交流電流検出値Iacと直流電圧不足抑制部33から与えられる電流制限値Ilimとの差を減算器32aで算出する。次いで、電流制限制御器32bで交流電流検出値Iacが電流制限値Ilimを超えないように例えば比例積分制御などの一般的なフィードバック制御により電圧補正信号V2を生成する。続いて、上記の交流電圧制御部31からの交流電圧指令信号V1からこの電圧補正信号V2を減算器32cで減算することで、DC/AC変換回路22に対する交流電圧指令値Vref(=V1-V2)を生成する。
 このように構成することで、電力変換装置2が出力する交流電圧に含まれる直流電圧成分を抑制することが可能となるため、負荷3として変圧器入力型の負荷が接続された場合でも、変圧器の偏磁による磁気飽和を防止することが可能となり、動作安定性の高い電力変換装置2を構成することができる。
 図11は、この発明の実施の形態4における交流電圧制御部と交流電流抑制部の変形例を示す制御ブロック図であり、図10に示した交流電圧制御部と交流電流抑制部に対応もしくは相当する構成部分には同一の符号を付す。
 交流電圧制御部31は、電圧センサ202によりDC/AC変換回路22が出力する交流電圧を検出し、その交流電圧検出値Vacから実効値計算器31aで実効値演算を行い、これにより得られた実効値と予め設定された電圧実効値指令値Ve*との差を減算器31cで算出する。次いで、電圧制御器31d、加算器31eによって、交流電圧実効値が電圧実効値指令値Ve*に一致するように例えば比例積分制御などの一般的なフィードバック制御、およびフィードフォワード制御を行い、交流電圧指令信号V1の実効値成分V1rmsを生成する。
 また、交流電圧制御部31は、交流電圧検出値Vacから平均値計算器31iで平均値演算を行い、これにより得られた平均値と予め設定された電圧平均指令値(図11ではゼロ)との差を減算器31jで算出し、電圧制御器31kによって交流電圧平均値がゼロとなるように例えば比例積分制御などの一般的なフィードバック制御を行い、交流電圧指令信号V1の直流成分V1dcを生成する。
 交流電圧制御部31のゲイン補正器31mは、交流電圧指令信号V1の直流成分V1dcに応じて交流電圧指令信号V1の実効値成分V1rmsに補正を行う。具体的には、交流電圧指令信号V1が正となる時の電圧実効値成分V1rmsPと、交流電圧指令信号V1が負となる時の電圧実効値成分V1rmsNに分割し、V1rmsPとV1rmsNが式(1)、式(2)となるように補正する。ここで、kは0より大きく1より小さい任意の係数である。
   V1rmsP=V1rms×(1+k)×V1dc ・・・ 式(1)
   V1rmsN=V1rms×(1-k)×V1dc ・・・ 式(2)
 次いで、√2乗器31f、電圧位相生成器31b、および乗算器31gによって、交流電圧指令信号V1を生成する。
 なお、ここで、請求の範囲の「交流電圧指令値が正の時に交流電圧実効値を計算する第一の電圧実効値演算器」は、式(1)のV1rmsP=V1rms×(1+k)×V1dcを演算する手段に、「交流電圧指令値が負の時に交流電圧実効値を計算する第二の電圧実効値演算手段」は、式(2)のV1rmsN=V1rms×(1-k)×V1dcを演算する手段に、「第一の補正ゲイン」は(1+k)に、「第二の補正ゲイン」は(1-k)に相当する。
 一方、交流電流抑制部32は、実施の形態1の場合と同様、交流電流検出値Iacの絶対値が電流制限値Ilimを超えたときのみ立ち上がり、DC/AC変換回路22から出力される交流電流を制限することで交流電圧指令信号V1の振幅を低減させるように働くものである。すなわち、交流電流抑制部32は、電流センサ211により電力変換装置2のDC/AC変換回路22が出力する交流電流を検出し、この交流電流検出値Iacと直流電圧不足抑制部33から与えられる電流制限値Ilimとの差を減算器32aで算出する。次いで、電流制限制御器32bで交流電流検出値Iacが電流制限値Ilimを超えないように例えば比例積分制御などの一般的なフィードバック制御により電圧補正信号V2を生成する。続いて、上記の交流電圧制御部31からの交流電圧指令信号V1からこの電圧補正信号V2を減算器32cで減算することで、DC/AC変換回路22に対する交流電圧指令値Vref(=V1-V2)を生成する。
 このように構成することで、電力変換装置2が出力する交流電圧に含まれる直流電圧成分を抑制することが可能となるため、負荷3として変圧器入力型の負荷が接続された場合でも、変圧器の磁気飽和を防止することが可能となり、動作安定性の高い電力変換装置2を構成することができる。
 また、電力変換装置2が出力する交流電圧がゼロとなる周期を一定に保つことができるため、負荷3として交流電圧がゼロとなる周期を検出する負荷が接続された場合でも、動作安定性の高い電力変換装置2を構成することができる。
 なお、この発明は上記の実施の形態1~4の各構成のみに限定されるものではなく、この発明の趣旨を逸脱しない範囲で各実施の形態1~4の構成を組み合わせたり、各実施の形態1~4について各種の変形を加えたり、構成を一部省略することができる。

Claims (12)

  1. 直流電源から供給される直流電力を交流電力に変換する電力変換回路と、電力系統から解列した状態で交流電圧源として自立運転用電力を発生するように上記電力変換回路の動作を制御する電力変換制御部とを備え、
     上記電力変換回路は、上記直流電源の直流電圧を直流リンク電圧に変換する直流-直流電力変換回路と、上記直流リンク電圧を交流電圧に変換する直流-交流電力変換回路とを備え、
     上記電力変換制御部は、上記直流-交流電力変換回路の上記交流電圧を制御する交流電圧制御部と、上記直流-交流電力変換回路の交流電流を予め設定された電流制限値以下に制限する交流電流抑制部と、上記電力変換回路の上記直流リンク電圧が低下した場合にはこれに応じて上記交流電流抑制部に与える上記電流制限値を小さくする直流電圧不足抑制部と、を備える電力変換装置。
  2. 上記直流電圧不足抑制部は、上記電力変換回路の上記直流リンク電圧が予め設定された直流電圧閾値以下になった場合に動作する請求項1に記載の電力変換装置。
  3. 上記直流電圧不足抑制部は、上記電力変換回路の上記直流リンク電圧が予め設定された直流電圧閾値以下になった場合に、上記直流リンク電圧が上記直流電圧閾値となるように上記電流制限値を制御する請求項2に記載の電力変換装置。
  4. 上記電流制限値は、上記交流電圧制御部が生成する交流電圧指令値に同期した周期内で変動させる請求項1から請求項3のいずれか1項に記載の電力変換装置。
  5. 上記交流電流抑制部は、上記電力変換回路から出力する交流電流を検出する電流検出回路により検出した交流電流検出値が上記直流電圧不足抑制部が算出する上記電流制限値以下にするための指令値を生成し、この指令値を上記交流電圧制御部が生成する指令値に対して加減算する請求項1から請求項3のいずれか1項に記載の電力変換装置。
  6. 上記交流電圧制御部は、上記電力変換回路から出力する交流電圧を検出する電圧検出回路により検出した交流電圧検出値の実効値が、予め設定された電圧実効値になるように交流電圧指令値を生成する請求項1から請求項3のいずれか1項に記載の電力変換装置。
  7. 上記交流電圧制御部は、上記電力変換回路から出力する交流電圧を検出する電圧検出回路により検出した交流電圧検出値が、予め設定された瞬時電圧値になるようにフィードバック制御により交流電圧指令値を生成する請求項1から請求項3のいずれか1項に記載の電力変換装置。
  8. 上記交流電圧制御部は、上記交流電流抑制部が動作した場合には、上記フィードバック制御の積分ゲインを低下、または、ゼロにする請求項7に記載の電力変換装置。
  9. 上記交流電流抑制部が交流電流を上記電流制限値以下に制限する動作を予め設定した時間以上にわたって継続した場合、上記電力変換回路から出力する交流電圧を検出する電圧検出回路により検出した交流電圧検出値に基づいて得られる交流電圧実効値が予め設定した閾値電圧以下となる状態が予め設定した時間以上にわたって継続した場合、上記交流電圧制御部が生成する交流電圧指令値と上記電力変換回路から出力する交流電圧を検出する電圧検出回路により検出した交流電圧検出値により得られる交流電圧瞬時値との差電圧が予め設定した閾値電圧以上となる状態が予め設定した時間以上にわたって継続した場合、の少なくとも一つの条件を満たすときには、上記電力変換回路の動作を停止する保護回路を備えた請求項1から請求項3のいずれか1項に記載の電力変換装置。
  10. 上記交流電圧制御部は、上記電力変換回路の交流出力電圧の平均値がゼロとなるように、交流電圧指令値を補正する直流分抑制部を備える請求項1から請求項3のいずれか1項に記載の電力変換装置。
  11. 上記直流分抑制部は、上記電力変換回路の交流出力電圧の平均値がゼロとなるように、交流電圧指令値にオフセット電圧を加減算する請求項10に記載の電力変換装置。
  12. 上記直流分抑制部は、上記交流電圧指令値が正の時に上記電力変換回路の交流電圧実効値を演算する第一の電圧実効値演算器と、上記交流電圧指令値が負の時に上記電力変換回路の交流電圧実効値を演算する第二の電圧実効値演算器と、上記交流電圧指令値が正の時に上記交流電圧指令値を補正する第一の補正ゲインと、上記交流電圧指令値が負の時に上記交流電圧指令値を補正する第二の補正ゲインを備え、上記電力変換回路の交流出力電圧の平均値がゼロとなるように、上記第一の補正ゲインと上記第二の補正ゲインを可変する請求項10に記載の電力変換装置。
PCT/JP2014/067872 2013-09-02 2014-07-04 電力変換装置 WO2015029597A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/911,509 US10084315B2 (en) 2013-09-02 2014-07-04 Power conversion device with an autonomous operation function
CN201480042829.6A CN105409107B (zh) 2013-09-02 2014-07-04 电力变换装置
JP2015534066A JP6058147B2 (ja) 2013-09-02 2014-07-04 電力変換装置
DE112014004002.9T DE112014004002B4 (de) 2013-09-02 2014-07-04 Energie-Umwandlungsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-181054 2013-09-02
JP2013181054 2013-09-02

Publications (1)

Publication Number Publication Date
WO2015029597A1 true WO2015029597A1 (ja) 2015-03-05

Family

ID=52586174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067872 WO2015029597A1 (ja) 2013-09-02 2014-07-04 電力変換装置

Country Status (5)

Country Link
US (1) US10084315B2 (ja)
JP (1) JP6058147B2 (ja)
CN (1) CN105409107B (ja)
DE (1) DE112014004002B4 (ja)
WO (1) WO2015029597A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3107200A1 (en) * 2015-06-17 2016-12-21 Delta Electronics, Inc. Inverter grid-connected system and method for implementing three-phase alternating current grid-connected transition
JP2019146372A (ja) * 2018-02-21 2019-08-29 住友電気工業株式会社 電力変換装置、電源システム、及び、電力変換装置の制御方法
CN110521077A (zh) * 2017-05-12 2019-11-29 华为技术有限公司 具有逆变器输入电压控制的电源系统
KR102100196B1 (ko) * 2018-11-19 2020-04-13 엘지전자 주식회사 엔진을 이용한 발전 시스템 및 그 제어 방법
US10797485B2 (en) 2016-03-29 2020-10-06 Tabuchi Electric Co., Ltd. Power conditioner, power supply system, and current control method

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201982B (zh) * 2014-09-28 2017-06-13 阳光电源股份有限公司 光伏系统及其控制方法
EP3029797B1 (en) * 2014-12-04 2022-08-03 MARICI Holdings The Netherlands B.V. Apparatus for the conversion and optimized consumption management of power from renewable sources
JPWO2017006400A1 (ja) * 2015-07-03 2018-03-29 東芝三菱電機産業システム株式会社 電力変換装置の制御装置
KR20180066031A (ko) * 2015-09-03 2018-06-18 가부시끼가이샤 도시바 전압 변동 억제 장치 및 방법
JP6673036B2 (ja) * 2016-06-09 2020-03-25 住友電気工業株式会社 電力変換装置及び、遮断部の動作状態判定方法
CN106058816B (zh) * 2016-07-29 2018-08-21 乐清市永茂电源有限公司 一种二级过载保护方法
US11233420B2 (en) * 2017-10-18 2022-01-25 Toshiba Mitsubishi-Electric Industrial Systems Corporation Uninterruptible power supply apparatus
DE102017130882A1 (de) * 2017-12-21 2019-06-27 Sma Solar Technology Ag Wechselrichter und Betriebsverfahren für einen Wechselrichter
JP6913056B2 (ja) * 2018-05-29 2021-08-04 株式会社Soken 電力変換装置の制御装置
JP6729650B2 (ja) * 2018-09-14 2020-07-22 ダイキン工業株式会社 インバータの制御方法、交流負荷への電力供給システム、冷凍回路
CN111222673A (zh) * 2018-11-27 2020-06-02 国家电网有限公司 一种电量交易计划中断面越限定位方法和系统
JP6973657B2 (ja) * 2019-01-21 2021-12-01 東芝三菱電機産業システム株式会社 電力変換装置および電力変換システム
CN109713701B (zh) * 2019-02-01 2022-08-30 国网江苏省电力有限公司 叠加控制的电池储能网荷互动方法、终端、系统及介质
JP7087062B2 (ja) * 2019-09-05 2022-06-20 東芝三菱電機産業システム株式会社 無停電電源システム
JP7186743B2 (ja) * 2020-04-17 2022-12-09 富士電機株式会社 電力変換装置
US20220416648A1 (en) * 2020-11-13 2022-12-29 Toshiba Mitsubishi-Electric Industrial Systems Corporation Control device for power converter
WO2022120663A1 (zh) * 2020-12-09 2022-06-16 宁德时代新能源科技股份有限公司 功率变换器的控制方法、装置及系统
EP4102707A1 (de) * 2021-06-11 2022-12-14 Siemens Aktiengesellschaft Ladestromverfahren, ladestromvorrichtung und elektrischer umrichter mit der ladestromvorrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140164A (ja) * 1995-11-17 1997-05-27 Hitachi Ltd 偏磁抑制制御装置及びそれを用いた電力変換システム
JP2002291258A (ja) * 2001-03-27 2002-10-04 Toshiba Corp インバータ装置
JP2005261052A (ja) * 2004-03-10 2005-09-22 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329222A (en) * 1992-11-30 1994-07-12 Westinghouse Electric Corporation Apparatus and method for dynamic voltage restoration of utility distribution networks
JP3473924B2 (ja) 1995-07-24 2003-12-08 株式会社東芝 無停電電源装置
JP3427965B2 (ja) 1997-05-09 2003-07-22 日新電機株式会社 分散電源用インバータ装置
JPH11164482A (ja) 1997-11-25 1999-06-18 Nissin Electric Co Ltd インバータ電源装置
US6493245B1 (en) * 2001-08-15 2002-12-10 Astec International Limited Inrush current control for AC to DC converters
JP4213941B2 (ja) * 2002-10-11 2009-01-28 シャープ株式会社 複数の分散電源の出力抑制方法および分散電源管理システム
JP2009131056A (ja) 2007-11-22 2009-06-11 Aisin Seiki Co Ltd 自立運転機能付き系統連系電源装置
JP4945476B2 (ja) * 2008-02-20 2012-06-06 オリジン電気株式会社 単相電圧型交直変換装置及び三相電圧型交直変換装置
TWI356566B (en) * 2008-10-03 2012-01-11 Ablerex Electronics Co Ltd Ripple voltage suppression method for dc/dc conver
JP5481055B2 (ja) 2008-10-31 2014-04-23 株式会社東芝 電力変換装置
WO2011046147A1 (ja) * 2009-10-16 2011-04-21 三菱電機株式会社 車両用電源システム
JP2012016120A (ja) * 2010-06-30 2012-01-19 Tokyo Electric Power Co Inc:The 受電端送電線の切替装置及び方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140164A (ja) * 1995-11-17 1997-05-27 Hitachi Ltd 偏磁抑制制御装置及びそれを用いた電力変換システム
JP2002291258A (ja) * 2001-03-27 2002-10-04 Toshiba Corp インバータ装置
JP2005261052A (ja) * 2004-03-10 2005-09-22 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3107200A1 (en) * 2015-06-17 2016-12-21 Delta Electronics, Inc. Inverter grid-connected system and method for implementing three-phase alternating current grid-connected transition
US10797485B2 (en) 2016-03-29 2020-10-06 Tabuchi Electric Co., Ltd. Power conditioner, power supply system, and current control method
CN110521077A (zh) * 2017-05-12 2019-11-29 华为技术有限公司 具有逆变器输入电压控制的电源系统
US11437823B2 (en) 2017-05-12 2022-09-06 Huawei Digital Power Technologies Co., Ltd. Power systems with inverter input voltage control
JP2019146372A (ja) * 2018-02-21 2019-08-29 住友電気工業株式会社 電力変換装置、電源システム、及び、電力変換装置の制御方法
KR102100196B1 (ko) * 2018-11-19 2020-04-13 엘지전자 주식회사 엔진을 이용한 발전 시스템 및 그 제어 방법

Also Published As

Publication number Publication date
DE112014004002T5 (de) 2016-05-25
CN105409107B (zh) 2018-01-23
JP6058147B2 (ja) 2017-01-11
US20160204691A1 (en) 2016-07-14
CN105409107A (zh) 2016-03-16
US10084315B2 (en) 2018-09-25
DE112014004002B4 (de) 2021-05-06
JPWO2015029597A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6058147B2 (ja) 電力変換装置
US8624561B1 (en) Power conversion having energy storage with dynamic reference
JP4706361B2 (ja) 系統安定化装置
TWI517547B (zh) 變頻調速系統及方法
RU2599731C2 (ru) Схема накопителя энергии постоянного тока и способ ее работы
EP3069431B1 (en) Uninterruptible power supply control
TWI593213B (zh) 不斷電電源裝置
JP5171567B2 (ja) 無停電電源装置
JP5589141B2 (ja) 太陽光発電システムの運転制御装置
JP5134691B2 (ja) 自励式無効電力補償装置
JP2014099986A (ja) 複合蓄電システム
Kim et al. Transformerless three-phase on-line UPS with high performance
US10447073B2 (en) Power supply control
JP4304519B2 (ja) 無停電電源装置
JP4777914B2 (ja) 三相電圧型交直変換装置
TWI505597B (zh) 智慧型微電網電力品質管理的操作系統
JP2015109781A (ja) 系統連系電力変換装置
JP2017184485A (ja) 発電システム
JP4569552B2 (ja) 瞬時電圧低下補償装置
JP2013243934A (ja) 自励式無効電力補償装置
JP6508782B2 (ja) 電力変換装置および直流電圧制御装置
WO2023067759A1 (ja) 電力変換システム
JP4049079B2 (ja) 単独運転検出方法およびその電源装置
KR101647201B1 (ko) 돌입 전류를 저감시키기 위한 온라인 무정전 전원장치 및 이에 포함되는 제어장치
WO2018020666A1 (ja) 電力変換装置及びその制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480042829.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841245

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534066

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14911509

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014004002

Country of ref document: DE

Ref document number: 1120140040029

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14841245

Country of ref document: EP

Kind code of ref document: A1