WO2015029569A1 - 人工水晶の育成方法 - Google Patents

人工水晶の育成方法 Download PDF

Info

Publication number
WO2015029569A1
WO2015029569A1 PCT/JP2014/066990 JP2014066990W WO2015029569A1 WO 2015029569 A1 WO2015029569 A1 WO 2015029569A1 JP 2014066990 W JP2014066990 W JP 2014066990W WO 2015029569 A1 WO2015029569 A1 WO 2015029569A1
Authority
WO
WIPO (PCT)
Prior art keywords
quartz
substrates
crystal
artificial
pressure
Prior art date
Application number
PCT/JP2014/066990
Other languages
English (en)
French (fr)
Inventor
正俊 西本
雄 白井
清雄 山口
卓巳 設楽
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2015534054A priority Critical patent/JP6083474B2/ja
Priority to CN201480045121.6A priority patent/CN105518188B/zh
Publication of WO2015029569A1 publication Critical patent/WO2015029569A1/ja
Priority to US15/046,726 priority patent/US9976232B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/18Quartz
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes

Definitions

  • the present invention relates to a method for growing artificial quartz.
  • Quartz devices are widely used in electronic equipment, communication equipment, optical equipment, and the like. Quartz is necessary to manufacture quartz devices, but using natural quartz as it is is difficult from the viewpoint of resources and costs, so it is common to use artificial quartz grown using natural quartz as seeds. is there.
  • Patent Document 1 discloses a method of obtaining a large artificial crystal by directly joining a plurality of quartz substrates to form a quartz seed and using the quartz seed.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for growing a large-sized artificial quartz which is less likely to cause an axis misalignment.
  • a pressure is applied to apply pressure to bring at least two quartz substrates having a substantially rectangular parallelepiped shape into contact with each other in the X-axis direction with the crystal axis directions aligned. And growing artificial quartz crystals on at least two quartz substrates.
  • the present invention it is possible to provide a method for growing a large-sized artificial crystal that is less likely to cause an axial misalignment because the quartz crystal substrate is bonded during the growth of the artificial crystal.
  • FIG. 1 is a view showing the appearance of a quartz substrate in the present embodiment.
  • the quartz substrate 100 is used as a seed when growing an artificial quartz and has a substantially rectangular parallelepiped shape having an XYZ axis.
  • the XYZ axes of the quartz crystal substrate 100 are in a state of being coincident with a rectangular parallelepiped axis (X′Y′Z ′ axis).
  • FIG. 2A shows an example in which two quartz substrates 100 (100a, 100b) are brought into contact with each other.
  • the two quartz substrates 100a and 100b have a crystal axis (XYZ axis) in the same direction, and the ⁇ X direction surface 200a of the quartz substrate 100a and the + X direction of the quartz substrate 100b.
  • the surface 200b is brought into contact.
  • gravity is in the ⁇ X direction.
  • FIG. 2B shows an example of a state in which two crystal substrates 100 are arranged in contact with each other on the contact surface 200 (200a, 200b) in the X-axis direction. Since the two quartz substrates 100 are stacked in the vertical direction (gravity direction), pressure due to the weight of the quartz substrate 100 a disposed above in the vertical direction is applied to the contact surface 200. With this pressure, the two quartz substrates 100 are brought into close contact with each other at the contact surface 200.
  • FIG. 2C shows an example of a state in which two crystal substrates 100 are fixed by a jig.
  • the jig includes three members 210, 220, and 230.
  • the member 210 supports the two quartz substrates 100 from both sides ( ⁇ Y direction and + Y direction). The ends of the crystal substrate 100 in the ⁇ Y direction and the + Y direction are fitted in grooves provided in the member 210.
  • the member 220 is provided to support the crystal substrate 100 so that the crystal substrate 100 fitted in the groove of the member 210 does not fall in the ⁇ X direction due to gravity.
  • the member 230 applies pressure to the surface 240 in the + X direction of the crystal substrate 100a (the outermost surface in the X-axis direction of the crystal substrate 100). That is, the member 230 applies pressure to a surface 240 parallel to the contact surfaces 200 of the two quartz substrates 100. Thereby, pressure is applied to the contact surface 200 and the closeness of the two quartz substrates 100 is increased.
  • the member 230 has elasticity in the X-axis direction. Specifically, the member 230 has a property of extending in the ⁇ X direction. Thus, since the member 230 has elasticity, even when the contact surface 200 is melted by about several microns by thermal etching, for example, the member 230 extends in the ⁇ X direction, so that Pressure application can be maintained.
  • FIG. 3 is a diagram showing an example of how an artificial quartz crystal is grown using a quartz substrate 100 by a hydrothermal synthesis method.
  • the autoclave (metal cylinder furnace) 300 is sealed with a metal lid 320 having a pressure gauge 310 capable of measuring the internal pressure.
  • the interior of the autoclave 300 is partitioned vertically by a baffle plate (convection control plate) 330. Above the baffle plate 330, a plurality of sets of crystal substrates 100 (100a, 100b) arranged as shown in FIG. 2C are stored. Further, a laska (debris crystal) 340 is stored below the baffle plate 330.
  • a growing solution (for example, sodium hydroxide (NaOH) solution) 350 for growing artificial quartz is injected into the autoclave 300.
  • a heater 360 for heating the autoclave 300 is provided outside the autoclave 300.
  • the heater 360 controls the temperature of the upper part of the autoclave 300 to about 300 to 350 ° C. and the lower part to about 360 to 400 ° C., for example.
  • the quartz crystal substrate 100 is subjected to thermal etching by the heating of the heater 360. That is, the surface of the quartz substrate 100 is melted by about several microns, and the processing strain layer of the quartz substrate 100 is removed. Since one set of quartz substrates 100 are stacked in the vertical direction, even if the contact surface 200 is melted by thermal etching, the pressure due to the weight of the quartz substrate 100a disposed above in the vertical direction causes 1 A state in which the pair of crystal substrates 100 is in close contact is maintained. Thereby, it is possible to suppress the occurrence of axial misalignment in one set of crystal substrates 100.
  • the pressure is applied to the set of crystal substrates 100 by the member 230 having elasticity in the X-axis direction, the pressure applied to the contact surface 200 of the set of crystal substrates 100 increases. Therefore, it is possible to further enhance the effect of suppressing the axial deviation in the set of quartz substrates 100.
  • the laska 340 is dissolved in the growth solution 350 by the heating of the heater 360.
  • the growth solution 350 reaches the periphery of the quartz substrate 100. Since the temperature around the quartz substrate 100 is lower than that below the autoclave 300, the SiO 2 molecules in the growth solution 350 are supersaturated and deposited on the surface of the quartz substrate 100. As a result, an artificial quartz crystal is grown using the quartz substrate 100 as a seed.
  • FIG. 4 is a diagram showing an example of an artificial quartz grown using the quartz substrate 100 shown in FIGS. 2A to 2C as a seed.
  • the artificial quartz crystal 400 has a set of quartz substrates 100 bonded to each other at the contact surface 200 and grown in the X-axis direction. In the X-axis direction, the growth in the + X direction is larger than that in the ⁇ X direction.
  • the quartz substrate 100 is also grown in the Z-axis direction. Note that the quartz substrate 100 hardly grows in the Y-axis direction.
  • the artificial quartz crystal 400 large in the X-axis direction can be obtained by the artificial quartz crystal growing method in the present embodiment.
  • the pressure due to the weight of the quartz substrate 100a in the vertical direction is applied to the contact surface 200 in the X-axis direction of the pair of quartz substrates 100.
  • the quartz substrate 100 is coupled during the growth of the artificial crystal 400, the axial deviation of the artificial crystal 400 can be suppressed.
  • pressure is applied to the outermost surface in the X-axis direction by the member 230 having elasticity in the X-axis direction, the effect of suppressing the axial deviation can be further enhanced.
  • this embodiment is for making an understanding of this invention easy, and is not for limiting and interpreting this invention.
  • the present invention can be changed / improved without departing from the spirit thereof, and the present invention includes equivalents thereof.
  • the quartz substrate 100 is disposed in contact with a pair of the quartz substrates 100 in a state where the XYZ axes of the quartz substrate 100 coincide with the rectangular parallelepiped axis (X′Y′Z ′ axis) (FIG. 1).
  • FIG. 2B The relationship between the axial direction of the quartz substrate 100 and the axial direction of the rectangular parallelepiped is not limited to this as long as it can be brought into contact with each other in the X-axis direction of the pair of quartz substrates 100. For example, as shown in FIG.
  • the XYZ-axis directions of a pair of quartz substrates 100 are matched with the Y-axis and Z-axis of the quartz substrate 100 being shifted by several degrees from the Y′-axis and Z′-axis of the rectangular parallelepiped. It is good also as making it contact in the X-axis direction.
  • two crystal substrates 100a and 100b are shown as one set of crystal substrates 100, but the number of crystal substrates to be bonded is not limited to two.
  • three quartz substrates 100c, 100d, and 100e may be arranged in contact with each other in the X-axis direction with the crystal axis directions aligned, and artificial quartz may be grown using these as seeds.
  • three or more quartz substrates may be used.
  • a set of quartz substrates 100 are stacked in the vertical direction, but the arrangement of the quartz substrates is not limited to this.
  • two quartz substrates 100f and 100g may be arranged side by side in the horizontal direction.
  • the pair of crystal substrates 100 are arranged in contact with each other in the X-axis direction with the crystal axis directions aligned, and pressure is applied so that the contact surface 200 is in close contact.
  • the application of pressure to the contact surface 200 can be performed using, for example, a jig having elasticity in the X-axis direction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 軸ずれが起きにくい、大型の人工水晶の育成方法を提供する。人工水晶の育成方法は、略直方体形状の少なくとも2枚の水晶基板を結晶軸方向を合わせてX軸方向において当接させる圧力を印加することと、圧力が加えられた状態で、少なくとも2枚の水晶基板に人工水晶を育成させることと、を含む。

Description

人工水晶の育成方法
 本発明は、人工水晶の育成方法に関する。
 電子機器や通信機器、光学機器等において、水晶デバイスが幅広く用いられている。水晶デバイスを製造するにあたっては、水晶が必要であるが、天然の水晶をそのまま用いることは資源やコストの観点から難しいため、天然の水晶を種子として育成された人工水晶を用いることが一般的である。
 人工水晶の育成においては、生産性を高めることなどを目的として、大型の人工水晶が求められることがある。例えば、特許文献1には、複数の水晶基板を直接接合して水晶種子を形成し、この水晶種子を用いることにより、大きな人工水晶を得る方法が開示されている。
特開2002-47098号公報
 ところで、特許文献1に開示されている手法では、例えばシロキサン結合によって複数の水晶基板を直接接合して水晶種子を形成するため、複数の水晶基板の軸をあわせることが難しく、軸ずれが起きやすい。
 本発明はこのような事情に鑑みてなされたものであり、軸ずれが起きにくい、大型の人工水晶の育成方法を提供することを目的とする。
 本発明の一側面に係る人工水晶の育成方法は、略直方体形状の少なくとも2枚の水晶基板を結晶軸方向を合わせてX軸方向において当接させる圧力を印加することと、圧力が加えられた状態で、少なくとも2枚の水晶基板に人工水晶を育成させることと、を含む。
 本発明によれば、人工水晶の育成中に水晶基板が結合するため、軸ずれが起きにくい、大型の人工水晶の育成方法を提供することができる。
本実施形態における水晶基板の外観を示す図である。 2枚の水晶基板を当接させる様子の一例を示す図である。 2枚の水晶基板がX軸方向の当接面において当接されて配置された状態の一例を示す図である。 2枚の水晶基板を治具により固定した状態の一例を示す図である。 水晶基板を用いて、水熱合成法により人工水晶を育成する様子の一例を示す図である。 水晶基板を種子として育成された人工水晶の一例を示す図である。 水晶基板の軸方向が直方体の軸方向からずれた状態の一例を示す図である。 3枚の水晶基板がX軸方向の当接面において当接されて配置された状態の一例を示す図である。 2枚の水晶基板を、水平方向に並べて配置した状態の一例を示す図である。
 以下、図面を参照して本発明の一実施形態について説明する。図1は、本実施形態における水晶基板の外観を示す図である。水晶基板100は、人工水晶を育成する際に種子として用いられるものであり、XYZ軸を有する略直方体の形状を有している。図1に示す例では、水晶基板100のXYZ軸は、直方体の軸(X’Y’Z’軸)に一致した状態となっている。
 図2A~図2Cを参照して、人工水晶を育成する際の水晶基板100の配置の一例について説明する。図2Aは、2枚の水晶基板100(100a,100b)を当接させる様子の一例を示している。図2Aに示すように、2枚の水晶基板100a,100bは、結晶軸(XYZ軸)の方向が一致した状態で、水晶基板100aの-X方向の面200aと、水晶基板100bの+X方向の面200bとが当接される。なお、図2Aにおいて、重力は-X方向である。
 図2Bは、2枚の水晶基板100がX軸方向の当接面200(200a,200b)において当接されて配置された状態の一例を示している。2枚の水晶基板100は、鉛直方向(重力方向)に積み重ねて配置されているため、当接面200には、鉛直方向における上方に配置された水晶基板100aの自重による圧力が印加される。この圧力により、2枚の水晶基板100は、当接面200において密接した状態となる。
 図2Cは、2枚の水晶基板100を治具により固定した状態の一例を示している。図2Cに示すように、治具は、3つの部材210,220,230を含んでいる。
 部材210は、2枚の水晶基板100を両側(-Y方向及び+Y方向)から支持する。水晶基板100の-Y方向及び+Y方向の端部は、部材210が有する溝に嵌合されている。
 部材220は、部材210の溝に嵌合された水晶基板100が重力によって-X方向に落下しないように、水晶基板100を支持するために設けられている。
 部材230は、水晶基板100aの+X方向の面240(水晶基板100のX軸方向における最外側の面)に圧力を印加する。即ち、部材230は、2枚の水晶基板100の当接面200に平行な面240に圧力を印加する。これにより、当接面200に圧力が印加され、2枚の水晶基板100の密接度が高められる。なお、部材230は、X軸方向に弾性を有している。具体的には、部材230は、-X方向に伸びる性質を有している。このように、部材230は弾性を有しているため、例えばサーマルエッチングによって当接面200が数ミクロン程度溶融した際においても、部材230が-X方向に伸びることにより、当接面200への圧力印加を維持することができる。
 図3は、水晶基板100を用いて、水熱合成法により人工水晶を育成する様子の一例を示す図である。オートクレーブ(金属筒炉)300は、内部の圧力を計測可能な圧力計310を有する金属蓋320で密閉されている。オートクレーブ300の内部は、バッフル板(対流制御板)330で上下に仕切られている。バッフル板330の上方には、図2Cに示すように配置された1組の水晶基板100(100a,100b)が、複数格納されている。また、バッフル板330の下方には、ラスカ(屑水晶)340が格納されている。そして、オートクレーブ300の内部には、人工水晶を育成するための育成溶液(例えば水酸化ナトリウム(NaOH)溶液)350が注入されている。オートクレーブ300の外部には、オートクレーブ300を加熱するためのヒータ360が設けられている。
 ヒータ360によって、例えば、オートクレーブ300の上方は約300~350℃、下方は約360~400℃の温度に制御される。
 水晶基板100には、ヒータ360の加熱によってサーマルエッチングが施される。即ち、水晶基板100の表面が数ミクロン程度溶融され、水晶基板100の加工歪層が除去される。なお、1組の水晶基板100は、鉛直方向に積み重ねられているため、サーマルエッチングによって当接面200が溶融しても、鉛直方向における上方に配置された水晶基板100aの自重による圧力によって、1組の水晶基板100が密接した状態が維持される。これにより、1組の水晶基板100に軸ずれが起きるのを抑制することができる。また、1組の水晶基板100は、X軸方向に弾性を有する部材230によって圧力が印加されているため、1組の水晶基板100の当接面200に印加される圧力が大きくなる。従って、1組の水晶基板100における軸ずれの抑制効果をさらに高めることができる。
 ラスカ340は、ヒータ360の加熱によって育成溶液350中に溶解する。ラスカ340が溶解してSiO2分子が飽和状態となった育成溶液350が、オートクレーブ300内の上下の温度差により、オートクレーブ300内を対流する。この対流により、育成溶液350が水晶基板100の周囲に到達する。水晶基板100の周囲は、オートクレーブ300の下方より温度が低いため、育成溶液350中のSiO2分子が過飽和状態となり、水晶基板100の表面に析出する。これにより、水晶基板100を種子として、人工水晶が育成されることとなる。
 図4は、図2A~図2Cに示した水晶基板100を種子として育成された人工水晶の一例を示す図である。図4に示すように、人工水晶400は、1組の水晶基板100が、当接面200において接合されるとともに、X軸方向に成長したものとなっている。X軸方向においては、-X方向よりも+X方向の成長が大きくなっている。また、図4には示していないが、水晶基板100は、Z軸方向にも成長している。なお、水晶基板100は、Y軸方向にはほとんど成長していない。
 このように、本実施形態における人工水晶の育成方法により、X軸方向に大きい人工水晶400を得ることができる。そして、人工水晶400を育成する際に、1組の水晶基板100のX軸方向における当接面200に、鉛直方向における上方の水晶基板100aの自重による圧力が印加されている。これにより、人工水晶400の育成中に水晶基板100が結合されるため、人工水晶400の軸ずれを抑制することができる。また、X軸方向に弾性を有する部材230によって、最外側のX軸方向の面に圧力が印加されているため、軸ずれの抑制効果をさらに高めることができる。
 なお、本実施形態における人工水晶の育成方法により育成された人工水晶400から切り出された水晶基板を種子として、さらに大型の人工水晶を得ることも可能である。例えば、本実施形態に示したように2枚の水晶基板100を用いて育成された人工水晶400を2組用いることにより、合計4枚の水晶基板100が結合された大型の人工水晶を得ることも可能である。
 なお、本実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るととともに、本発明にはその等価物も含まれる。
 例えば、本実施形態では、水晶基板100のXYZ軸が直方体の軸(X’Y’Z’軸)に一致した状態で(図1)、1組の水晶基板100を当接させて配置したが(図2B)、1組の水晶基板100のX軸方向において当接させることが可能であれば、水晶基板100の軸方向と直方体の軸方向との関係はこれに限られない。例えば、図5に示すように、水晶基板100のY軸及びZ軸が、直方体のY’軸及びZ’軸から数度ずれた状態で、1組の水晶基板100のXYZ軸方向を合わせてX軸方向において当接させることとしてもよい。
 また例えば、本実施形態では、1組の水晶基板100として、2枚の水晶基板100a,100bを示したが、接合される水晶基板の枚数は2枚に限られない。例えば、図6に示すように、3枚の水晶基板100c,100d,100eを、結晶軸方向を合わせてX軸方向で当接させて配置し、これを種子として人工水晶を育成してもよい。さらに、3枚以上の水晶基板を用いてもよい。
 また例えば、本実施形態では、1組の水晶基板100を鉛直方向に積み重ねることとしたが、水晶基板の配置はこれに限られない。例えば、図7に示すように、2枚の水晶基板100f,100gを、水平方向に並べて配置してもよい。この場合においても、1組の水晶基板100は、結晶軸方向を合わせてX軸方向で当接させて配置され、当接面200が密接されるように圧力が印加される。なお、当接面200に対する圧力の印加は、例えば、X軸方向に弾性を有する治具等を用いて行うことができる。
 100 水晶基板
 200 当接面
 210~230 治具
 300 オートクレーブ
 310 圧力計
 320 金属蓋
 330 バッフル板
 340 ラスカ
 350 育成溶液
 360 ヒータ

Claims (5)

  1.  略直方体形状の少なくとも2枚の水晶基板を結晶軸方向を合わせてX軸方向において当接させる圧力を印加することと、
     前記圧力が加えられた状態で、前記少なくとも2枚の水晶基板に人工水晶を育成させることと、
     を含む人工水晶の育成方法。
  2.  請求項1に記載の人工水晶の育成方法であって、
     前記少なくとも2枚の水晶基板は、3枚以上の水晶基板を含む、
     人工水晶の育成方法。
  3.  請求項1または2に記載の人工水晶の育成方法であって、
     前記圧力を印加することは、前記少なくとも2枚の水晶基板を鉛直方向に積み重ねて配置し、前記少なくとも2枚の水晶基板のうち、鉛直方向における上方に配置された水晶基板の自重によって前記少なくとも2枚の水晶基板を当接させる圧力を印加することを含む、
     人工水晶の育成方法。
  4.  請求項1~3の何れか一項に記載の人工水晶の育成方法であって、
     前記圧力を印加することは、前記少なくとも2枚の水晶基板における最外側のX軸方向の面に圧力を印加することを含む、
     人工水晶の育成方法。
  5.  請求項4に記載の人工水晶の育成方法であって、
     前記圧力を印加することは、X軸方向に弾性を有する治具を用いて前記最外側のX軸方向の面に圧力を印加することを含む、
     人工水晶の育成方法。
PCT/JP2014/066990 2013-08-29 2014-06-26 人工水晶の育成方法 WO2015029569A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015534054A JP6083474B2 (ja) 2013-08-29 2014-06-26 人工水晶の育成方法
CN201480045121.6A CN105518188B (zh) 2013-08-29 2014-06-26 人造水晶的培育方法
US15/046,726 US9976232B2 (en) 2013-08-29 2016-02-18 Artificial quartz crystal growth method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013178159 2013-08-29
JP2013-178159 2013-08-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/046,726 Continuation US9976232B2 (en) 2013-08-29 2016-02-18 Artificial quartz crystal growth method

Publications (1)

Publication Number Publication Date
WO2015029569A1 true WO2015029569A1 (ja) 2015-03-05

Family

ID=52586147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066990 WO2015029569A1 (ja) 2013-08-29 2014-06-26 人工水晶の育成方法

Country Status (4)

Country Link
US (1) US9976232B2 (ja)
JP (1) JP6083474B2 (ja)
CN (1) CN105518188B (ja)
WO (1) WO2015029569A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031029A (ja) * 2015-08-05 2017-02-09 三菱化学株式会社 窒化物半導体結晶の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128088A (ja) * 1992-10-16 1994-05-10 Ngk Insulators Ltd 酸化亜鉛単結晶の育成方法
JP2002047098A (ja) * 2000-08-02 2002-02-12 Nippon Dempa Kogyo Co Ltd 水晶種子及びこれを用いた人工水晶の育成方法
JP2003146799A (ja) * 2001-11-07 2003-05-21 Tokyo Denpa Co Ltd 酸化亜鉛育成用種結晶とその作成方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4381214A (en) * 1980-06-26 1983-04-26 The General Electric Company Limited Process for growing crystals
US4578146A (en) 1983-04-28 1986-03-25 Allied Corporation Process for growing a large single crystal from multiple seed crystals
FR2676753B1 (fr) 1991-05-24 1993-10-01 France Telecom Procede d'accroissement des dimensions des cristaux elaborables par croissance hydrothermale, utilisant un germe obtenu par assemblage de lames cristallines.
US5714005A (en) * 1995-12-20 1998-02-03 Motorola Inc. ST-cut and AT-cut oriented seed bodies for quartz crystal synthesis and method for making the same
CN101311368B (zh) * 2008-04-29 2012-08-15 烁光特晶科技有限公司 一种石英晶体的生长方法
US8979999B2 (en) * 2008-08-07 2015-03-17 Soraa, Inc. Process for large-scale ammonothermal manufacturing of gallium nitride boules

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128088A (ja) * 1992-10-16 1994-05-10 Ngk Insulators Ltd 酸化亜鉛単結晶の育成方法
JP2002047098A (ja) * 2000-08-02 2002-02-12 Nippon Dempa Kogyo Co Ltd 水晶種子及びこれを用いた人工水晶の育成方法
JP2003146799A (ja) * 2001-11-07 2003-05-21 Tokyo Denpa Co Ltd 酸化亜鉛育成用種結晶とその作成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031029A (ja) * 2015-08-05 2017-02-09 三菱化学株式会社 窒化物半導体結晶の製造方法

Also Published As

Publication number Publication date
US9976232B2 (en) 2018-05-22
CN105518188B (zh) 2020-06-26
JPWO2015029569A1 (ja) 2017-03-02
CN105518188A (zh) 2016-04-20
US20160160389A1 (en) 2016-06-09
JP6083474B2 (ja) 2017-02-22

Similar Documents

Publication Publication Date Title
KR102270441B1 (ko) 지지 유리 기판 및 이것을 사용한 적층체
TW200603268A (en) Epitaxial compound semiconductor substrate and manufacturing method therefor
TW201607662A (zh) Iii族氮化物基板之製造方法
JP2015224143A5 (ja)
WO2019144804A1 (zh) 晶体生长用坩埚以及释放碳化硅晶体热应力的方法
JP6083474B2 (ja) 人工水晶の育成方法
JP2012111653A (ja) 大面積cvdダイヤモンド単結晶の製造方法、及びこれによって得られた大面積cvdダイヤモンド単結晶
JP2015120612A (ja) 大型サファイアマルチ基板
JP5492697B2 (ja) Atカット水晶デバイス及びatカット水晶デバイスの製造方法
JP5732288B2 (ja) 自立基板の製造方法
JP4521588B2 (ja) 単結晶SiC膜の製造方法
WO2013134010A3 (en) A method of manufacturing silicon-on-insulator wafers
JP5730546B2 (ja) 単結晶引き上げ装置、及び単結晶引き上げ装置に用いられる低熱伝導性部材
JP2012178620A5 (ja)
JP5033705B2 (ja) 光アイソレータ用積層体の製造方法
JP2013203596A (ja) 単結晶ダイヤモンド基板
CN206123371U (zh) 一种六面体光学镜片加工限位工装
RU2577355C1 (ru) Способ получения монокристаллических алмазных эпитаксиальных пленок большой площади
JP2013256440A (ja) 窒化ガリウム基板の製造方法及び該製造方法により製造された窒化ガリウム基板
JP2015067517A (ja) 単結晶ダイヤモンドの製造方法
CN219385391U (zh) 一种带活动块的埚邦及带有该埚邦的坩埚
RU2014105877A (ru) Способ формирования бидоменной структуры в пластинах монокристаллов сегнетоэлектриков
JP2022103797A (ja) 炭化珪素単結晶製造装置および炭化珪素単結晶の製造方法
TW201815701A (zh) 圓盤狀玻璃及其製造方法
JP6988659B2 (ja) 単結晶育成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839075

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534054

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839075

Country of ref document: EP

Kind code of ref document: A1