WO2015029256A1 - 同期電動機 - Google Patents

同期電動機 Download PDF

Info

Publication number
WO2015029256A1
WO2015029256A1 PCT/JP2013/073563 JP2013073563W WO2015029256A1 WO 2015029256 A1 WO2015029256 A1 WO 2015029256A1 JP 2013073563 W JP2013073563 W JP 2013073563W WO 2015029256 A1 WO2015029256 A1 WO 2015029256A1
Authority
WO
WIPO (PCT)
Prior art keywords
teeth
tooth
synchronous motor
pole
slot
Prior art date
Application number
PCT/JP2013/073563
Other languages
English (en)
French (fr)
Inventor
松岡 篤
馬場 和彦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015533923A priority Critical patent/JP6161707B2/ja
Priority to EP13892440.2A priority patent/EP3043448B1/en
Priority to US14/909,998 priority patent/US10277099B2/en
Priority to PCT/JP2013/073563 priority patent/WO2015029256A1/ja
Priority to CN201380078992.3A priority patent/CN105474512B/zh
Priority to CN201420504199.7U priority patent/CN204179905U/zh
Publication of WO2015029256A1 publication Critical patent/WO2015029256A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a synchronous motor.
  • Patent Document 1 In order to reduce such cogging torque, for example, in a conventional synchronous motor represented by Patent Document 1 below, a rotor having 8 poles or 10 poles and a stator having 9 slots are used, The windings for one phase are intensively wound around three adjacent teeth of each phase.
  • this type of synchronous motor has nine windings arranged on the stator, each tooth is arranged every 40 ° in mechanical angle, and each tooth winding is arranged continuously every 40 ° in mechanical angle.
  • the width of one magnetic pole is 45 ° in mechanical angle
  • the width of one magnetic pole is 36 ° in mechanical angle.
  • the pulsation that occurs during one rotation of the rotor is determined by the least common multiple of the number of slots of the stator and the number of poles of the rotor, so the ratio between the number of magnetic poles and the number of slots of the stator is 2: 3.
  • the pulsation is 24 times.
  • the 8 pole 9 slot synchronous motor has 72 pulsations and the 10 pole 9 slot synchronous motor has 90 pulsations.
  • an 8-pole 9-slot or 10-pole 9-slot synchronous motor can suppress cogging torque more than a synchronous motor having a ratio of the number of magnetic poles to the number of stator slots of 2: 3.
  • the present invention has been made in view of the above, and an object thereof is to obtain a synchronous motor capable of further reducing vibration and noise.
  • the present invention is a 10-pole 9-slot synchronous motor having nine teeth divided into three adjacent three phases, each of which is configured Among the three teeth, the circumferential width of the inner diameter side tip of the first tooth arranged in the center is the circumferential direction of the inner diameter side tips of the two second teeth arranged on both sides of the first tooth.
  • a stator that is formed narrower than the width and in which the radial thickness of the inner diameter side tip portion of the first tooth is thinner than the radial thickness of the inner diameter side tip portion of each of the second teeth,
  • FIG. 1 is a cross-sectional view of a synchronous motor according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of a main part of the synchronous motor shown in FIG.
  • FIG. 3 is a diagram showing the relationship between the width of the tip end of the central tooth and the induced voltage ratio in a 10-pole, 9-slot synchronous motor.
  • FIG. 4 is a cross-sectional view of the synchronous motor for explaining the excitation force.
  • FIG. 5 is a diagram showing the exciting force generated when a sinusoidal current is passed through the winding of an 8-pole 9-slot synchronous motor.
  • FIG. 6 is a diagram showing a locus of the excitation force generated in the rotor of the synchronous motor shown in FIG. FIG.
  • FIG. 7 is a diagram showing the relationship between the generated torque and the excitation force of the synchronous motor shown in FIG.
  • FIG. 8 is an enlarged view of the curve B shown in FIG.
  • FIG. 9 is a diagram showing the relationship between the radial thickness of the tooth tip in a 10-pole 9-slot synchronous motor and the excitation force ratio in this synchronous motor.
  • FIG. 10 is a diagram showing the relationship between the tooth radial direction thickness and the excitation force in an 8-pole 9-slot synchronous motor.
  • FIG. 11 is a first diagram illustrating the relationship between the thickness of the tooth tip and the excitation force ratio in a 10-pole, 9-slot synchronous motor.
  • FIG. 12 is a second diagram showing the relationship between the thickness of the tooth tip and the excitation force ratio in a 10-pole, 9-slot synchronous motor.
  • FIG. 13 is a third diagram showing the relationship between the thickness of the tooth tip and the excitation force ratio in a 10-pole, 9-slot synchronous motor.
  • FIG. 1 is a cross-sectional view of a synchronous motor 10 according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of a main part of the synchronous motor 10 shown in FIG.
  • a synchronous motor 10 shown in FIG. 1 includes a stator 1 and a rotor 4 as main components, and the rotor 4 is disposed via a gap 8 on the inner diameter side of the stator 1.
  • a rotating shaft 7 is provided at the center.
  • permanent magnets 6 having different polarities are alternately arranged in the circumferential direction.
  • the permanent magnet 6 has 10 poles, and in the 10-pole rotor 4, the width of one magnetic pole is 36 ° in mechanical angle.
  • the permanent magnet 6 for example, a relatively inexpensive material with low magnetic force (such as a ferrite magnet) is used, and when the synchronous motor 10 is used for a blower having a relatively small output, a tile-like sintered magnet is used as the permanent magnet. 6 is used.
  • the permanent magnet 6 may be a bond magnet formed by mixing a resin and magnetic powder into a ring shape. Since the ferrite magnet is less expensive than the rare earth magnet, when the ferrite magnet is used as the permanent magnet 6, the excitation force described later can be reduced while reducing the cost.
  • the stator 1 includes a stator core 3 formed in an annular shape and a winding 2 to which electric power from the outside is supplied.
  • the stator core 3 includes a yoke 34 and a plurality of teeth (30, 31, 32).
  • Nine teeth (30, 31) are arranged at equiangular intervals in the circumferential direction on the inner peripheral side of the stator core 3. , 32).
  • the teeth (30, 31, 32) are arranged every 40 ° in mechanical angle around the axis A of the stator core 3.
  • a slot 35 is formed in a portion surrounded by each tooth (30, 31, 32) adjacent to the yoke 34 and the tip (30b, 31b, 32b) of each tooth. In the illustrated stator core 3, nine slots 35 are provided.
  • Slot openings 33a1, 33a2, and 33b for inserting the winding 2 into the slot 35 are located at portions where the circumferential ends 30b1, 31b1, and 32b1 of the tip portions 30b, 31b, and 32b of the adjacent teeth face each other. Is formed.
  • the slot openings 33a1, 33a2, and 33b are configured to have the same width, but the widths of the slot openings 33a1, 33a2, and 33b are substantially the same including an error range. Any width is acceptable.
  • the direction of the winding 2 wound around the central tooth 30 provided in the center among the three tooth groups constituting each phase of the U phase, the V phase, and the W phase was provided on both sides of the central tooth 30.
  • winding 2 currently wound by the both-sides teeth 31 and 32 is reverse direction.
  • the windings 2 constituting the U phase are concentratedly arranged on the three teeth (30, 31, 32) constituting the U phase.
  • the windings 2 constituting the V phase are intensively arranged on the three teeth (30, 31, 32) constituting the V phase, and the three teeth (30, 31, 32) constituting the W phase are concentrated.
  • the windings 2 constituting the W phase are intensively arranged.
  • the circumferential width w1 of the distal end portion 30b of the central tooth 30 constituting the teeth group of each phase is the circumference of the distal end portions 31b and 32b of the opposite teeth 31 and 32 constituting the same phase. It is comprised so that it may become narrower than direction width w2, w3.
  • ⁇ 1 is, for example, from the vicinity of the center of the slot opening 33a1 between the circumferential end 30b1 on the right side of the central tooth 30 and the circumferential end 31b1 on the left side of both teeth 31 to the circumferential end on the left side of the central tooth 30. It is defined by the width to the vicinity of the center of the slot opening 33a2 between the portion 30b1 and the circumferential end 32b1 on the right side of the both teeth 32.
  • ⁇ 1 is set in a mechanical angle range of 32 ° to 40 °.
  • ⁇ 2 is, for example, from a slot opening 33b between a circumferential end 32b1 of both teeth 32 (see FIG. 1) located on the right side of both teeth 31 and a circumferential end 31b1 of both teeth 31 in FIG. It is defined by the width to the vicinity of the center of the slot opening 33a1.
  • ⁇ 3 is a slot opening from a slot opening 33b between a circumferential end 31b1 of both teeth 31 (see FIG. 1) located on the left side of both teeth 32 and a circumferential end 32b1 of both teeth 32 in FIG.
  • the width is defined up to the vicinity of the center of the portion 33a2.
  • tip part 30b of the center teeth 30 which comprises the teeth group of each phase is the front-end
  • the tooth thickness t1 is defined by the thickness from the root portion 30a1 of the base portion 30a and the tip portion 30b of the central tooth 30 to the inner diameter side surface 30b2, for example.
  • the teeth thickness t2 is defined by, for example, the thickness from the base portion 31a1 of the base portion 31a and the tip portion 31b of the both side teeth 31 to the inner diameter side surface 31b2.
  • the teeth thickness t3 is defined by the thickness from the root portion 32a1 of the base portion 32a and the tip end portion 32b of the both-side teeth 32 to the inner diameter side surface 32b2, for example.
  • a dotted line a in the figure represents a trajectory passing through the root portions 31a1 and 32a1 of the plurality of both teeth 31, 32 (see FIG. 1), and a dotted line b represents the root portion 30a1 of the plurality of central teeth 30 (see FIG. 1).
  • the trajectory is shown. Since the tooth thickness t1 is formed thinner than the tooth thicknesses t2 and t3, the locus a is positioned on the outer side of the locus b.
  • the tooth thicknesses t1, t2, and t3 are defined based on the root portions 30a1, 31a1, and 32a1, but the thickness of the tip portion 30b is greater than the thickness of the tip portions 31b and 32b. Also, it is only necessary to be relatively thin.
  • the center positions in the circumferential direction of both side teeth 31 and 32 constituting the teeth group of the same phase are The position deviates from the center of the magnetic pole by a predetermined mechanical angle.
  • the magnetic pole width is 36 ° in mechanical angle
  • the width of each tooth 30, 31, 32 is 40 ° in mechanical angle. The position is shifted by 4 ° in mechanical angle from the center.
  • the center in the circumferential direction of both teeth is shifted from the center of the magnetic pole.
  • the phase of the induced voltage generated in the windings 2 of the both-side teeth 31 and 32 constituting the teeth group of each phase is generated in the winding 2 of the central tooth 30 constituting the same phase. Deviates from the phase of the induced voltage. Therefore, due to the influence of this phase difference, the total sum of the induced voltages generated in the three windings 2 constituting the teeth group of each phase becomes smaller than a value obtained by multiplying the induced voltage generated in the central tooth 30 by three.
  • the induced voltage generated in the winding 2 of the double-sided teeth 31 and 32 is shifted from the induced voltage generated in the winding 2 of the central tooth 30, thereby causing both-side teeth.
  • the contribution to the output torque of 31 and 32 is lower than the contribution to the output torque of the central teeth 30.
  • FIG. 3 is a diagram showing the relationship between the width of the tip of the central tooth and the induced voltage ratio in a 10-pole, 9-slot synchronous motor.
  • the data shown in FIG. 3 indicates that the value of the induced voltage and the width ⁇ 1 of the tip 30b of the central tooth 30 are 40 when the induced voltage value is 1.0 when each tooth is disposed at every mechanical angle of 40 °. It is the result of the magnetic field analysis regarding a ratio (induced voltage ratio) with the value of the induced voltage when changing from 32 ° to 32 °.
  • the horizontal axis represents the width ⁇ 1 of the tip 30b of the central tooth 30, and the vertical axis represents the induced voltage ratio.
  • the induced voltage ratio in the 10-pole, 9-slot synchronous motor has a value of 1 or more when the width ⁇ 1 is 32 ° or more and 40 ° or less, and the width ⁇ 1 is the magnetic pole of the rotor 4. Maximum when the value is the same as the width (mechanical angle 36 °).
  • FIG. 4 is a cross-sectional view of the synchronous motor 10 for explaining the excitation force.
  • an 8-pole or 10-pole rotor 4 is used in the synchronous motor 10 of FIG. 4.
  • a current flows through the winding 2 of each phase of the stator 1 in accordance with the position of the magnetic pole, thereby generating torque.
  • FIG. 5 is a diagram showing the exciting force generated when a sinusoidal current is passed through the winding of an 8-pole 9-slot synchronous motor.
  • FIG. 5 shows a magnetic field analysis of the excitation force generated when the rotor 4 rotates when the horizontal direction of the synchronous motor 10 is the X axis and the vertical direction is the Y axis.
  • the exciting force changes in a substantially sine wave shape with respect to the X-axis direction or the Y-axis direction in accordance with the rotation of the rotor 4.
  • the 8-pole 9-slot synchronous motor when the rotor 4 makes one rotation, an exciting force that fluctuates sinusoidally is generated eight times.
  • the 10-pole 9-slot synchronous motor when the rotor 4 makes one rotation, an exciting force that fluctuates sinusoidally is generated 10 times.
  • FIG. 6 is a diagram showing the locus of the excitation force generated by the rotor of the synchronous motor shown in FIG.
  • the magnitude of the excitation force generated in the X-axis direction in FIG. 4 is taken in the X-axis direction, and the magnitude of the excitation force generated in the Y-axis direction in FIG. In the Y-axis direction.
  • the excitation force is generated while drawing a substantially circular locus and changing the direction with a substantially constant magnitude in accordance with the rotation of the rotor 4.
  • the absolute value of the excitation force tends to increase according to the torque generated by the synchronous motor 10, it varies depending on the size of the synchronous motor and the like.
  • the synchronous motor of 8 poles 9 slots or 10 poles 9 slots is used. Only the tendency of the excitation force generated in is shown, and specific numerical values are omitted.
  • FIG. 7 is a diagram showing the relationship between the generated torque and the excitation force of the synchronous motor shown in FIG.
  • FIG. 7 shows a curve A indicating the relationship between the torque and the excitation force in the 8-pole 9-slot synchronous motor 10 and a curve B indicating the relationship between the torque and the excitation force in the 10-pole 9-slot synchronous motor. It is shown.
  • a permanent magnet 6 having the same magnetic force is used for the rotor 4.
  • the excitation force in the 10-pole 9-slot synchronous motor and the excitation force in the 8-pole 9-slot synchronous motor both increase in proportion to the generated torque.
  • the excitation force in the 10-pole 9-slot synchronous motor is sufficiently smaller than the excitation force in the 8-pole 9-slot synchronous motor, and indicates 1/4 or less of the excitation force in the 8-pole 9-slot motor.
  • FIG. 8 is an enlarged view of the curve B shown in FIG.
  • the scale value on the vertical axis is set to be different from the scale value on the vertical axis in FIG.
  • the excitation force in a 10-pole, 9-slot synchronous motor exhibits characteristics close to a quadratic function with respect to the generated torque.
  • the excitation force tends to increase rapidly as the generated torque increases. This is presumed that the magnetic flux density of the stator core 3 has an influence.
  • FIG. 9 is a diagram showing the relationship between the radial thickness of the tip of the tooth in the 10-pole 9-slot synchronous motor and the excitation force ratio in the synchronous motor.
  • the horizontal axis represents the tooth thickness (t1, t2, t3) in the 10-pole 9-slot synchronous motor, and the vertical axis represents the excitation force ratio in the 10-pole 9-slot synchronous motor.
  • the data in FIG. 9 shows that the minimum value of the excitation force when changing the tooth thickness (t1, t2, t3) is 1.0, and this minimum value and the tooth thickness (t1, t2, t3) are changed. It is the result of the magnetic field analysis regarding a ratio (excitation force ratio) with the value of the excitation force at the time.
  • the generated torque when obtaining the data of FIG. 9 is equivalent to the rated output in a 10 pole 9 slot synchronous motor.
  • the excitation force ratio shows a substantially constant value in a region where the tooth thicknesses (t1, t2, t3) are relatively large.
  • the excitation force ratio increases as the teeth thickness decreases. This tendency is presumed that as the tooth thickness is reduced, the magnetic path is narrowed, the magnetic flux density at the tip of the tooth is increased, and as a result, the excitation force is increased. This is because the current increases as the torque of the motor is increased, the magnetic flux density at the tooth tip increases, and as a result, the excitation force increases, that is, the magnetic flux density at the tooth tip increases. It is estimated that
  • FIG. 10 is a diagram showing the relationship between the thickness in the teeth radial direction and the excitation force in an 8-pole 9-slot synchronous motor.
  • the horizontal axis represents the tooth thickness in the 8-pole 9-slot synchronous motor, and the vertical axis represents the excitation force ratio in the 8-pole 9-slot synchronous motor.
  • the data in FIG. 10 shows that the minimum value of the excitation force when the tooth thickness is changed is 1.0, and the ratio between this minimum value and the value of the excitation force when the tooth thickness is changed (excitation It is the result of the magnetic field analysis regarding force ratio.
  • the generated torque when obtaining the data in FIG. 10 is equivalent to the rated output in an 8-pole 9-slot synchronous motor.
  • the excitation force ratio hardly changes with changes in the tooth thickness.
  • the circumferential width w1 of the tip portion 30b of the center tooth 30 in the teeth group of each phase is set to the circumferential width w2, w3 of the tip portions 31b, 32b of the side teeth 31, 32. It can be considered to be narrower. With this configuration, the induced voltage can be improved and the current can be reduced to prevent an increase in copper loss and suppress a decrease in efficiency.
  • the magnetic attraction force generated between the tip 30b and the rotor 4 (that is, the exciting force generated in the radial direction with respect to the rotation axis) is reduced by reducing the circumferential width w1 of the tip 30b of the center tooth. May be smaller.
  • the tooth thickness t1 of the central tooth 30 is formed thinner than the tooth thicknesses t2 and t3 of the two side teeth 31 and 32.
  • FIG. 11 is a first diagram showing the relationship between the thickness of the tooth tip and the excitation force ratio in a 10-pole, 9-slot synchronous motor.
  • the data in FIG. 11 shows that in the 10-pole 9-slot synchronous motor 10 in which the width ⁇ 1 of the tip 30b is set to 40 °, the tooth thicknesses t1, t2, and t3 of the three teeth constituting each phase are set to be the thinnest.
  • the ratio excitation force ratio
  • the thinnest teeth thickness is expressed as “thin”
  • the thickest teeth thickness is expressed as “thickness”
  • the intermediate thickness between “thin” and “thickness” is expressed as “normal”.
  • the left three data represent excitation force ratios in the 10-pole 9-slot synchronous motor 10 in which the teeth thickness t2 and the teeth thickness t3 are thin and the teeth thickness t1 is set to three kinds of thicknesses.
  • the three data on the right side represent the excitation force ratios in the 10-pole 9-slot synchronous motor 10 in which the teeth thickness t2 and the teeth thickness t3 are thick and the teeth thickness t1 is set to three types of thicknesses.
  • the center data represents the excitation force ratio in the 10-pole 9-slot synchronous motor 10 in which the teeth thickness t1, the teeth thickness t2, and the teeth thickness t3 are set to intermediate thicknesses.
  • the teeth thicknesses t1, t2, and t3 are all “thin”, and the teeth thicknesses t1, t2, and t3 are all other than “thin”.
  • the ratio shows a low value.
  • teeth thicknesses t1, t2, and t3 are all “normal” excitation force ratios (center data), and teeth thicknesses t1, t2, and t3 are all “thickness” excitation force ratios (rightmost data). There is no significant difference between the two.
  • the tooth force t2 and the tooth thickness t3 are “thick” and the tooth force t1 is “normal” or “thin”, and the excitation force ratio (second and third data from the right) shows a downward trend. Show.
  • the second and third excitation force ratios from the left are substantially the same as the central excitation force ratio. Therefore, from the viewpoint of securing the slot cross-sectional area, a remarkable effect cannot be obtained even if only the tooth thickness t1 is reduced.
  • FIG. 12 is a second diagram showing the relationship between the thickness of the tooth tip and the excitation force ratio in a 10-pole, 9-slot synchronous motor. The difference from FIG. 11 is that a 10-pole 9-slot synchronous motor 10 in which the width ⁇ 1 of the tip 30b is set to 36 ° is used.
  • FIG. 13 is a third diagram showing the relationship between the thickness of the tooth tip and the excitation force ratio in a 10-pole, 9-slot synchronous motor. The difference from FIG. 11 is that a 10-pole 9-slot synchronous motor 10 in which the width ⁇ 1 of the tip 30b is set to 32 is used.
  • the synchronous motor 10 is a 10-pole 9-slot synchronous motor 10 having nine teeth that are divided into three adjacent three phases, and each phase is configured.
  • the circumferential width w1 of the inner diameter side tip (30b) of the first tooth (30) disposed in the center is the two second teeth ( 31 and 32) are formed narrower than the circumferential widths w2 and w3 of the inner diameter side tip portions (31b and 32b), and the radial thickness (t1) of the inner diameter side tip portion of the first tooth is determined by the second teeth.
  • the stator 1 is formed thinner than the radial thickness (t2, t3) of the inner diameter side tip.
  • the radial excitation force generated in principle by 10 poles and 9 slots can be reduced. Further, by making the circumferential width w1 of the central tooth 30 smaller than the circumferential widths w2 and w3 of the both side teeth 31 and 32, a larger induced voltage can be generated and the efficiency of the synchronous motor 10 can be improved. Can be planned. Further, since the tooth thickness t1 of the central tooth 30 is formed thinner than the tooth thicknesses t2 and t3 of the both-side teeth 31 and 32, the reduction of the cross-sectional area of the slot 35 is suppressed, and the efficiency reduction of the synchronous motor 10 is suppressed. Can do. As a result, efficiency can be improved while further reducing vibration and noise.
  • the first tooth (30) and the other first tooth are formed from the slot opening (33a1) between the first tooth (30) and the one second tooth (31).
  • the width w1 to the slot opening (33a2) between the two teeth (32) is formed to be larger than 32 ° in mechanical angle and smaller than 40 ° in mechanical angle.
  • the winding coefficient is higher than that of a conventional 10-pole 9-slot synchronous motor formed so that the width w1 is 40 °, and higher output and higher efficiency can be achieved.
  • the winding coefficient is an index indicating how effectively the magnetic flux generated from the permanent magnet 6 of the rotor 4 is linked to the winding 2.
  • the first tooth (30) and the other first tooth are formed from the slot opening (33a1) between the first tooth (30) and the one second tooth (31).
  • the width w1 to the slot opening (33a2) between the two teeth (32) is formed to be 36 ° in mechanical angle.
  • the embodiment of the present invention shows an example of the contents of the present invention, and can be combined with another known technique, and a part thereof is not deviated from the gist of the present invention. Of course, it is possible to change the configuration such as omission.
  • the present invention can be applied to a synchronous motor, and is particularly useful as an invention capable of further reducing vibration and noise.

Abstract

 隣り合う3個ずつの3相に区分され巻線2が集中的に巻回される9つのティースを有する固定子を備え、各相を構成する3個のティースの内、中央ティース30の先端部30bの周方向幅w1が、この両側ティース31,32の先端部31b,32bの周方向幅w2,w3よりも狭く形成され、中央ティース30の先端部30bのティース厚t1が、両側ティース31,32の先端部31b,32bのティース厚t2,t3より薄く形成されている。

Description

同期電動機
 本発明は、同期電動機に関するものである。
 永久磁石を用いた同期電動機において、特に固定子の巻線をティースに集中的に巻回する3相の同期電動機では、回転子に用いる永久磁石の磁極数と固定子のスロット数(=ティース数)との比率が2:3で構成されることが多い。
 磁極数と固定子のスロット数との比率が2:3で構成される同期電動機では、隣り合うティースの間に開口部を設けることが多い。これは、回転子に配置される永久磁石から発生する磁束が固定子の巻線に鎖交し易くすると共に、固定子の巻線に電流が流れることで生じる磁束が回転子へ向かわずに固定間で短絡することを防止するためである。
 ただし、この開口部付近では、固定子と回転子との間のギャップの磁束密度分布が乱れるためコギングトルクが発生し、コギングトルクが振動や騒音の要因となる。
 このようなコギングトルクを低減するため、例えば下記特許文献1に代表される従来の同期電動機では、8極または10極の磁極を有する回転子と、9つのスロットを有する固定子とが用いられ、各相の隣り合う3つのティースに1相分の巻線が集中的に巻かれている。
 この種の同期電動機では固定子に9つの巻線が配置されているため、各ティースが機械角で40°毎に配置され、各ティースの巻線が機械角で40°毎に連続して配置されている。そして8極の回転子では1つの磁極の幅が機械角で45°、10極の回転子では1つの磁極の幅が機械角で36°となる。
 一方、回転子が1回転する間に発生する脈動は、固定子のスロット数と回転子の極数との最小公倍数で決まるため、磁極数と固定子のスロット数との比率が2:3で構成される同期電動機が例えば8極12スロットの場合、脈動が24回である。これに対して8極9スロットの同期電動機では脈動が72回、10極9スロットの同期電動機では脈動が90回である。
 脈動数が多いほどコギングトルクのエネルギーが分散されるため、コギングトルクの振幅は小さくなる。すなわち、8極9スロットまたは10極9スロットの同期電動機は、磁極数と固定子のスロット数との比率が2:3で構成される同期電動機よりもコギングトルクを抑えることができる。
特開昭62-110468号公報
 しかしながら、上記特許文献1に代表される従来の同期電動機では、1相を構成する巻線が連続して集中的に配置されるため、固定子の巻線に電流を通電して発生させる回転磁界が回転子の回転軸に対して不均等に発生することになる。そのため、回転子の永久磁石との間で吸引、反発する力が回転軸に対してアンバランスな状態となり、ラジアル方向に大きな加振力が発生し、この加振力が振動、騒音を発生させる要因となる。
 本発明は、上記に鑑みてなされたものであって、更なる低振動化および低騒音化を図ることができる同期電動機を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、隣り合う3個ずつの3相に区分される9つのティースを有する10極9スロットの同期電動機であって、各相を構成する3個のティースの内、中央に配置された第1ティースの内径側先端部の周方向幅が、この第1ティースの両側に配置された2つの第2ティースの内径側先端部の周方向幅よりも狭く形成され、前記第1ティースの内径側先端部の径方向厚さが、前記各第2ティースの内径側先端部の径方向厚さより薄く形成された固定子を備えたこと、を特徴とする。
 この発明によれば、更なる低振動化および低騒音化を図ることができる、という効果を奏する。
図1は、本発明の実施の形態に係る同期電動機の横断面図である。 図2は、図1に示される同期電動機の要部拡大図である。 図3は、10極9スロットの同期電動機における中央ティース先端部の幅と誘起電圧比率との関係を示す図である。 図4は、加振力を説明するための同期電動機の横断面図である。 図5は、8極9スロットの同期電動機の巻線に正弦波電流を流したときに発生する加振力を示す図である。 図6は、図4に示される同期電動機の回転子で発生する加振力の軌跡を示す図である。 図7は、図4に示される同期電動機の発生トルクと加振力との関係を示す図である。 図8は、図7に示される曲線Bを拡大した図である。 図9は、10極9スロットの同期電動機におけるティース先端部の径方向厚さとこの同期電動機における加振力比率との関係を示す図である。 図10は、8極9スロットの同期電動機におけるティース径方向厚さと加振力との関係を示す図である。 図11は、10極9スロットの同期電動機におけるティース先端部の厚みと加振力比率との関係を示す第1の図である。 図12は、10極9スロットの同期電動機におけるティース先端部の厚みと加振力比率との関係を示す第2の図である。 図13は、10極9スロットの同期電動機におけるティース先端部の厚みと加振力比率との関係を示す第3の図である。
 以下に、本発明に係る同期電動機の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態.
 図1は、本発明の実施の形態に係る同期電動機10の横断面図である。図2は、図1に示される同期電動機10の要部拡大図である。
 図1に示される同期電動機10は主たる構成として固定子1と回転子4とを有して構成され、回転子4は固定子1の内径側の空隙8を介して配置され、回転子4の中心には回転軸7が設けられている。回転子4を構成するバックヨーク5の外径面には、互いに異なる極性の永久磁石6が周方向に交互に配置されている。図示例の回転子4では永久磁石6の極数が10極であり、10極の回転子4では1つの磁極の幅が機械角で36°である。
 永久磁石6には、例えば比較的安価で磁力が低い材料(フェライト磁石など)が用いられ、出力の比較的小さい送風機用などに同期電動機10が用いられる場合、瓦状の焼結磁石が永久磁石6として用いられる。なお、永久磁石6には、樹脂と磁粉を混合した材料をリング状に成形したボンドマグネットを用いてもよい。フェライト磁石は希土類磁石に比べて安価であるため、フェライト磁石を永久磁石6として用いた場合、コスト低減を図りながら後述する加振力を低減することができる。
 固定子1は、環状に形成された固定子鉄心3と外部からの電力が供給される巻線2とを有して構成される。
 固定子鉄心3はヨーク34と複数のティース(30,31,32)とを有して構成され、固定子鉄心3の内周側には周方向に等角度間隔で9つのティース(30,31,32)が設けられている。図示例の固定子1では各ティース(30,31,32)が固定子鉄心3の軸心Aを中心として機械角で40°毎に配置されている。
 ヨーク34と隣接する各ティース(30,31,32)と各ティースの先端部(30b,31b,32b)とで囲まれる部分には、スロット35が形成されている。図示例の固定子鉄心3では、9つのスロット35が設けられている。
 隣接する各ティースの先端部30b,31b,32bの周方向端部30b1,31b1,32b1が相互に対向する部分には、スロット35に巻線2を挿入するためのスロット開口部33a1,33a2,33bが形成されている。図示例の固定子鉄心3では、各スロット開口部33a1,33a2,33bが同一幅となるように構成されているが、各スロット開口部33a1,33a2,33bの幅は、誤差範囲を含む略同一幅であればよい。
 U相,V相,W相の各相を構成する3つのティース群の内、中央に設けられた中央ティース30に巻かれている巻線2の向きは、中央ティース30の両側に設けられた両側ティース31,32に巻かれている巻線2の向きとは逆向きである。U相を構成する3つのティース(30,31,32)にはU相を構成する巻線2が集中的に配置されている。同様に、V相を構成する3つのティース(30,31,32)にはV相を構成する巻線2が集中的に配置され、W相を構成する3つのティース(30,31,32)にはW相を構成する巻線2が集中的に配置される。
 本実施の形態に係る同期電動機10では、各相のティース群を構成する中央ティース30の先端部30bの周方向幅w1が、同相を構成する両側ティース31,32の先端部31b,32bの周方向幅w2,w3よりも狭くなるように構成されている。
 θ1は、例えば、中央ティース30の右側の周方向端部30b1と両側ティース31の左側の周方向端部31b1との間のスロット開口部33a1の中心付近から、中央ティース30の左側の周方向端部30b1と両側ティース32の右側の周方向端部32b1との間のスロット開口部33a2の中心付近までの幅で定義される。本実施の形態ではθ1が機械角で32°から40°の範囲に設定されている。
 θ2は、例えば、両側ティース31よりも右側に位置する両側ティース32(図1参照)の周方向端部32b1と図2の両側ティース31の周方向端部31b1と間のスロット開口部33bから、スロット開口部33a1の中心付近までの幅で定義される。
 θ3は、両側ティース32よりも左側に位置する両側ティース31(図1参照)の周方向端部31b1と図2の両側ティース32の周方向端部32b1と間のスロット開口部33bから、スロット開口部33a2の中心付近までの幅で定義される。
 また、本実施の形態では、各相のティース群を構成する中央ティース30の先端部30bの径方向厚さ(ティース厚t1)が、同相を構成する両側ティース31,32の先端部31b,32bの径方向厚さ(ティース厚t2,t3)より薄く形成されている。
 ティース厚t1は、例えば、中央ティース30の基部30aと先端部30bとの付根部30a1から、内径側面30b2までの厚みで定義される。ティース厚t2は、例えば、両側ティース31の基部31aと先端部31bとの付根部31a1から、内径側面31b2までの厚みで定義される。ティース厚t3は、例えば、両側ティース32の基部32aと先端部32bとの付根部32a1から、内径側面32b2までの厚みで定義される。
 図中の点線aは、複数の両側ティース31,32(図1参照)の付根部31a1,32a1を通る軌跡を表し、点線bは、複数の中央ティース30(図1参照)の付根部30a1を通る軌跡を表している。ティース厚t1はティース厚t2,t3よりも薄く形成されているため、軌跡aは軌跡bよりも径外側に位置している。
 なお、本実施の形態では、一例として、各付根部30a1,31a1,32a1を基準としてティース厚t1,t2,t3が定義されているが、先端部30bの厚みが先端部31b,32bの厚みよりも相対的に薄く構成されていればよい。
 ここで、各相のティース群を構成する中央ティース30の周方向中心位置を、永久磁石6の磁極中心と仮定したとき、同相のティース群を構成する両側ティース31,32の周方向中心位置は、磁極中心から所定の機械角ずれた位置となる。10極9スロットの同期電動機では磁極の幅が機械角で36°であり、各ティース30,31,32の幅が機械角で40°であるため、両側ティース31,32の周方向中心は磁極中心から機械角で4°ずれた位置となる。8極9スロットの同期電動機でも同様に、両側ティースの周方向中心が磁極中心からずれた位置となる。
 そのため、10極9スロットの同期電動機では、各相のティース群を構成する両側ティース31,32の巻線2に発生する誘起電圧の位相は、同相を構成する中央ティース30の巻線2に発生する誘起電圧の位相からずれる。従って、この位相差の影響により、各相のティース群を構成する3つの巻線2に発生する誘起電圧の総和は、中央ティース30に発生する誘起電圧を3倍した値よりも小さくなる。
 すなわち、10極9スロットの同期電動機では、中央ティース30の巻線2に発生する誘起電圧に対して、両側ティース31,32の巻線2に発生する誘起電圧の位相がずれることにより、両側ティース31,32の出力トルクへの寄与度は、中央ティース30の出力トルクへの寄与度よりも低くなる。8極9スロット同期電動機でも同様である。
 図3は、10極9スロットの同期電動機における中央ティース先端部の幅と誘起電圧比率との関係を示す図である。図3のデータは、各ティースが機械角で40°毎に配置されている場合の誘起電圧の値を1.0として、この誘起電圧の値と中央ティース30の先端部30bの幅θ1を40°から32°まで変化させたときの誘起電圧の値との比率(誘起電圧比率)に関する磁界解析の結果である。
 横軸は中央ティース30の先端部30bの幅θ1を表し、縦軸は誘起電圧比率を表す。図3に示されるように、10極9スロットの同期電動機における誘起電圧比率は、幅θ1が32°以上、かつ、40°以下のときに1以上の値となり、幅θ1が回転子4の磁極幅(機械角36°)と同じ値のときに最大となる。
 一方、10極9スロットまたは8極9スロットの同期電動機では、1相を構成する巻線が集中的に配置されているため、巻線に電流が流れたときに発生する回転磁界が回転軸に対して不均等に発生する。このことにより回転軸に対してラジアル方向に大きな加振力(磁気吸引力)が発生する。
 図4は、加振力を説明するための同期電動機10の横断面図である。図4の同期電動機10では8極または10極の回転子4が用いられている。図4に示されるように回転子4が反時計回りに回転するときに、磁極の位置にあわせて固定子1の各相の巻線2へ電流が流れることにより、トルクが発生する。
 図5は、8極9スロットの同期電動機の巻線に正弦波電流を流したときに発生する加振力を示す図である。図5には、同期電動機10の横方向をX軸とし縦方向をY軸としたときに、回転子4の回転時に生じる加振力の磁界解析が示される。
 図5に示されるように、加振力は、回転子4の回転にあわせてX軸方向またはY軸方向に対して略正弦波状に変化する。そして、8極9スロットの同期電動機では、回転子4が1回転するときに、正弦波状に変動する加振力が8回発生する。なお、10極9スロットの同期電動機では、回転子4が1回転するときに、正弦波状に変動する加振力が10回発生する。
 図6は、図4に示される同期電動機の回転子で発生する加振力の軌跡を示す図である。加振力の大きさと向きを把握するため、図6では、図4のX軸方向に生じる加振力の大きさをX軸方向にとり、図4のY軸方向に生じる加振力の大きさをY軸方向に表している。図示例のように加振力は、略円状の軌跡を描き、回転子4の回転にあわせて略一定の大きさで方向を変えながら発生する。
 なお、加振力の絶対値は、同期電動機10の発生トルクに従って増加する傾向を示すが、同期電動機の大きさなどによって異なるため、図6では、8極9スロットまたは10極9スロットの同期電動機で発生する加振力の傾向のみが示され、具体的な数値は省略されている。
 図7は、図4に示される同期電動機の発生トルクと加振力との関係を示す図である。図7には、8極9スロットの同期電動機10におけるトルクと加振力との関係を示す曲線Aと、10極9スロットの同期電動機におけるトルクと加振力との関係を示す曲線Bとが示されている。なお、これらの同期電動機では、磁力が同等の永久磁石6が回転子4に用いられているものとする。
 図7に示されるように、10極9スロットの同期電動機における加振力と8極9スロットの同期電動機における加振力とは、何れも発生トルクに比例して増加する。ただし、10極9スロットの同期電動機における加振力は、8極9スロットの同期電動機における加振力に対して十分に小さく、8極9スロットの加振力の1/4以下を示す。
 図8は、図7に示される曲線Bを拡大した図である。図8では、図7の曲線Bの変化を分かり易くするため、縦軸の目盛りの値が図7の縦軸の目盛りの値と異なるように設定されている。図8に示すように10極9スロットの同期電動機における加振力は、発生トルクに対して2次関数に近い特性を示す。このように10極9スロットの同期電動機では、加振力が発生トルクの上昇に対して急激に大きくなる傾向がある。これは固定子鉄心3の磁束密度が影響しているものと推定される。
 図9は、10極9スロットの同期電動機におけるティース先端部の径方向厚さとこの同期電動機における加振力比率との関係を示す図である。横軸は10極9スロットの同期電動機におけるティース厚(t1,t2,t3)を表し、縦軸は10極9スロットの同期電動機における加振力比率を表す。図9のデータは、ティース厚(t1,t2,t3)を変化させたときの加振力の最小値を1.0として、この最小値と、ティース厚(t1,t2,t3)を変化させたときの加振力の値との比率(加振力比率)に関する磁界解析の結果である。
 図9のデータを得るときの発生トルクは、10極9スロットの同期電動機における定格出力相当としている。図9に示されるように、10極9スロットの同期電動機では、ティース厚(t1,t2,t3)が比較的大きい領域では加振力比率がほぼ一定の値を示す。これに対してティース厚が比較的薄い領域では、ティース厚が薄くなるほど加振力比率が増加する。この傾向は、ティース厚が薄くなるほど磁路が狭くなり、ティース先端部における磁束密度が上がり、その結果として加振力が大きくなるものと推定される。これは、電動機のトルクを上げるほど電流が増加し、ティース先端部における磁束密度が上がり、その結果として加振力が大きくなる場合と同じ要因、すなわちティース先端部における磁束密度が高くなることに起因していると推定される。
 図10は、8極9スロットの同期電動機におけるティース径方向厚さと加振力との関係を示す図である。横軸は8極9スロットの同期電動機におけるティース厚を表し、縦軸は8極9スロットの同期電動機における加振力比率を表す。図10のデータは、ティース厚を変化させたときの加振力の最小値を1.0として、この最小値と、ティース厚を変化させたときの加振力の値との比率(加振力比率)に関する磁界解析の結果である。
 図10のデータを得るときの発生トルクは、8極9スロットの同期電動機における定格出力相当としている。図10に示されるように8極9スロットの同期電動機では、ティース厚の変化に対して加振力比率がほとんど変化しない。
 図9と図10の結果から明らかなように、ティース厚を厚くすることで回転子の加振力を抑制する効果は10極9スロットの同期電動機で得られる。なお、磁極数とスロット数との比率が2:3で構成される同期電動機では、1つの相を構成する3つの巻線2が回転軸7に対して対称に配置されている場合、磁気吸引力が回転軸7に対して打ち消し合うため、上記の様な回転子4の加振力は発生しない。従ってこのように構成される同期電動機では、図2に示されるようにティース厚t1をティース厚t2,t3より薄く形成した場合でも加振力の変化が無く、同様の効果は得られない。
 ところが、加振力を抑制するために、空隙8の値を一定としてティース厚を厚くした場合、巻線2を収納するスロット35の断面積が小さくなってしまう。この場合の対策としては、巻線2に用いる銅線の線径を細くすることが考えられるが、巻線の線径を細くした場合、巻線2の抵抗が増加することにより銅線で発生する損失(銅損)が増加し、同期電動機の効率が低下することとなる。
 このような効率低下の対策としては、各相のティース群の内、中央ティース30の先端部30bの周方向幅w1を、両側ティース31,32の先端部31b,32bの周方向幅w2,w3より狭くすることが考えられる。この構成により誘起電圧を向上させて、電流を減らすことで銅損の増加を防ぎ、効率の低下を抑制することができる。
 このとき、中央ティースの先端部30bの周方向幅w1が狭くなることにより、先端部30bと回転子4との間に生じる磁気吸引力(すなわち回転軸に対してラジアル方向に生じる加振力)が小さくなる可能性がある。
 このような磁気吸引力低下を利用して、本実施の形態では、中央ティース30のティース厚t1が両側ティース31,32のティース厚t2,t3よりも薄く形成されている。この構成により、スロット35の断面積を相対的に大きくすることができるため、中央ティース30の巻線数を増加させても磁気吸引力の増加を抑制することができる。
 次に、ティース厚を変化させたときの加振力の大きさに関して説明する。
 図11は、10極9スロットの同期電動機におけるティース先端部の厚みと加振力比率との関係を示す第1の図である。図11のデータは、先端部30bの幅θ1が40°に設定された10極9スロットの同期電動機10において、各相を構成する3つのティースのティース厚t1,t2,t3が最も薄く設定されている場合の加振力の値を1.0として、この値と、これらの各ティース厚を変化させたときの加振力の値との比率(加振力比率)に関する磁界解析の結果である。
 図11では、最も薄いティース厚が「薄」と表記され、最も厚いティース厚が「厚」と表記され、「薄」と「厚」の中間的な厚みが「普」と表記されている。
 左側3つのデータは、ティース厚t2およびティース厚t3が薄く、かつ、ティース厚t1が3種類の厚さに設定された10極9スロットの同期電動機10における加振力比率を表す。右側3つのデータは、ティース厚t2およびティース厚t3が厚く、かつ、ティース厚t1が3種類の厚さに設定された10極9スロットの同期電動機10における加振力比率を表す。中央のデータは、ティース厚t1、ティース厚t2、およびティース厚t3が中間的な厚さ設定された10極9スロットの同期電動機10における加振力比率を表す。
 図11のデータより、ティース厚t1,t2,t3が全て「薄」の加振力比率(最も左側のデータ)に比べて、ティース厚t1,t2,t3が全て「薄」以外の加振力比率は低い値を示す。
 ただし、ティース厚t1,t2,t3が全て「普」の加振力比率(中央のデータ)と、ティース厚t1,t2,t3が全て「厚」の加振力比率(最も右側のデータ)との間では、大きな差がみられない。
 一方、ティース厚t2およびティース厚t3が「厚」であり、ティース厚t1が「普」または「薄」の加振力比率(右から2つ目と3つ目のデータ)は、低下傾向を示す。ただし、左から2つ目と3つ目の加振力比率は、中央の加振力比率と略同じ値である。そのため、スロット断面積を確保するという観点からは、ティース厚t1のみを薄くしても顕著な効果を得ることができない。
 図12は、10極9スロットの同期電動機におけるティース先端部の厚みと加振力比率との関係を示す第2の図である。図11との相違点は、先端部30bの幅θ1が36°に設定された10極9スロットの同期電動機10が用いられている点である。
 図12のデータによれば、右から3つめの加振力比率と右から4つめの加振力比率との間に顕著な差が生じていることが分かる。すなわち先端部30bの幅θ1が36°に設定されている場合、ティース厚t1を薄くした場合でも、ティース厚t2およびティース厚t3を厚くすることにより、加振力を低下させることができる。この傾向は、先端部30bの幅θ1、すなわち先端部30bの周方向幅w1が狭くなるほど顕著になる。
 図13は、10極9スロットの同期電動機におけるティース先端部の厚みと加振力比率との関係を示す第3の図である。図11との相違点は、先端部30bの幅θ1が32に設定された10極9スロットの同期電動機10が用いられている点である。
 端部30bの幅θ1が32°に設定されている同期電動機10では、ティース厚t2およびティース厚t3が加振力に対して支配的になり、その結果、右から3つの加振力比率が図12に示される加振力比率に比べて低減されていることがわかる。
 以上に説明したように本実施の形態に係る同期電動機10は、隣り合う3個ずつの3相に区分される9つのティースを有する10極9スロットの同期電動機10であって、各相を構成する3個のティースの内、中央に配置された第1ティース(30)の内径側先端部(30b)の周方向幅w1が、この第1ティースの両側に配置された2つの第2ティース(31,32)の内径側先端部(31b,32b)の周方向幅w2,w3よりも狭く形成され、第1ティースの内径側先端部の径方向厚さ(t1)が、各第2ティースの内径側先端部の径方向厚さ(t2,t3)より薄く形成された固定子1を備える。この構成により、10極9スロットで原理的に発生するラジアル方向の加振力が低減される。また、中央ティース30の周方向幅w1を両側ティース31,32の周方向幅w2,w3よりも狭くすることにより、より大きな誘起電圧を発生されることができ、同期電動機10の効率の向上を図ることができる。さらに、中央ティース30のティース厚t1が両側ティース31,32のティース厚t2,t3より薄く形成されているため、スロット35の断面積の減少が抑制され、同期電動機10の効率低下を抑制することができる。その結果、更なる低振動化および低騒音化を図りながら、効率の向上を図ることができる。
 また、本実施の形態に係る同期電動機10では、第1ティース(30)と一方の第2ティース(31)との間のスロット開口部(33a1)から、第1ティース(30)と他方の第2ティース(32)との間のスロット開口部(33a2)までの幅w1が、機械角で32°より大きく、かつ、機械角で40°より小さくなるように形成されている。この構成により、幅w1が40°となるように形成された従来の10極9スロットの同期電動機に比べて、巻線係数が高くなり、高出力化および高効率化を図ることができる。巻線係数は、回転子4の永久磁石6から発生する磁束が巻線2にどの程度有効に鎖交するかを示す指標である。
 また、本実施の形態に係る同期電動機10では、第1ティース(30)と一方の第2ティース(31)との間のスロット開口部(33a1)から、第1ティース(30)と他方の第2ティース(32)との間のスロット開口部(33a2)までの幅w1が、機械角で36°になるように形成されている。この構成により、中央ティース30の先端部30bの周方向幅w1を、両側ティース31,32の先端部31b,32bの周方向幅w2,w3より小さくするように構成した同期電動機10の中で、巻線係数が最も高くなり、高出力化および高効率化を図ることができる。
 なお、本発明の実施の形態は、本発明の内容の一例を示すものであり、更なる別の公知技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは無論である。
 以上のように、本発明は、同期電動機に適用可能であり、特に、更なる低振動化および低騒音化を図ることができる発明として有用である。
 1 固定子、2 巻線、3 固定子鉄心、4 回転子、5 バックヨーク、6 永久磁石、7 回転軸、8 空隙、10 同期電動機、30 中央ティース、30a 基部、30a1 付根部、30b 先端部、30b1 周方向端部、30b2 内径側面、31 両側ティース、31a 基部、31a1 付根部、31b 先端部、31b1 周方向端部、31b2 内径側面、32 両側ティース、32a 基部、32a1 付根部、32b 先端部、32b1 周方向端部、32b2 内径側面、33a1,33a2,33b スロット開口部、34 ヨーク、35 スロット。

Claims (3)

  1.  隣り合う3個ずつの3相に区分される9つのティースを有する10極9スロットの同期電動機であって、
     各相を構成する3個のティースの内、中央に配置された第1ティースの内径側先端部の周方向幅が、この第1ティースの両側に配置された2つの第2ティースの内径側先端部の周方向幅よりも狭く形成され、前記第1ティースの内径側先端部の径方向厚さが、前記各第2ティースの内径側先端部の径方向厚さより薄く形成された固定子を備えたこと、
     を特徴とする同期電動機。
  2.  前記第1ティースと一方の第2ティースとの間のスロット開口部から、前記第1ティースと他方の第2ティースとの間のスロット開口部までの幅は、機械角で32°より大きく、かつ、機械角で40°より小さくなるように形成されていることを特徴とする請求項1に記載の同期電動機。
  3.  前記第1ティースと一方の第2ティースとの間のスロット開口部から、前記第1ティースと他方の第2ティースとの間のスロット開口部までの幅は、機械角で36°になるように形成されていることを特徴とする請求項1に記載の同期電動機。
PCT/JP2013/073563 2013-09-02 2013-09-02 同期電動機 WO2015029256A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015533923A JP6161707B2 (ja) 2013-09-02 2013-09-02 同期電動機
EP13892440.2A EP3043448B1 (en) 2013-09-02 2013-09-02 Synchronous electric motor
US14/909,998 US10277099B2 (en) 2013-09-02 2013-09-02 Synchronous motor
PCT/JP2013/073563 WO2015029256A1 (ja) 2013-09-02 2013-09-02 同期電動機
CN201380078992.3A CN105474512B (zh) 2013-09-02 2013-09-02 同步电动机
CN201420504199.7U CN204179905U (zh) 2013-09-02 2014-09-02 同步电动机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/073563 WO2015029256A1 (ja) 2013-09-02 2013-09-02 同期電動機

Publications (1)

Publication Number Publication Date
WO2015029256A1 true WO2015029256A1 (ja) 2015-03-05

Family

ID=52568679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073563 WO2015029256A1 (ja) 2013-09-02 2013-09-02 同期電動機

Country Status (5)

Country Link
US (1) US10277099B2 (ja)
EP (1) EP3043448B1 (ja)
JP (1) JP6161707B2 (ja)
CN (2) CN105474512B (ja)
WO (1) WO2015029256A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016203579A1 (ja) * 2015-06-17 2016-12-22 三菱電機株式会社 永久磁石同期電動機
WO2016203578A1 (ja) * 2015-06-17 2016-12-22 三菱電機株式会社 永久磁石同期電動機
WO2022091332A1 (ja) * 2020-10-30 2022-05-05 三菱電機株式会社 電動機、ファン、及び空気調和機

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10277099B2 (en) * 2013-09-02 2019-04-30 Mitsubishi Electric Corporation Synchronous motor
US9923493B2 (en) * 2014-01-09 2018-03-20 Mitsubishi Electric Corporation Drive circuit for synchronous motor, synchronous motor driven by drive circuit, air blower including synchronous motor, air conditioner including air blower, and method of driving synchronous motor
KR101696712B1 (ko) * 2015-01-22 2017-01-16 엘지전자 주식회사 비엘디시 모터 및 그를 갖는 청소기
US10897165B2 (en) 2015-06-17 2021-01-19 Mitsubishi Electric Corporation Permanent magnet synchronous motor
FR3049407B1 (fr) * 2016-03-25 2018-03-16 Valeo Equipements Electriques Moteur Machine electrique tournante ayant un ratio de dimensions minimisant les ondulations de couple
FR3049406B1 (fr) * 2016-03-25 2018-03-16 Valeo Equipements Electriques Moteur Machine electrique tournante ayant une configuration minimisant les ondulations de couple
CN107370313A (zh) * 2016-05-13 2017-11-21 浙江三花汽车零部件有限公司 流体泵的制造方法
JP2018061392A (ja) * 2016-10-07 2018-04-12 株式会社デンソー 電機子および回転電機
CN108880014B (zh) * 2018-05-29 2021-10-29 南方电机科技有限公司 一种定子、马达及自动化设备
CN110875647B (zh) * 2018-08-30 2022-02-25 广东美芝精密制造有限公司 定子、同步电机和压缩机
CN110875643A (zh) * 2018-08-30 2020-03-10 广东美芝精密制造有限公司 同步电机及压缩机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422107U (ja) * 1977-07-18 1979-02-14
JPS62110468A (ja) 1985-11-08 1987-05-21 Hitachi Ltd 永久磁石界磁形ブラシレスモ−タ
JPS63144749A (ja) * 1986-12-05 1988-06-16 Nippon Fueroo Furuideikusu Kk モ−タ
JP2004215479A (ja) * 2002-03-29 2004-07-29 Matsushita Electric Ind Co Ltd モータ
JP2004304928A (ja) * 2003-03-31 2004-10-28 Mitsuba Corp ブラシレスモータ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2371268A (en) * 1942-11-18 1945-03-13 Jack & Heintz Inc Generator field structure
US2462765A (en) * 1944-12-13 1949-02-22 Harnischfeger Corp Welded motor frame
JPS5499908A (en) * 1978-01-23 1979-08-07 Matsushita Electric Ind Co Ltd Electric motor
KR100200667B1 (ko) * 1996-01-18 1999-06-15 윤종용 브러시리스 직류모터
JPH10126982A (ja) * 1996-10-24 1998-05-15 Matsushita Electric Ind Co Ltd 永久磁石モータ
JP2743918B2 (ja) 1996-12-27 1998-04-28 株式会社日立製作所 永久磁石界磁形ブラシレスモータ
US6831389B2 (en) * 2001-07-11 2004-12-14 Kabushiki Kaisha Moric Stator coil structure for revolving-field electrical machine and method of manufacturing same
GB2394926B (en) * 2001-08-22 2005-03-23 Albert Hartman Mobile electrical power source
EP1492216A4 (en) 2002-03-29 2011-03-23 Panasonic Corp ENGINE
CN100411279C (zh) * 2002-07-22 2008-08-13 日本精工株式会社 3相永磁铁电动机
JP4468740B2 (ja) 2003-06-13 2010-05-26 パナソニック株式会社 モータ
EP1487089A3 (en) 2003-06-13 2005-04-27 Matsushita Electronics Corporation Permanent magnet motor
JP4783012B2 (ja) * 2004-12-28 2011-09-28 日立オートモティブシステムズ株式会社 電動パワーステアリング用モータ及びその製造方法
JP2007259541A (ja) 2006-03-22 2007-10-04 Mitsubishi Electric Corp 永久磁石式電動機
CN101056024B (zh) * 2007-03-13 2010-05-19 沈阳工业大学 基于移相技术的双转子永磁环形力矩电机
TW200847584A (en) * 2007-05-25 2008-12-01 Azure Shine Int Inc Brushless permanent magnet motor with unequal width tooth slots and its manufacturing method
US10277099B2 (en) * 2013-09-02 2019-04-30 Mitsubishi Electric Corporation Synchronous motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422107U (ja) * 1977-07-18 1979-02-14
JPS62110468A (ja) 1985-11-08 1987-05-21 Hitachi Ltd 永久磁石界磁形ブラシレスモ−タ
JPS63144749A (ja) * 1986-12-05 1988-06-16 Nippon Fueroo Furuideikusu Kk モ−タ
JP2004215479A (ja) * 2002-03-29 2004-07-29 Matsushita Electric Ind Co Ltd モータ
JP2004304928A (ja) * 2003-03-31 2004-10-28 Mitsuba Corp ブラシレスモータ

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016203579A1 (ja) * 2015-06-17 2016-12-22 三菱電機株式会社 永久磁石同期電動機
WO2016203578A1 (ja) * 2015-06-17 2016-12-22 三菱電機株式会社 永久磁石同期電動機
JPWO2016203579A1 (ja) * 2015-06-17 2017-08-31 三菱電機株式会社 固定子コア、永久磁石同期電動機及び空気調和機
JPWO2016203578A1 (ja) * 2015-06-17 2017-10-05 三菱電機株式会社 固定子コア、永久磁石同期電動機及び空気調和機
US10432040B2 (en) 2015-06-17 2019-10-01 Mitsubishi Electric Corporation Permanent magnet synchronous motor
US10468921B2 (en) 2015-06-17 2019-11-05 Mitsubishi Electric Corporation Permanent magnet synchronous motor
WO2022091332A1 (ja) * 2020-10-30 2022-05-05 三菱電機株式会社 電動機、ファン、及び空気調和機
JP7321393B2 (ja) 2020-10-30 2023-08-04 三菱電機株式会社 電動機、ファン、及び空気調和機

Also Published As

Publication number Publication date
EP3043448A1 (en) 2016-07-13
EP3043448A4 (en) 2017-05-10
JPWO2015029256A1 (ja) 2017-03-02
US10277099B2 (en) 2019-04-30
CN105474512B (zh) 2018-02-13
CN204179905U (zh) 2015-02-25
EP3043448B1 (en) 2020-02-12
US20160172949A1 (en) 2016-06-16
CN105474512A (zh) 2016-04-06
JP6161707B2 (ja) 2017-07-12

Similar Documents

Publication Publication Date Title
JP6161707B2 (ja) 同期電動機
US7569962B2 (en) Multi-phase brushless motor with reduced number of stator poles
JP5778498B2 (ja) ステータ及びモータ
US10110076B2 (en) Single-phase brushless motor
US9041269B2 (en) Motor
US10141821B2 (en) Motor and rotor
KR101255951B1 (ko) 횡방향 스위치드 릴럭턴스 모터
US9484774B2 (en) Single phase brushless motor
JP6589624B2 (ja) モータ
US20080296992A1 (en) Electrical Drive Machine
JP2012228104A (ja) 永久磁石埋込型電動機
JP2008306849A (ja) 回転電機
JP6212117B2 (ja) 同期電動機
JPWO2020021788A1 (ja) 回転電機
JPWO2019008848A1 (ja) 回転電機および直動電動機
US20080290754A1 (en) AC Motor
JP2008312318A (ja) 回転電機の回転子及び回転電機
JP2014180193A (ja) 高い応答性を有する同期電動機
JP2005094901A (ja) ブラシレスモータ
JP2011087382A (ja) モータ
JP2017063594A (ja) ブラシレスモータ
JP6012046B2 (ja) ブラシレスモータ
JP2006025486A (ja) 回転電機
JP2018125993A (ja) 回転電機
JP5751903B2 (ja) マグネットヨーク及び直流電動機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380078992.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892440

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015533923

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14909998

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013892440

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013892440

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201601475

Country of ref document: ID