WO2016203579A1 - 永久磁石同期電動機 - Google Patents

永久磁石同期電動機 Download PDF

Info

Publication number
WO2016203579A1
WO2016203579A1 PCT/JP2015/067472 JP2015067472W WO2016203579A1 WO 2016203579 A1 WO2016203579 A1 WO 2016203579A1 JP 2015067472 W JP2015067472 W JP 2015067472W WO 2016203579 A1 WO2016203579 A1 WO 2016203579A1
Authority
WO
WIPO (PCT)
Prior art keywords
tooth
width
coil
teeth
phase
Prior art date
Application number
PCT/JP2015/067472
Other languages
English (en)
French (fr)
Inventor
松岡 篤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US15/554,879 priority Critical patent/US10432040B2/en
Priority to JP2017524209A priority patent/JP6391828B2/ja
Priority to CN201580079292.5A priority patent/CN107534328B/zh
Priority to PCT/JP2015/067472 priority patent/WO2016203579A1/ja
Publication of WO2016203579A1 publication Critical patent/WO2016203579A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a permanent magnet synchronous motor that rotates a rotor using a magnetic field generated by a permanent magnet provided in the rotor and a magnetic field generated by a current flowing in a coil wound around the stator.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a permanent magnet synchronous motor that further improves motor efficiency.
  • a 10-pole 9-slot permanent magnet synchronous motor is arranged with an annular yoke and spaced apart in the circumferential direction of the yoke inside the yoke.
  • Each of the teeth includes three tooth groups, and each of the three teeth groups is wound with an in-phase coil, and each of the three teeth groups is arranged in the order of rotation of the rotor.
  • the width of the portion of the third tooth is narrower than the width of the portion of the first tooth.
  • the permanent magnet synchronous motor according to the present invention has an effect that the motor efficiency can be further improved.
  • FIG. 1 is a cross-sectional view of a permanent magnet synchronous motor according to Embodiment 1 of the present invention.
  • the principal part enlarged view of the permanent-magnet synchronous motor which concerns on Embodiment 1 of this invention The figure which shows the waveform of the induced voltage which generate
  • the permanent magnet synchronous motor which concerns on Embodiment 2 of this invention WHEREIN: The figure which shows the result of having calculated
  • FIG. 1 is a cross-sectional view of a permanent magnet synchronous motor according to Embodiment 1 of the present invention.
  • the permanent magnet synchronous motor 100 includes a stator core 10 having an annular yoke 1a, and nine teeth 1b arranged in the yoke 1a and spaced apart in the circumferential direction of the yoke 1a. And a rotor 2 disposed inside.
  • the rotor 2 includes an annular rotor core 2a formed by laminating electromagnetic steel plates and fixed to the shaft 3, and ten permanent magnets 2b disposed on the outer periphery of the rotor core 2a.
  • the ten permanent magnets 2b are alternately arranged in the rotation direction so that the polarities of the adjacent permanent magnets 2b are different from each other, and form a 5-pole pair of an N pole and an S pole. “Rotational direction” refers to the direction in which the rotor 2 rotates.
  • Each of the plurality of permanent magnets 2b is a rare earth magnet or a ferrite magnet.
  • the stator 1 includes an annular yoke 1a, nine teeth 1b that are disposed radially inside the yoke 1a, are spaced apart in the rotational direction, and extend toward the center of the yoke 1a, and each of the nine teeth 1b. And a coil wound around.
  • the yoke 1a and the nine teeth 1b constituting the stator 1 are configured by laminating a plurality of core pieces punched from a magnetic steel sheet base material. Since each of the nine teeth 1b is arranged at equal intervals in the rotation direction, the mechanical angle formed by each of the two adjacent teeth 1b around the axis A of the stator 1 is 40 °. In this way, a plurality of sets of three adjacent teeth 1b around which coils of the same phase are wound next to each other are arranged on the yoke 1a.
  • Each of the nine teeth 1b extends from the inner peripheral surface of the yoke 1a toward the center of the stator 1 and is formed at a winding portion 1b1 that is a portion where the coil is wound in concentrated winding, and at the tip of the teeth 1b. It is composed of a brim-shaped or umbrella-shaped tip 1b2 projecting from the line 1b1 to both sides in the rotational direction.
  • Winding portion 1b1 has a constant width in a direction orthogonal to the radial direction of stator 1.
  • the distal end portion 1b2 has a symmetrical shape in the rotation direction.
  • the tip portion 1b2 By making the tip portion 1b2 into a collar shape or an umbrella shape, the magnetic force of the permanent magnet 2b of the rotor 2 is effectively linked to the teeth 1b, and the torque can be improved.
  • the widths in the rotational direction of the tip portions 1b2 of the three adjacent teeth 1b around which the coils of the same phase are wound are the same.
  • the width in the rotation direction of the tip portion 1b2 is referred to as “tip width”.
  • the teeth 1b arranged on the front side of the three teeth groups with respect to the rotation direction of the rotor 2 are referred to as “first teeth”.
  • the teeth 1b arranged on the heel side of the first teeth with respect to the rotation direction of the rotor 2 are referred to as “second teeth”, and the heel side of the second teeth with respect to the rotation direction of the rotor 2 Teeth 1b arranged in the above are referred to as “third teeth”.
  • the stator 1 has a slot 5 formed in a portion surrounded by two adjacent teeth 1b, and nine slots 5 are provided.
  • the relationship between the number of magnetic poles and the number of slots is 10 poles and 9 slots, and coils forming three phases are applied to nine teeth 1b in concentrated winding. It is assumed that each of these coils is wound around winding portions 1b1 of three teeth 1b adjacent to each other in the U-phase, V-phase, and W-phase.
  • each of the three coils 6U1, 6U2, and 6U3 constituting the U phase is wound around each winding portion 1b1 of the three adjacent teeth 1b.
  • the winding direction of the coil 6U2 is opposite to the winding direction of the coil 6U1
  • the winding direction of the coil 6U3 is opposite to the winding direction of the coil 6U2.
  • Each of the three coils 6V1, 6V2, and 6V3 constituting the V phase is wound around the winding portions 1b1 of the three adjacent teeth 1b.
  • the winding direction of the coil 6V2 is opposite to the winding direction of the coil 6V1
  • the winding direction of the coil 6V3 is opposite to the winding direction of the coil 6V2.
  • Each of the three coils 6W1, 6W2, and 6W3 constituting the W phase is wound around the winding portions 1b1 of the three adjacent teeth 1b.
  • the winding direction of the coil 6W2 is opposite to the winding direction of the coil 6W1
  • the winding direction of the coil 6W3 is opposite to the winding direction of the coil 6W2.
  • FIG. 2 is an enlarged view of a main part of the permanent magnet synchronous motor according to Embodiment 1 of the present invention.
  • FIG. 2 shows a set of three coils 6U1, 6U2 and 6U3 constituting the U phase.
  • the rotor 2 is rotating counterclockwise.
  • the teeth on the front side with respect to the rotation direction of the rotor 2 are referred to as “first teeth”.
  • the heel side teeth of the first tooth 1bU1 are referred to as “second teeth”
  • the heel side teeth of the second teeth 1bU2 are referred to as “third teeth”.
  • the width W1 of the winding portion 1b1 of the first tooth 1bU1 is formed wider than the width W2 of the winding portion 1b1 of the second tooth 1bU2. ing. Further, the width W1 of the winding portion 1b1 of the first tooth 1bU1 is formed wider than the width W3 of the winding portion 1b1 of the third tooth 1bU3.
  • the widths of the winding portions 1b1 of the three adjacent teeth around which the coil 6V1, the coil 6V2, and the coil 6V3 shown in FIG. 1 are wound have the same relationship, and the coil 6W1, the coil 6W2, and the coil 6W3 are wound.
  • the widths of the winding portions 1b1 of the three adjacent teeth also have the same relationship.
  • Each of the widths of the winding portion 1b1 represents the width of the winding portion 1b1 in the rotation direction.
  • the phase difference between the combined induced voltage in the in-phase and the induced voltage generated in each of a pair of coils constituting the in-phase will be described.
  • the mechanical angle formed by each of the two adjacent teeth around the axis A of the stator 1 is 40 °.
  • a mechanical angle of 40 ° is equal to 360 ° divided by 9 which is the number of slots.
  • the coil wound around each of the three adjacent teeth is wound in the same direction, when the rotor 2 having 10 poles rotates, the induced voltage generated in each coil is A phase difference of 200 ° is generated.
  • An electrical angle of 200 ° is equal to a mechanical angle of 40 ° multiplied by a 5-pole pair.
  • the phase of the induced voltage generated in the coil 6U2 by passing the second magnet 1bU2 of the plurality of magnetic poles through the permanent magnet 2b indicated by the symbol B is the permanent magnet indicated by the symbol B.
  • the phase of the induced voltage generated in the coil 6U1 is delayed by 200 ° in electrical angle.
  • the value of the induced voltage is reversed between positive and negative. Therefore, the phase of the induced voltage generated in the coil 6U1 when the permanent magnet 2b indicated by the symbol B passes through the first tooth 1bU1 is changed by the permanent magnet 2b indicated by the symbol B passing through the second tooth 1bU2.
  • the electrical angle is delayed by 20 ° with respect to the phase of the induced voltage generated in 6U2. That is, the phase difference of the induced voltage is 20 ° in electrical angle. This value is equal to 200 ° minus 180 °.
  • the phase difference of induced voltages generated in each of a pair of coils constituting the same phase is a close value, and these are treated as windings of the same phase.
  • FIG. 3 is a diagram showing a waveform of an induced voltage generated in each of a pair of coils constituting the U phase and a waveform of a combined induced voltage obtained by synthesizing these induced voltages.
  • phase of the U-phase combined induction voltage matches the phase of the phase current that is passed through the coil 6U1, the coil 6U2, and the coil 6U3.
  • the phase of the induced voltage generated in the coil 6U1 is advanced by 20 ° in electrical angle with respect to the U-phase combined induced voltage, and the phase of the induced voltage generated in the coil 6U2 is the same phase as the U-phase combined induced voltage,
  • the phase of the induced voltage generated in the coil 6U3 is delayed by 20 ° in electrical angle with respect to the U-phase combined induced voltage.
  • the iron loss generated in the stator core tends to increase as the magnetic flux density of the stator core increases.
  • the stator coil is energized to generate output torque in the permanent magnet synchronous motor, the magnetic flux generated from the coil is added to the magnetic flux generated from the permanent magnet, so that the magnetic flux density of the stator core is increased and the iron loss is increased.
  • the magnetic flux generated from the coil acts in the direction of increasing the magnetic flux density in the iron core, and if the current is in the leading phase with respect to the induced voltage, the magnetic flux generated from the coil. Acts in the direction of weakening the magnetic flux density in the iron core. Therefore, when the phase of the current is delayed with respect to the induced voltage, the iron loss tends to increase. When the phase of the current proceeds with respect to the induced voltage, the iron loss tends to decrease.
  • the phase current phase advance and delay occur simultaneously. Therefore, when the rotor 2 rotates as shown in FIG. 2, the iron loss generated in the first tooth 1bU1 is larger than the iron loss generated in the second tooth 1bU2. Moreover, the iron loss which generate
  • the inventor of the present application pays attention to the difference in iron loss generated in each of the three adjacent teeth around which the in-phase coil is wound, and the adjacent three in which the in-phase coil is wound with respect to the rotation direction of the rotor 2.
  • FIG. 4 is a diagram showing a result of comparing and comparing the iron loss generated in each of the three adjacent teeth wound with the in-phase coil by the electromagnetic field analysis in the permanent magnet synchronous motor according to Embodiment 1 of the present invention. is there.
  • the horizontal axis represents the output torque of the permanent magnet synchronous motor 100 that is generated when a current in accordance with the phase of the induced voltage of the phase is applied to the coil.
  • the iron loss ratio on the vertical axis indicates the third tooth winding portion 1b1 and the third tooth loss relative to the iron loss generated in the second tooth winding portion 1b1 among the three adjacent teeth wound with the in-phase coil.
  • winding part 1b1 of this tooth is represented.
  • the iron loss ratio of (1) is the ratio of the iron loss that occurs in the winding portion 1b1 of the first tooth to the iron loss that occurs in the winding portion 1b1 of the second tooth.
  • the iron loss ratio of (2) is a ratio of the iron loss generated in the winding portion 1b1 of the second tooth to the iron loss generated in the second tooth at the time of no-load rotation, for example.
  • the iron loss ratio of (3) is the ratio of the iron loss that occurs in the winding portion 1b1 of the third tooth to the iron loss that occurs in the winding portion 1b1 of the second tooth.
  • the iron loss generated in the iron core material is assumed to increase in proportion to the 1.6th power of the magnetic flux density in the case of hysteresis loss. Therefore, when the magnetic path is narrowed by reducing the radial width of the yoke portion 1a1, the width of the winding portion 1b1, and the radial width of the tip portion 1b2 by the same dimension, the portion with the lowest magnetic flux density is selected, By narrowing the magnetic path, an increase in iron loss can be minimized.
  • the core portion with the lowest increase in magnetic flux density is the winding portion 1b1 among the yoke portion 1a1, the winding portion 1b1, and the tip portion 1b2.
  • the width of the winding portion 1b1 of the third tooth is the winding portion of the second tooth.
  • the width of the winding portion 1b1 of the second tooth is narrower than the width of the winding portion 1b1 of the first tooth.
  • the reason why the winding portion 1b1 of the third tooth is the narrowest is that, as described above, of the three adjacent teeth around which the coil of the same phase is wound, it is located on the back side with respect to the rotation direction of the rotor 2.
  • the iron loss generated in the third tooth is smaller than the iron loss generated in each of the second tooth and the first tooth in the rotation direction of the rotor 2. Therefore, in the permanent magnet synchronous motor according to the first embodiment, the circumferential length of the coil wound around the winding portion 1b1 of the third tooth is reduced to the winding portion 1b1 of the second tooth while suppressing an increase in iron loss. It is possible to make the coil shorter than the coil wound and shorter than the coil wound around the winding portion 1b1 of the first tooth.
  • the width of the winding part 1b1 of each of the three adjacent teeth around which the in-phase coil is wound is sequentially reduced with respect to the rotation direction of the rotor 2. That is, as shown in FIG. 2, the width of the winding portion 1b1 of the second tooth 1bU2 is narrower than the width of the winding portion 1b1 of the first tooth 1bU1, and the winding portion 1b1 of the third tooth 1bU3 The width is narrower than the width of the winding portion 1b1 of the second tooth 1bU2.
  • the iron loss generated in each of the three adjacent teeth around which the in-phase coil is wound gradually decreases with respect to the rotation direction of the rotor 2.
  • the widths of the winding portions 1b1 of the three adjacent teeth around which the coils having the same phase are wound are sequentially reduced with respect to the rotation direction of the rotor 2.
  • the present invention is not limited to this.
  • the width of the winding portion 1b1 of the second tooth may be wider than the width of the winding portion 1b1 of the first tooth. Even in such a configuration, if the widths of the tips 1b2 of the three teeth are the same, the efficiency of the motor can be improved without impairing the feature of the 10 pole 9 slot that can reduce the cogging torque. it can.
  • FIG. FIG. 5 is an enlarged view of a main part of the permanent magnet synchronous motor according to Embodiment 2 of the present invention.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only different parts are described.
  • the tip width of the second tooth is the tip width of each of the first tooth and the third tooth. Narrower than that.
  • the tip width of the third tooth is narrower than the tip width of the first tooth.
  • the tip width of the second tooth 1bU2 is 36 °.
  • the tip width of the second tooth 1bU2 is defined as follows. That is, the tip width of the second tooth 1bU2 is from the center of the slot opening 1c1 between the right circumferential end 1b21 of the second tooth 1bU2 and the left circumferential end 1b22 of the first tooth 1bU1. It is defined by the width to the center of the slot opening 1c2 between the left circumferential end 1b22 of the second tooth 1bU2 and the right circumferential end 1b21 of the third tooth 1bU3.
  • the width of the winding portion 1b1 of the second tooth is formed narrower than the width of the winding portion 1b1 of the first tooth, and the width of the winding portion 1b1 of the second tooth is set.
  • the third tooth winding portion 1b1 is formed to be narrower than the width thereof.
  • the widths of the winding portions 1b1 of the three adjacent teeth around which the coils of the same phase are wound are narrowed in the order of W1, W3, and W2, but the widths W2 and W3 are equal.
  • FIG. 6 is a diagram illustrating a result of comparing and comparing the iron loss generated in each of the three adjacent teeth around which the coils of the same phase are wound in the permanent magnet synchronous motor according to Embodiment 2 of the present invention by electromagnetic field analysis. is there.
  • the horizontal axis represents the output torque of the permanent magnet synchronous motor 100A that is generated when a current in accordance with the phase of the induced voltage of the phase is applied to the coil.
  • the iron loss ratio on the vertical axis indicates the third tooth winding portion 1b1 and the third tooth loss relative to the iron loss generated in the second tooth winding portion 1b1 among the three adjacent teeth wound with the in-phase coil.
  • winding part 1b1 of this tooth is represented.
  • the tip widths of the three adjacent teeth around which the coils having the same phase are wound are the same.
  • the leading end width of the second tooth is formed to be narrower than the leading end widths of the first tooth and the third tooth. Therefore, in the second embodiment, the iron loss generated in the winding portion 1b1 of the first tooth is the largest as compared with the case where the tip widths of the three adjacent teeth around which the in-phase coil is wound are the same.
  • the iron loss generated in the winding portion of the second tooth and the iron loss generated in the winding portion of the third heel side tooth have the same value.
  • the width of the winding portion 1b1 of the second tooth is made smaller than the width of the winding portion 1b1 of the third tooth, or the width of the winding portion 1b1 of the second tooth
  • the tip width of the second tooth is 36 °
  • the tip width of the second tooth is equal to 36 °, which is the width in the rotation direction of each of the plurality of magnetic poles formed on the rotor. Therefore, when the tip width of the second tooth is set to 36 °, the amount of magnetic flux interlinked with the coil wound around the second tooth is the largest.
  • the phase of the induced voltage generated in the second tooth among the three adjacent teeth around which the in-phase coil is wound coincides with the phase of the induced voltage of the phase. For this reason, when a current in accordance with the phase of the induced voltage of the phase is applied to the coil, the second tooth outputs the most torque among the three adjacent teeth around which the in-phase coil is wound.
  • the tip width of the second tooth is larger than the tip width of each of the first tooth and the third tooth. Narrow synchronous motors can be said to be more efficient and more efficient.
  • FIG. 7 is a diagram showing an induced voltage ratio when the rotational direction width of the tip portion of the second tooth is changed among the three adjacent teeth around which the in-phase coil is wound.
  • the horizontal axis represents the tip width of the second tooth.
  • the vertical axis represents the ratio of the induced voltage based on the combined induced voltage of the same phase when the tip width of the second tooth is 32 °. As shown in FIG. 7, when the tip width of the second tooth is 36 °, it can be seen that the combined induction voltage in the same phase has the largest value.
  • the tip width of the second tooth is set to 36 °
  • the balance of the iron loss generated in each of the winding portions 1b1 of the three adjacent teeth around which the in-phase coil is wound is as follows. This is different from the case where the tip widths of the three teeth are the same.
  • the second teeth are reduced as the tip width of the second teeth is reduced.
  • the width of the winding portion 1b1 is also narrowed.
  • the winding portion 1b1 of the third tooth among the three adjacent teeth around which the coils of the same phase are wound. Is made narrower than the width of the winding portion 1b1 of the first tooth, so that the copper loss corresponding to the shortening of the circumference of the coil is reduced, the motor efficiency is improved, and the manufacturing cost is reduced. Reduction can be achieved and the permanent magnet synchronous motor 100A can be reduced in weight.
  • the surface permanent magnet (SPM) type rotor 2 in which the permanent magnet 2b is arranged on the outer periphery of the rotor core 2a is used.
  • the permanent magnet is used for the rotor core 2a.
  • a permanent magnet embedded (IPM) type rotor 2 embedded with 2b may be used.
  • the permanent magnet is fixed to the rotor core by inserting the permanent magnet into the magnet insertion hole formed in the rotor core by press-fitting or applying an adhesive.
  • the rotor core 2a is not limited to a laminate of electromagnetic steel plates, but is an integrated core obtained by processing a steel material, a resin core obtained by solidifying a mixture of resin and iron powder, or a compacted powder obtained by press-molding magnetic powder.
  • a core may be used, and the type of core is properly selected depending on the purpose and application.
  • the permanent magnet synchronous motor includes a stator core having an annular yoke and a plurality of teeth, a rotor disposed inside the stator core, and Each of the plurality of teeth has a winding portion around which a coil is wound, each of the plurality of teeth includes three teeth groups, and each of the three teeth groups includes three adjacent coils around which coils of the same phase are wound.
  • Each tooth group includes a first tooth, a second tooth, and a third tooth, and each of the three tooth groups includes a first tooth, a second tooth, and a third tooth that rotate the rotor.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • 1 Stator 1a yoke, 1a1 yoke part, 1b teeth, 1b1 winding part, 1b2 tip part, 1b21, 1b22 circumferential end part, 1bU1 first tooth, 1bU2 second tooth, 1bU3 third tooth, 1c1 , 1c2, slot opening, 2, rotor, 2a rotor core, 2b permanent magnet, 3 shaft, 4 gap, 5 slots, 6U1, 6U2, 6U3, 6V1, 6V2, 6V3, 6W1, 6W2, 6W3 coil, 10 stator Core, 100, 100A permanent magnet synchronous motor.

Abstract

10極9スロットの永久磁石同期電動機であって、環状のヨーク(1a)と複数のティース(1b)とを備えた固定子コア(10)を備え、複数のティース(1b)の各々は、コイルが巻かれる部分である巻線部(1b1)を有し、複数のティース(1b)は3つのティース群を含み、3つのティース群の各々は、同相のコイルが巻かれ、回転子の回転方向の順に配置された3つのティース群の各々の第1のティース、第2のティースおよび第3のティースを含み、3つのティース群の各々の第1のティース、第2のティース、および第3のティースは、回転子2の回転方向の順に配置され、第3のティースの巻線部(1b1)の幅は、第1のティースの巻線部(1b1)の回転方向幅よりも狭く構成されている。

Description

永久磁石同期電動機
 本発明は、回転子に設けられた永久磁石による磁界と固定子に巻かれたコイルに流れる電流による磁界とを利用して回転子を回転させる永久磁石同期電動機に関する。
 コイルが集中巻で巻かれる10極9スロットの永久磁石同期電動機では、同相のコイルが隣り合って巻かれる隣接した3つのティースを1つのティース群として、3つのティース群がヨークに配置される。特許文献1に示される従来の同期電動機では、同相のコイルが巻かれる隣接した3つのティースの内、中央のティースの回転子対向部の幅を、両側の2つのティースの各々の回転子対向部の幅よりも広げることにより、高効率化と高出力化を図っている。
特開2000-253602号公報
 10極9スロットの永久磁石同期電動機では、回転子の回転方向に対して、同相のコイルが巻かれる隣接した3つのティースの内、回転子の回転方向に対して、中央のティースの手前側に位置するティースで発生する鉄損は、回転子の回転方向に対して、中央のティースの奧側に位置するティースで発生する鉄損よりも小さくなる。すなわち、同相のコイルが巻かれる隣接した3つのティースでは鉄損が均一に発生していないことになる。このように10極9スロットの永久磁石同期電動機では同相のコイルが巻かれる隣接した3つのティースの各々に発生する鉄損に違いがある。ところが特許文献1に示される従来技術は、ティースの鉄損と形状に着目して電動機効率の更なる向上を図るものではない。
 本発明は、上記に鑑みてなされたものであって、電動機効率の更なる向上を図る永久磁石同期電動機を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る10極9スロットの永久磁石同期電動機は、環状のヨークと、前記ヨークの内側で前記ヨークの周方向に離間して配列される複数のティースと、を備えた固定子コアと、前記固定子コアの内側に配置される回転子と、を備え、前記複数のティースの各々は、コイルが巻かれる部分を有し、前記複数のティースは3つのティース群を含み、前記3つのティース群の各々は、同相のコイルが巻かれ、前記回転子の回転方向の順に配置された前記3つのティース群の各々の第1のティース、第2のティースおよび第3のティースを含み、前記第3のティースの前記部分の幅は、前記第1のティースの前記部分の幅よりも狭い。
 本発明に係る永久磁石同期電動機は、電動機効率の更なる向上を図ることができるという効果を奏する。
本発明の実施の形態1に係る永久磁石同期電動機の横断面図 本発明の実施の形態1に係る永久磁石同期電動機の要部拡大図 U相を構成する1組のコイルの各々に発生する誘起電圧の波形と、これらの誘起電圧を合成した合成誘起電圧の波形とを示す図 本発明の実施の形態1に係る永久磁石同期電動機において、同相のコイルが巻かれる隣接した3つのティースの各々に発生する鉄損を電磁界解析によって求めて比較した結果を示す図 本発明の実施の形態2に係る永久磁石同期電動機の要部拡大図 本発明の実施の形態2に係る永久磁石同期電動機において、同相のコイルが巻かれる隣接した3つのティースの各々に発生する鉄損を電磁界解析によって求めて比較した結果を示す図 同相のコイルが巻かれる隣接した3つのティースの内、中央のティースの先端部の回転方向幅を変化させたときの誘起電圧比を示す図
 以下に、本発明の実施の形態に係る永久磁石同期電動機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は本発明の実施の形態1に係る永久磁石同期電動機の横断面図である。永久磁石同期電動機100は、環状のヨーク1aと、ヨーク1aの内側でヨーク1aの周方向に離間して配列される9つのティース1bと、を備えた固定子コア10と、固定子コア10の内側に配置される回転子2とを備える。回転子2は、電磁鋼板を積層して成りシャフト3に固定された環状の回転子コア2aと、回転子コア2aの外周部に配置された10個の永久磁石2bとを備える。10個の永久磁石2bは、隣接する永久磁石2b同士の極性が異なるように回転方向に交互に配置され、N極とS極の5極対を形成する。「回転方向」とは回転子2の回転する方向をいう。複数の永久磁石2bの各々は、希土類磁石またはフェライト磁石である。
 固定子1は、環状のヨーク1aと、ヨーク1aの径方向内側に配置され、回転方向に離間して配置され、ヨーク1aの中心に向けて伸びる9つのティース1bと、9つのティース1bの各々に巻かれるコイルとで構成される。固定子1を構成するヨーク1aと9つのティース1bは、電磁鋼板母材から打ち抜かれた複数のコア片を積層して構成されたものである。9つのティース1bの各々は、回転方向に等間隔に配置されているため、固定子1の軸心Aを中心として隣接する2つのティース1bの各々が成す機械角は40°である。このようにしてヨーク1aには、同相のコイルが隣り合って巻かれる隣接した3つのティース1bの組が複数組配置される。
 9つのティース1bの各々は、ヨーク1aの内周面から固定子1の中心に向けて伸び、コイルが集中巻で巻かれる部分である巻線部1b1と、ティース1bの先端に形成され、巻線部1b1から回転方向両側に突出するつば状または傘状の先端部1b2とで構成されている。巻線部1b1は、固定子1の径方向と直交する方向における幅が一定である。先端部1b2は回転方向に対称な形状である。先端部1b2をつば状または傘状とすることで、回転子2の永久磁石2bの磁力を有効にティース1bに鎖交させ、トルクを向上可能な構造となっている。なお実施の形態1では同相のコイルが巻かれる隣接した3つのティース1bの各々の先端部1b2の回転方向幅が同一である。以下では先端部1b2の回転方向幅を「先端幅」と称する。また以下では、同相のコイルが巻かれる隣接した3つのティース1bの組の内、回転子2の回転方向に対して3つのティースの組の手前側に配置されるティース1bを「第1のティース」とし、回転子2の回転方向に対して第1のティースの奧側に配置されるティース1bを「第2のティース」とし、回転子2の回転方向に対して第2のティースの奧側に配置されるティース1bを「第3のティース」とする。
 固定子1には、隣接する2つのティース1bで囲まれる部分にスロット5が形成され、9つのスロット5が設けられている。永久磁石同期電動機100では、磁極数とスロット数との関係が10極9スロットとされ、9つのティース1bに3相を構成するコイルが集中巻で施されている。これらのコイルの各々は、U相、V相およびW相の内、同相のコイルが隣接する3つのティース1bの巻線部1b1に巻かれているものとする。
 具体的には、U相を構成する3つのコイル6U1、コイル6U2およびコイル6U3の各々は、隣接する3つのティース1bの各々の巻線部1b1に巻かれる。コイル6U2の巻線方向はコイル6U1の巻線方向とは逆向きであり、コイル6U3の巻線方向はコイル6U2の巻線方向とは逆向きである。
 V相を構成する3つのコイル6V1、コイル6V2およびコイル6V3の各々は、隣接する3つのティース1bの各々の巻線部1b1に巻かれる。コイル6V2の巻線方向はコイル6V1の巻線方向とは逆向きであり、コイル6V3の巻線方向はコイル6V2の巻線方向とは逆向きである。
 W相を構成する3つのコイル6W1、コイル6W2およびコイル6W3の各々は、隣接する3つのティース1bの各々の巻線部1b1に巻かれる。コイル6W2の巻線方向はコイル6W1の巻線方向とは逆向きであり、コイル6W3の巻線方向はコイル6W2の巻線方向とは逆向きである。
 図2は本発明の実施の形態1に係る永久磁石同期電動機の要部拡大図である。図2にはU相を構成する3つのコイル6U1、コイル6U2およびコイル6U3の組が示される。図2では回転子2が反時計回りに回転しているものとする。また図2では、コイル6U1、コイル6U2およびコイル6U3が巻かれる隣接した3つのティースの組の内、回転子2の回転方向に対して、手前側のティースを「第1のティース」とし、第1のティース1bU1の奧側のティースを「第2のティース」とし、第2のティース1bU2の奧側のティースを「第3のティース」とする。
 永久磁石同期電動機100において回転子2が回転すると、第1のティース1bU1に巻かれたコイル6U1に発生する誘起電圧と第2のティース1bU2に巻かれたコイル6U2に発生する誘起電圧との間には、位相差が生じる。この位相差に着目して実施の形態1に係る固定子1では、第1のティース1bU1の巻線部1b1の幅W1が第2のティース1bU2の巻線部1b1の幅W2よりも広く形成されている。また第1のティース1bU1の巻線部1b1の幅W1が第3のティース1bU3の巻線部1b1の幅W3よりも広く形成されている。図1に示すコイル6V1、コイル6V2およびコイル6V3が巻かれた隣接する3つのティースの各々の巻線部1b1の幅も同様の関係性を有し、コイル6W1、コイル6W2およびコイル6W3が巻かれた隣接する3つのティースの各々の巻線部1b1の幅も同様の関係性を有する。なお巻線部1b1の幅の各々は、巻線部1b1の回転方向の幅を表す。
 同相のコイルが巻かれる隣接した3つのティースの各々の巻線部1b1の幅が異なる理由を以下に説明する。
 まず、同相における合成誘起電圧と、同相を構成する1組のコイルの各々に発生する誘起電圧との位相差に関して説明する。各々のティースが回転方向に対して等間隔に配置される場合、固定子1の軸心Aを中心として隣接する2つのティースの各々が成す機械角は40°である。機械角40°は360°をスロットの数である9で除した値に等しい。隣接する3つのティースの各々に巻かれたコイルが同方向に巻かれている場合には、磁極数が10極の回転子2が回転したときに、個々のコイルに発生する誘起電圧には電気角200°の位相差が生じている。電気角200°は機械角40°に5極対を掛け合わせた値に等しい。
 回転子2が回転することにより、複数の磁極の内、符号Bで示す永久磁石2bが第2のティース1bU2を通過することでコイル6U2に発生する誘起電圧の位相は、符号Bで示す永久磁石2bが第1のティース1bU1を通過することでコイル6U1に発生する誘起電圧の位相に対して、電気角で200°遅れとなる。
 これに対して、コイル6U1とコイル6U2との一方の巻線方向を他方の巻線方向とは逆向きにした場合、誘起電圧の値は正負が反転する。従って、符号Bで示す永久磁石2bが第1のティース1bU1を通過することでコイル6U1に発生する誘起電圧の位相は、符号Bで示す永久磁石2bが第2のティース1bU2を通過することでコイル6U2に発生する誘起電圧の位相に対して、電気角で20°遅れとなる。すなわち誘起電圧の位相差は電気角で20°である。この値は200°から180°を減算した値に等しい。
 同様に、コイル6U2とコイル6U3との一方の巻線方向を他方の巻線方向とは逆向きにした場合、誘起電圧の値は正負が反転する。従って、符号Bで示す永久磁石2bが第3のティース1bU1を通過することでコイル6U1に発生する誘起電圧の位相は、符号Bで示す永久磁石2bが第2のティース1bU2を通過することでコイル6U2に発生する誘起電圧の位相に対して、電気角で20°遅れとなる。
 このように10極9スロットの永久磁石同期電動機100では、同相を構成する1組のコイルの各々に発生する誘起電圧の位相差が近い値となるため、これらを同相の巻線として扱っている。
 図3はU相を構成する1組のコイルの各々に発生する誘起電圧の波形と、これらの誘起電圧を合成した合成誘起電圧の波形とを示す図である。
 図3に示すU相合成誘起電圧の値は、例えば図2に示すコイル6U1に発生する誘起電圧とコイル6U2に発生する誘起電圧とコイル6U3に発生する誘起電圧とを合成した値に等しい。U相合成誘起電圧の位相は、コイル6U1、コイル6U2、およびコイル6U3に通電される相電流の位相と一致しているものとする。コイル6U1に発生する誘起電圧の位相は、U相合成誘起電圧に対して、電気角で20°の進みとなり、コイル6U2に発生する誘起電圧の位相は、U相合成誘起電圧と同位相となり、コイル6U3に発生する誘起電圧の位相は、U相合成誘起電圧に対して、電気角で20°の遅れとなる。
 永久磁石同期電動機においてトルクを発生させるには、各相に発生する誘起電圧に同期した正弦波状の電流を、対応する相のコイルに通電する必要がある。発生するトルクは、相の誘起電圧の位相とコイルに通電する電流の位相とによって変化し、永久磁石を回転子表面に配置する表面配置型の回転子を有する永久磁石同期電動機の場合、誘起電圧の位相とコイルに通電する電流の位相とが一致するときに同一電流で最も大きなトルクを発生させることができる。このとき、各ティースのコイルに発生する誘起電圧の位相と、通電される電流の位相の関係は以下の通りである。第1のティースのコイルに発生する誘起電圧に対しては遅れ位相の電流が流れ、第3のティースのコイルに発生する誘起電圧に対しては進み位相の電流が流れる。
 固定子鉄心に発生する鉄損は、固定子鉄心の磁束密度が高くなるに従って大きくなる傾向がある。永久磁石同期電動機に出力トルクを発生させるため固定子のコイルに通電すると、永久磁石から発生する磁束にコイルから発生する磁束が加わるため、固定子鉄心の磁束密度が高まり、鉄損が増加する。このとき、誘起電圧に対して電流が遅れ位相になると、コイルから発生する磁束は鉄心内の磁束密度を強める方向に作用し、誘起電圧に対して電流が進み位相となると、コイルから発生する磁束は鉄心内の磁束密度を弱める方向に作用する。そのため、誘起電圧に対して電流の位相が遅れると、鉄損は増加する傾向を示し、誘起電圧に対して電流の位相が進むと、鉄損は減少する傾向を示す。
 このように10極9スロットの永久磁石同期電動機の固定子鉄心では、相電流の位相の進みと遅れの現象が同時に生じている。そのため、図2に示すように回転子2が回転するとき、第1のティース1bU1で発生する鉄損は、第2のティース1bU2で発生する鉄損よりも大きくなる。また第3のティース1bU3で発生する鉄損は、第2のティース1bU2で発生する鉄損よりも小さくなる。すなわち、同相のコイルが巻かれる隣接した3つのティースの各々の鉄損は均一に発生していないことになる。
 本願の発明者は、同相のコイルが巻かれる隣接した3つのティースの各々に発生する鉄損の違いに着目し、回転子2の回転方向に対して、同相のコイルが巻かれる隣接した3つのティースの組の奥側のティースの巻線部1b1の幅を、同相のコイルが巻かれる隣接した3つのティースの組の手前側のティースの巻線部1b1の幅よりも狭くすることで、奧側のティースの巻線部1b1に巻かれるコイルの周長を短くし、相対的にコイルの銅損を低下させて電動機効率を向上させることができる永久磁石同期電動機100を導き出すに至った。
 図4は本発明の実施の形態1に係る永久磁石同期電動機において、同相のコイルが巻かれる隣接した3つのティースの各々に発生する鉄損を電磁界解析によって求めて比較した結果を示す図である。横軸は、相の誘起電圧の位相にあわせた電流をコイルに通電した際に発生する永久磁石同期電動機100の出力トルクを表す。縦軸の鉄損比は、同相のコイルが巻かれる隣接した3つのティースの内、第2のティースの巻線部1b1で発生する鉄損に対する、第1のティースの巻線部1b1と第3のティースの巻線部1b1の各々で発生する鉄損の割合を表す。
 図4では、同相のコイルが巻かれる隣接した3つのティースが同一形状であるものとする。すなわち同相のコイルが巻かれる隣接した3つのティースの各々は、巻線部1b1の幅が同一であり、先端幅が同一であるものとする。
 (1)の鉄損比は、第2のティースの巻線部1b1で生じる鉄損に対する、第1のティースの巻線部1b1で生じる鉄損の割合である。(2)の鉄損比は、例えば無負荷回転時の第2のティースに生じる鉄損に対する、第2のティースの巻線部1b1で生じる鉄損の割合である。(3)の鉄損比は、第2のティースの巻線部1b1で生じる鉄損に対する、第3のティースの巻線部1b1で生じる鉄損の割合である。
 図4に示すデータによれば、無負荷回転時、すなわちコイルに電流が通電されない状態では鉄損に差は無い。ところがコイルに通電して永久磁石同期電動機100の出力トルクが高まるに従い、(1),(2)の鉄損比は(3)の鉄損比よりも大きくなることが分かる。
 ここで鉄心の磁束密度は、鉄心中の磁路の断面積が縮小するに従って上昇するため、鉄心の磁束密度の上昇に従って鉄損も増加する。一般的に鉄心材料で発生する鉄損は、ヒステリシス損の場合、磁束密度の1.6乗に比例して増加するとされている。そのためヨーク部1a1の径方向幅と巻線部1b1の幅と先端部1b2の径方向幅とを各々同じ寸法だけ縮小して磁路を狭くする場合、磁束密度が最も低い部分を選択して、その磁路を狭くすることにより、鉄損の増加を最小限に抑えることができる。磁束密度の増加の度合いが最も低い鉄心部は、ヨーク部1a1と巻線部1b1と先端部1b2との内、巻線部1b1である。
 本実施の形態1の永久磁石同期電動機は、磁束密度の増加の度合いが最も低い巻線部1b1に着目し、第3のティースの巻線部1b1の幅が、第2のティースの巻線部1b1の幅より狭く形成され、また第2のティースの巻線部1b1の幅が、第1のティースの巻線部1b1の幅より狭く形成されている。第3のティースの巻線部1b1を最も狭くしている理由は、前述したように、同相のコイルが巻かれる隣接した3つのティースの内、回転子2の回転方向に対して奥側に位置する第3のティースで発生する鉄損は、回転子2の回転方向に対して、第2のティースと第1のティースの各々で発生する鉄損よりも小さくなるためである。従って、本実施の形態1の永久磁石同期電動機では、鉄損の増加を抑えながら、第3のティースの巻線部1b1に巻かれるコイルの周長を、第2のティースの巻線部1b1に巻かれるコイルよりも短くし、また第1のティースの巻線部1b1に巻かれるコイルよりも短くすることが可能となる。
 実施の形態1では、同相のコイルが巻かれる隣接した3つのティースの各々の巻線部1b1の幅が、回転子2の回転方向に対して順次狭くされている。すなわち、図2に示すように、第2のティース1bU2の巻線部1b1の幅は、第1のティース1bU1の巻線部1b1の幅よりも狭く、第3のティース1bU3の巻線部1b1の幅は、第2のティース1bU2の巻線部1b1の幅よりも狭い。前述したように同相のコイルが巻かれる隣接した3つのティースの各々に発生する鉄損は、回転子2の回転方向に対して順次小さくなる。そのため、実施の形態1のように回転子2の回転方向に鉄損の大きさを対応付けて、同相のコイルが巻かれる隣接した3つのティースの各々の巻線部1b1の幅を変えることにより、鉄損増加の影響を少なく抑えながらコイルの周長も短くでき、電動機効率の向上を図ることができる。またコイルの使用量が抑制され、製造コストの更なる低減を図ることができる。
 なお実施の形態1では、同相のコイルが巻かれる隣接した3つのティースの各々の巻線部1b1の幅は、回転子2の回転方向に対して順次小さくされているが、これに限定されず、同相のコイルが巻かれる隣接した3つのティースの内、第2のティースの巻線部1b1の幅が、第1のティースの巻線部1b1の幅よりも広くてもよい。このように構成した場合でも、3つのティースの各々の先端部1b2の幅が同一であれば、コギングトルクを小さくできるという10極9スロットの特徴を損なわずに、電動機効率の向上を図ることができる。
実施の形態2.
 図5は本発明の実施の形態2に係る永久磁石同期電動機の要部拡大図である。実施の形態2では、実施の形態1と同一部分に同一符号を付してその説明を省略し、異なる部分についてのみ述べる。実施の形態2に係る永久磁石同期電動機100Aでは、同相のコイルが巻かれる隣接した3つのティースの内、第2のティースの先端幅が、第1のティースおよび第3のティースの各々の先端幅よりも狭く形成されている。ただし、第3のティースの先端幅は、第1のティースの先端幅よりも狭いものとする。
 図5の例では、第2のティース1bU2の先端幅が36°となっている。第2のティース1bU2の先端幅は以下のように定義される。すなわち第2のティース1bU2の先端幅は、第2のティース1bU2の右側の周方向端部1b21と第1のティース1bU1の左側の周方向端部1b22との間のスロット開口部1c1の中心から、第2のティース1bU2の左側の周方向端部1b22と第3のティース1bU3の右側の周方向端部1b21との間のスロット開口部1c2の中心までの幅で定義される。
 また永久磁石同期電動機100Aでは、第2のティースの巻線部1b1の幅が、第1のティースの巻線部1b1の幅よりも狭く形成され、第2のティースの巻線部1b1の幅が、第3のティースの巻線部1b1の幅よりも狭く形成されている。図5の例では、同相のコイルが巻かれる隣接した3つのティースの各々の巻線部1b1の幅は、W1、W3、W2の順で狭く形成されているが、幅W2と幅W3は同等の大きさでもよい。
 図6は本発明の実施の形態2に係る永久磁石同期電動機において、同相のコイルが巻かれる隣接した3つのティースの各々に発生する鉄損を電磁界解析によって求めて比較した結果を示す図である。横軸は、相の誘起電圧の位相にあわせた電流をコイルに通電した際に発生する永久磁石同期電動機100Aの出力トルクを表す。縦軸の鉄損比は、同相のコイルが巻かれる隣接した3つのティースの内、第2のティースの巻線部1b1で発生する鉄損に対する、第1のティースの巻線部1b1と第3のティースの巻線部1b1の各々で発生する鉄損の割合を表す。
 図6では、同相のコイルが巻かれる隣接した3つのティースの各々の巻線部1b1の幅が同一であるものとし、第2のティースの先端幅が36°であるものとする。(1)から(3)の鉄損比は、図4に示す(1)から(3)の鉄損比に対応する。
 実施の形態1では同相のコイルが巻かれる隣接した3つのティースの各々の先端幅が同一であった。これに対して実施の形態2では、第2のティースの先端幅が、第1のティースと第3のティースの各々の先端幅よりも狭く形成されている。そのため、実施の形態2では、同相のコイルが巻かれる隣接した3つのティースの各々の先端幅が同一である場合に比べて、第1のティースの巻線部1b1に発生する鉄損が最も大きくなるが、第2のティースの巻線部で発生する鉄損と第3の奧側ティースの巻線部で発生する鉄損は同等の値となる。そのため実施の形態2では、第2のティースの巻線部1b1の幅を第3のティースの巻線部1b1の幅よりも狭くし、または、第2のティースの巻線部1b1の幅と第3のティースの巻線部1b1の各々の幅を同等の大きさにすることで、鉄損のバランスを取ることができる。
 第2のティースの先端幅が36°である場合、第2のティースの先端幅は、回転子に形成された複数の磁極の各々の回転方向幅である36°と等しくなる。そのため、第2のティースの先端幅を36°にした場合、第2のティースに巻かれたコイルに鎖交する磁束量は最も大きくなる。前述したように、同相のコイルが巻かれる隣接した3つのティースの内、第2のティースに発生する誘起電圧の位相は、相の誘起電圧の位相と一致している。そのため、相の誘起電圧の位相にあわせた電流をコイルに通電すると、第2のティースは、同相のコイルが巻かれる隣接した3つのティースの中で最もトルクを出力する。第2のティースに鎖交する磁束量を増加させることは、同期電動機の出力向上につながるため、第2のティースの先端幅が、第1のティースと第3のティースの各々の先端幅よりも狭い同期電動機は、より出力が大きく、効率が良いといえる。
 図7は同相のコイルが巻かれる隣接した3つのティースの内、第2のティースの先端部の回転方向幅を変化させたときの誘起電圧比を示す図である。横軸は、第2のティースの先端幅を表する。縦軸は、第2のティースの先端幅が32°である場合における同相の合成誘起電圧を基準とした誘起電圧の比率を表す。図7に示すように第2のティースの先端幅が36°の場合、同相における合成誘起電圧は最も大きな値となることが分かる。
 一方、実施の形態2では、第2のティースの先端幅を36°にしているため、同相のコイルが巻かれる隣接した3つのティースの各々の巻線部1b1に発生する鉄損のバランスが、3つのティースの先端幅が同一に構成されている場合とは異なる。実施の形態2では、同相のコイルが巻かれる隣接した3つのティースの各々の巻線部1b1に発生する鉄損のバランスを取るため、第2のティースの先端幅を狭めるに従って、第2のティースの巻線部1b1の幅も狭めている。このように第2のティースの巻線部1b1の幅を狭めることにより、より電動機効率を向上させることができる。
 また実施の形態2の永久磁石同期電動機100Aでは、実施の形態1の永久磁石同期電動機100と同様に、同相のコイルが巻かれる隣接した3つのティースの内、第3のティースの巻線部1b1の幅を、第1のティースの巻線部1b1の幅よりも狭くしているため、コイルの周長が短くなった分の銅損が低減され、電動機効率の向上を図ること、製造コストの低減を図ること、永久磁石同期電動機100Aの軽量化を図ることができる。
 なお実施の形態1,2では、永久磁石2bが回転子コア2aの外周部に配置された表面磁石(Surface Permanent Magnet:SPM)型の回転子2を用いたが、回転子コア2aに永久磁石2bを埋め込んだ永久磁石埋込(Interior Permanent Magnet:IPM)型の回転子2を用いてもよい。IPM型回転子の場合、回転子コアに形成された磁石挿入穴に永久磁石が圧入により挿入され、または接着剤が塗布されることにより、永久磁石が回転子コアに固定される。また回転子コア2aは、電磁鋼板を積層したものに限定されず、鋼材を加工した一体型コア、樹脂と鉄粉を混ぜたものを固めた樹脂コア、または磁性粉を加圧成形した圧粉コアでもよく、コアの種類は目的と用途によって使い分けられる。
 以上に説明したように本実施の形態1,2に係る永久磁石同期電動機は、環状のヨークと複数のティースとを備えた固定子コアと、固定子コアの内側に配置される回転子と、を備え、複数のティースの各々は、コイルが巻かれる巻線部を有し、複数のティースは3つのティース群を含み、3つのティース群の各々は、同相のコイルが巻かれる隣接した3つのティース群の各々の第1のティース、第2のティースおよび第3のティースを含み、3つのティース群の各々の第1のティース、第2のティース、および第3のティースは、回転子の回転方向の順に配置され、第3のティースの巻線部の幅は、第1のティースの各々の巻線部の幅よりも狭く構成されている。この構成により第3のティースの巻線部における鉄損の増加を相対的に抑えながら第3のティースの巻線部に巻かれるコイルの周長を短くすることができ、コイルの周長が短くなった分の銅損が低減され、電動機効率の向上を図ることができる。またコイルの使用量が抑制されるため、製造コストの低減を図ることができる。また、コイルの周長が短くなった分のコイルの重量も少なくなるため永久磁石同期電動機の軽量化を図ることが可能である。 
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 固定子、1a ヨーク、1a1 ヨーク部、1b ティース、1b1 巻線部、1b2 先端部、1b21,1b22 周方向端部、1bU1 第1のティース、1bU2 第2のティース、1bU3 第3のティース、1c1,1c2 スロット開口部、2 回転子、2a 回転子コア、2b 永久磁石、3 シャフト、4 隙間、5 スロット、6U1,6U2,6U3,6V1,6V2,6V3,6W1,6W2,6W3 コイル、10 固定子コア、100,100A 永久磁石同期電動機。

Claims (5)

  1.  環状のヨークと、前記ヨークの内側で前記ヨークの周方向に離間して配列される複数のティースと、を備えた固定子コアと、
     前記固定子コアの内側に配置される回転子と、
     を備え、
     前記複数のティースの各々は、コイルが巻かれる部分を有し、
     前記複数のティースは3つのティース群を含み、
     前記3つのティース群の各々は、同相のコイルが巻かれ、前記回転子の回転方向の順に配置された前記3つのティース群の各々の第1のティース、第2のティースおよび第3のティースを含み、
     前記第3のティースの前記部分の幅は、前記第1のティースの前記部分の幅よりも狭い10極9スロットの永久磁石同期電動機。
  2.  前記第3のティースの前記部分の幅は、前記第2のティースの前記部分の幅よりも狭く、
     前記第2のティースの前記部分の幅は、前記第1のティースの前記部分の幅よりも狭い請求項1に記載の永久磁石同期電動機。
  3.  前記第2のティースの先端部の幅は、前記第1のティースの先端部の幅よりも狭く、
     前記第2のティースの先端部の幅は、前記第3のティースの先端部の幅よりも狭い請求項1に記載の永久磁石同期電動機。
  4.  前記第2のティースと前記第1のティースとの間のスロット開口部から、前記第2のティースと前記第3のティースとの間のスロット開口部までの幅は、機械角で36°に形成されている請求項3に記載の永久磁石同期電動機。
  5.  前記第2のティースの前記部分の幅は、前記第1のティースの前記部分の幅よりも狭く、
     前記第2のティースの前記部分の幅は、前記第3のティースの前記部分の幅よりも狭い請求項3または4に記載の永久磁石同期電動機。
PCT/JP2015/067472 2015-06-17 2015-06-17 永久磁石同期電動機 WO2016203579A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/554,879 US10432040B2 (en) 2015-06-17 2015-06-17 Permanent magnet synchronous motor
JP2017524209A JP6391828B2 (ja) 2015-06-17 2015-06-17 固定子コア及び永久磁石同期電動機
CN201580079292.5A CN107534328B (zh) 2015-06-17 2015-06-17 定子芯、永磁体同步电动机以及空气调节器
PCT/JP2015/067472 WO2016203579A1 (ja) 2015-06-17 2015-06-17 永久磁石同期電動機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/067472 WO2016203579A1 (ja) 2015-06-17 2015-06-17 永久磁石同期電動機

Publications (1)

Publication Number Publication Date
WO2016203579A1 true WO2016203579A1 (ja) 2016-12-22

Family

ID=57545124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067472 WO2016203579A1 (ja) 2015-06-17 2015-06-17 永久磁石同期電動機

Country Status (4)

Country Link
US (1) US10432040B2 (ja)
JP (1) JP6391828B2 (ja)
CN (1) CN107534328B (ja)
WO (1) WO2016203579A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10622875B2 (en) * 2017-06-07 2020-04-14 GM Global Technology Operations LLC Interior permanent magnet electric machine
US11522427B2 (en) * 2020-08-28 2022-12-06 Emerson Electric Co. Single phase induction motors including aluminum windings and high permeability low coreloss steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144749A (ja) * 1986-12-05 1988-06-16 Nippon Fueroo Furuideikusu Kk モ−タ
JP2005102475A (ja) * 2003-06-13 2005-04-14 Matsushita Electric Ind Co Ltd モータ
WO2015029256A1 (ja) * 2013-09-02 2015-03-05 三菱電機株式会社 同期電動機

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088764B2 (ja) 1985-11-08 1996-01-29 株式会社日立製作所 永久磁石界磁形ブラシレスモ−タ
JP2640938B2 (ja) * 1986-03-19 1997-08-13 日本電産 株式会社 電動機
JPH0284042A (ja) 1989-07-13 1990-03-26 Nippon Ferrofluidics Kk モータ
JPH04285444A (ja) * 1991-03-12 1992-10-09 Fujitsu General Ltd 電動機の固定子鉄心
JP3604577B2 (ja) 1999-02-26 2004-12-22 三菱電機株式会社 直流モータ
DE19960602A1 (de) * 1999-12-16 2001-07-05 Bosch Gmbh Robert Elektronisch kommutierter Motor
EP1492216A4 (en) * 2002-03-29 2011-03-23 Panasonic Corp ENGINE
US20040251763A1 (en) * 2003-06-13 2004-12-16 Matsushita Electric Industrial Co., Ltd. Motor
JP2006320051A (ja) 2005-05-10 2006-11-24 Mitsuba Corp ブラシレスモータ
CN202395538U (zh) * 2011-12-23 2012-08-22 威灵(芜湖)电机制造有限公司 一种塑封电机的定子冲片
CN202524183U (zh) * 2012-03-16 2012-11-07 珠海格力电器股份有限公司 定子铁芯、定子及电机
WO2014115278A1 (ja) * 2013-01-24 2014-07-31 三菱電機株式会社 同期電動機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144749A (ja) * 1986-12-05 1988-06-16 Nippon Fueroo Furuideikusu Kk モ−タ
JP2005102475A (ja) * 2003-06-13 2005-04-14 Matsushita Electric Ind Co Ltd モータ
WO2015029256A1 (ja) * 2013-09-02 2015-03-05 三菱電機株式会社 同期電動機

Also Published As

Publication number Publication date
US10432040B2 (en) 2019-10-01
JPWO2016203579A1 (ja) 2017-08-31
US20180041077A1 (en) 2018-02-08
CN107534328A (zh) 2018-01-02
CN107534328B (zh) 2019-11-29
JP6391828B2 (ja) 2018-09-19

Similar Documents

Publication Publication Date Title
JP4926107B2 (ja) 回転電機
US8841807B2 (en) Rotary electric machine with improved magnetic resistance
JP4983022B2 (ja) モータ
US10277099B2 (en) Synchronous motor
CN108365717B (zh) 旋转电机
US20130207500A1 (en) Three-phase alternating current permanent magnet motor
US9780611B2 (en) Rotary electric machine using permanent magnet
JP5619046B2 (ja) 回転電機およびそれに用いられるステータの製造方法
JP2010226935A (ja) 永久磁石型回転電機
WO2019008848A1 (ja) 回転電機および直動電動機
JP2012115070A (ja) 回転電機
JP6391828B2 (ja) 固定子コア及び永久磁石同期電動機
JP2018082600A (ja) ダブルロータ型の回転電機
JP6391826B2 (ja) 固定子コア及び永久磁石同期電動機
JP6391827B2 (ja) 固定子コア及び永久磁石同期電動機
JP2008017541A (ja) モータ
JP2015162983A (ja) スイッチトリラクタンスモータ
WO2017047264A1 (ja) 回転電機およびステータ
JP2018148675A (ja) 回転電機のステータ
JP2013128378A (ja) 永久磁石式回転電機
JPWO2014115278A1 (ja) 同期電動機
JPS62230346A (ja) ブラシレスモ−タの巻線方法
JP7173676B2 (ja) 回転電機
JP5611094B2 (ja) 回転電機
JP6641520B2 (ja) 回転電機の制御装置、回転電機、および回転電機の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895600

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524209

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15554879

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15895600

Country of ref document: EP

Kind code of ref document: A1