WO2015029091A1 - 光送信装置、光受信装置、光通信装置、光通信システム、及びこれらの制御方法 - Google Patents

光送信装置、光受信装置、光通信装置、光通信システム、及びこれらの制御方法 Download PDF

Info

Publication number
WO2015029091A1
WO2015029091A1 PCT/JP2013/005153 JP2013005153W WO2015029091A1 WO 2015029091 A1 WO2015029091 A1 WO 2015029091A1 JP 2013005153 W JP2013005153 W JP 2013005153W WO 2015029091 A1 WO2015029091 A1 WO 2015029091A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
subcarrier
signal
reception
optical transmission
Prior art date
Application number
PCT/JP2013/005153
Other languages
English (en)
French (fr)
Inventor
義明 青野
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to MA38876A priority Critical patent/MA38876B1/fr
Priority to PCT/JP2013/005153 priority patent/WO2015029091A1/ja
Priority to JP2015533764A priority patent/JP6319314B2/ja
Priority to EP13892271.1A priority patent/EP3041156B1/en
Priority to RU2016111607A priority patent/RU2634847C2/ru
Priority to MX2016002233A priority patent/MX2016002233A/es
Priority to US14/915,216 priority patent/US10855377B2/en
Publication of WO2015029091A1 publication Critical patent/WO2015029091A1/ja
Priority to US17/061,381 priority patent/US11296793B2/en
Priority to US17/574,687 priority patent/US11637633B2/en
Priority to US18/116,641 priority patent/US11936431B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0238Wavelength allocation for communications one-to-many, e.g. multicasting wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0257Wavelength assignment algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0298Wavelength-division multiplex systems with sub-carrier multiplexing [SCM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing

Definitions

  • the present invention relates to an optical transmission device, an optical reception device, an optical communication device, an optical communication system, and control methods thereof.
  • wavelength division multiplex communication that multiplexes and transmits a plurality of optical signals of different wavelengths is widely used.
  • WDM Wavelength Division Multiplex
  • Patent Document 1 and Patent Document 2 disclose technologies related to optical communication using WDM.
  • Patent Document 1 discloses a technique related to an optical network device that can perform efficient network operation, management, and maintenance.
  • Patent Document 2 discloses a technique related to an optical transmission device that can reduce the influence of mutual mixing noise when an electrical signal including a plurality of subcarriers is transmitted by analog optical modulation.
  • the transmission capacity can be set to an intermediate value because a plurality of wavelengths are used in one channel band of WDM.
  • the inventor uses the remaining wavelengths for other transmission wavelengths when the transmission capacity is set to an intermediate value using a part of a plurality of wavelengths in one channel band for the transmission apparatus. It was discovered that resources can be allocated to transmission equipment.
  • an object of the present invention is to provide an optical transmission device, an optical reception device, an optical communication device, an optical communication system, and a control method thereof that can perform efficient resource allocation in an optical communication network.
  • An optical transmission apparatus includes a first transmission unit that transmits a first optical transmission signal, a second transmission unit that transmits a second optical transmission signal, the first optical transmission signal, and the When the second optical transmission signal shares a series of information, both the first optical transmission signal and the second optical transmission signal are output to the first path, and the first optical transmission signal and the An output unit that outputs either the first optical transmission signal or the second optical transmission signal to the second path when the second optical transmission signal does not share the series of information.
  • An optical receiver includes first and second receiving units that receive a subcarrier received signal, and the input first and second subcarrier received signals to the first and second subcarrier received signals.
  • a switching unit that outputs to the second receiving unit, and the switching unit, when the first and second subcarrier received signals share a series of information, the first and second subcarrier received signals The first subcarrier received signal to the first receiving unit and the second subcarrier received signal to the second receiving unit, respectively, and the first subcarrier received signal to the second receiving unit, When the first subcarrier received signal and the second subcarrier received signal do not share the series of information, the first and second subcarrier received signals are received via different paths, respectively. 1 Outputting subcarrier reception signal to the first receiving unit, and outputs the second sub-carrier received signal to the second receiver.
  • An optical communication apparatus includes a first transmission unit that transmits a first optical transmission signal, a second transmission unit that transmits a second optical transmission signal, the first optical transmission signal, and the When the second optical transmission signal shares a series of information, both the first optical transmission signal and the second optical transmission signal are output to the first path, and the first optical transmission signal and the An output unit that outputs one of the first optical transmission signal and the second optical transmission signal to a second path when the second optical transmission signal does not share the series of information; and subcarrier reception A first and a second receiving unit for receiving a signal, and a switching unit for outputting the input first and second subcarrier received signals to the first and second receiving units. And the switching unit includes the first subcarrier received signal and the second subcarrier.
  • the first subcarrier received signal is output to the first receiving unit, and the second subcarrier received signal is output to the second receiving unit, respectively.
  • the first subcarrier received signal is output to the second receiving unit.
  • An optical communication system is an optical communication system including an optical transmission device and first and second optical reception devices, wherein the optical transmission device transmits a first optical transmission signal.
  • the first transmission unit, the second transmission unit that transmits the second optical transmission signal, and the first optical transmission signal and the second optical transmission signal share a series of information
  • the first transmission unit When both the optical transmission signal and the second optical transmission signal are output to the first optical receiving device, and the first optical transmission signal and the second optical transmission signal do not share the series of information,
  • An output unit that outputs one of the first optical transmission signal and the second optical transmission signal to the second optical receiver.
  • An optical communication system includes an optical transmission device that transmits first and second optical transmission signals, first and second optical reception devices that receive the first and second optical transmission signals, A controller for controlling the optical transmission device, and the optical transmission device shares a series of information with the first optical transmission signal and the first optical transmission signal in response to an instruction from the controller.
  • a second optical transmission signal is output to the first optical reception device, and a second optical transmission signal that does not share a series of information with the first optical transmission signal is output to the second optical reception device.
  • An optical communication system is an optical communication system including first and second optical transmission devices and an optical reception device, wherein the optical reception device receives first and second subcarrier reception signals.
  • the first and second subcarrier reception signals share a series of information
  • the first and second subcarrier reception signals are received from the same optical transmission device, and the first subcarrier reception signal is received.
  • the second subcarrier received signal is output to the first receiving unit to the second receiving unit, respectively, and the first subcarrier received signal and the second subcarrier received signal are the series of information.
  • Receiving the first and second subcarrier received signals from different optical transmitters outputting the first subcarrier received signal to the first receiver, and receiving the second subcarrier received signal. Is output to the second receiver.
  • a controller is an optical communication system including an optical transmission device and first and second optical reception devices.
  • the first optical transmission signal and the first optical transmission are transmitted to the optical transmission device.
  • a second optical transmission signal sharing a series of information with a signal is output to the first optical receiver, and a second optical transmission signal not sharing a series of information with the first optical transmission signal is output to the second optical transmission signal. Output to the optical receiver.
  • An optical communication system control method is an optical communication system control method including an optical transmission device and first and second optical reception devices, wherein the optical transmission device is a first optical device.
  • a first transmission unit that transmits a transmission signal, a second transmission unit that transmits a second optical transmission signal, and the first optical transmission signal and the second optical transmission signal share a series of information.
  • the first optical transmission signal and the second optical transmission signal are output to the first optical reception device, and the first optical transmission signal and the second optical transmission signal are output in the series.
  • An output unit that outputs one of the first optical transmission signal and the second optical transmission signal to the second optical reception device when information is not shared, and a communication state of the optical communication system
  • the optical transmitter and the first and second optical receivers are controlled according to To.
  • a program according to the present invention is a program for controlling an optical communication system including an optical transmission device and first and second optical reception devices, wherein the optical transmission device transmits a first optical transmission signal.
  • the first transmission unit, the second transmission unit that transmits the second optical transmission signal, and the first optical transmission signal and the second optical transmission signal share a series of information, Both the first optical transmission signal and the second optical transmission signal are output to the first optical receiver, and the first optical transmission signal and the second optical transmission signal do not share the series of information.
  • An output unit that outputs one of the first optical transmission signal and the second optical transmission signal to the second optical reception device, and depending on a communication state of the optical communication system, Control the optical transmitter and the first and second optical receivers, respectively. Is a program for executing the processing to the computer.
  • An optical transmission method generates a first optical transmission signal, generates a second optical transmission signal, and the first optical transmission signal and the second optical transmission signal share a series of information.
  • the first optical transmission signal and the second optical transmission signal are output to a first path, and the first optical transmission signal and the second optical transmission signal output the series of information.
  • one of the first optical transmission signal and the second optical transmission signal is output to the second path.
  • the first and second subcarrier received signals share a series of information
  • the first and second subcarrier received signals are received via the same path.
  • the first subcarrier received signal is output to the first receiving unit
  • the second subcarrier received signal is output to the second receiving unit, respectively, and the first subcarrier received signal and the second subcarrier are output.
  • the received signal does not share the series of information
  • the first and second subcarrier received signals are received via different paths, and the first subcarrier received signal is received by the first receiving unit.
  • the second subcarrier reception signal is output to the second reception unit.
  • an optical transmission device an optical reception device, an optical communication device, an optical communication system, and a control method thereof that can implement efficient resource allocation in an optical communication network.
  • FIG. 1 is a block diagram showing an optical transmission apparatus according to a first exemplary embodiment; It is a figure which shows the optical communication system concerning a comparative example. It is a figure which shows the optical communication system concerning a comparative example. It is a figure for demonstrating the effect of this invention.
  • FIG. 3 is a block diagram of an optical transmission apparatus according to a second embodiment. It is a figure for demonstrating arrangement
  • FIG. 6 is a block diagram of an optical transmission apparatus according to a third embodiment. It is a figure which shows an example of a subcarrier (WDM). It is a figure which shows the other example of a subcarrier (OFDM modulation).
  • WDM subcarrier
  • OFDM modulation OFDM modulation
  • FIG. 9 is a block diagram of an optical transmission apparatus according to a fourth embodiment.
  • FIG. 9 is a block diagram of an optical transmission apparatus according to a fourth embodiment.
  • FIG. 9 is a block diagram of an optical transmission apparatus according to a fourth embodiment.
  • FIG. 10 is a block diagram of an optical receiving apparatus according to a fifth embodiment.
  • FIG. 10 is a block diagram of an optical receiving apparatus according to a sixth embodiment.
  • FIG. 10 is a block diagram of an optical receiver according to a seventh embodiment.
  • FIG. 10 is a block diagram of an optical receiving apparatus according to an eighth embodiment.
  • FIG. 10 is a block diagram of an optical receiving apparatus according to an eighth embodiment.
  • FIG. 10 is a block diagram of an optical receiving apparatus according to an eighth embodiment.
  • FIG. 10 is a block diagram of an optical receiving apparatus according to an eighth embodiment.
  • FIG. 10 is a block diagram of an optical receiving apparatus according to an eighth embodiment.
  • FIG. 10 is a block diagram of an optical receiving apparatus according to an eighth embodiment
  • FIG. 10 is a block diagram of an optical communication apparatus according to a ninth embodiment.
  • FIG. 10 is a block diagram of an optical communication system according to a tenth embodiment.
  • FIG. 10 is a block diagram showing an optical communication system according to an eleventh embodiment. It is a block diagram which shows the controller with which the optical communication system concerning Embodiment 11 is provided.
  • FIG. 20 is a block diagram illustrating a controller included in an optical communication system according to a twelfth embodiment.
  • FIG. 20 is a block diagram showing an optical communication system according to a thirteenth embodiment.
  • FIG. 18 is a block diagram showing an optical communication system according to a fourteenth embodiment.
  • FIG. 18 is a block diagram showing an optical communication system according to a fifteenth embodiment;
  • FIG. 1 is a block diagram of an optical transmission device 1_1 according to the first embodiment.
  • the optical transmission device 1_1 according to the present embodiment includes a first transmission unit 11_1, a second transmission unit 11_2, and an output unit 12.
  • the first and second transmission units may be referred to as subcarrier transmission units.
  • the first transmitter 11_1 transmits the first optical transmission signal 21_1.
  • the second transmitter 11_2 transmits the second optical transmission signal 21_2. That is, transmission data is supplied to each of the first transmission unit 11_1 and the second transmission unit 11_2, and the first transmission unit 11_1 and the second transmission unit 11_2 transmit the first transmission data.
  • An optical transmission signal 21_1 and a second optical transmission signal 21_2 are generated.
  • the first optical transmission signal 21_1 and the second optical transmission signal 21_2 are signals for transmitting transmission data using subcarriers.
  • the optical transmitter 1_1 uses a WDM technique for multiplexing and transmitting optical signals having different wavelengths. That is, the first optical transmission signal 21_1 and the second optical transmission signal 21_2 generated by the first transmission unit 11_1 and the second transmission unit 11_2 have different wavelengths.
  • the optical transmission apparatus it is possible to use a super-channel technique that assigns a plurality of wavelengths (subcarriers) to one channel band of WDM.
  • the wavelengths can be multiplexed with high density, and the transmission capacity can be increased.
  • the output unit 12 passes both the first optical transmission signal 21_1 and the second optical transmission signal 21_2 on the same path. (For example, the first path 26_1).
  • the output unit 12 either one of the first optical transmission signal 21_1 or the second optical transmission signal 21_2. Is output to the second path.
  • the output unit 12 outputs the first optical transmission signal 21_1 to the first path 26_1, The optical transmission signal 21_2 may be output to the second path 26_2.
  • the output unit 12 outputs the first optical transmission signal 21_1 to the second path 26_2.
  • the second optical transmission signal 21_2 may be output to the first path 26_1.
  • the output unit 12 outputs each of the first optical transmission signal 21_1 and the second optical transmission signal 21_2. Output to a different route.
  • the first transmission unit 11_1 and the second transmission unit 11_2 perform the first optical transmission. This is a case where predetermined transmission data is transmitted in parallel using the signal 21_1 and the second optical transmission signal 21_2.
  • the first transmission unit 11_1 and the second transmission unit 11_2 do not share a series of information
  • the first transmission unit 11_1 and the second transmission unit 11_2 are the first optical transmission signal.
  • predetermined transmission data is independently transmitted using 21_1 and the second optical transmission signal 21_2. That is, the first transmission unit 11_1 transmits predetermined first transmission data using the first optical transmission signal 21_1, and the second transmission unit 11_1 uses the second optical transmission signal 21_1 to perform predetermined first transmission data. This is a case of transmitting the second transmission data.
  • first optical transmission signal 21_1 and the second optical transmission signal 21_2 include independent transmission data
  • the first optical transmission signal 21_1 and the second optical transmission signal 21_2 are respectively separated from each other. It is possible to output to the route (first route 26_1, second route 26_2).
  • first path 26_1 is a path connected to a first optical receiver (not shown)
  • second path 26_2 is a path connected to a second optical receiver (not shown). is there.
  • the output unit 12 is used to switch the output destination of the first optical transmission signal 21_1 and the second optical transmission signal 21_2. Therefore, it is possible to provide an optical transmission apparatus that can implement efficient resource allocation. The reason will be described in detail below.
  • FIGS. 2 and 3 are diagrams showing an optical communication system according to a comparative example, and show an example of an optical communication system using the super channel technology.
  • the optical communication system shown in FIGS. 2 and 3 includes optical communication devices 101_a to 101_c.
  • the optical communication device 101_a includes a plurality of transmission / reception units 102_a and a single transmission / reception port 103_a.
  • the plurality of transmission / reception units 102_a are configured to be able to transmit and receive using different wavelengths (subcarriers).
  • the optical communication apparatus 101_a can assign a plurality of wavelengths (subcarriers) to a band of one channel of WDM.
  • Each transmitting / receiving unit 102_a is configured to be able to transmit / receive using each subcarrier.
  • the optical communication device 101_a and the optical communication device 101_b are configured to be connectable via the optical fiber 105
  • the optical communication device 101_a and the optical communication device 101_c are optical fibers.
  • the optical communication device 101_b and the optical communication device 101_c are configured to be connectable via the optical fiber 107.
  • the optical communication device 101_a and the optical communication device 101_b are connected via the optical fiber 105, and the optical communication device 101_a and the optical communication device 101_b communicate with each other with the maximum transmission capacity (100%). The case where it has gone is shown.
  • the transmission capacity can be set to an intermediate value because a plurality of wavelengths are used in one channel band of WDM. Therefore, for example, as shown in FIG. 3, the transmission capacity between the optical communication apparatus 101_a and the optical communication apparatus 101_b can be set to 50% of the maximum transmission capacity. However, in this case, an unused transmission / reception unit 108_a occurs among the transmission / reception units 102_a of the optical communication apparatus 101_a. Further, an unused transmission / reception unit 108_b is generated among the transmission / reception units 102_b of the optical communication apparatus 101_b.
  • each transmitting / receiving unit 102_a transmits and receives data in parallel.
  • the optical communication device 101_a is configured to transmit and receive an optical signal via a single port 103_a. Therefore, even when the unused transmission / reception unit 108_a among the transmission / reception units 102_a of the optical communication device 101_a occurs, the unused transmission / reception unit 108_a cannot be used for communication with the other optical communication device 101_c. There was a problem that wasted.
  • FIG. 4 is a diagram for explaining the effect of the present invention.
  • the effect of this invention is demonstrated using an optical communication apparatus (optical communication apparatus which can be transmitted / received) in FIG. 4, the effect of this invention can be acquired similarly in an optical transmitter and an optical receiver. .
  • the optical communication system shown in FIG. 4 includes optical communication devices 110_a to 110_c.
  • the optical communication device 110_a includes a plurality of transmission / reception units 111_a, a switching unit 112_a, and a plurality of transmission / reception ports 113_1a and 113_2a.
  • the plurality of transmission / reception units 111_a are configured to be able to transmit / receive using different subcarriers. That is, the optical communication device 110_a can allocate a plurality of wavelengths (subcarriers) in a WDM 1-channel band. The same applies to the optical communication device 110_b and the optical communication device 110_c.
  • the optical communication device 110_a includes a plurality of transmission / reception ports 113_1a and 113_2a, and each transmission / reception unit 111_a connected to the plurality of transmission / reception ports 113_1a and 113_2a can be switched using the switching unit 112_a. Therefore, even when an unused transmission / reception unit is generated among the plurality of transmission / reception units 111_a of the optical communication device 110_a, the unused transmission / reception unit can be allocated to communication with other optical communication devices.
  • the transmission / reception unit 102_a of the optical communication apparatus 101_a when the transmission capacity between the optical communication apparatus 101_a and the optical communication apparatus 101_b is set to 50% of the maximum transmission capacity, the transmission / reception unit 102_a of the optical communication apparatus 101_a Of these, unused transmission / reception units 108_a are generated, and resources are wasted.
  • an unused transmission / reception unit (corresponding to the transmission / reception unit 108_a in FIG. 3) of the optical communication device 111_a is connected to the transmission / reception port 113_2a using the switching unit 112_a. Unused transmission / reception units can be allocated to communication with the optical communication device 110_c. Therefore, efficient resource allocation can be implemented in the optical communication network.
  • the optical communication device 110_a and the optical communication device 110_b communicate via the transmission / reception port 113_1a of the optical communication device 110_a and the transmission / reception port 113_1b of the optical communication device 110_b.
  • the optical communication device 110_a and the optical communication device 110_c communicate via the transmission / reception port 113_2a of the optical communication device 110_a and the transmission / reception port 113_1c of the optical communication device 110_c.
  • the optical communication device 110_b and the optical communication device 110_c communicate via the transmission / reception port 113_2b of the optical communication device 110_b and the transmission / reception port 113_2c of the optical communication device 110_c.
  • FIG. 4 shows an example in which the transmission capacity between the optical communication apparatuses 110_a to 110_c is 50% of the maximum transmission capacity, but the transmission capacity between the optical communication apparatuses 110_a to 110_c is By using each of the switching units 112_a to 112_c and changing the number of transmission / reception units connected to the transmission / reception ports, the setting can be made flexibly.
  • FIG. 5 is a block diagram of an optical transmission device 1_2 according to the second embodiment.
  • the optical transmission device 1_2 according to the present embodiment includes a plurality of subcarrier transmission units 11_1 to 11_m, an output unit 12, and transmission ports 13_1 and 13_2.
  • Transmission data is supplied to each of the plurality of subcarrier transmission units 11_1 to 11_m.
  • the plurality of subcarrier transmission units (SCS_1 to SCS_m) 11_1 to 11_m generate optical transmission signals 21_1 to 21_m for transmitting transmission data, respectively.
  • m is an integer equal to or greater than 2, and corresponds to the number of subcarrier transmission units.
  • the optical transmission signals 21_1 to 21_m are signals for transmitting transmission data using subcarriers.
  • the subcarrier transmission unit 11_1 generates the optical transmission signal 21_1 using the subcarrier SC1 corresponding to the subcarrier transmission unit 11_1.
  • the subcarrier transmission unit 11_2 generates the optical transmission signal 21_2 using the subcarrier SC2 corresponding to the subcarrier transmission unit 11_2.
  • each of the subcarrier transmission units 11_1 to 11_m generates each of the optical transmission signals 21_1 to 21_m using each of the subcarriers SC1 to SCm corresponding to each of the subcarrier transmission units 11_1 to 11_m.
  • the respective optical transmission signals 21_1 to 21_m (in other words, the respective subcarriers SC1 to SCm used when generating the optical transmission signals 21_1 to 21_m) can be set using predetermined parameters.
  • the parameters of the optical transmission signals 21_1 to 21_m are assigned so as not to overlap each other.
  • the optical transmission signals 21_1 to 21_m are arranged so as not to overlap each other on a matrix with the plurality of parameters as axes.
  • the predetermined parameter is at least one of wavelength, polarization, and time.
  • FIG. 6 shows an example of subcarrier arrangement when wavelength and time are used as predetermined parameters.
  • SC4 is arranged so as not to overlap each other on the matrix plane.
  • the wavelengths of the subcarriers SC1 to SC4 are set to ⁇ 1 to ⁇ 4, respectively, and the subcarriers SC1 to SC4 are further time-divided at times t1 to t4.
  • subcarrier SC1 is set using parameters ( ⁇ 1, t1)
  • subcarrier SC2 is set using parameters ( ⁇ 2, t2)
  • subcarrier SC3 is set using parameters ( ⁇ 3, t3)
  • subcarrier SC4 is set using parameters ( ⁇ 4, t4).
  • FIG. 7 shows an example of subcarrier arrangement when wavelength and polarization are used as predetermined parameters.
  • the subcarriers SC1 to SC4 are arranged on a matrix (in this case, on the XY plane) where the wavelength is the X axis and the polarization is the Y axis
  • each subcarrier SC1 is arranged.
  • SC4 are arranged so as not to overlap each other on the matrix plane.
  • the wavelengths of the subcarriers SC1 to SC4 are set to ⁇ 1 to ⁇ 4, respectively, and the polarizations of the subcarriers SC1 to SC4 are set to X polarization and Y polarization.
  • the subcarrier SC1 is a parameter ( ⁇ 1, X polarization)
  • the subcarrier SC2 is a parameter ( ⁇ 2, Y polarization)
  • the subcarrier SC3 is a parameter ( ⁇ 3, X polarization)
  • the subcarrier SC4 is a parameter ( ⁇ 4, Y polarization). (Polarization).
  • each subcarrier may be set using three or more parameters.
  • the plurality of subcarrier transmission units 11_1 to 11_m each have a light source (a light source that outputs light of a single wavelength, not shown) for generating the subcarriers SC1 to SCm.
  • the light source can be configured using a laser diode.
  • the subcarrier transmission units 11_1 to 11_m may modulate the optical transmission signals 21_1 to 21_m using a predetermined modulation scheme.
  • the modulation method include amplitude shift keying (ASK), frequency shift keying modulation (FSK), phase shift keying modulation (PSK), quadrature amplitude modulation (QAM), and quadrature phase shift keying (QPSK).
  • ASK amplitude shift keying
  • FSK frequency shift keying modulation
  • PSK phase shift keying modulation
  • QAM quadrature amplitude modulation
  • QPSK quadrature phase shift keying
  • the output unit 12 selectively outputs each of the optical transmission signals 21_1 to 21_m output from the plurality of subcarrier transmission units 11_1 to 11_m to the plurality of transmission ports (PS_1, PS_2) 13_1 and 13_2.
  • the transmission ports 13_1 and 13_2 correspond to the first route 26_1 and the second route 26_2 described in the first embodiment, respectively.
  • the output unit 12 outputs an optical transmission signal 22_1 in which a plurality of optical transmission signals are multiplexed to the transmission port 13_1.
  • the output unit 12 when the output unit 12 outputs the optical transmission signals 21_1 to 21_5 to the transmission port 13_1, the optical transmission signal 22_1 obtained by multiplexing the optical transmission signals 21_1 to 21_5 is supplied to the transmission port 13_1.
  • the output unit 12 outputs an optical transmission signal 22_2 obtained by multiplexing a plurality of optical transmission signals to the transmission port 13_2.
  • the optical transmission signal 22_2 obtained by multiplexing the optical transmission signals 21_6 to 21_10 is supplied to the transmission port 13_2.
  • the output unit 12 can arbitrarily and dynamically switch the optical transmission signals 21_1 to 21_m supplied to the transmission ports 13_1 and 13_2.
  • the output unit 12 is controlled using control means (not shown).
  • the plurality of transmission ports 13_1 and 13_2 are configured to be able to transmit the optical transmission signals 22_1 and 22_2 output from the output unit 12 (in other words, the optical transmission signals 21_1 to 21_m output from the subcarrier transmission units 11_1 to 11_m). ing. That is, the transmission port 13_1 outputs the optical transmission signal 23_1 (same as the optical transmission signal 22_1) to the first optical receiver (not shown) that is the connection destination. The transmission port 13_2 outputs an optical transmission signal 23_2 (same as the optical transmission signal 22_2) to a second optical receiving apparatus (not shown) that is a connection destination.
  • the case where the optical transmission device 1_2 includes two transmission ports 13_1 and 13_2 has been described as an example.
  • the number of transmission ports included in the optical transmission device 1_2 may be three or more.
  • the output unit 12 selectively outputs each of the optical transmission signals 21_1 to 21_m output from the plurality of subcarrier transmission units 11_1 to 11_m to the three or more transmission ports. can do.
  • a plurality of transmission ports 13_1 and 13_2 and an output unit 12 are provided, and a plurality of subcarrier transmission units 11_1 are used by using the output unit 12.
  • the optical transmission signals 21_1 to 21_m output from .about.11_m are selectively output to the transmission ports 13_1 and 13_2. Therefore, for example, when an unused subcarrier transmission unit 11_m is generated when data is transmitted to the first optical receiver (not shown) via the transmission port 13_1, unused subcarrier transmission is performed. Data can be transmitted to the second optical receiver (not shown) via the transmission port 13_2 using the unit 11_m.
  • the transmission capacity in communication via the transmission port 13_1 and the transmission port 13_2 are changed. It is possible to dynamically adjust the transmission capacity in communication via the network.
  • FIG. 8 is a block diagram showing an optical transmission device 1_3 according to the present embodiment.
  • the optical transmission device 1_3 according to the present embodiment is different from the optical transmission device 1_2 described in the second embodiment in that it includes a light source 14, a subcarrier generation unit 15, and a signal conversion unit 16.
  • the same components are denoted by the same reference numerals, and redundant description is omitted.
  • the optical transmission device 1_3 includes a plurality of subcarrier transmission units 11′_1 to 11′_m, an output unit 12, transmission ports 13_1 and 13_2, a light source 14, and a subcarrier generation unit 15. And a signal converter 16.
  • the light source 14 is a light source that outputs a single carrier C1 (light having a single wavelength), and can be configured using, for example, a laser diode.
  • the carrier C1 generated by the light source 14 is output to the subcarrier generation unit 15.
  • the subcarrier generation unit 15 generates a plurality of subcarriers SC1 to SCm using the carrier C1 generated by the light source 14, and generates each of the generated subcarriers SC1 to SCm to each subcarrier transmission unit 11′_1 to 11'_m. At this time, the subcarrier generation unit 15 may generate a plurality of subcarriers SC1 to SCm by modulating the carrier C1 generated by the light source 14 using a predetermined modulation method.
  • the subcarrier generation unit 15 may generate a plurality of subcarriers SC1 to SCm that are orthogonal to each other by modulating the carrier C1 generated by the light source 14 using an orthogonal frequency division multiplexing (OFDM). Good. Further, the subcarrier generation unit 15 may generate a plurality of subcarriers SC1 to SCm using the Nyquist WDM method. In this way, by generating a plurality of subcarriers SC1 to SCm using the OFDM system or the Nyquist WDM system, the frequency interval can be narrowed to the symbol rate interval, and the frequency utilization efficiency in the communication using the super channel technology Can be increased.
  • OFDM orthogonal frequency division multiplexing
  • the intervals between the subcarriers SC1 to SC4 as shown in FIG. Becomes wider.
  • the intervals between the subcarriers SC1 to SC4 are shown in FIG. Becomes narrower than the case shown in FIG. 9, and the frequency utilization efficiency can be increased.
  • the interval between the subcarriers SC1 to SCm is preferably constant. That is, when the wavelength interval of each of the subcarriers SC1 to SCm varies, it is necessary to consider the variation of the wavelength of each of the subcarriers SC1 to SCm, and the frequency utilization efficiency decreases. Therefore, in the optical transmission device 1_3 according to the present embodiment, a single light source is used as the light source 14. Thereby, the interval between the subcarriers SC1 to SCm can be made constant.
  • the signal conversion unit 16 performs serial / parallel conversion on the input transmission data DS1 and DS2, and outputs the data DP1 to DPm subjected to serial / parallel conversion to the subcarrier transmission units 11′_1 to 11′_m, respectively.
  • the subcarrier transmitter 11′_1 generates an optical transmission signal 21_1 for transmitting data DP1 using the subcarrier SC1.
  • the subcarrier transmitter 11′_2 generates an optical transmission signal 21_2 for transmitting the data DP2 using the subcarrier SC2. In this way, the subcarrier transmission unit 11′_m generates the optical transmission signal 21_m for transmitting the data DPm using the subcarrier SCm.
  • the plurality of subcarrier transmission units 11′_1 to 11′_m correspond to the subcarriers SC1 to SC1 corresponding to the subcarrier transmission units 11′_1 to 11′_m, respectively.
  • Transmission data DP1 to DPm can be transmitted in parallel using SCm.
  • each of the subcarrier transmission units 11′_1 to 11′_m that transmits the optical transmission signal 22_1 via the transmission port 13_1 can transmit the first data in parallel.
  • each of the subcarrier transmission units 11′_1 to 11′_m that transmits the optical transmission signal 22_2 via the transmission port 13_2 can transmit the second data in parallel. .
  • the optical transmission device 1_3 includes subcarrier transmission units 11′_1 to 11′_10, and among these subcarrier transmission units 11′_1 to 11′_10, the subcarrier transmission unit 11 ′. It is assumed that _1 to 11′_6 transmits the first data DS1 through the transmission port 13_1. In addition, it is assumed that the subcarrier transmission units 11′_7 to 11′_10 transmit the second data DS2 via the transmission port 13_2.
  • the signal conversion unit 16 performs serial / parallel conversion on the input first data DS1, and outputs the first data DP1 to DP6 subjected to serial / parallel conversion to the subcarrier transmission units 11′_1 to 11′_6, respectively.
  • the subcarrier transmission units 11′_1 to 11′_6 generate optical transmission signals 21_1 to 21_6 for transmitting the first data DP1 to DP6 using the subcarriers SC1 to SC6, respectively.
  • the output unit 12 outputs the generated optical transmission signals 21_1 to 21_6 to the transmission port 13_1. Thereby, the multiplexed optical transmission signal 22_1 is output from the transmission port 13_1.
  • each of the subcarrier transmission units 11′_1 to 11′_6 can transmit the first data DS1 subjected to serial / parallel conversion in parallel via the transmission port 13_1.
  • the data width of the transmission data transmitted through the transmission port 13_1 corresponds to the number of subcarrier transmission units 11′_1 to 11′_6 connected to the transmission port 13_1 (that is, data DP1 to DP6). ing.
  • the signal conversion unit 16 performs serial / parallel conversion on the input second data DS2, and outputs the second data DP7 to DP10 subjected to serial / parallel conversion to the subcarrier transmission units 11′_7 to 11′_10, respectively.
  • the subcarrier transmission units 11′_7 to 11′_10 generate optical transmission signals 21_7 to 21_10 for transmitting the second data DP7 to DP10 using the subcarriers SC7 to SC10, respectively.
  • the output unit 12 outputs the generated optical transmission signals 21_7 to 21_10 to the transmission port 13_2. Thereby, the multiplexed optical transmission signal 22_2 is output from the transmission port 13_2.
  • each of the subcarrier transmission units 11′_7 to 11′_10 can transmit the second data DS2 subjected to the serial / parallel conversion in parallel via the transmission port 13_2.
  • the data width of the transmission data transmitted via the transmission port 13_2 corresponds to the number of subcarrier transmission units 11′_7 to 11′_10 connected to the transmission port 13_2 (that is, data DP7 to DP10). ing.
  • the data width of the transmission data transmitted via the transmission port 13_1 and the data width of the transmission data transmitted via the transmission port 13_2 are respectively output from the plurality of subcarrier transmission units 11′_1 to 11′_m.
  • the output destinations of the optical transmission signals 21_1 to 21_m can be adjusted by using the output unit 12.
  • FIG. 11 is a block diagram showing an optical transmission device 1_4 according to the present embodiment.
  • the optical transmission device 1_4 according to the present embodiment shows a specific configuration example of the output unit 12 included in the optical transmission devices 1_1 to 1_3 described in the first to third embodiments.
  • the optical transmission apparatuses 1_1 to 1_3 described in the first to third embodiments are the same as those in the first to third embodiments.
  • the output unit 12_1 included in the optical transmission device 1_4 includes a switching unit 30 and optical multiplexers 31_1 and 31_2.
  • the switching unit 30 switches the output destination of the optical transmission signals 21_1 to 21_m output from the subcarrier transmission units 11_1 to 11_m to either the optical multiplexer 31_1 or the optical multiplexer 31_2.
  • the switching unit 30 can be configured using, for example, an optical matrix switch with m inputs and m ⁇ 2 outputs.
  • m inputs of the switching unit 30 correspond to the numbers of the respective optical transmission signals 21_1 to 21_m.
  • the switching unit 30 is controlled using control means (not shown).
  • the plurality of optical multiplexers 31_1 and 31_2 are provided so as to correspond to the respective transmission ports 13_1 and 13_2, and multiplex the respective optical transmission signals 21_1 to 21_m output from the switching unit 30. That is, the optical multiplexer 31_1 multiplexes and multiplexes the respective optical transmission signals output from the switching unit 30, and outputs the multiplexed optical transmission signal 22_1 to the transmission port 13_1. Similarly, the optical multiplexer 31_2 combines and multiplexes the optical transmission signals output from the switching unit 30, and outputs the multiplexed optical transmission signal 22_2 to the transmission port 13_2.
  • the output unit 12_1 is configured by using the switching unit 30 and the optical multiplexers 31_1 and 31_2. Therefore, the optical transmission signals 21_1 to 21_m supplied to the transmission ports 13_1 and 13_2 can be dynamically switched.
  • the switching unit 30 may be configured using a plurality of optical switches SW_1 to SW_m, like the output unit 12_2 included in the optical transmission device 1_5 illustrated in FIG.
  • the plurality of optical switches SW_1 to SW_m are provided so as to correspond to the respective subcarrier transmission units 11_1 to 11_m, and the output of the optical transmission signals 21_1 to 21_m output from the respective subcarrier transmission units 11_1 to 11_m.
  • the destination is switched to the optical multiplexer 31_1 or the optical multiplexer 31_2.
  • the optical switch SW_1 is provided so as to correspond to the subcarrier transmission unit 11_1, and the optical transmission signal 21_1 output from the subcarrier transmission unit 11_1 is supplied to either the optical multiplexer 31_1 or the optical multiplexer 31_2. Output.
  • the optical switch SW_2 is provided to correspond to the subcarrier transmission unit 11_2, and outputs the optical transmission signal 21_2 output from the subcarrier transmission unit 11_2 to either the optical multiplexer 31_1 or the optical multiplexer 31_2. To do.
  • Each of the optical switches SW_1 to SW_m is controlled using control means (not shown).
  • the output unit may be configured using the optical multiplexer 32 and the optical demultiplexer 33 as in the output unit 12_3 included in the optical transmission device 1_6 illustrated in FIG.
  • the optical multiplexer 32 combines and multiplexes the optical transmission signals 21_1 to 21_m output from the respective subcarrier transmission units 11_1 to 11_m, and multiplexes the multiplexed optical signal 25.
  • the optical demultiplexer 33 selectively outputs the respective optical transmission signals 21_1 to 21_m included in the multiplexed optical signal 25 output from the optical multiplexer 32 to the transmission ports 13_1 and 13_2.
  • the optical demultiplexer 33 outputs the optical transmission signal 21_1 included in the multiplexed optical signal 25 to either the transmission port 13_1 or the transmission port 13_2. Further, the optical demultiplexer 33 outputs the optical transmission signal 21_2 included in the multiplexed optical signal 25 to either the transmission port 13_1 or the transmission port 13_2.
  • the optical demultiplexer 33 may selectively output the optical transmission signals 21_1 to 21_m included in the multiplexed optical signal 25 to the transmission ports 13_1 and 13_2 according to the wavelength.
  • FIG. 14 is a block diagram of an optical receiver 2_1 according to the fifth embodiment.
  • the optical reception device 2_1 according to the present embodiment includes a switching unit 42, a first reception unit 43_1, and a second reception unit 43_2.
  • the first and second receiving units may be referred to as subcarrier receiving units.
  • the switching unit 42 receives the input optical reception signals 51_1 and 51_2, and selectively outputs the subcarrier reception signals 52_1 and 52_2 included therein to the first reception unit 43_1 and the second reception unit 43_2. To do. In other words, the switching unit 42 can arbitrarily and dynamically switch the output destinations of the subcarrier reception signals included in the optical reception signals 51_1 and 51_2 (first and second reception units 43_1 and 43_2). For example, the switching unit 42 is controlled using control means (not shown).
  • the first receiver 43_1 receives data transmitted using the subcarrier received signal 52_1.
  • the second receiver 43_2 receives data transmitted using the subcarrier received signal 52_2.
  • the first receiving unit 43_1 and the second receiving unit 43_2 include a detecting unit (not shown) for detecting each of the subcarrier received signals 52_1 and 52_2.
  • Each detector may include a local oscillator.
  • the switching unit 42 when the first subcarrier received signal 52_1 and the second subcarrier received signal 52_2 share a series of information, the first subcarrier received signal. 52_1 and the second subcarrier received signal 52_2 are received via the same path.
  • the switching unit 42 receives the optical reception signal 51_1 including the first subcarrier reception signal 52_1 and the second subcarrier reception signal 52_2, and thereby receives the first subcarrier reception signal 52_1 and the second subcarrier reception signal 52_1.
  • the subcarrier reception signal 52_2 can be received via the same route.
  • the switching unit 42 outputs the first subcarrier reception signal 52_1 to the first reception unit 43_1 and the second subcarrier reception signal 52_2 to the second reception unit 43_2.
  • the switching unit 42 when the first subcarrier reception signal 52_1 and the second subcarrier reception signal 52_2 do not share a series of information, the first subcarrier reception signal 52_1 and the second subcarrier reception signal 52_2. Are received via different routes.
  • the switching unit 42 selects the optical reception signal 51_1 and the optical signal.
  • the switching unit 42 outputs the first subcarrier reception signal to the first reception unit 43_1, and outputs the second subcarrier reception signal to the second reception unit 43_2.
  • the case where the first subcarrier reception signal 52_1 and the second subcarrier reception signal 52_2 share a series of information is, for example, the first subcarrier reception signal 52_1 and the second subcarrier reception signal 52_2.
  • predetermined data is transmitted in parallel.
  • the first subcarrier received signal 52_1 and the second subcarrier received signal 52_2 do not share a series of information, for example, the first subcarrier received signal 52_1 and the second subcarrier received signal 52_2
  • the first optical transmission device transmits the first data using the first subcarrier reception signal 52_1
  • the second optical transmission device transmits the second data to the second data. In this case, transmission is performed using the subcarrier reception signal 52_2.
  • the optical receiver 2_1 receives the first subcarrier reception signal 52_1 transmitted from the first optical transmitter (not shown) via the first path, and the second optical transmitter ( The second subcarrier reception signal 52_2 transmitted from (not shown) is received via the second path.
  • the first subcarrier received signal 52_1 and the second subcarrier received signal 52_2 are switched to the first receiving unit 43_1 and the second receiving unit 43_2. This is selectively output using the unit 42.
  • FIG. 15 is a block diagram of an optical receiver 2_2 according to the sixth embodiment.
  • the optical reception device 2_2 includes a plurality of reception ports 41_1 and 41_2, a switching unit 42, subcarrier reception units 43_1 to 43_m, and a signal processing unit 45.
  • the plurality of reception ports (PR_1, PR_2) 41_1, 41_2 receive the multiplexed optical reception signals 50_1, 50_2 supplied to the optical reception device 2_2, and switch the received optical reception signals 51_1, 51_2, respectively. Output to.
  • the reception ports 41_1 and 41_2 can receive optical reception signals 50_1 and 50_2 transmitted from different optical transmission apparatuses, respectively.
  • the reception port 41_1 receives an optical reception signal 50_1 transmitted from a first optical transmission device (not shown)
  • the reception port 41_2 receives an optical reception signal 50_2 transmitted from a second optical transmission device (not shown). Can be received.
  • the switching unit 42 converts the subcarrier reception signals 52_1 to 52_m included in the respective optical reception signals 51_1 and 51_2 received by the plurality of reception ports 41_1 and 41_2 into a plurality of subcarrier reception units (SCR_1 to SCR_m) 43_1 to Selectively output to 43_m.
  • the multiplexed optical reception signals 51_1 and 51_2 are separated into the respective subcarrier reception signals 52_1 to 52_m by the switching unit 42.
  • the separated subcarrier reception signals 52_1 to 52_m are subcarrier reception units 43_1 to 43_m corresponding to the respective subcarrier reception signals 52_1 to 52_m (that is, subcarrier reception signals having respective wavelengths can be received).
  • one subcarrier reception signal 52_m is input to one subcarrier reception unit 43_m.
  • the switching unit 42 can arbitrarily and dynamically switch the output destinations of the subcarrier reception signals 52_1 to 52_m (subcarrier reception units 43_1 to 43_m). For example, the switching unit 42 is controlled using control means (not shown).
  • the subcarrier receiving unit 43_1 receives data transmitted using the subcarrier reception signal 52_1.
  • the subcarrier receiving unit 43_2 receives data transmitted using the subcarrier reception signal 52_2.
  • the subcarrier receiving unit 43_m receives each data transmitted using the subcarrier reception signal 52_m.
  • Each of the subcarrier reception units 43_1 to 43_m includes a detection unit (not shown) for detecting each of the subcarrier reception signals 52_1 to 52_m.
  • Each detector may include a local oscillator. That is, each of the subcarrier receivers 43_1 to 43_m causes each subcarrier receiver to interfere with the local oscillation light generated by each local oscillator and the input subcarrier reception signals 52_1 to 52_m.
  • the subcarrier received signals 52_1 to 52_m corresponding to 43_1 to 43_m can be received.
  • Each of the subcarrier received signals 52_1 to 52_m may be modulated using a predetermined modulation method.
  • the subcarrier receiving units 43_1 to 43_m are provided with circuits for reading data from the subcarrier received signals 52_1 to 52_m modulated by a predetermined modulation method.
  • the predetermined modulation scheme include amplitude shift keying (ASK), frequency shift keying modulation (FSK), phase shift keying modulation (PSK), quadrature amplitude modulation (QAM), and quadrature phase shift keying (QPSK).
  • ASK amplitude shift keying
  • FSK frequency shift keying modulation
  • PSK phase shift keying modulation
  • QAM quadrature amplitude modulation
  • QPSK quadrature phase shift keying
  • each subcarrier receiver that has received a subcarrier received signal (optical received signal 50_1) via reception port 41_1 among a plurality of subcarrier receivers 43_1 to 43_m. Can receive the first data subjected to the serial-parallel conversion in parallel.
  • Each of the subcarrier receiving units 43_1 to 43_m that has received the subcarrier received signal (optical received signal 50_2) via the second receiving port 41_2 is subjected to serial-parallel conversion. Can be received in parallel.
  • each of the subcarrier reception signals included in the optical reception signal 50_1 received via the reception port 41_1 shares a series of information.
  • Each of the subcarrier reception signals included in the optical reception signal 50_2 received via the reception port 41_2 shares a series of information.
  • the optical receiver 2_2 includes subcarrier receivers 43_1 to 43_10, and among these subcarrier receivers 43_1 to 43_10, the subcarrier receivers 43_1 to 43_6 receive the first data. It is assumed that the data is received via the port 41_1. Further, it is assumed that the subcarrier receiving units 43_7 to 43_10 receive the second data via the reception port 41_2.
  • the optical receiver 2_2 receives the optical reception signal 50_1 transmitted from the first optical transmitter (not shown) via the reception port 41_1. Then, the subcarrier receivers 43_1 to 43_6 receive the subcarrier reception signals 52_1 to 52_6 included in the optical reception signal 50_1, respectively, so that the first data (the data subjected to serial / parallel conversion by the first optical transmission device) is received. ) Can be received in parallel. The first data transmitted in parallel in this way can be converted into serial data by the signal processing unit 45 in the subsequent stage.
  • the optical receiver 2_2 receives the optical reception signal 50_2 transmitted from the second optical transmitter (not shown) via the reception port 41_2. Then, the subcarrier receiving units 43_7 to 43_10 receive the subcarrier received signals 52_7 to 52_10 included in the optical received signal 50_2, respectively, so that the second data (the data subjected to serial-parallel conversion by the second optical transmission device) is received. ) Can be received in parallel. The second data transmitted in parallel in this way can be converted into serial data by the signal processing unit 45 in the subsequent stage.
  • each of the subcarrier receiving units 43_1 to 43_m includes a photoelectric converter (not shown).
  • Each photoelectric converter converts the subcarrier reception signals 52_1 to 52_m into electric signals, and outputs the electric signals to the signal processing unit 45 as reception signals 53_1 to 53_m.
  • a photodiode can be used for the photoelectric converter.
  • the signal processing unit 45 performs predetermined processing on the reception signals 53_1 to 53_m output from the subcarrier reception units 43_1 to 43_m to generate data. Further, the signal processing unit 45 may compensate for the influence of mutual interference between the subcarrier reception signals 52_1 to 52_m. That is, the signal processing unit 45 processes each of the subcarrier receiving units 43_1 to 43_m at the same time, thereby compensating for crosstalk and nonlinear optical effects (cross phase modulation (XPM), four-wave mixing (FWM), etc.), for example. It can be performed.
  • XPM cross phase modulation
  • FWM four-wave mixing
  • the signal processing unit 45 controls each local oscillator included in each subcarrier receiving unit 43_1 to 43_m in accordance with each subcarrier received signal 52_1 to 52_m, so that each subcarrier received signal 52_1 to 52_m is controlled. You may compensate the influence of the mutual interference between.
  • a plurality of wavelengths are used in one channel band, and the wavelengths are multiplexed with high density. For this reason, the influence of mutual interference between subcarriers is large.
  • a plurality of different subcarriers are received by the same optical receiving apparatus, and adjacent subcarriers that affect one subcarrier can be monitored simultaneously. For this reason, the compensation parameter for compensating the influence of the mutual interference between the subcarrier reception signals can be set.
  • the case where the optical reception device 2_2 includes two reception ports 41_1 and 41_2 has been described as an example.
  • the number of reception ports included in the optical reception device 2_2 may be three or more.
  • the optical receiving apparatus has only one receiving port. That is, when an unused subcarrier receiving unit is generated when the optical receiving device is receiving data from a first optical transmitting device (not shown) via one receiving port, this unused The subcarrier receiving unit cannot be used, and resources are wasted. In other words, when there is only one receiving port, data cannot be received from another optical transmission device using an unused subcarrier receiving unit, and the unused subcarrier receiving unit is wasted. was there.
  • the optical receiving device 2_2 As shown in FIG. 15, a plurality of receiving ports 41_1 and 41_2 and a switching unit 42 are provided, and the switching unit 42 is used to provide a plurality of receiving ports 41_1 and 41_2.
  • the subcarrier reception signals 52_1 to 52_m included in the received optical reception signals 51_1 and 51_2 are selectively output to the plurality of subcarrier reception units 43_1 to 43_m. Therefore, for example, when an unused subcarrier reception unit occurs, an optical reception signal is received from another optical transmission device (not shown) via an unused reception port, and the unused subcarrier reception unit Data can be received using this optical reception signal.
  • a plurality of subcarrier reception units 43_m are included in one subcarrier reception unit 43_m. May be configured such that a plurality of subcarrier reception signals are input and a plurality of subcarrier reception signals are selectively received by one subcarrier reception unit 43_m.
  • a local oscillator (not shown) is provided in each of the subcarrier receiving units 43_1 to 43_m, and a local oscillation light having a specific wavelength output from the local oscillator and a plurality of subcarrier received signals (multiplexed) are input.
  • a specific subcarrier reception signal (that is, a subcarrier reception signal corresponding to a specific wavelength) can be selectively received from a plurality of subcarrier reception signals.
  • the configuration of the switching unit 42 can be simplified by allowing a plurality of subcarrier reception signals to be input to one subcarrier reception unit 43_m.
  • FIG. 16 is a block diagram showing an optical receiver 2_3 according to the present embodiment.
  • the optical receiver 2_3 according to the present embodiment is different from the optical receiver 2_2 according to the sixth embodiment in that a plurality of subcarrier receivers share a local oscillator (LO). Since other than this is the same as the optical receiver 2_2 described in the sixth embodiment, the same components are denoted by the same reference numerals, and redundant description is omitted.
  • LO local oscillator
  • the optical receiver 2_3 includes a plurality of reception ports 41_1 and 41_2, a switching unit 42, subcarrier receiving units 43_1 to 43_6, local oscillators 44_1 and 44_2, and a signal processing unit 45.
  • a plurality of subcarrier receivers share a local oscillator. That is, the plurality of subcarrier receiving units 43_1 to 43_3 share the local oscillator 44_1. Further, the plurality of subcarrier receiving units 43_4 to 43_6 share the local oscillator 44_2.
  • the switching unit 42 selectively uses the subcarrier reception signals 52_1 to 52_6 included in the optical reception signals 51_1 and 51_2 received by the plurality of reception ports 41_1 and 41_2 to the plurality of subcarrier reception units 43_1 to 43_6. Output.
  • the multiplexed optical reception signals 51_1 and 51_2 are separated into the subcarrier reception signals 52_1 to 52_6 by the switching unit 42.
  • the separated subcarrier reception signals 52_1 to 52_6 are output to the subcarrier reception units 43_1 to 43_6 corresponding to the subcarrier reception signals 52_1 to 52_6, respectively.
  • one subcarrier reception signal is input to one subcarrier reception unit.
  • the switching unit 42 can arbitrarily and dynamically switch the output destination of each of the subcarrier reception signals 52_1 to 52_6.
  • the switching unit 42 is controlled using control means (not shown).
  • the subcarrier receiving units 43_1 to 43_6 receive each data transmitted using the respective subcarrier reception signals 52_1 to 52_6.
  • Each of the subcarrier reception units 43_1 to 43_6 includes a detection unit (not shown) for detecting each of the subcarrier reception signals 52_1 to 52_6.
  • the detection units included in the subcarrier reception units 43_1 to 43_6 can perform detection using the local oscillation light output from the local oscillators 44_1 and 44_2.
  • the subcarrier receivers 43_1 to 43_3 can detect the respective subcarrier received signals 52_1 to 52_3 using the local oscillation light output from the local oscillator 44_1.
  • the local oscillator 44_1 generates local oscillation light having a wavelength corresponding to each of the subcarrier reception signals 52_1 to 52_3 (a wavelength that interferes with each of the subcarrier reception signals 52_1 to 52_3). That is, when the wavelengths of the subcarrier reception signals 52_1 to 52_3 are close to each other, even if the local oscillation light output from the local oscillator 44_1 is local oscillation light having a single wavelength, each subcarrier reception signal is received.
  • each of the subcarrier reception units 43_1 to 43_3 can detect each of the subcarrier reception signals 52_1 to 52_3 using the local oscillation light output from the local oscillator 44_1.
  • the subcarrier reception units 43_4 to 43_6 can detect the respective subcarrier reception signals 52_4 to 52_6 using the local oscillation light output from the local oscillator 44_2.
  • the local oscillator 44_2 generates local oscillation light having a wavelength corresponding to each of the subcarrier reception signals 52_4 to 52_6 (a wavelength that interferes with each of the subcarrier reception signals 52_4 to 52_6). That is, when the wavelengths of the subcarrier reception signals 52_4 to 52_6 are close to each other, even if the local oscillation light output from the local oscillator 44_2 is local oscillation light having a single wavelength, each subcarrier reception signal is received.
  • each of the subcarrier reception units 43_4 to 43_6 can detect each of the subcarrier reception signals 52_4 to 52_6 using the local oscillation light output from the local oscillator 44_2.
  • the local oscillators 44_1 and 44_2 can be configured using laser diodes.
  • each of the subcarrier receiving units 43_1 to 43_6 includes a photoelectric converter (not shown).
  • Each photoelectric converter converts the subcarrier reception signals 52_1 to 52_6 into electric signals, and outputs the electric signals to the signal processing unit 45 as reception signals 53_1 to 53_6.
  • a photodiode can be used for the photoelectric converter.
  • the signal processing unit 45 performs predetermined processing on the reception signals 53_1 to 53_6 output from the subcarrier reception units 43_1 to 43_6 to generate data. Further, the signal processing unit 45 can control the local oscillators 44_1 and 44_2 according to the reception signals 53_1 to 53_6 output from the subcarrier reception units 43_1 to 43_6. In other words, the local oscillators 44_1 and 44_2 are controlled according to the subcarrier reception signals 52_1 to 52_6 included in the optical reception signals 51_1 and 51_2.
  • the signal processing unit 45 turns off the local oscillator shared by the plurality of subcarrier reception units. It is good. More specifically, when all of the subcarrier reception signals 52_1 to 52_3 corresponding to the subcarrier reception units 43_1 to 43_3 are not included in the optical reception signals 51_1 and 51_2, the subcarrier reception units 43_1 to 43_3 share them.
  • the local oscillator 44_1 can be turned off.
  • the local oscillator shared by the subcarrier reception units 43_4 to 43_6 44_2 can be turned off.
  • an unnecessary local oscillator can be turned off, and the power consumption of the optical receiver 2_3 can be reduced.
  • the signal processing unit 45 simultaneously processes a plurality of subcarrier reception signals, for example, crosstalk compensation and nonlinear optical effects (cross phase modulation (XPM), four-wave mixing). (FWM) etc.) can be performed.
  • XPM cross phase modulation
  • FWM four-wave mixing
  • FIG. 17 is a block diagram showing an optical receiver 2_4 according to the present embodiment.
  • the optical receiving device 2_4 according to the present embodiment a specific configuration example of the switching unit 42 included in the optical receiving devices 2_1 to 2_3 described in the fifth to seventh embodiments is illustrated. Other than this, it is the same as the optical receivers 2_1 to 2_3 described in the fifth to seventh embodiments. Therefore, the same components are denoted by the same reference numerals, and redundant description is omitted.
  • the switching unit 42_1 included in the optical receiving device 2_4 includes optical branching devices 60_1 and 60_2 and an optical switching switch 61.
  • the optical branching devices 60_1 and 60_2 are provided so as to correspond to the respective receiving ports 41_1 and 41_2, branch the optical reception signals 51_1 and 51_2 received by the respective receiving ports 41_1 and 41_2, and output them to the optical changeover switch 61. To do.
  • the optical changeover switch 61 receives the optical reception signals branched by the optical branching devices 60_1 and 60_2, and selectively outputs them to the subcarrier receiving units 43_1 to 43_m.
  • the optical changeover switch 61 can be configured using an optical matrix switch having m ⁇ 2 inputs and m outputs.
  • the m output of the optical changeover switch 61 corresponds to the number of subcarrier receiving units 43_1 to 43_m.
  • the light changeover switch 61 is controlled using a control means (not shown).
  • the switching unit 42_1 is configured by using the optical branching devices 60_1 and 60_2 and the optical switch 61. Therefore, the subcarrier reception signals 52_1 to 52_m supplied to the respective subcarrier reception units 43_1 to 43_m can be dynamically switched.
  • the optical switch 61 may be configured by using a plurality of optical switches SW_1 to SW_m, like the switching unit 42_2 included in the optical receiver 2_5 illustrated in FIG.
  • the optical switches SW_1 to SW_m are provided so as to correspond to the respective subcarrier receiving units 43_1 to 43_m, and receive the respective subcarriers from the optical reception signals branched by the respective optical branching units 60_1 and 60_2.
  • the optical reception signals to be output to the units 43_1 to 43_m are selected and output.
  • the optical switch SW_1 is provided so as to correspond to the subcarrier reception unit 43_1, and the subcarrier reception signal corresponding to the subcarrier reception unit 43_1 among the optical reception signals branched by the optical branching units 60_1 and 60_2. 52_1 is selected, and the selected subcarrier reception signal 52_1 is output to the subcarrier reception unit 43_1.
  • the optical switch SW_2 is provided so as to correspond to the subcarrier reception unit 43_2, and the subcarrier reception signal 52_2 corresponding to the subcarrier reception unit 43_2 is selected from the optical reception signals branched by the optical branching units 60_1 and 60_2.
  • the selected subcarrier reception signal 52_2 is output to the subcarrier reception unit 43_2.
  • Each of the optical switches SW_1 to SW_m is controlled using control means (not shown).
  • the optical switches SW_1 to SW_m can be constituted by wavelength selection type optical switches.
  • each of the subcarrier receivers 43_1 to 43_m can selectively receive a specific subcarrier received signal, one subcarrier receiver A plurality of subcarrier reception signals may be input to the subcarrier reception unit 43_m.
  • each of the optical switches SW_1 to SW_m can output a plurality of subcarrier reception signals to one subcarrier reception unit 43_m.
  • the switching unit may be configured using an optical multiplexer 62 and an optical demultiplexer 63 as in the switching unit 42_3 included in the optical receiving device 2_6 illustrated in FIG.
  • the optical multiplexer 62 combines and multiplexes the optical reception signals 51_1 and 51_2 received at the reception ports 41_1 and 41_2, and outputs the multiplexed optical signal 64 to the optical demultiplexer 63.
  • the optical demultiplexer 63 selectively outputs each of the subcarrier reception signals 52_1 to 52_m included in the multiplexed optical signal 64 to each of the subcarrier reception units 43_1 to 43_m.
  • the optical demultiplexer 63 outputs the subcarrier reception signal 52_1 included in the multiplexed optical signal 64 to the subcarrier reception unit 43_1. In addition, the optical demultiplexer 63 outputs the subcarrier reception signal 52_2 included in the multiplexed optical signal 64 to the subcarrier reception unit 43_2.
  • the optical demultiplexer 63 selectively outputs each of the subcarrier reception signals 52_1 to 52_m included in the multiplexed optical signal 64 to the subcarrier reception units 43_1 to 43_m according to the wavelength. Can do.
  • the optical demultiplexer 63 can be configured using the wavelength selective optical demultiplexer 63.
  • each of the subcarrier receivers 43_1 to 43_m can selectively receive a specific subcarrier received signal, one subcarrier receiver A plurality of subcarrier reception signals may be input to the subcarrier reception unit 43_m.
  • the optical demultiplexer 62 can output a plurality of subcarrier reception signals included in the multiplexed optical signal 63 to one subcarrier reception unit 43_m.
  • an optical branching device may be used instead of the optical branching filter 63.
  • FIG. 20 is a block diagram showing the optical communication device 3 according to the present embodiment.
  • the optical communication device 3 according to the present embodiment is an optical communication device capable of transmitting and receiving, and is configured by combining the optical transmission device 1_1 described in the first embodiment and the optical reception device 2_1 described in the fifth embodiment. ing.
  • the optical communication device 3 includes a first transmission unit 11_1, a second transmission unit 11_2, an output unit 12, a switching unit 42, a first reception unit 43_1, and a first transmission unit 11_1. 2 receiving units 43_2.
  • the optical transmission signal 22_1 and the optical reception signal 51_1 are configured to be able to be transmitted / received via the first path. Further, the optical transmission signal 22_2 and the optical reception signal 51_2 are configured to be able to be transmitted and received through the second path.
  • the configurations and operations of the first transmission unit 11_1, the second transmission unit 11_2, and the output unit 12 are the same as those of the optical transmission device 1_1 described in the first embodiment, and thus redundant description is omitted. To do.
  • the configuration and operation of the switching unit 42, the first receiving unit 43_1, and the second receiving unit 43_2 are the same as those of the optical receiving device 2_1 described in the fifth embodiment, and thus redundant description is omitted. To do.
  • the configuration of the optical transmission devices 1_2 to 1_6 described in the second to fourth embodiments may be applied, and the optical described in the sixth to eighth embodiments.
  • the configuration of the receiving apparatuses 2_2 to 2_6 may be applied.
  • FIG. 21 is a block diagram showing an optical communication system according to the present embodiment.
  • the optical communication system according to the present embodiment includes an optical transmission device 1 and optical reception devices 70_1 and 70_2 that communicate with the optical transmission device 1.
  • the optical transmission apparatus 1 the optical transmission apparatuses 1_1 to 1_6 described in Embodiments 1 to 4 can be used.
  • the optical transmission device 1 includes a plurality of subcarrier transmission units 11_1 to 11_m, an output unit 12, and transmission ports 13_1 and 13_2.
  • the plurality of subcarrier transmission units 11_1 to 11_m generate optical transmission signals 21_1 to 21_m for transmitting data using subcarriers, respectively.
  • the output unit 12 selectively outputs each of the optical transmission signals 21_1 to 21_m output from the plurality of subcarrier transmission units 11_1 to 11_m to the transmission port 13_1 or the transmission port 13_2. Note that the configuration and operation of the optical transmission device 1 are the same as those of the optical transmission devices 1_1 to 1_6 described in the first to fourth embodiments, and thus a duplicate description is omitted.
  • the transmission port 13_1 is connected to the reception port 71_1 of the optical receiver 70_1 via an optical fiber
  • the transmission port 13_2 is connected to the reception port 71_2 of the optical receiver 70_2 via an optical fiber.
  • the optical transmission device 1 transmits the optical transmission signal 23_1 to the optical reception device 70_1 via the transmission port 13_1. Further, the optical transmission device 1 transmits the optical transmission signal 23_2 to the optical reception device 70_2 via the transmission port 13_2.
  • the optical transmission signal 23_1 is a signal obtained by multiplexing a plurality of optical transmission signals 21_m.
  • the receiving unit 72_1 included in the optical receiving device 70_1 is configured to be able to receive such multiplexed optical transmission signals.
  • the optical transmission signal 23_2 is a signal obtained by multiplexing a plurality of optical transmission signals 21_m.
  • the receiver 72_2 included in the optical receiver 70_2 is configured to be able to receive such multiplexed optical transmission signals.
  • each subcarrier transmission unit that transmits an optical transmission signal via the transmission port 13_1 transmits the first data subjected to serial-parallel conversion to the optical reception device 70_1 in parallel. May be.
  • Each of the subcarrier transmission units 11_1 to 11_m that transmits the optical transmission signal via the transmission port 13_2 transmits the second data subjected to serial / parallel conversion in parallel to the optical reception device 70_2. You may send it.
  • the optical transmission device 1 performs serial-parallel conversion on the first data to be transmitted to the optical reception device 70_1, and generates an optical transmission signal for transmitting each of the serial-parallel converted data at the subcarrier transmission unit.
  • the optical receiver 70_1 receives the serial-parallel converted data included in the optical transmission signal 23_1, and obtains the parallel-serial converted first data by parallel-serial conversion of the received serial-parallel converted data. can do. The same applies to the second data transmitted to the optical receiver 70_2.
  • the transmission capacity between the optical transmission device 1 and the optical reception device 70_1 is equal to the number of subcarrier transmission units 11_1 to 11_m that output optical transmission signals to the transmission port 13_1. To be determined. Similarly, the transmission capacity between the optical transmission device 1 and the optical reception device 70_2 is determined based on the number of subcarrier transmission units 11_1 to 11_m that output optical transmission signals to the transmission port 13_2. In other words, the ratio between the transmission capacity of the optical transmission signal 23_1 and the transmission capacity of the optical transmission signal 23_2 is the number of subcarrier transmission units connected to the transmission port 13_1 and the number of subcarrier transmission units connected to the transmission port 13_2. Corresponds to the ratio. For example, when increasing the transmission capacity between the optical transmission device 1 and the optical reception device 70_1, the output unit 12 is controlled to increase the number of subcarrier transmission units connected to the transmission port 13_1.
  • subcarriers in the first wavelength band may be used for transmission between the optical transmission device 1 and the optical reception device 70_1, and second transmission is used for transmission between the optical transmission device 1 and the optical reception device 70_2.
  • Subcarriers in the wavelength band may be used.
  • the first wavelength band and the second wavelength band are bands in which the wavelengths do not overlap each other.
  • these wavelength bands are C band, L band, S band, etc. used in WDM.
  • the communication setting between the optical transmission device 1 and the optical reception device 70_1 includes the distance between the optical transmission device 1 and the optical reception device 70_1, the communication time zone, and the optical transmission device 1 and the optical reception device. You may determine according to at least one of the states of the transmission path
  • the multilevel per one subcarrier may be decreased and the number of subcarriers may be increased. Conversely, as the communication distance between the optical transmission device 1 and the optical reception device 70_1 becomes shorter, the multilevel per one subcarrier may be increased and the number of subcarriers may be decreased.
  • quadrature amplitude modulation (QAM)
  • QAM quadrature amplitude modulation
  • one modulation scheme such as 128QAM or 256QAM is used.
  • Increasing the multilevel per subcarrier increases the bit error rate. Therefore, in this case, the multilevel per one subcarrier is reduced by using a modulation method such as 16QAM or 64QAM. In this case, since the amount of information contained in one subcarrier is reduced, the number of subcarriers is increased by this amount.
  • the multilevel per one subcarrier can be increased using a modulation scheme such as 128QAM or 256QAM.
  • a modulation scheme such as 128QAM or 256QAM.
  • the number of subcarriers can be decreased by this amount.
  • the multilevel per one subcarrier is decreased. Also good.
  • an increase in bit error rate can be suppressed.
  • the communication arrangement in the optical communication system as described above can be determined by the optical transmission device 1 and the optical reception devices 70_1 and 70_1.
  • FIG. 22 is a block diagram showing an optical communication system according to the present embodiment.
  • the optical communication system according to the present embodiment includes an optical transmission device 1, optical reception devices 70_1 and 70_2 that communicate with the optical transmission device 1, and a controller 80.
  • the optical communication system according to the present embodiment is the same as the optical communication system described in the tenth embodiment except that the controller 80 is provided.
  • the optical transmitters 1_1 to 1_6 described in the first to fourth embodiments can be used as the optical transmitter 1.
  • the controller 80 is provided to control the optical transmitter 1 and the optical receivers 70_1 and 70_2, respectively. That is, the controller 80 controls the optical transmission device 1 and the optical reception devices 70_1 and 70_2 according to the communication state between the optical transmission device 1 and the optical reception device 70_1 and the communication state between the optical transmission device 1 and the optical reception device 70_2. Can do.
  • FIG. 23 is a block diagram illustrating a configuration example of the controller 80.
  • the controller 80 includes a monitoring unit 81 and a setting unit 82.
  • the monitoring unit 81 monitors the communication state of the optical communication system, that is, the communication state of the optical transmitter 1 and the optical receiver 70_1 and the communication state of the optical transmitter 1 and the optical receiver 70_2.
  • the setting unit 82 sets the optical transmission device 1 and the optical reception devices 70_1 and 70_2, respectively, according to the monitoring result in the monitoring unit 81.
  • the controller 80 can set a subcarrier transmitter used for communication between the optical transmitter 1 and the optical receiver 70_1 and a subcarrier transmitter used for communication between the optical transmitter 1 and the optical receiver 70_2. At this time, the controller 80 can change the subcarrier transmission unit used in communication with each of the optical reception devices 70_1 and 70_2 by changing the setting of the output unit 12 included in the optical transmission device 1.
  • the controller 80 controls the number of subcarrier transmission units 11_1 to 11_m that output optical transmission signals to the transmission ports 13_1 and 13_2, so that the transmission capacity and optical transmission between the optical transmission device 1 and the optical reception device 70_1 are controlled.
  • the transmission capacity between the device 1 and the optical receiver 70_2 can be changed.
  • the controller 80 also sets the subcarrier wavelength band used for communication between the optical transmitter 1 and the optical receiver 70_1 and the subcarrier wavelength band used for communication between the optical transmitter 1 and the optical receiver 70_2. Can do.
  • the controller 80 communicates between the optical transmitter 1 and the optical receiver 70_1 so that subcarriers in the first wavelength band are used for communication between the optical transmitter 1 and the optical receiver 70_1.
  • the first wavelength band and the second wavelength band are bands in which the wavelengths do not overlap each other.
  • these wavelength bands are C band, L band, S band, etc. used in WDM.
  • the controller 80 responds to at least one of the distance between the optical transmission device 1 and the optical reception device 70_1, the communication time zone, and the state of the transmission path between the optical transmission device 1 and the optical reception device 70_1.
  • communication between the optical transmitter 1 and the optical receiver 70_1 can be set.
  • the controller 80 uses at least one of the subcarrier wavelength band assignment, the optical signal path, and the modulation scheme in the communication between the optical transmission device 1 and the optical reception device 70_1, and Communication with the receiving device 70_1 may be set. The same applies to the communication setting between the optical transmitter 1 and the optical receiver 70_2.
  • the controller 80 may decrease the multilevel per one subcarrier and increase the number of subcarriers as the communication distance between the optical transmission device 1 and the optical reception device 70_1 becomes longer. Conversely, as the communication distance between the optical transmission device 1 and the optical reception device 70_1 becomes shorter, the multilevel per one subcarrier may be increased and the number of subcarriers may be decreased. The same applies to the modulation method in the communication between the optical transmitter 1 and the optical receiver 70_2.
  • the controller 80 reduces the multilevel per subcarrier, for example, when the transmission path between the optical transmitter 1 and the optical receiver 70_1 deteriorates (for example, when tension is applied to the optical fiber). You may let them. Thus, by reducing the multilevel per subcarrier, an increase in bit error rate can be suppressed. The same applies to the modulation method in the communication between the optical transmitter 1 and the optical receiver 70_2.
  • an optical communication system including one optical transmission device and two optical reception devices has been described as an example.
  • the optical transmission device and the optical reception device that constitute the optical communication system are further provided. Also good. Also in this case, the controller 80 can set the optical transmitter and the optical receiver so that the entire optical communication system is in an optimal communication state.
  • the optimum communication state can be arbitrarily determined according to the user. For example, a communication state that minimizes communication costs and a communication state that maximizes communication reliability (that is, a communication state where communication is given the highest priority that communication is not interrupted, taking into account redundant paths) A communication state in which communication speed is emphasized (a communication state in which the shortest path is always the shortest), a communication state in which wavelength use efficiency is maximized, and the like.
  • the controller 80 also collects information on changes in the network status (for example, failures in the optical transmission path and degradation of optical communication signals) reported from the optical transmitter and receiver, and follows the changes in the network status. As described above, the optical transmission device and the optical reception device can be reset so that the entire optical communication system is in an optimal communication state.
  • changes in the network status for example, failures in the optical transmission path and degradation of optical communication signals
  • FIG. 24 is a block diagram showing an optical communication system according to the present embodiment.
  • the optical communication system according to the present embodiment includes a controller 80 and a plurality of nodes A to D (85_a to 85_d).
  • the controller 80 corresponds to the controller 80 described in the eleventh embodiment.
  • a plurality of nodes A to D (85_a to 85_d) are elements constituting the communication network.
  • the plurality of nodes A to D include, for example, the optical transmission devices 1_1 to 1_6 described in the first to fourth embodiments, the optical reception devices 2_1 to 2_6 described in the fifth to eighth embodiments, The optical communication device 3 described in Embodiment 9 can be used.
  • the controller 80 monitors the communication states of the nodes 85_a to 85_d and controls the nodes 85_a to 85_d according to the communication states of the nodes 85_a to 85_d.
  • the controller 80 outputs control signals 86_a to 86_d for controlling the nodes 85_a to 85_d to the nodes 85_a to 85_d.
  • the controller 80 can make arrangements for resource allocation (for example, arrangements of subcarrier transmission / reception units to be used) and optical signal paths used by the nodes 85_a to 85_d. For example, the controller 80 can change the transmission capacity between the node 85_a and the node 85_b by determining a subcarrier to be used for communication between the node 85_a and the node 85_b.
  • the controller 80 can set the wavelength band of the subcarrier used for communication between the nodes 85_a to 85_d. For example, the controller 80 uses the subcarrier of the first wavelength band for communication between the node 85_a and the node 85_b, and uses the second wavelength band for communication between the node 85_a and the node 85_d. It can be set so that subcarriers are used.
  • the first wavelength band and the second wavelength band are bands in which the wavelengths do not overlap each other. For example, these wavelength bands are C band, L band, S band, etc. used in WDM.
  • the controller 80 sets the communication between the nodes 85_a to 85_d according to at least one of the distance between the nodes 85_a to 85_d, the communication time zone, and the state of the transmission path between the nodes 85_a to 85_d. It can be performed.
  • the time zone for communication is, for example, a predetermined time zone (day and night), a predetermined time, a time zone of a predetermined event (execution of backup, etc.), and the like.
  • the controller 80 sets communication between the nodes 85_a to 85_d using at least one of the subcarrier wavelength band assignment, the optical signal path, and the modulation method in the communication between the nodes 85_a to 85_d. May be.
  • the controller 80 may decrease the multilevel per one subcarrier and increase the number of subcarriers as the communication distance between the node 85_a and the node 85_b increases. Conversely, as the communication distance between the node 85_a and the node 85_b becomes shorter, the multilevel per one subcarrier may be increased and the number of subcarriers may be decreased. The same applies to the modulation method between other nodes.
  • the controller 80 may decrease the multilevel per subcarrier, for example, when the transmission path between the node 85_a and the node 85_b deteriorates (for example, when tension is applied to the optical fiber). .
  • the controller 80 may decrease the multilevel per subcarrier, for example, when the transmission path between the node 85_a and the node 85_b deteriorates (for example, when tension is applied to the optical fiber). .
  • an increase in bit error rate can be suppressed.
  • an optical communication system including four nodes 85_a to 85_d is taken as an example, but the number of nodes constituting the optical communication system may be more than this.
  • the controller 80 can set the optical transmitter and the optical receiver so that the entire optical communication system is in an optimal communication state.
  • the optimum communication state can be arbitrarily determined according to the user. For example, a communication state that minimizes communication costs and a communication state that maximizes communication reliability (that is, a communication state where communication is given the highest priority that communication is not interrupted, taking into account redundant paths)
  • a communication state in which communication speed is emphasized (a communication state in which the shortest path is always the shortest), a communication state in which wavelength use efficiency is maximized, and the like.
  • the controller 80 also collects information on changes in the network status (for example, failures in the optical transmission path and degradation of optical communication signals) reported from the optical transmitter and receiver, and follows the changes in the network status. As described above, the optical transmission device and the optical reception device can be reset so that the entire optical communication system is in an optimal communication state.
  • changes in the network status for example, failures in the optical transmission path and degradation of optical communication signals
  • the controller 80 sets the node 85_a and the node 85_d so that communication is not interrupted. It is possible to switch to a redundant path for transmitting data to the node 85_b via the connecting path 87_2, the path 87_3 connecting the node 85_d and the node 85_c, and the path 87_4 connecting the node 85_c and the node 85_b.
  • FIG. 25 is a block diagram showing an optical communication system according to the present embodiment.
  • the optical communication system according to the present embodiment includes an optical receiver 2 and optical transmitters 75_1 and 75_2 that communicate with the optical receiver 2.
  • the optical receiver 2 the optical receivers 2_1 to 2_6 described in the fifth to eighth embodiments can be used.
  • the optical receiver 2 includes receiving ports 41_1 and 41_2, a switching unit 42, and a plurality of subcarrier receiving units 43_1 to 43_m.
  • the reception ports 41_1 and 41_2 receive the multiplexed optical reception signals 50_1 and 50_2, respectively.
  • the switching unit 42 selectively outputs the subcarrier reception signals 52_1 to 52_m included in the optical reception signals 51_1 and 51_2 received by the reception ports 41_1 and 41_2 to the plurality of subcarrier reception units 43_1 to 43_m.
  • the plurality of subcarrier reception units 43_1 to 43_m receive each data included in the subcarrier reception signals 52_1 to 52_m. Note that the configuration and operation of the optical receiving apparatus 2 are the same as those of the optical receiving apparatuses 2_1 to 2_6 described in the fifth to eighth embodiments, and thus redundant description is omitted.
  • the transmission unit 77_1 included in the optical transmission device 75_1 is configured to be able to transmit multiplexed optical transmission signals generated using a plurality of subcarriers.
  • the transmitter 77_2 included in the optical transmitter 75_2 is configured to be able to transmit multiplexed optical transmission signals generated using a plurality of subcarriers.
  • the reception port 41_1 is connected to the transmission port 76_1 of the optical transmission device 75_1 via an optical fiber, and the reception port 41_2 is connected to the transmission port 76_2 of the optical transmission device 75_2 via an optical fiber.
  • the optical receiver 2 receives the optical reception signal 50_1 transmitted from the optical transmitter 75_1 via the reception port 41_1.
  • the optical receiver 2 receives the optical reception signal 50_2 transmitted from the optical transmitter 75_2 via the reception port 41_2.
  • each of the subcarrier receivers 43_1 to 43_m that receives the optical reception signal via the reception port 41_1 receives the first data (serial-parallel conversion) transmitted from the optical transmitter 75_1. Data) may be received in parallel.
  • Each of the subcarrier receivers 43_1 to 43_m that receives the optical reception signal via the reception port 41_2 receives the second data (serial-parallel converted) transmitted from the optical transmitter 75_2. Data) may be received in parallel.
  • the optical transmission device 75_1 performs serial-parallel conversion on the first data to be transmitted to the optical reception device 2, and transmits each data subjected to the serial-parallel conversion to the optical reception device 2 using each optical transmission signal.
  • the optical receiving device 2 receives the subcarrier reception signal included in the optical transmission signal (that is, the optical reception signal 50_1) transmitted from the optical transmission device 75_1 by the subcarrier reception unit. And the 1st data by which parallel-serial conversion was carried out can be acquired by carrying out parallel-serial conversion of the data contained in a subcarrier received signal. The same applies to the second data transmitted from the optical transmission device 75_2 to the optical reception device 2.
  • the transmission capacity between the optical receiver 2 and the optical transmitter 75_1 corresponds to the number of subcarrier receivers connected to the reception port 41_1.
  • the transmission capacity between the optical receiver 2 and the optical transmitter 75_2 corresponds to the number of subcarrier receivers connected to the reception port 41_2.
  • the switching unit 42 is controlled to increase the number of subcarrier receivers connected to the reception port 41_1.
  • subcarriers in the first wavelength band may be used for transmission between the optical receiver 2 and the optical transmitter 75_1, and for transmission between the optical receiver 2 and the optical transmitter 75_2, the first wavelength band subcarrier may be used.
  • Subcarriers in two wavelength bands may be used.
  • the first wavelength band and the second wavelength band are bands in which the wavelengths do not overlap each other.
  • these wavelength bands are C band, L band, S band, etc. used in WDM.
  • the communication setting between the optical receiver 2 and the optical transmitter 75_1 includes the distance between the optical receiver 2 and the optical transmitter 75_1, the communication time zone, and the optical receiver 2 and the optical transmitter. You may determine according to at least one of the states of the transmission path
  • the multivalue per one subcarrier may be decreased and the number of subcarriers may be increased.
  • the multilevel per one subcarrier may be increased and the number of subcarriers may be decreased. The same applies to the modulation method in the communication between the optical receiver 2 and the optical transmitter 75_2.
  • the multilevel per subcarrier is reduced. Also good.
  • an increase in bit error rate can be suppressed.
  • the communication arrangement in the optical communication system as described above may be determined by the optical receiver 2 and the optical transmitters 75_1 and 75_1. Further, the optical communication system according to the present embodiment may include a controller like the optical communication system described in the eleventh embodiment. Also in the present embodiment, the controller receives the optical receiver 2 and the optical transmitters 75_1 and 75_2 in accordance with the communication state between the optical receiver 2 and the optical transmitter 75_1 and the communication state between the optical receiver 2 and the optical transmitter 75_2. May be controlled.
  • FIG. 26 is a block diagram showing an optical communication system according to the present embodiment.
  • the optical communication system according to the present embodiment includes optical transmission devices 1a and 1b and optical reception devices 2a and 2b.
  • the optical transmission device 1a includes a plurality of subcarrier transmission units 11a, an output unit 12a, and transmission ports 13_1a and 13_2a.
  • the optical transmission device 1b includes a plurality of subcarrier transmission units 11b, an output unit 12b, and transmission ports 13_1b and 13_2b.
  • the optical transmitters 1a and 1b the optical transmitters 1_1 to 1_6 described in the first to fourth embodiments can be used.
  • the subcarrier transmission units 11a and 11b correspond to the plurality of subcarrier transmission units 11_1 to 11_m in FIG. 5
  • the output units 12a and 12b correspond to the output unit 12 in FIG. 5
  • the transmission port 13_1a , 13_2a, 13_1b, and 13_2b correspond to the transmission ports 13_1 and 13_2 in FIG.
  • the optical reception device 2a includes reception ports 41_1a and 41_2a, a switching unit 42a, and a plurality of subcarrier reception units 43a.
  • the optical receiving device 2b includes receiving ports 41_1b and 41_2b, a switching unit 42b, and a plurality of subcarrier receiving units 43b.
  • the optical receivers 2a and 2b the optical receivers 2_1 to 2_6 described in the fifth to eighth embodiments can be used.
  • the reception ports 41_1a, 41_2a, 41_1b, and 41_2b correspond to the reception ports 41_1 and 41_2 in FIG.
  • the switching units 42a and 42b correspond to the switching unit 42 in FIG.
  • the subcarrier reception units 43a, 43a, 43b corresponds to the subcarrier receivers 43_1 to 43_m in FIG.
  • the transmission port 13_1a of the optical transmission device 1a is connected to the reception port 41_1a of the optical reception device 2a.
  • the transmission port 13_2a of the optical transmission device 1a is connected to the reception port 41_1b of the optical reception device 2b.
  • the transmission port 13_1b of the optical transmission device 1b is connected to the reception port 41_2a of the optical reception device 2a.
  • the transmission port 13_2b of the optical transmission device 1b is connected to the reception port 41_2b of the optical reception device 2b.
  • the optical transmission device 1a transmits data to the optical reception device 2a by using the optical transmission signal 23_1a generated using the plurality of subcarriers in the first wavelength band.
  • the optical transmission device 1a transmits data to the optical reception device 2b using the optical transmission signal 23_2a generated using a plurality of subcarriers in the second wavelength band.
  • the optical transmission device 1b transmits data to the optical reception device 2a using the optical transmission signal 23_1b generated using a plurality of subcarriers in the second wavelength band.
  • the optical transmission device 1b transmits data to the optical reception device 2b using the optical transmission signal 23_2b generated using a plurality of subcarriers in the first wavelength band.
  • the first wavelength band and the second wavelength band are bands in which the wavelengths do not overlap each other.
  • these wavelength bands are C band, L band, S band, etc. used in WDM.
  • the optical transmission device 1a By combining the wavelength band combinations of the optical transmission signals 23_1a, 23_2a, 23_1b, and 23_2b used in communication between the optical transmission devices 1a and 1b and the optical reception devices 2a and 2b as described above, the optical transmission device 1a, It can suppress that the wavelength band of the subcarrier used in communication with 1b and optical receiver 2a, 2b overlaps.
  • the communication settings of the optical transmission devices 1a and 1b and the optical reception devices 2a and 2b are set between the optical transmission devices 1a and 1b and the optical reception devices 2a and 2b. It may be determined according to at least one of the distance, the communication time zone, and the state of the transmission path between the optical transmitters 1a and 1b and the optical receivers 2a and 2b.
  • the optical transmission device 1a, at least one of the subcarrier wavelength band allocation, the optical signal path, and the modulation method in the communication between the optical transmission devices 1a and 1b and the optical reception devices 2a and 2b, Communication may be set between 1b and the optical receivers 2a and 2b.
  • FIG. 27 is a block diagram showing an optical communication system according to the present embodiment.
  • the optical communication system according to the present embodiment includes optical communication devices 3a to 3d.
  • the optical communication devices 3a to 3d are optical communication devices capable of transmitting and receiving.
  • the optical communication device 3a includes a subcarrier transmission / reception unit 91a, an optical transmission / reception signal switching unit 92a, and transmission / reception ports 93_1a and 93_2a.
  • the optical communication device 3b includes a subcarrier transmission / reception unit 91b, an optical transmission / reception signal switching unit 92b, and transmission / reception ports 93_1b and 93_2b.
  • the optical communication device 3c includes a subcarrier transmission / reception unit 91c, an optical transmission / reception signal switching unit 92c, and transmission / reception ports 93_1c and 93_2c.
  • the optical communication device 3d includes a subcarrier transmission / reception unit 91d, an optical transmission / reception signal switching unit 92d, and transmission / reception ports 93_1d and 93_2d.
  • the optical communication device 3 described in the ninth embodiment can be used. See FIG. 5 (Embodiment 2) and FIG. 15 (Embodiment 6) for a more detailed configuration.
  • the subcarrier transmission / reception unit 91a of the optical communication device 3a includes the subcarrier transmission units 11_1 to 11_m in FIG. 5 and the subcarrier reception units 43_1 to 43_m in FIG. 15, and the optical transmission / reception signal switching unit 92a is the output in FIG. 15 and the switching unit 42 of FIG. 15, the transmission / reception ports 93_1a and 93_2a correspond to the transmission ports 13_1 and 13_2 of FIG. 5 and the reception ports 41_1 and 41_2 of FIG. The same applies to the other optical communication devices 3b to 3d.
  • the transmission / reception port 93_1a of the optical communication device 3a is connected to the transmission / reception port 93_1c of the optical communication device 3c.
  • the transmission / reception port 93_2a of the optical communication device 3a is connected to the transmission / reception port 93_1d of the optical communication device 3d.
  • the transmission / reception port 93_1b of the optical communication device 3b is connected to the transmission / reception port 93_2c of the optical communication device 3c.
  • the transmission / reception port 93_2b of the optical communication device 3b is connected to the transmission / reception port 93_2d of the optical communication device 3d.
  • the optical communication device 3a and the optical communication device 3c perform communication using the optical signal 25_1 generated using a plurality of subcarriers in the first wavelength band. Further, the optical communication device 3a and the optical communication device 3d perform communication using an optical signal 25_2 generated using a plurality of subcarriers in the second wavelength band. In addition, the optical communication device 3b and the optical communication device 3c perform communication using the optical signal 25_3 generated using a plurality of subcarriers in the second wavelength band. In addition, the optical communication device 3b and the optical communication device 3d perform communication using the optical signal 25_4 generated using a plurality of subcarriers in the first wavelength band.
  • the first wavelength band and the second wavelength band are bands in which the wavelengths do not overlap each other. For example, these wavelength bands are C band, L band, S band, etc. used in WDM.
  • subcarriers used in communication between the optical communication apparatuses 3a to 3d can be prevented from overlapping.
  • the communication setting between the optical communication devices 3a to 3d is performed by the distance and communication between the optical communication devices 3a and 3b and the optical communication devices 3c and 3d. You may determine according to at least 1 of the time slot
  • the optical communication device 3a, the optical communication device 3a, using at least one of the subcarrier wavelength band allocation, the optical signal path, and the modulation method in the communication between the optical communication devices 3a and 3b and the optical communication devices 3c and 3d Communication may be set between 3b and the optical communication devices 3c and 3d.
  • the present invention has been described as a hardware configuration, but the present invention is not limited to this.
  • the present invention can also realize arbitrary processing by causing a CPU (Central Processing Unit) to execute a computer program.
  • a CPU Central Processing Unit
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium). Examples of non-transitory computer-readable media include magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM (random access memory)) are included.
  • the program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

 本発明にかかる光送信装置(1_1)は、第1の光送信信号(21_1)を送信する第1の送信部(11_1)と、第2の光送信信号(21_2)を送信する第2の送信部(11_2)と、第1の光送信信号(21_1)及び第2の光送信信号(21_2)が一連の情報を共有する場合、第1の光送信信号(21_1)及び第2の光送信信号(21_2)の両方を第1の経路(26_1)に出力し、第1の光送信信号(21_1)及び第2の光送信信号(21_2)が一連の情報を共有しない場合、第1の光送信信号(21_1)及び第2の光送信信号(21_2)のいずれか一方を第2の経路(26_2)に出力する出力部と、を備える。

Description

光送信装置、光受信装置、光通信装置、光通信システム、及びこれらの制御方法
 本発明は光送信装置、光受信装置、光通信装置、光通信システム、及びこれらの制御方法に関する。
 インターネットや映像配信等の広帯域マルチメディア通信サービスの爆発的な需要増加に伴い、幹線系やメトロ系ではより長距離大容量かつ高信頼な高密度波長多重光ファイバ通信システムの導入が進んでいる。また、加入者系においても、光ファイバアクセスサービスの普及が急速に進んでいる。こうした光ファイバを使用した通信システムでは、光伝送路である光ファイバの敷設コスト低減や、光ファイバ1本当たりの伝送帯域利用効率を高めることが重要である。このため、複数の異なる波長の光信号を多重化して伝送する、波長分割多重通信(WDM:Wavelength Division Multiplex)が広く用いられている。WDM技術では、1チャネルに対して1波長を使用していた。一方、最近ではWDM1チャネルの帯域あたり100Gbpsを超える伝送容量を実現可能なスーパーチャネル(SuperChannel)技術が注目を集めている。このスーパーチャネル技術では、1チャネルの帯域に対して複数の波長(サブキャリア)を使用しているため、波長を高密度に多重することができる。よって、今後、更に400Gbps、1Tbpsと伝送容量を大容量にするにあたり、このスーパーチャネル技術が重要となってくる。
 特許文献1及び特許文献2には、WDMを用いた光通信に関する技術が開示されている。特許文献1には、効率的なネットワークの運用、管理及び保守を行うことができる光ネットワーク装置に関する技術が開示されている。特許文献2には、複数のサブキャリアを含む電気信号を、アナログ光変調により伝送する場合において、相互混合ノイズによる影響を低減できる光伝送装置に関する技術が開示されている。
特開2003-008513号公報 特開2008-206063号公報
 通信ネットワークにおいては、所定のノード間におけるトラフィックには緩急がある。このため、所定のノード間における伝送は、常に最大伝送容量で行われる必要はない。一方、背景技術で説明したように、WDM技術を用いた光通信では、1チャネルに対して1波長を使用していた。このため、WDM技術を用いた光通信装置では、通信をオフにするか又は最大伝送容量で通信を行うかのいずれかしか選択肢がなく、伝送容量を中間の値に設定することはできなかった。
 これに対してスーパーチャネル技術を用いた場合は、WDMの1チャネルの帯域において複数の波長を用いているため、伝送容量を中間の値に設定することができる。この点を踏まえ、発明者は、伝送装置に対して1チャネルの帯域における複数の波長の内、一部を利用して伝送容量を中間の値にした場合、残りの波長を使用して他の伝送装置にリソースを配分できることを発見した。
 上記に鑑み本発明の目的は、光通信ネットワークにおいて、効率的なリソース配分を実施できる光送信装置、光受信装置、光通信装置、光通信システム、及びこれらの制御方法を提供することである。
 本発明にかかる光送信装置は、第1の光送信信号を送信する第1の送信部と、第2の光送信信号を送信する第2の送信部と、前記第1の光送信信号及び前記第2の光送信信号が一連の情報を共有する場合、前記第1の光送信信号及び前記第2の光送信信号の両方を第1の経路に出力し、前記第1の光送信信号及び前記第2の光送信信号が前記一連の情報を共有しない場合、前記第1の光送信信号及び前記第2の光送信信号のいずれか一方を第2の経路に出力する出力部と、を備える。
 本発明にかかる光受信装置は、サブキャリア受信信号を受信する第1及び第2の受信部と、入力された第1のサブキャリア受信信号及び第2のサブキャリア受信信号を前記第1及び第2の受信部に出力する切替部と、を備え、前記切替部は、前記第1及び第2のサブキャリア受信信号が一連の情報を共有する場合、前記第1及び第2のサブキャリア受信信号を同一の経路を経由して受信すると共に、前記第1のサブキャリア受信信号を前記第1の受信部に前記第2のサブキャリア受信信号を前記第2の受信部にそれぞれ出力し、前記第1のサブキャリア受信信号及び前記第2のサブキャリア受信信号が前記一連の情報を共有しない場合、前記第1及び第2のサブキャリア受信信号をそれぞれ異なる経路を経由して受信すると共に、前記第1のサブキャリア受信信号を前記第1の受信部に出力し、前記第2のサブキャリア受信信号を前記第2の受信部に出力する。
 本発明にかかる光通信装置は、第1の光送信信号を送信する第1の送信部と、第2の光送信信号を送信する第2の送信部と、前記第1の光送信信号及び前記第2の光送信信号が一連の情報を共有する場合、前記第1の光送信信号及び前記第2の光送信信号の両方を第1の経路に出力し、前記第1の光送信信号及び前記第2の光送信信号が前記一連の情報を共有しない場合、前記第1の光送信信号及び前記第2の光送信信号のいずれか一方を第2の経路に出力する出力部と、サブキャリア受信信号を受信する第1及び第2の受信部と、入力された第1のサブキャリア受信信号及び第2のサブキャリア受信信号を前記第1及び第2の受信部に出力する切替部と、を備え、前記切替部は、前記第1のサブキャリア受信信号及び前記第2のサブキャリア受信信号が一連の情報を共有する場合、前記第1のサブキャリア受信信号を前記第1の受信部に前記第2のサブキャリア受信信号を前記第2の受信部にそれぞれ出力し、前記第1のサブキャリア受信信号及び前記第2のサブキャリア受信信号が前記一連の情報を共有しない場合、前記第1のサブキャリア受信信号を前記2の受信部に出力する。
 本発明にかかる光通信システムは、光送信装置と、第1及び第2の光受信装置と、を備える光通信システムであって、前記光送信装置は、第1の光送信信号を送信する第1の送信部と、第2の光送信信号を送信する第2の送信部と、前記第1の光送信信号及び前記第2の光送信信号が一連の情報を共有する場合、前記第1の光送信信号及び前記第2の光送信信号の両方を前記第1の光受信装置に出力し、前記第1の光送信信号及び前記第2の光送信信号が前記一連の情報を共有しない場合、前記第1の光送信信号及び前記第2の光送信信号のいずれか一方を前記第2の光受信装置に出力する出力部と、を備える。
 本発明にかかる光通信システムは、第1及び第2の光送信信号を送信する光送信装置と、前記第1及び第2の光送信信号を受信する第1及び第2の光受信装置と、前記光送信装置を制御するコントローラと、を備え、前記光送信装置は、前記コントローラからの指示に応じて、前記第1の光送信信号及び前記第1の光送信信号と一連の情報を共有する第2の光送信信号を前記第1の光受信装置に出力し、前記第1の光送信信号と一連の情報を共有しない第2の光送信信号を前記第2の光受信装置に出力する。
 本発明にかかる光通信システムは、第1及び第2の光送信装置と、光受信装置と、を備える光通信システムであって、前記光受信装置は、サブキャリア受信信号を受信する第1及び第2の受信部と、入力された第1のサブキャリア受信信号及び第2のサブキャリア受信信号を前記第1及び第2の受信部に出力する切替部と、を備え、前記切替部は、前記第1及び第2のサブキャリア受信信号が一連の情報を共有する場合、前記第1及び第2のサブキャリア受信信号を同一の光送信装置から受信すると共に、前記第1のサブキャリア受信信号を前記第1の受信部に前記第2のサブキャリア受信信号を前記第2の受信部にそれぞれ出力し、前記第1のサブキャリア受信信号及び前記第2のサブキャリア受信信号が前記一連の情報を共有しない場合、前記第1及び第2のサブキャリア受信信号をそれぞれ異なる光送信装置から受信すると共に、前記第1のサブキャリア受信信号を前記第1の受信部に出力し、前記第2のサブキャリア受信信号を前記第2の受信部に出力する。
 本発明にかかるコントローラは、光送信装置と、第1及び第2の光受信装置と、を備える光通信システムにおいて、前記光送信装置に対し、第1の光送信信号及び前記第1の光送信信号と一連の情報を共有する第2の光送信信号を前記第1の光受信装置に出力させ、前記第1の光送信信号と一連の情報を共有しない第2の光送信信号を前記第2の光受信装置に出力させる。
 本発明にかかる光通信システムの制御方法は、光送信装置と、第1及び第2の光受信装置と、を備える光通信システムの制御方法であって、前記光送信装置は、第1の光送信信号を送信する第1の送信部と、第2の光送信信号を送信する第2の送信部と、前記第1の光送信信号及び前記第2の光送信信号が一連の情報を共有する場合、前記第1の光送信信号及び前記第2の光送信信号の両方を前記第1の光受信装置に出力し、前記第1の光送信信号及び前記第2の光送信信号が前記一連の情報を共有しない場合、前記第1の光送信信号及び前記第2の光送信信号のいずれか一方を前記第2の光受信装置に出力する出力部と、を備え、前記光通信システムの通信状態に応じて前記光送信装置並びに前記第1及び第2の光受信装置をそれぞれ制御する。
 本発明にかかるプログラムは、光送信装置と、第1及び第2の光受信装置と、を備える光通信システムを制御するプログラムであって、前記光送信装置は、第1の光送信信号を送信する第1の送信部と、第2の光送信信号を送信する第2の送信部と、前記第1の光送信信号及び前記第2の光送信信号が一連の情報を共有する場合、前記第1の光送信信号及び前記第2の光送信信号の両方を前記第1の光受信装置に出力し、前記第1の光送信信号及び前記第2の光送信信号が前記一連の情報を共有しない場合、前記第1の光送信信号及び前記第2の光送信信号のいずれか一方を前記第2の光受信装置に出力する出力部と、を備え、前記光通信システムの通信状態に応じて前記光送信装置並びに前記第1及び第2の光受信装置をそれぞれ制御する処理をコンピュータに実行させるためのプログラムである。
 本発明にかかる光送信方法は、第1の光送信信号を生成し、第2の光送信信号を生成し、前記第1の光送信信号及び前記第2の光送信信号が一連の情報を共有する場合、前記第1の光送信信号及び前記第2の光送信信号の両方を第1の経路に出力し、前記第1の光送信信号及び前記第2の光送信信号が前記一連の情報を共有しない場合、前記第1の光送信信号及び前記第2の光送信信号のいずれか一方を第2の経路に出力する。
 本発明にかかる光受信方法は、第1及び第2のサブキャリア受信信号が一連の情報を共有する場合、前記第1及び第2のサブキャリア受信信号を同一の経路を経由して受信すると共に、前記第1のサブキャリア受信信号を第1の受信部に前記第2のサブキャリア受信信号を第2の受信部にそれぞれ出力し、前記第1のサブキャリア受信信号及び前記第2のサブキャリア受信信号が前記一連の情報を共有しない場合、前記第1及び第2のサブキャリア受信信号をそれぞれ異なる経路を経由して受信すると共に、前記第1のサブキャリア受信信号を前記第1の受信部に出力し、前記第2のサブキャリア受信信号を前記第2の受信部に出力する。
 本発明により、光通信ネットワークにおいて、効率的なリソース配分を実施できる光送信装置、光受信装置、光通信装置、光通信システム、及びこれらの制御方法を提供することができる。
実施の形態1にかかる光送信装置を示すブロック図である。 比較例にかかる光通信システムを示す図である。 比較例にかかる光通信システムを示す図である。 本発明の効果を説明するための図である。 実施の形態2にかかる光送信装置を示すブロック図である。 サブキャリアの配置を説明するための図である。 サブキャリアの配置を説明するための図である。 実施の形態3にかかる光送信装置を示すブロック図である。 サブキャリアの一例を示す図である(WDM)。 サブキャリアの他の例を示す図である(OFDM変調)。 実施の形態4にかかる光送信装置を示すブロック図である。 実施の形態4にかかる光送信装置を示すブロック図である。 実施の形態4にかかる光送信装置を示すブロック図である。 実施の形態5にかかる光受信装置を示すブロック図である。 実施の形態6にかかる光受信装置を示すブロック図である。 実施の形態7にかかる光受信装置を示すブロック図である。 実施の形態8にかかる光受信装置を示すブロック図である。 実施の形態8にかかる光受信装置を示すブロック図である。 実施の形態8にかかる光受信装置を示すブロック図である。 実施の形態9にかかる光通信装置を示すブロック図である。 実施の形態10にかかる光通信システムを示すブロック図である。 実施の形態11にかかる光通信システムを示すブロック図である。 実施の形態11にかかる光通信システムが備えるコントローラを示すブロック図である。 実施の形態12にかかる光通信システムが備えるコントローラを示すブロック図である。 実施の形態13にかかる光通信システムを示すブロック図である。 実施の形態14にかかる光通信システムを示すブロック図である。 実施の形態15にかかる光通信システムを示すブロック図である。
<実施の形態1>
 以下、図面を参照して本発明の実施の形態について説明する。図1は、実施の形態1にかかる光送信装置1_1を示すブロック図である。図1に示すように、本実施の形態にかかる光送信装置1_1は、第1の送信部11_1、第2の送信部11_2、及び出力部12を備える。なお、以下では第1及び第2の送信部をサブキャリア送信部という場合もある。
 第1の送信部11_1は第1の光送信信号21_1を送信する。第2の送信部11_2は第2の光送信信号21_2を送信する。すなわち、第1の送信部11_1及び第2の送信部11_2の各々には送信データが供給され、第1の送信部11_1及び第2の送信部11_2は、送信データを送信するための第1の光送信信号21_1及び第2の光送信信号21_2をそれぞれ生成する。第1の光送信信号21_1及び第2の光送信信号21_2は、サブキャリアを用いて送信データを送信するための信号である。
 本実施の形態にかかる光送信装置1_1は、複数の異なる波長の光信号を多重化して伝送するWDM技術を用いている。つまり、第1の送信部11_1及び第2の送信部11_2で生成される第1の光送信信号21_1及び第2の光送信信号21_2は異なる波長を有する。特に本実施の形態にかかる光送信装置では、WDMの1チャネルの帯域に対して複数の波長(サブキャリア)を割り当てるスーパーチャネル技術を用いることができる。このスーパーチャネル技術を用いることで、波長を高密度に多重することができ、伝送容量を大容量にすることができる。
 出力部12は、第1の光送信信号21_1及び第2の光送信信号21_2が一連の情報を共有する場合、第1の光送信信号21_1及び第2の光送信信号21_2の両方を同一の経路(例えば第1の経路26_1)に出力する。
 一方、出力部12は、第1の光送信信号21_1及び第2の光送信信号21_2が一連の情報を共有しない場合、第1の光送信信号21_1及び第2の光送信信号21_2のいずれか一方を、第2の経路に出力する。例えば、出力部12は、第1の光送信信号21_1及び第2の光送信信号21_2が一連の情報を共有しない場合、第1の光送信信号21_1を第1の経路26_1に出力し、第2の光送信信号21_2を第2の経路26_2に出力してもよい。また、例えば、出力部12は、第1の光送信信号21_1及び第2の光送信信号21_2が一連の情報を共有しない場合、第1の光送信信号21_1を第2の経路26_2に出力し、第2の光送信信号21_2を第1の経路26_1に出力してもよい。換言すると、出力部12は、第1の光送信信号21_1及び第2の光送信信号21_2が一連の情報を共有しない場合、第1の光送信信号21_1及び第2の光送信信号21_2の各々を異なる経路に出力する。
 ここで、第1の光送信信号21_1及び第2の光送信信号21_2が一連の情報を共有する場合とは、例えば、第1の送信部11_1及び第2の送信部11_2が第1の光送信信号21_1及び第2の光送信信号21_2を用いて所定の送信データを並列に送信する場合である。
 一方、第1の光送信信号21_1及び第2の光送信信号21_2が一連の情報を共有しない場合とは、例えば、第1の送信部11_1及び第2の送信部11_2が第1の光送信信号21_1及び第2の光送信信号21_2を用いて所定の送信データを独立に送信する場合である。つまり、第1の送信部11_1は第1の光送信信号21_1を用いて所定の第1の送信データを送信し、第2の送信部11_1は第2の光送信信号21_1を用いて所定の第2の送信データを送信する場合である。この場合は、第1の光送信信号21_1及び第2の光送信信号21_2がそれぞれ独立した送信データを含んでいるので、第1の光送信信号21_1及び第2の光送信信号21_2をそれぞれ別々の経路(第1の経路26_1、第2の経路26_2)に出力することができる。
 ここで第1の経路26_1とは第1の光受信装置(不図示)と接続される経路であり、第2の経路26_2とは第2の光受信装置(不図示)と接続される経路である。
 このように、本実施の形態にかかる光送信装置1_1では、出力部12を用いて第1の光送信信号21_1及び第2の光送信信号21_2の出力先を切り替えている。よって、効率的なリソース配分を実施できる光送信装置を提供することができる。この理由について以下で詳細に説明する。
 図2、図3は、比較例にかかる光通信システムを示す図であり、スーパーチャネル技術を用いた光通信システムの一例を示している。図2、図3に示す光通信システムは、光通信装置101_a~101_cを備える。光通信装置101_aは複数の送受信部102_aと単一の送受信ポート103_aとを備える。複数の送受信部102_aは各々異なる波長(サブキャリア)を用いて送受信可能に構成されている。つまり光通信装置101_aは、WDMの1チャネルの帯域に対して複数の波長(サブキャリア)を割り当てることができる。各々の送受信部102_aは各々のサブキャリアを用いて送受信可能に構成されている。光通信装置101_b、光通信装置101_cについても同様である。
 図2、図3に示す光通信システムでは、光通信装置101_aと光通信装置101_bとが光ファイバ105を介して接続可能に構成されており、光通信装置101_aと光通信装置101_cとが光ファイバ106を介して接続可能に構成されており、光通信装置101_bと光通信装置101_cとが光ファイバ107を介して接続可能に構成されている。
 図2に示す例では、光通信装置101_aと光通信装置101_bとが光ファイバ105を介して接続されており、光通信装置101_aと光通信装置101_bとが最大伝送容量(100%)で通信を行っている場合を示している。
 通信ネットワークにおいては、所定のノード間におけるトラフィックには緩急がある。このため、光通信装置101_aと光通信装置101_bとの間における伝送は、常に最大伝送容量で行われる必要はない。背景技術で説明したように、WDM技術を用いた光通信では、1チャネルに対して1波長を使用していた。このため、WDM技術を用いた光通信装置では、通信をオフにするか又は最大伝送容量で通信を行うかのいずれかしか選択肢がなく、伝送容量を中間の値に設定することはできなかった。
 一方、スーパーチャネル技術を用いた場合は、WDMの1チャネルの帯域において複数の波長を用いているため、伝送容量を中間の値に設定することができる。このため、例えば図3に示すように、光通信装置101_aと光通信装置101_bとの間における伝送容量を最大伝送容量の50%に設定することができる。しかしこの場合は、光通信装置101_aの送受信部102_aのうち使用しない送受信部108_aが発生する。また、光通信装置101_bの送受信部102_bのうち使用しない送受信部108_bが発生する。
 スーパーチャネル技術を用いた場合は、各々の送受信部102_aにおいて送受信される信号は一連の情報を共有している。換言すると、各々の送受信部102_aはデータを並列に送受信している。このため、光通信装置101_aは単一のポート103_aを介して光信号を送受信するように構成されている。よって、光通信装置101_aの送受信部102_aのうち使用しない送受信部108_aが発生した場合であっても、使用しない送受信部108_aを他の光通信装置101_cとの通信に使用することができず、リソースが無駄になるという問題があった。
 図4は本発明の効果を説明するための図である。なお、図4では光通信装置(送受信可能な光通信装置)を用いて本発明の効果について説明するが、本発明の効果は、光送信装置や光受信装置においても同様に得られることができる。
 図4に示す光通信システムは、光通信装置110_a~110_cを備える。光通信装置110_aは、複数の送受信部111_a、切替部112_a、及び複数の送受信ポート113_1a、113_2aを備える。複数の送受信部111_aは各々異なるサブキャリアを用いて送受信可能に構成されている。つまり光通信装置110_aは、WDMの1チャネルの帯域において複数の波長(サブキャリア)を割り当てることができる。光通信装置110_b、光通信装置110_cについても同様である。
 このように光通信装置110_aは、複数の送受信ポート113_1a、113_2aを備えており、複数の送受信ポート113_1a、113_2aと接続される各々の送受信部111_aを切替部112_aを用いて切り替えることができる。よって、光通信装置110_aの複数の送受信部111_aの中に未使用の送受信部が発生した場合であっても、未使用の送受信部を他の光通信装置との通信に配分することができる。
 例えば図3に示した光通信システムでは、光通信装置101_aと光通信装置101_bとの間における伝送容量を最大伝送容量の50%に設定に設定した場合は、光通信装置101_aの送受信部102_aのうち未使用の送受信部108_aが発生しリソースが無駄になっていた。これに対して図4に示した光通信システムでは、光通信装置111_aの未使用の送受信部(図3の送受信部108_aに対応)を切替部112_aを用いて送受信ポート113_2aと接続することで、未使用の送受信部を光通信装置110_cとの通信に配分することができる。よって、光通信ネットワークにおいて、効率的なリソース配分を実施できる。
 このとき、光通信装置110_a及び光通信装置110_bは、光通信装置110_aの送受信ポート113_1a及び光通信装置110_bの送受信ポート113_1bを介して通信を行っている。光通信装置110_a及び光通信装置110_cは、光通信装置110_aの送受信ポート113_2a及び光通信装置110_cの送受信ポート113_1cを介して通信を行っている。光通信装置110_b及び光通信装置110_cは、光通信装置110_bの送受信ポート113_2b及び光通信装置110_cの送受信ポート113_2cを介して通信を行っている。
 なお、図4では、各々の光通信装置110_a~110_c間における伝送容量を最大伝送容量の50%としている場合を例として示しているが、各々の光通信装置110_a~110_c間における伝送容量は、各々の切替部112_a~112_cを用いて、各々の送受信ポートに接続される各々の送受信部の数を変更することで、フレキシブルに設定することができる。
 以上で説明した本実施の形態にかかる発明により、光通信ネットワークにおいて、効率的なリソース配分を実施できる光送信装置及び光送信方法を提供することができる。
<実施の形態2>
 次に本発明の実施の形態2について説明する。実施の形態2では、実施の形態1で説明した光送信装置1_1の詳細な構成について説明する。図5は、実施の形態2にかかる光送信装置1_2を示すブロック図である。図5に示すように、本実施の形態にかかる光送信装置1_2は、複数のサブキャリア送信部11_1~11_m、出力部12、及び送信ポート13_1、13_2を備える。
 複数のサブキャリア送信部11_1~11_mの各々には、送信データが供給される。複数のサブキャリア送信部(SCS_1~SCS_m)11_1~11_mは、送信データを送信するための光送信信号21_1~21_mをそれぞれ生成する。ここで、mは2以上の整数であり、サブキャリア送信部の数に対応している。光送信信号21_1~21_mは、サブキャリアを用いて送信データを送信するための信号である。例えば、サブキャリア送信部11_1は、サブキャリア送信部11_1に対応したサブキャリアSC1を用いて光送信信号21_1を生成する。また、サブキャリア送信部11_2は、サブキャリア送信部11_2に対応したサブキャリアSC2を用いて光送信信号21_2を生成する。このように、各々のサブキャリア送信部11_1~11_mは、各々のサブキャリア送信部11_1~11_mに対応した各々のサブキャリアSC1~SCmを用いて、各々の光送信信号21_1~21_mを生成する。
 ここで各々の光送信信号21_1~21_m(換言すると、光送信信号21_1~21_mを生成する際に用いられる各々のサブキャリアSC1~SCm)は所定のパラメータを用いて設定することができる。このとき、各々の光送信信号21_1~21_mのパラメータが互いに重ならないように割り当てる。所定のパラメータとして複数のパラメータを用いた場合、複数のパラメータを軸としたマトリックス上において、各々の光送信信号21_1~21_mが互いに重ならないように配置する。例えば、所定のパラメータは、波長、偏波、時間のうちの少なくとも一つである。
 図6、図7は、サブキャリアの配置を説明するための図である。図6では、所定のパラメータとして波長と時間とを用いた場合のサブキャリアの配置の一例を示している。図6に示す場合は、波長をX軸とし時間をY軸としたマトリックス上(この場合は、XY平面上)において、各々のサブキャリアSC1~SC4を配置した際に、各々のサブキャリアSC1~SC4がマトリックス平面上において互いに重畳しないように配置している。図6に示す例では、各々のサブキャリアSC1~SC4の波長をそれぞれλ1~λ4に設定し、更に各々のサブキャリアSC1~SC4を時間t1~t4で時分割している。つまり、サブキャリアSC1はパラメータ(λ1、t1)、サブキャリアSC2はパラメータ(λ2、t2)、サブキャリアSC3はパラメータ(λ3、t3)、サブキャリアSC4はパラメータ(λ4、t4)を用いて設定することができる。
 また、図7では、所定のパラメータとして波長と偏波とを用いた場合のサブキャリアの配置の一例を示している。図7に示す場合は、波長をX軸とし偏波をY軸としたマトリックス上(この場合は、XY平面上)において、各々のサブキャリアSC1~SC4を配置した際に、各々のサブキャリアSC1~SC4がマトリックス平面上において互いに重畳しないように配置している。図7に示す例では、各々のサブキャリアSC1~SC4の波長をそれぞれλ1~λ4に設定し、更に各々のサブキャリアSC1~SC4の偏波をX偏波、Y偏波に設定している。つまり、サブキャリアSC1はパラメータ(λ1、X偏波)、サブキャリアSC2はパラメータ(λ2、Y偏波)、サブキャリアSC3はパラメータ(λ3、X偏波)、サブキャリアSC4はパラメータ(λ4、Y偏波)を用いて設定することができる。
 このように、各々の光送信信号21_1~21_mのパラメータが互いに重ならないように割り当てることで、サブキャリア間の相互干渉の影響を低減することができる。なお、図6、図7では2つのパラメータを用いて各々のサブキャリアを設定した場合について説明したが、本実施の形態では3つ以上のパラメータを用いて各々のサブキャリアを設定してもよい。
 また上記パラメータとして波長を含む場合、複数のサブキャリア送信部11_1~11_mは、各々のサブキャリアSC1~SCmを生成するための光源(単一波長の光を出力する光源。不図示。)をそれぞれ備えていてもよい。例えば光源は、レーザダイオードを用いて構成することができる。
 また、サブキャリア送信部11_1~11_mは、所定の変調方式を用いて光送信信号21_1~21_mを変調してもよい。変調方式としては、振幅偏移変調(ASK)、周波数偏移変調(FSK)、位相偏移変調(PSK)、直交振幅変調(QAM)、四位相偏移変調(QPSK)などを挙げることができる。直交振幅変調(QAM)としては、例えば16QAM、64QAM、128QAM、256QAM等を用いることができる。
 出力部12は、複数のサブキャリア送信部11_1~11_mから出力された各々の光送信信号21_1~21_mを、複数の送信ポート(PS_1、PS_2)13_1、13_2に選択的に出力する。ここで送信ポート13_1、13_2は、実施の形態1で説明した第1の経路26_1及び第2の経路26_2にそれぞれ対応している。このとき出力部12は、複数の光送信信号が多重化された光送信信号22_1を送信ポート13_1に出力する。例えば、出力部12が光送信信号21_1~21_5を送信ポート13_1に出力した場合、送信ポート13_1には光送信信号21_1~21_5が多重化された光送信信号22_1が供給される。同様に、出力部12は、複数の光送信信号が多重化された光送信信号22_2を送信ポート13_2に出力する。例えば、出力部12が光送信信号21_6~21_10を送信ポート13_2に出力した場合、送信ポート13_2には光送信信号21_6~21_10が多重化された光送信信号22_2が供給される。
 出力部12は、各々の送信ポート13_1、13_2に供給される光送信信号21_1~21_mを任意かつ動的に切り替えることができる。例えば、出力部12は制御手段(不図示)を用いて制御される。
 複数の送信ポート13_1、13_2は、出力部12から出力された光送信信号22_1、22_2(換言すると、サブキャリア送信部11_1~11_mから出力された光送信信号21_1~21_m)を送信可能に構成されている。つまり、送信ポート13_1は、接続先である第1の光受信装置(不図示)に光送信信号23_1(光送信信号22_1と同一)を出力する。また、送信ポート13_2は、接続先である第2の光受信装置(不図示)に光送信信号23_2(光送信信号22_2と同一)を出力する。
 なお、本実施の形態では、光送信装置1_2が2つの送信ポート13_1、13_2を備える場合を例として説明した。しかし、光送信装置1_2が備える送信ポートの数は、3つ以上であってもよい。送信ポートの数が3つ以上である場合、出力部12は、複数のサブキャリア送信部11_1~11_mから出力された各々の光送信信号21_1~21_mを、3以上の送信ポートに選択的に出力することができる。
 このように本実施の形態にかかる光送信装置では、図5に示すように、複数の送信ポート13_1、13_2と出力部12とを設け、出力部12を用いて、複数のサブキャリア送信部11_1~11_mから出力された各々の光送信信号21_1~21_mを各々の送信ポート13_1、13_2に選択的に出力している。よって、例えば、送信ポート13_1を介して第1の光受信装置(不図示)にデータを送信している際に、使用していないサブキャリア送信部11_mが発生した場合、未使用のサブキャリア送信部11_mを用いて、送信ポート13_2を介して第2の光受信装置(不図示)にデータを送信することができる。
 また、出力部12を用いて、それぞれの送信ポート13_1、13_2に供給される光送信信号21_1~21_mを動的に切り替えることで、送信ポート13_1を介した通信における伝送容量と、送信ポート13_2を介した通信における伝送容量とを、動的に調整することができる。
 以上で説明した本実施の形態にかかる発明により、光通信ネットワークにおいて、効率的なリソース配分を実施できる光送信装置及び光送信方法を提供することができる。
<実施の形態3>
 次に、本発明の実施の形態3について説明する。図8は、本実施の形態にかかる光送信装置1_3を示すブロック図である。本実施の形態にかかる光送信装置1_3では、実施の形態2で説明した光送信装置1_2と比べて、光源14、サブキャリア生成部15、及び信号変換部16を備えている点が異なる。これ以外は実施の形態2で説明した光送信装置1_2と同様であるので、同一の構成要素には同一の符号を付し、重複した説明は省略する。
 図8に示すように本実施の形態にかかる光送信装置1_3は、複数のサブキャリア送信部11'_1~11'_m、出力部12、送信ポート13_1、13_2、光源14、サブキャリア生成部15、及び信号変換部16を備える。
 光源14は単一のキャリアC1(単一波長の光)を出力する光源であり、例えばレーザダイオードを用いて構成することができる。光源14で生成されたキャリアC1はサブキャリア生成部15に出力される。
 サブキャリア生成部15は、光源14で生成されたキャリアC1を用いて複数のサブキャリアSC1~SCmを生成し、生成された各々のサブキャリアSC1~SCmを各々のサブキャリア送信部11'_1~11'_mに供給する。このとき、サブキャリア生成部15は、光源14で生成されたキャリアC1を所定の変調方式を用いて変調することで複数のサブキャリアSC1~SCmを生成してもよい。
 例えばサブキャリア生成部15は、光源14で生成されたキャリアC1を直交周波数分割多重方式(OFDM)を用いて変調することで、互いに直交している複数のサブキャリアSC1~SCmを生成してもよい。また、サブキャリア生成部15は、ナイキストWDM方式を用いて、複数のサブキャリアSC1~SCmを生成してもよい。このように、OFDM方式やナイキストWDM方式を用いて複数のサブキャリアSC1~SCmを生成することで、周波数間隔をシンボルレート間隔まで狭めることができ、スーパーチャネル技術を利用した通信において、周波数利用効率を高めることができる。
 例えば、各々のサブキャリア送信部11_1~11_m(実施の形態2参照)が備える各々の光源を用いてサブキャリアを生成した場合は、図9に示すように、各々のサブキャリアSC1~SC4の間隔は広くなる。一方、本実施の形態のように、光源14で生成されたキャリアC1をOFDM方式で変調することでサブキャリアを生成した場合は、図10に示すように、各々のサブキャリアSC1~SC4の間隔は図9に示す場合よりも狭くなり、周波数利用効率を高めることができる。
 このとき、各々のサブキャリアSC1~SCmの間隔は一定であることが好ましい。つまり、各々のサブキャリアSC1~SCmの波長間隔が変動する場合は、各々のサブキャリアSC1~SCmの波長の変動を考慮する必要があり、周波数利用効率が低下する。よって、本実施の形態にかかる光送信装置1_3では、光源14として単一光源を用いている。これにより、各々のサブキャリアSC1~SCmの間隔を一定にすることができる。
 信号変換部16は、入力された送信データDS1、DS2を直並列変換し、直並列変換されたデータDP1~DPmをそれぞれサブキャリア送信部11'_1~11'_mに出力する。サブキャリア送信部11'_1は、サブキャリアSC1を用いてデータDP1を送信するための光送信信号21_1を生成する。サブキャリア送信部11'_2は、サブキャリアSC2を用いてデータDP2を送信するための光送信信号21_2を生成する。このように、サブキャリア送信部11'_mは、サブキャリアSCmを用いてデータDPmを送信するための光送信信号21_mを生成する。
 よって本実施の形態にかかる光送信装置1_3では、複数のサブキャリア送信部11'_1~11'_mは、各々のサブキャリア送信部11'_1~11'_mに対応した各々のサブキャリアSC1~SCmを用いて送信データDP1~DPmを並列に送信することができる。
 つまり、複数のサブキャリア送信部11'_1~11'_mのうち送信ポート13_1を介して光送信信号22_1を送信する各々のサブキャリア送信部は、第1のデータを並列に送信することができる。また、複数のサブキャリア送信部11'_1~11'_mのうち送信ポート13_2を介して光送信信号22_2を送信する各々のサブキャリア送信部は、第2のデータを並列に送信することができる。
 具体的に説明すると、例えば光送信装置1_3がサブキャリア送信部11'_1~11'_10を備えており、これらのサブキャリア送信部11'_1~11'_10のうち、サブキャリア送信部11'_1~11'_6が第1のデータDS1を送信ポート13_1を介して送信するものとする。また、サブキャリア送信部11'_7~11'_10が第2のデータDS2を送信ポート13_2を介して送信するものとする。
 この場合、信号変換部16は、入力された第1のデータDS1を直並列変換し、直並列変換された第1のデータDP1~DP6をそれぞれサブキャリア送信部11'_1~11'_6に出力する。サブキャリア送信部11'_1~11'_6はそれぞれ、サブキャリアSC1~SC6を用いて第1のデータDP1~DP6を送信するための光送信信号21_1~21_6を生成する。出力部12は、生成された光送信信号21_1~21_6を送信ポート13_1に出力する。これにより、多重化された光送信信号22_1が送信ポート13_1から出力される。よって、各々のサブキャリア送信部11'_1~11'_6は、直並列変換された第1のデータDS1を送信ポート13_1を介して並列に送信することができる。このとき、送信ポート13_1を介して送信される送信データのデータ幅は、送信ポート13_1に接続されるサブキャリア送信部11'_1~11'_6の数(つまり、データDP1~DP6)に対応している。
 また、信号変換部16は、入力された第2のデータDS2を直並列変換し、直並列変換された第2のデータDP7~DP10をそれぞれサブキャリア送信部11'_7~11'_10に出力する。サブキャリア送信部11'_7~11'_10はそれぞれ、サブキャリアSC7~SC10を用いて第2のデータDP7~DP10を送信するための光送信信号21_7~21_10を生成する。出力部12は、生成された光送信信号21_7~21_10を送信ポート13_2に出力する。これにより、多重化された光送信信号22_2が送信ポート13_2から出力される。よって、各々のサブキャリア送信部11'_7~11'_10は、直並列変換された第2のデータDS2を送信ポート13_2を介して並列に送信することができる。このとき、送信ポート13_2を介して送信される送信データのデータ幅は、送信ポート13_2に接続されるサブキャリア送信部11'_7~11'_10の数(つまり、データDP7~DP10)に対応している。
 送信ポート13_1を介して送信される送信データのデータ幅、及び送信ポート13_2を介して送信される送信データのデータ幅は、複数のサブキャリア送信部11'_1~11'_mから出力された各々の光送信信号21_1~21_mの出力先を、出力部12を用いて変更することで調整することができる。
 本実施の形態にかかる発明においても、光通信ネットワークにおいて、効率的なリソース配分を実施できる光送信装置及び光送信方法を提供することができる。
<実施の形態4>
 次に、本発明の実施の形態4について説明する。図11は、本実施の形態にかかる光送信装置1_4を示すブロック図である。本実施の形態にかかる光送信装置1_4では、実施の形態1乃至3で説明した光送信装置1_1~1_3が備える出力部12の具体的な構成例を示している。これ以外は実施の形態1乃至3で説明した光送信装置1_1~1_3と同様であるので、同一の構成要素には同一の符号を付し、重複した説明は省略する。
 図11に示すように、本実施の形態にかかる光送信装置1_4が備える出力部12_1は、切替部30と光合波器31_1、31_2とを備える。切替部30は、各々のサブキャリア送信部11_1~11_mから出力された光送信信号21_1~21_mの出力先を光合波器31_1または光合波器31_2のいずれか一方に切り替える。切替部30は、例えばm入力、m×2出力の光マトリックススイッチを用いて構成することができる。ここで、切替部30のm入力は各々の光送信信号21_1~21_mの数に対応している。例えば、切替部30は、制御手段(不図示)を用いて制御される。
 複数の光合波器31_1、31_2は、各々の送信ポート13_1、13_2と対応するように設けられ、切替部30から出力された各々の光送信信号21_1~21_mを合波する。つまり、光合波器31_1は、切替部30から出力された各々の光送信信号を合波して多重化し、多重化された光送信信号22_1を送信ポート13_1に出力する。同様に、光合波器31_2は、切替部30から出力された各々の光送信信号を合波して多重化し、多重化された光送信信号22_2を送信ポート13_2に出力する。
 このように、本実施の形態にかかる光送信装置1_4では、切替部30と光合波器31_1、31_2とを用いて出力部12_1を構成している。よって、各々の送信ポート13_1、13_2に供給される光送信信号21_1~21_mを動的に切り替えることができる。
 なお、切替部30は、図12に示す光送信装置1_5が備える出力部12_2のように、複数の光スイッチSW_1~SW_mを用いて構成してもよい。この場合、複数の光スイッチSW_1~SW_mは、各々のサブキャリア送信部11_1~11_mと対応するように設けられ、各々のサブキャリア送信部11_1~11_mから出力された光送信信号21_1~21_mの出力先を、光合波器31_1または光合波器31_2に切り替える。
 例えば光スイッチSW_1は、サブキャリア送信部11_1と対応するように設けられており、サブキャリア送信部11_1から出力された光送信信号21_1を、光合波器31_1または光合波器31_2のいずれか一方に出力する。光スイッチSW_2は、サブキャリア送信部11_2と対応するように設けられており、サブキャリア送信部11_2から出力された光送信信号21_2を、光合波器31_1または光合波器31_2のいずれか一方に出力する。各々の光スイッチSW_1~SW_mは、制御手段(不図示)を用いて制御される。
 また、出力部は、図13に示す光送信装置1_6が備える出力部12_3のように、光合波器32と光分波器33とを用いて構成してもよい。この場合、光合波器32は、各々のサブキャリア送信部11_1~11_mから出力された各々の光送信信号21_1~21_mを合波して多重化し、多重化された光信号25を光分波器33に出力する。光分波器33は、光合波器32から出力された多重化された光信号25に含まれている各々の光送信信号21_1~21_mを送信ポート13_1、13_2に選択的に出力する。
 例えば光分波器33は、多重化された光信号25に含まれている光送信信号21_1を、送信ポート13_1または送信ポート13_2のいずれか一方に出力する。また、光分波器33は、多重化された光信号25に含まれている光送信信号21_2を、送信ポート13_1または送信ポート13_2のいずれか一方に出力する。
 例えば、光分波器33は、多重化された光信号25に含まれている各々の光送信信号21_1~21_mを、波長に応じて送信ポート13_1、13_2に選択的に出力してもよい。
<実施の形態5>
 次に、本発明の実施の形態5について説明する。図14は、実施の形態5にかかる光受信装置2_1を示すブロック図である。図14に示すように、本実施の形態にかかる光受信装置2_1は、切替部42、第1の受信部43_1および第2の受信部43_2を備える。なお、以下では第1及び第2の受信部をサブキャリア受信部という場合もある。
 切替部42は、入力された各々の光受信信号51_1、51_2を受信し、これらに含まれるサブキャリア受信信号52_1、52_2を第1の受信部43_1および第2の受信部43_2に選択的に出力する。換言すると切替部42は、光受信信号51_1、51_2に含まれるサブキャリア受信信号の出力先(第1及び第2の受信部43_1、43_2)を任意かつ動的に切り替えることができる。例えば、切替部42は制御手段(不図示)を用いて制御される。
 第1の受信部43_1は、サブキャリア受信信号52_1を用いて伝送されたデータを受信する。第2の受信部43_2は、サブキャリア受信信号52_2を用いて伝送されたデータを受信する。第1の受信部43_1及び第2の受信部43_2は、各々のサブキャリア受信信号52_1、52_2を検波するための検波部(不図示)を備える。各々の検波部は局部発振器を備えていてもよい。
 本実施の形態にかかる光受信装置2_1では、切替部42は、第1のサブキャリア受信信号52_1及び第2のサブキャリア受信信号52_2が一連の情報を共有する場合、第1のサブキャリア受信信号52_1及び第2のサブキャリア受信信号52_2を同一の経路を経由して受信する。例えば、切替部42は、第1のサブキャリア受信信号52_1及び第2のサブキャリア受信信号52_2が含まれている光受信信号51_1を受信することで、第1のサブキャリア受信信号52_1及び第2のサブキャリア受信信号52_2を同一の経路を経由して受信することができる。このとき、切替部42は、第1のサブキャリア受信信号52_1を第1の受信部43_1に、第2のサブキャリア受信信号52_2を第2の受信部43_2にそれぞれ出力する。
 一方、切替部42は、第1のサブキャリア受信信号52_1及び第2のサブキャリア受信信号52_2が一連の情報を共有しない場合、第1のサブキャリア受信信号52_1及び第2のサブキャリア受信信号52_2をそれぞれ異なる経路を経由して受信する。例えば光受信信号51_1に第1のサブキャリア受信信号52_1が含まれており、光受信信号51_2に第2のサブキャリア受信信号52_2が含まれている場合、切替部42は光受信信号51_1及び光受信信号51_1を受信することで、第1のサブキャリア受信信号52_1及び第2のサブキャリア受信信号52_2をそれぞれ異なる経路を経由して受信することができる。このとき、切替部42は、第1のサブキャリア受信信号を第1の受信部43_1に出力し、第2のサブキャリア受信信号を第2の受信部43_2に出力する。
 ここで、第1のサブキャリア受信信号52_1及び第2のサブキャリア受信信号52_2が一連の情報を共有する場合とは、例えば、第1のサブキャリア受信信号52_1及び第2のサブキャリア受信信号52_2を用いて所定のデータが並列に伝送される場合である。
 一方、第1のサブキャリア受信信号52_1及び第2のサブキャリア受信信号52_2が一連の情報を共有しない場合とは、例えば、第1のサブキャリア受信信号52_1及び第2のサブキャリア受信信号52_2が所定のデータを独立に伝送する場合である。例えば、第1の光送信装置(不図示)が第1のデータを第1のサブキャリア受信信号52_1を用いて伝送し、第2の光送信装置(不図示)が第2のデータを第2のサブキャリア受信信号52_2を用いて伝送する場合である。このとき、光受信装置2_1は、第1の光送信装置(不図示)から伝送された第1のサブキャリア受信信号52_1を第1の経路を経由して受信し、第2の光送信装置(不図示)から伝送された第2のサブキャリア受信信号52_2を第2の経路を経由して受信する。
 このように、本実施の形態にかかる光受信装置2_1では、第1のサブキャリア受信信号52_1及び第2のサブキャリア受信信号52_2を、第1の受信部43_1及び第2の受信部43_2に切替部42を用いて選択的に出力している。
 よって実施の形態1で説明した理由と同様の理由により、光通信ネットワークにおいて、効率的なリソース配分を実施できる光受信装置及び光受信方法を提供することができる。
<実施の形態6>
 次に、本発明の実施の形態6について説明する。図15は、実施の形態6にかかる光受信装置2_2を示すブロック図である。実施の形態6では、実施の形態5で説明した光受信装置2_1の詳細な構成について説明する。図15に示すように、本実施の形態にかかる光受信装置2_2は、複数の受信ポート41_1、41_2、切替部42、サブキャリア受信部43_1~43_m、及び信号処理部45を備える。
 複数の受信ポート(PR_1、PR_2)41_1、41_2は、光受信装置2_2に供給された多重化された光受信信号50_1、50_2をそれぞれ受信し、受信した光受信信号51_1、51_2をそれぞれ切替部42に出力する。受信ポート41_1、41_2はそれぞれ、異なる光送信装置から伝送された光受信信号50_1、50_2を受信することができる。例えば、受信ポート41_1は第1の光送信装置(不図示)から伝送された光受信信号50_1を受信し、受信ポート41_2は第2の光送信装置(不図示)から伝送された光受信信号50_2を受信することができる。
 切替部42は、複数の受信ポート41_1、41_2で受信した各々の光受信信号51_1、51_2に含まれる各々のサブキャリア受信信号52_1~52_mを、複数のサブキャリア受信部(SCR_1~SCR_m)43_1~43_mに選択的に出力する。換言すると、多重化されている各々の光受信信号51_1、51_2は、切替部42において各々のサブキャリア受信信号52_1~52_mに分離される。そして、分離された各々のサブキャリア受信信号52_1~52_mは、各々のサブキャリア受信信号52_1~52_mに対応するサブキャリア受信部43_1~43_m(つまり、各々の波長のサブキャリア受信信号を受信できるサブキャリア受信部)にそれぞれ出力される。このとき、1つのサブキャリア受信部43_mには1つのサブキャリア受信信号52_mが入力される。
 切替部42は、各々のサブキャリア受信信号52_1~52_mの出力先(サブキャリア受信部43_1~43_m)を任意かつ動的に切り替えることができる。例えば、切替部42は制御手段(不図示)を用いて制御される。
 サブキャリア受信部43_1は、サブキャリア受信信号52_1を用いて伝送されたデータを受信する。サブキャリア受信部43_2は、サブキャリア受信信号52_2を用いて伝送されたデータを受信する。このように、サブキャリア受信部43_mは、サブキャリア受信信号52_mを用いて伝送された各々のデータを受信する。各々のサブキャリア受信部43_1~43_mは、各々のサブキャリア受信信号52_1~52_mを検波するための検波部(不図示)を備える。各々の検波部は局部発振器を備えていてもよい。つまり、各々のサブキャリア受信部43_1~43_mは、各々の局部発振器で生成された局部発振光と入力された各々のサブキャリア受信信号52_1~52_mとを干渉させることで、各々のサブキャリア受信部43_1~43_mに対応したサブキャリア受信信号52_1~52_mを受信することができる。
 各々のサブキャリア受信信号52_1~52_mは、所定の変調方式を用いて変調されていてもよい。この場合、サブキャリア受信部43_1~43_mは、所定の変調方式で変調されたサブキャリア受信信号52_1~52_mからデータを読み出すための回路を備えている。所定の変調方式としては、振幅偏移変調(ASK)、周波数偏移変調(FSK)、位相偏移変調(PSK)、直交振幅変調(QAM)、四位相偏移変調(QPSK)などを挙げることができる。直交振幅変調(QAM)としては、例えば16QAM、64QAM、128QAM、256QAM等を用いることができる。
 また、本実施の形態にかかる光受信装置2_2では、複数のサブキャリア受信部43_1~43_mのうち受信ポート41_1を介してサブキャリア受信信号(光受信信号50_1)を受信した各々のサブキャリア受信部は、直並列変換された第1のデータを並列に受信することができる。また、複数のサブキャリア受信部43_1~43_mのうち第2の受信ポート41_2を介してサブキャリア受信信号(光受信信号50_2)を受信した各々のサブキャリア受信部は、直並列変換された第2のデータを並列に受信することができる。換言すると、受信ポート41_1を介して受信した光受信信号50_1に含まれるサブキャリア受信信号の各々は一連の情報を共有している。また、受信ポート41_2を介して受信した光受信信号50_2に含まれるサブキャリア受信信号の各々は一連の情報を共有している。
 具体的に説明すると、例えば光受信装置2_2がサブキャリア受信部43_1~43_10を備えており、これらのサブキャリア受信部43_1~43_10のうち、サブキャリア受信部43_1~43_6が第1のデータを受信ポート41_1を介して受信するものとする。また、サブキャリア受信部43_7~43_10が第2のデータを受信ポート41_2を介して受信するものとする。
 この場合、光受信装置2_2は第1の光送信装置(不図示)から伝送された光受信信号50_1を受信ポート41_1を介して受信する。そして、サブキャリア受信部43_1~43_6は、光受信信号50_1に含まれるサブキャリア受信信号52_1~52_6を各々受信することで、第1のデータ(第1の光送信装置で直並列変換されたデータ)を並列に受信することができる。このように並列に伝送されてきた第1のデータは、後段の信号処理部45で直列のデータに変換することができる。
 同様に、光受信装置2_2は第2の光送信装置(不図示)から伝送された光受信信号50_2を受信ポート41_2を介して受信する。そして、サブキャリア受信部43_7~43_10は、光受信信号50_2に含まれるサブキャリア受信信号52_7~52_10を各々受信することで、第2のデータ(第2の光送信装置で直並列変換されたデータ)を並列に受信することができる。このように並列に伝送されてきた第2のデータは、後段の信号処理部45で直列のデータに変換することができる。
 例えば、各々のサブキャリア受信部43_1~43_mは光電変換器(不図示)を備えている。各々の光電変換器は、サブキャリア受信信号52_1~52_mを電気信号に変換し、当該電気信号を受信信号53_1~53_mとして信号処理部45に出力する。光電変換器には、例えばフォトダイオードを用いることができる。
 信号処理部45は、サブキャリア受信部43_1~43_mから出力された受信信号53_1~53_mに対して所定の処理を行いデータを生成する。また、信号処理部45は、各々のサブキャリア受信信号52_1~52_m間の相互干渉の影響を補償してもよい。つまり、信号処理部45において各々のサブキャリア受信部43_1~43_mを同時に処理することで、例えばクロストークの補償や非線形光学効果(相互位相変調(XPM)、四光波混合(FWM)など)の補償を行うことができる。例えば信号処理部45は、各々のサブキャリア受信信号52_1~52_mに応じて、各々のサブキャリア受信部43_1~43_mが備える各々の局部発振器を制御することで、各々のサブキャリア受信信号52_1~52_m間の相互干渉の影響を補償してもよい。
 スーパーチャネル技術では、1チャネルの帯域において複数の波長(サブキャリア)を使用しており、波長が高密度に多重されている。このため、サブキャリア間における相互干渉の影響が大きい。本実施の形態にかかる光受信装置では、複数の異なるサブキャリアを同一の光受信装置で受信しており、一つのサブキャリアに影響する隣接するサブキャリアも同時にモニタすることができる。このため、サブキャリア受信信号間の相互干渉の影響を補償するための補償パラメータを設定することができる。
 なお、本実施の形態では、光受信装置2_2が2つの受信ポート41_1、41_2を備える場合を例として説明した。しかし、光受信装置2_2が備える受信ポートの数は、3つ以上であってもよい。
 実施の形態1で説明した場合と同様に、光受信装置が1つの受信ポートしか備えていない場合は次のような問題が生じる。すなわち、光受信装置が1つの受信ポートを介して第1の光送信装置(不図示)からデータを受信している際に、使用していないサブキャリア受信部が発生した場合は、この未使用のサブキャリア受信部が使用できず、リソースが無駄になるという問題があった。つまり、受信ポートが1つしかない場合は、未使用のサブキャリア受信部を用いて他の光送信装置からデータを受信することができず、未使用のサブキャリア受信部が無駄になるという問題があった。
 そこで本実施の形態にかかる光受信装置2_2では、図15に示すように、複数の受信ポート41_1、41_2と切替部42とを設け、切替部42を用いて、複数の受信ポート41_1、41_2で受信した各々の光受信信号51_1、51_2に含まれる各々のサブキャリア受信信号52_1~52_mを、複数のサブキャリア受信部43_1~43_mに選択的に出力している。よって、例えば、未使用のサブキャリア受信部が発生した場合に、空いている受信ポートを介して他の光送信装置(不図示)から光受信信号を受信し、未使用のサブキャリア受信部においてこの光受信信号を用いてデータを受信することができる。
 なお、上記では1つのサブキャリア受信部43_mに1つのサブキャリア受信信号52_mが入力される場合について説明したが、本実施の形態にかかる光受信装置2_2では、1つのサブキャリア受信部43_mに複数のサブキャリア受信信号が入力され、1つのサブキャリア受信部43_mで複数のサブキャリア受信信号を選択的に受信するように構成してもよい。この場合は、各々のサブキャリア受信部43_1~43_mに局部発振器(不図示)を設け、局部発振器から出力された特定波長の局部発振光と入力された複数のサブキャリア受信信号(多重化されたサブキャリア受信信号)とを干渉させることで、複数のサブキャリア受信信号の中から特定のサブキャリア受信信号(つまり、特定波長に対応したサブキャリア受信信号)を選択的に受信することができる。このように、複数のサブキャリア受信信号が1つのサブキャリア受信部43_mに入力されることを許容することで、切替部42の構成を簡素化することができる。
 以上で説明した本実施の形態にかかる発明により、光通信ネットワークにおいて、効率的なリソース配分を実施できる光受信装置及び光受信方法を提供することができる。
<実施の形態7>
 次に、本発明の実施の形態7について説明する。図16は、本実施の形態にかかる光受信装置2_3を示すブロック図である。本実施の形態にかかる光受信装置2_3では、複数のサブキャリア受信部が局部発振器(LO)を共有している点が実施の形態6にかかる光受信装置2_2と異なる。これ以外は実施の形態6で説明した光受信装置2_2と同様であるので、同一の構成要素には同一の符号を付し、重複した説明は省略する。
 図16に示すように、本実施の形態にかかる光受信装置2_3は、複数の受信ポート41_1、41_2、切替部42、サブキャリア受信部43_1~43_6、局部発振器44_1、44_2及び信号処理部45を備える。本実施の形態にかかる光受信装置2_3では、複数のサブキャリア受信部が局部発振器を共有している。すなわち、複数のサブキャリア受信部43_1~43_3は、局部発振器44_1を共有している。また、複数のサブキャリア受信部43_4~43_6は、局部発振器44_2を共有している。図16に示す例では、サブキャリア受信部の数を6としている(m=6)が、サブキャリア受信部の数はこれ以外であってもよい。このとき、局部発振器の数はサブキャリア受信部の数に応じて増やすことができる。また、図16に示す例では、1つの局部発振器を3つのサブキャリア受信部で共有している例を示すが、1つの局部発振器を共有するサブキャリア受信部の数は2つであってもよく、また4つ以上であってもよい。
 切替部42は、複数の受信ポート41_1、41_2で受信した各々の光受信信号51_1、51_2に含まれる各々のサブキャリア受信信号52_1~52_6を、複数のサブキャリア受信部43_1~43_6に選択的に出力する。換言すると、多重化されている各々の光受信信号51_1、51_2は、切替部42において各々のサブキャリア受信信号52_1~52_6に分離される。そして、分離された各々のサブキャリア受信信号52_1~52_6は、各々のサブキャリア受信信号52_1~52_6に対応するサブキャリア受信部43_1~43_6にそれぞれ出力される。このとき、1つのサブキャリア受信部に1つのサブキャリア受信信号が入力される。
 切替部42は、各々のサブキャリア受信信号52_1~52_6の出力先を任意かつ動的に切り替えることができる。例えば、切替部42は制御手段(不図示)を用いて制御される。
 サブキャリア受信部43_1~43_6は、各々のサブキャリア受信信号52_1~52_6を用いて伝送された各々のデータを受信する。各々のサブキャリア受信部43_1~43_6は、各々のサブキャリア受信信号52_1~52_6を検波するための検波部(不図示)を備える。このとき、各々のサブキャリア受信部43_1~43_6が備える検波部は、局部発振器44_1、44_2から出力された局部発振光を用いて検波を行うことができる。
 つまりサブキャリア受信部43_1~43_3は、局部発振器44_1から出力された局部発振光を用いて各々のサブキャリア受信信号52_1~52_3を検波することができる。このとき、局部発振器44_1は、各々のサブキャリア受信信号52_1~52_3に対応した波長(各々のサブキャリア受信信号52_1~52_3と干渉する波長)を有する局部発振光を生成する。すなわち、サブキャリア受信信号52_1~52_3の波長が互いに近接している場合は、局部発振器44_1から出力された局部発振光が単一の波長を有する局部発振光であっても、各々のサブキャリア受信信号52_1~52_3は当該局部発振光と干渉する。よって、各々のサブキャリア受信部43_1~43_3は、局部発振器44_1から出力された局部発振光を用いて各々のサブキャリア受信信号52_1~52_3を検波することができる。
 同様に、サブキャリア受信部43_4~43_6は、局部発振器44_2から出力された局部発振光を用いて各々のサブキャリア受信信号52_4~52_6を検波することができる。このとき、局部発振器44_2は、各々のサブキャリア受信信号52_4~52_6に対応した波長(各々のサブキャリア受信信号52_4~52_6と干渉する波長)を有する局部発振光を生成する。すなわち、サブキャリア受信信号52_4~52_6の波長が互いに近接している場合は、局部発振器44_2から出力された局部発振光が単一の波長を有する局部発振光であっても、各々のサブキャリア受信信号52_4~52_6は当該局部発振光と干渉する。よって、各々のサブキャリア受信部43_4~43_6は、局部発振器44_2から出力された局部発振光を用いて各々のサブキャリア受信信号52_4~52_6を検波することができる。例えば局部発振器44_1、44_2は、レーザダイオードを用いて構成することができる。
 例えば、各々のサブキャリア受信部43_1~43_6は光電変換器(不図示)を備えている。各々の光電変換器は、サブキャリア受信信号52_1~52_6を電気信号に変換し、当該電気信号を受信信号53_1~53_6として信号処理部45に出力する。光電変換器には、例えばフォトダイオードを用いることができる。
 信号処理部45は、サブキャリア受信部43_1~43_6から出力された受信信号53_1~53_6に対して所定の処理を行いデータを生成する。また信号処理部45は、サブキャリア受信部43_1~43_6から出力された受信信号53_1~53_6に応じて、局部発振器44_1、44_2を制御することができる。換言すると、光受信信号51_1、51_2に含まれるサブキャリア受信信号52_1~52_6に応じて局部発振器44_1、44_2が制御される。
 例えば信号処理部45は、複数のサブキャリア受信部に対応したサブキャリア受信信号が光受信信号51_1、51_2に含まれていない場合、複数のサブキャリア受信部で共有している局部発振器をオフ状態としてもよい。具体的に説明すると、サブキャリア受信部43_1~43_3に対応するサブキャリア受信信号52_1~52_3の全てが光受信信号51_1、51_2に含まれていない場合、サブキャリア受信部43_1~43_3で共有している局部発振器44_1をオフ状態とすることができる。同様に、サブキャリア受信部43_4~43_6に対応するサブキャリア受信信号52_4~52_6の全てが光受信信号51_1、51_2に含まれていない場合、サブキャリア受信部43_4~43_6で共有している局部発振器44_2をオフ状態とすることができる。このような制御により、不要な局部発振器をオフ状態とすることができ、光受信装置2_3の消費電力を低減することができる。
 また、実施の形態6の場合と同様に、信号処理部45において複数のサブキャリア受信信号を同時に処理することで、例えばクロストークの補償や非線形光学効果(相互位相変調(XPM)、四光波混合(FWM)など)の補償を行うことができる。
 以上で説明した本実施の形態にかかる発明により、光通信ネットワークにおいて、効率的なリソース配分を実施できる光受信装置及び光受信方法を提供することができる。
<実施の形態8>
 次に、本発明の実施の形態8について説明する。図17は、本実施の形態にかかる光受信装置2_4を示すブロック図である。本実施の形態にかかる光受信装置2_4では、実施の形態5乃至7で説明した光受信装置2_1~2_3が備える切替部42の具体的な構成例を示している。これ以外は実施の形態5乃至7で説明した光受信装置2_1~2_3と同様であるので、同一の構成要素には同一の符号を付し、重複した説明は省略する。
 図17に示すように、本実施の形態にかかる光受信装置2_4が備える切替部42_1は、光分岐器60_1、60_2と光切替スイッチ61とを備える。光分岐器60_1、60_2は、各々の受信ポート41_1、41_2と対応するように設けられ、各々の受信ポート41_1、41_2で受信した光受信信号51_1、51_2を分岐して、光切替スイッチ61に出力する。
 光切替スイッチ61は、各々の光分岐器60_1、60_2で分岐された光受信信号を入力し、これらを各々のサブキャリア受信部43_1~43_mに選択的に出力する。例えば、光切替スイッチ61はm×2入力、m出力の光マトリックススイッチを用いて構成することができる。ここで、光切替スイッチ61のm出力はサブキャリア受信部43_1~43_mの数に対応している。例えば、光切替スイッチ61は、制御手段(不図示)を用いて制御される。
 このように、本実施の形態にかかる光受信装置2_4では、光分岐器60_1、60_2と光切替スイッチ61とを用いて切替部42_1を構成している。よって、各々のサブキャリア受信部43_1~43_mに供給されるサブキャリア受信信号52_1~52_mを動的に切り替えることができる。
 なお、光切替スイッチ61は、図18に示す光受信装置2_5が備える切替部42_2のように、複数の光スイッチSW_1~SW_mを用いて構成してもよい。この場合、光スイッチSW_1~SW_mは、各々のサブキャリア受信部43_1~43_mと対応するように設けられ、各々の光分岐器60_1、60_2で分岐された光受信信号の中から各々のサブキャリア受信部43_1~43_mに出力する光受信信号を選択して出力する。
 例えば、光スイッチSW_1はサブキャリア受信部43_1と対応するように設けられており、光分岐器60_1、60_2で分岐された光受信信号の中から、サブキャリア受信部43_1に対応するサブキャリア受信信号52_1を選択し、当該選択したサブキャリア受信信号52_1をサブキャリア受信部43_1に出力する。光スイッチSW_2はサブキャリア受信部43_2と対応するように設けられており、光分岐器60_1、60_2で分岐された光受信信号の中から、サブキャリア受信部43_2に対応するサブキャリア受信信号52_2を選択し、当該選択したサブキャリア受信信号52_2をサブキャリア受信部43_2に出力する。各々の光スイッチSW_1~SW_mは、制御手段(不図示)を用いて制御される。例えば光スイッチSW_1~SW_mは、波長選択型の光スイッチで構成することができる。
 また、例えば実施の形態6の後半で説明した光受信装置のように、サブキャリア受信部43_1~43_mがそれぞれ、特定のサブキャリア受信信号を選択的に受信することができるのであれば、1つのサブキャリア受信部43_mに複数のサブキャリア受信信号が入力されるようにしてもよい。この場合は、例えば光スイッチSW_1~SW_mのそれぞれは、複数のサブキャリア受信信号を1つのサブキャリア受信部43_mに出力することができる。
 また切替部は、図19に示す光受信装置2_6が備える切替部42_3のように、光合波器62と光分波器63とを用いて構成してもよい。光合波器62は、各々の受信ポート41_1、41_2で受信した光受信信号51_1、51_2を合波して多重化し、多重化された光信号64を光分波器63に出力する。光分波器63は、多重化された光信号64に含まれている各々のサブキャリア受信信号52_1~52_mを、各々のサブキャリア受信部43_1~43_mに選択的に出力する。
 つまり光分波器63は、多重化された光信号64に含まれているサブキャリア受信信号52_1を、サブキャリア受信部43_1に出力する。また、光分波器63は、多重化された光信号64に含まれているサブキャリア受信信号52_2を、サブキャリア受信部43_2に出力する。
 例えば、光分波器63は、多重化された光信号64に含まれている各々のサブキャリア受信信号52_1~52_mを、波長に応じてサブキャリア受信部43_1~43_mに選択的に出力することができる。この場合、光分波器63は、波長選択型の光分波器63を用いて構成することができる。
 また、例えば実施の形態6の後半で説明した光受信装置のように、サブキャリア受信部43_1~43_mがそれぞれ、特定のサブキャリア受信信号を選択的に受信することができるのであれば、1つのサブキャリア受信部43_mに複数のサブキャリア受信信号が入力されるようにしてもよい。この場合は、例えば光分波器62は、多重化された光信号63の中に含まれる複数のサブキャリア受信信号を1つのサブキャリア受信部43_mに出力することができる。例えば、光分波器63の代わりに光分岐器を用いてもよい。
<実施の形態9>
 次に、本発明の実施の形態9について説明する。図20は、本実施の形態にかかる光通信装置3を示すブロック図である。本実施の形態にかかる光通信装置3は送受信可能な光通信装置であり、実施の形態1で説明した光送信装置1_1と実施の形態5で説明した光受信装置2_1とを組み合わせた構成となっている。
 図20に示すように、本実施の形態にかかる光通信装置3は、第1の送信部11_1、第2の送信部11_2、出力部12、切替部42、第1の受信部43_1、及び第2の受信部43_2を備える。光送信信号22_1及び光受信信号51_1は、第1の経路を介して送受信可能に構成されている。また、光送信信号22_2及び光受信信号51_2は、第2の経路を介して送受信可能に構成されている。
 なお、第1の送信部11_1、第2の送信部11_2、及び出力部12の構成及び動作については、実施の形態1で説明した光送信装置1_1の場合と同様であるので重複した説明は省略する。また、切替部42、第1の受信部43_1、及び第2の受信部43_2の構成及び動作については、実施の形態5で説明した光受信装置2_1の場合と同様であるので重複した説明は省略する。
 また、本実施の形態にかかる光通信装置3においても、実施の形態2乃至4で説明した光送信装置1_2~1_6の構成を適用してもよく、また実施の形態6乃至8で説明した光受信装置2_2~2_6の構成を適用してもよい。
 以上で説明した本実施の形態にかかる発明より、光通信ネットワークにおいて、効率的なリソース配分を実施できる光通信装置及び光通信方法を提供することができる。
<実施の形態10>
 次に、本発明の実施の形態10について説明する。図21は、本実施の形態にかかる光通信システムを示すブロック図である。図21に示すように、本実施の形態にかかる光通信システムは、光送信装置1と、当該光送信装置1と通信を行う光受信装置70_1、70_2とを備える。光送信装置1には、実施の形態1乃至4で説明した光送信装置1_1~1_6を用いることができる。
 光送信装置1は、複数のサブキャリア送信部11_1~11_m、出力部12、及び送信ポート13_1、13_2を備える。複数のサブキャリア送信部11_1~11_mは、サブキャリアを用いてデータを送信する光送信信号21_1~21_mをそれぞれ生成する。出力部12は、複数のサブキャリア送信部11_1~11_mから出力された各々の光送信信号21_1~21_mを送信ポート13_1または送信ポート13_2に選択的に出力する。なお、光送信装置1の構成及び動作については、実施の形態1乃至4で説明した光送信装置1_1~1_6と同様であるので重複した説明は省略する。
 送信ポート13_1は光受信装置70_1の受信ポート71_1と光ファイバを介して接続され、送信ポート13_2は光受信装置70_2の受信ポート71_2と光ファイバを介して接続されている。光送信装置1は、光受信装置70_1に送信ポート13_1を介して光送信信号23_1を送信する。また、光送信装置1は、光受信装置70_2に送信ポート13_2を介して光送信信号23_2を送信する。光送信信号23_1は、複数の光送信信号21_mが多重化された信号である。光受信装置70_1が備える受信部72_1は、このような多重化された光送信信号を受信可能に構成されている。同様に、光送信信号23_2は、複数の光送信信号21_mが多重化された信号である。光受信装置70_2が備える受信部72_2は、このような多重化された光送信信号を受信可能に構成されている。
 複数のサブキャリア送信部11_1~11_mのうち送信ポート13_1を介して光送信信号を送信する各々のサブキャリア送信部は、直並列変換された第1のデータを光受信装置70_1に並列に送信してもよい。また、複数のサブキャリア送信部11_1~11_mのうち送信ポート13_2を介して光送信信号を送信する各々のサブキャリア送信部は、直並列変換された第2のデータを光受信装置70_2に並列に送信してもよい。
 つまり、光送信装置1は、光受信装置70_1に送信する第1のデータを直並列変換し、当該直並列変換された各々のデータを送信するための光送信信号をサブキャリア送信部で生成して光受信装置70_1に送信する。光受信装置70_1は、光送信信号23_1に含まれる直並列変換されたデータを受信し、受信した直並列変換されたデータを並直列変換することで、並直列変換された第1のデータを取得することができる。光受信装置70_2に送信される第2のデータについても同様である。
 また、本実施の形態にかかる光通信システムでは、光送信装置1と光受信装置70_1との間の伝送容量は、送信ポート13_1に光送信信号を出力するサブキャリア送信部11_1~11_mの数に基づき決定される。同様に、光送信装置1と光受信装置70_2との間の伝送容量は、送信ポート13_2に光送信信号を出力するサブキャリア送信部11_1~11_mの数に基づき決定される。換言すると、光送信信号23_1の伝送容量と光送信信号23_2の伝送容量の比は、送信ポート13_1に接続されるサブキャリア送信部の数と送信ポート13_2に接続されるサブキャリア送信部の数との比に対応している。例えば、光送信装置1と光受信装置70_1との間の伝送容量を増加させる場合は、出力部12を制御して、送信ポート13_1に接続されるサブキャリア送信部の数を増加させる。
 また、光送信装置1と光受信装置70_1との間の伝送には第1の波長帯域のサブキャリアを用いてもよく、光送信装置1と光受信装置70_2との間の伝送には第2の波長帯域のサブキャリアを用いてもよい。ここで、第1の波長帯域と第2の波長帯域は互いに波長が重ならない帯域である。例えば、これらの波長帯域は、WDMで用いられているCバンド、Lバンド、Sバンド等である。
 また、光送信装置1と光受信装置70_1との間の通信の設定は、光送信装置1と光受信装置70_1との間の距離、通信を行う時間帯、及び光送信装置1と光受信装置70_1との間の伝送経路の状態の少なくとも一つに応じて決定してもよい。また、光送信装置1と光受信装置70_1との間の通信におけるサブキャリアの波長帯域の割り当て、光信号の経路、及び変調方式の少なくとも一つを用いて、光送信装置1と光受信装置70_1との間の通信の設定を行ってもよい。光送信装置1と光受信装置70_2との間の通信の設定についても同様である。
 例えば、光送信装置1と光受信装置70_1との間の通信距離が長くなるにつれて、1つのサブキャリア当たりの多値度を減少させると共にサブキャリアの数を増加させてもよい。逆に、光送信装置1と光受信装置70_1との間の通信距離が短くなるにつれて、1つのサブキャリア当たりの多値度を増加させると共にサブキャリアの数を減少させてもよい。
 直交振幅変調(QAM)を用いた場合を例として具体的に説明すると、光送信装置1と光受信装置70_1との間の通信距離が長い場合、128QAMや256QAM等の変調方式を用いて1つのサブキャリア当たりの多値度を増加させると、ビット誤り率が増加する。よってこの場合は、16QAMや64QAM等の変調方式を用いて、1つのサブキャリア当たりの多値度を減少させる。また、この場合は1つのサブキャリアに含まれる情報量が少なくなるので、この分だけサブキャリアの数を増加させる。
 一方、光送信装置1と光受信装置70_1との間の通信距離が短い場合は、128QAMや256QAM等の変調方式を用いて1つのサブキャリア当たりの多値度を増加させることができる。この場合は、1つのサブキャリアに含まれる情報量を増加させることができるので、この分だけサブキャリアの数を減少させることができる。
 また、例えば、光送信装置1と光受信装置70_1との間の伝送経路が悪化した場合(光ファイバにテンションが作用した場合など)は、例えば1つのサブキャリア当たりの多値度を減少させてもよい。このように1つのサブキャリア当たりの多値度を減少させることで、ビット誤り率の増加を抑制することができる。
 なお、上記で説明したような光通信システムにおける通信の取り決めは、光送信装置1及び光受信装置70_1、70_1が決定することができる。
 以上で説明した本実施の形態にかかる発明により、光通信ネットワークにおいて、効率的なリソース配分を実施できる光通信システム及び光通信システムの制御方法を提供することができる。
<実施の形態11>
 次に、本発明の実施の形態11について説明する。図22は、本実施の形態にかかる光通信システムを示すブロック図である。図22に示すように、本実施の形態にかかる光通信システムは、光送信装置1と、当該光送信装置1と通信を行う光受信装置70_1、70_2と、コントローラ80とを備える。なお、本実施の形態にかかる光通信システムは、コントローラ80を備える点以外は、実施の形態10で説明した光通信システムと同様であるので重複した説明は省略する。また、本実施の形態においても、光送信装置1には、実施の形態1乃至4で説明した光送信装置1_1~1_6を用いることができる。
 コントローラ80は、光送信装置1及び光受信装置70_1、70_2をそれぞれ制御するために設けられている。つまり、コントローラ80は、光送信装置1と光受信装置70_1の通信状態及び光送信装置1と光受信装置70_2の通信状態に応じて、光送信装置1や光受信装置70_1、70_2を制御することができる。
 図23はコントローラ80の構成例を示すブロック図である。図23に示すように、コントローラ80は、監視部81及び設定部82を備える。監視部81は、光通信システムの通信状態、つまり光送信装置1と光受信装置70_1の通信状態及び光送信装置1と光受信装置70_2の通信状態を監視する。設定部82は、監視部81における監視結果に応じて、光送信装置1や光受信装置70_1、70_2をそれぞれ設定する。
 コントローラ80は、光送信装置1と光受信装置70_1との通信で使用するサブキャリア送信部や光送信装置1と光受信装置70_2との通信で使用するサブキャリア送信部を設定することができる。このとき、コントローラ80は、光送信装置1が備える出力部12の設定を変更することで、各々の光受信装置70_1、70_2との通信で使用するサブキャリア送信部を変更することができる。
 例えばコントローラ80は、送信ポート13_1、13_2に光送信信号を出力するサブキャリア送信部11_1~11_mの数を制御することで、光送信装置1と光受信装置70_1との間の伝送容量及び光送信装置1と光受信装置70_2との間の伝送容量を変更することができる。
 またコントローラ80は、光送信装置1と光受信装置70_1との通信で使用するサブキャリアの波長帯域や光送信装置1と光受信装置70_2との通信で使用するサブキャリアの波長帯域を設定することができる。例えばコントローラ80は、光送信装置1と光受信装置70_1との間の通信には第1の波長帯域のサブキャリアが用いられるように、また光送信装置1と光受信装置70_2との間の通信には第2の波長帯域のサブキャリアが用いられるように設定することができる。ここで、第1の波長帯域と第2の波長帯域は互いに波長が重ならない帯域である。例えば、これらの波長帯域は、WDMで用いられているCバンド、Lバンド、Sバンド等である。
 またコントローラ80は、光送信装置1と光受信装置70_1との間の距離、通信を行う時間帯、及び光送信装置1と光受信装置70_1との間の伝送経路の状態の少なくとも一つに応じて、光送信装置1と光受信装置70_1との間の通信の設定を行うことができる。またコントローラ80は、光送信装置1と光受信装置70_1との間の通信におけるサブキャリアの波長帯域の割り当て、光信号の経路、及び変調方式の少なくとも一つを用いて、光送信装置1と光受信装置70_1との間の通信の設定を行ってもよい。光送信装置1と光受信装置70_2との間の通信の設定についても同様である。
 例えばコントローラ80は、光送信装置1と光受信装置70_1との間の通信距離が長くなるにつれて、1つのサブキャリア当たりの多値度を減少させると共にサブキャリアの数を増加させてもよい。逆に、光送信装置1と光受信装置70_1との間の通信距離が短くなるにつれて、1つのサブキャリア当たりの多値度を増加させると共にサブキャリアの数を減少させてもよい。光送信装置1と光受信装置70_2との間の通信における変調方式についても同様である。
 また、コントローラ80は、光送信装置1と光受信装置70_1との間の伝送経路が悪化した場合(光ファイバにテンションが作用した場合など)は、例えば1つのサブキャリア当たりの多値度を減少させてもよい。このように1つのサブキャリア当たりの多値度を減少させることで、ビット誤り率の増加を抑制することができる。光送信装置1と光受信装置70_2との間の通信における変調方式についても同様である。
 本実施の形態では1つの光送信装置と2つの光受信装置とで構成された光通信システムを例として挙げたが、光通信システムを構成する光送信装置及び光受信装置はこれ以上備えていてもよい。この場合もコントローラ80は、光通信システム全体が最適な通信状態となるように光送信装置や光受信装置を設定することができる。
 ここで最適な通信状態はユーザに応じて任意に決定することができる。一例を挙げると、通信コストを最小化する通信状態、通信の信頼性を最大化する通信状態(つまり、通信が途切れないことを最優先とした通信状態であり、冗長経路を考慮した通信状態)、通信速度を重視した通信状態(常に最短経路となるような通信状態)、波長使用効率が最大となる通信状態などである。
 またコントローラ80は、光送信装置や光受信装置から報告されるネットワークの状態の変化(例えば光伝送路における障害や光通信信号の劣化など)に関する情報を収集し、ネットワークの状態の変化に追従するように、また光通信システム全体が最適な通信状態となるように光送信装置や光受信装置を再設定することができる。
 以上で説明した本実施の形態にかかる発明により、光通信ネットワークにおいて、効率的なリソース配分を実施できる光通信システム及び光通信システムの制御方法を提供することができる。また、光通信システム全体が最適な通信状態となるような光通信システム及び光通信システムの制御方法を提供することができる。
<実施の形態12>
 次に、本発明の実施の形態12について説明する。本実施の形態では、本発明にかかる光通信システムを集中制御型のネットワークに適用した場合について説明する。図24は、本実施の形態にかかる光通信システムを示すブロック図である。図24に示すように、本実施の形態にかかる光通信システムは、コントローラ80及び複数のノードA~D(85_a~85_d)を備える。コントローラ80は、実施の形態11で説明したコントローラ80と対応している。また複数のノードA~D(85_a~85_d)は、通信ネットワークを構成する要素である。複数のノードA~D(85_a~85_d)には、例えば実施の形態1乃至4で説明した光送信装置1_1~1_6、実施の形態5乃至8で説明した光受信装置2_1~2_6、または実施の形態9で説明した光通信装置3を用いることができる。
 コントローラ80は、各ノード85_a~85_dの通信状態を監視し、各ノード85_a~85_dの通信状態に応じて、各ノード85_a~85_dを制御する。コントローラ80は、各ノード85_a~85_dを制御するための制御信号86_a~86_dを各ノード85_a~85_dに出力する。
 コントローラ80は、各ノード85_a~85_dで使用するリソース配分の取り決め(例えば、使用するサブキャリア送受信部の取り決め)や光信号の経路の取り決めを行うことができる。例えばコントローラ80は、ノード85_aとノード85_bとの通信で使用するサブキャリアを決定することで、ノード85_aとノード85_bとの間の伝送容量を変更することができる。
 またコントローラ80は、各ノード85_a~85_d間における通信で使用するサブキャリアの波長帯域を設定することができる。例えばコントローラ80は、ノード85_aとノード85_bとの間の通信には第1の波長帯域のサブキャリアが用いられるように、またノード85_aとノード85_dとの間の通信には第2の波長帯域のサブキャリアが用いられるように設定することができる。ここで、第1の波長帯域と第2の波長帯域は互いに波長が重ならない帯域である。例えば、これらの波長帯域は、WDMで用いられているCバンド、Lバンド、Sバンド等である。
 またコントローラ80は、各ノード85_a~85_d間の距離、通信を行う時間帯、及び各ノード85_a~85_d間の伝送経路の状態の少なくとも一つに応じて、各ノード85_a~85_d間の通信の設定を行うことができる。ここで通信を行う時間帯とは、例えば所定の時間帯(昼夜間)、所定の時期、所定のイベント(バックアップの実施等)の時間帯等である。またコントローラ80は、各ノード85_a~85_d間の通信におけるサブキャリアの波長帯域の割り当て、光信号の経路、及び変調方式の少なくとも一つを用いて、各ノード85_a~85_d間の通信の設定を行ってもよい。
 例えばコントローラ80は、ノード85_aとノード85_bとの間の通信距離が長くなるにつれて、1つのサブキャリア当たりの多値度を減少させると共にサブキャリアの数を増加させてもよい。逆に、ノード85_aとノード85_bとの間の通信距離が短くなるにつれて、1つのサブキャリア当たりの多値度を増加させると共にサブキャリアの数を減少させてもよい。他のノード間における変調方式についても同様である。
 また、コントローラ80は、ノード85_aとノード85_bとの間の伝送経路が悪化した場合(光ファイバにテンションが作用した場合など)は、例えば1つのサブキャリア当たりの多値度を減少させてもよい。このように1つのサブキャリア当たりの多値度を減少させることで、ビット誤り率の増加を抑制することができる。他のノード間における変調方式についても同様である。
 本実施の形態では4つのノード85_a~85_dを備える光通信システムを例として挙げたが、光通信システムを構成するノードの数はこれ以上であってもよい。
 コントローラ80は、光通信システム全体が最適な通信状態となるように光送信装置や光受信装置を設定することができる。ここで最適な通信状態はユーザに応じて任意に決定することができる。一例を挙げると、通信コストを最小化する通信状態、通信の信頼性を最大化する通信状態(つまり、通信が途切れないことを最優先とした通信状態であり、冗長経路を考慮した通信状態)、通信速度を重視した通信状態(常に最短経路となるような通信状態)、波長使用効率が最大となる通信状態などである。
 またコントローラ80は、光送信装置や光受信装置から報告されるネットワークの状態の変化(例えば光伝送路における障害や光通信信号の劣化など)に関する情報を収集し、ネットワークの状態の変化に追従するように、また光通信システム全体が最適な通信状態となるように光送信装置や光受信装置を再設定することができる。
 例えば、ノード85_aからノード85_bに最短経路87_1でデータを伝送している際に、この最短経路87_1に障害が発生した場合、コントローラ80は、通信が途切れないように、ノード85_aとノード85_dとをつなぐ経路87_2、ノード85_dとノード85_cとをつなぐ経路87_3、及びノード85_cとノード85_bとをつなぐ経路87_4を経由してノード85_bにデータを伝送する冗長経路に切り替えることができる。
 以上で説明した本実施の形態にかかる発明により、光通信ネットワークにおいて、効率的なリソース配分を実施できる光通信システム及び光通信システムの制御方法を提供することができる。また、光通信システム全体が最適な通信状態となるような光通信システム及び光通信システムの制御方法を提供することができる。
<実施の形態13>
 次に、本発明の実施の形態13について説明する。図25は、本実施の形態にかかる光通信システムを示すブロック図である。図25に示すように、本実施の形態にかかる光通信システムは、光受信装置2と、当該光受信装置2と通信を行う光送信装置75_1、75_2とを備える。光受信装置2には、実施の形態5乃至8で説明した光受信装置2_1~2_6を用いることができる。
 光受信装置2は、受信ポート41_1、41_2、切替部42、及び複数のサブキャリア受信部43_1~43_mを備える。受信ポート41_1、41_2はそれぞれ、多重化された光受信信号50_1、50_2を受信する。切替部42は、受信ポート41_1、41_2で受信した各々の光受信信号51_1、51_2に含まれる各々のサブキャリア受信信号52_1~52_mを複数のサブキャリア受信部43_1~43_mに選択的に出力する。複数のサブキャリア受信部43_1~43_mは、サブキャリア受信信号52_1~52_mに含まれる各々のデータを受信する。なお、光受信装置2の構成及び動作については、実施の形態5乃至8で説明した光受信装置2_1~2_6と同様であるので重複した説明は省略する。
 光送信装置75_1が備える送信部77_1は、複数のサブキャリアを用いて生成された多重化された光送信信号を送信可能に構成されている。光送信装置75_2が備える送信部77_2は、複数のサブキャリアを用いて生成された多重化された光送信信号を送信可能に構成されている。受信ポート41_1は光送信装置75_1の送信ポート76_1と光ファイバを介して接続され、受信ポート41_2は光送信装置75_2の送信ポート76_2と光ファイバを介して接続されている。光受信装置2は、光送信装置75_1から伝送された光受信信号50_1を受信ポート41_1を介して受信する。また、光受信装置2は、光送信装置75_2から伝送された光受信信号50_2を受信ポート41_2を介して受信する。
 このとき、複数のサブキャリア受信部43_1~43_mのうち受信ポート41_1を介して光受信信号を受信する各々のサブキャリア受信部は、光送信装置75_1から送信された第1のデータ(直並列変換されたデータ)を並列に受信してもよい。また、複数のサブキャリア受信部43_1~43_mのうち受信ポート41_2を介して光受信信号を受信する各々のサブキャリア受信部は、光送信装置75_2から送信された第2のデータ(直並列変換されたデータ)を並列に受信してもよい。
 つまり、光送信装置75_1は、光受信装置2に送信する第1のデータを直並列変換し、当該直並列変換された各々のデータを各々の光送信信号を用いて光受信装置2に送信する。光受信装置2は、光送信装置75_1から送信された光送信信号(つまり、光受信信号50_1)に含まれるサブキャリア受信信号をサブキャリア受信部で受信する。そして、サブキャリア受信信号に含まれるデータを並直列変換することで、並直列変換された第1のデータを取得することができる。光送信装置75_2から光受信装置2に送信される第2のデータについても同様である。
 また、本実施の形態にかかる光通信システムでは、光受信装置2と光送信装置75_1との間の伝送容量は、受信ポート41_1に接続されるサブキャリア受信部の数に対応している。同様に、光受信装置2と光送信装置75_2との間の伝送容量は、受信ポート41_2に接続されるサブキャリア受信部の数に対応している。例えば、光受信装置2と光送信装置75_1との間の伝送容量を増加させる場合は、切替部42を制御して、受信ポート41_1に接続されるサブキャリア受信部の数を増加させる。
 また、光受信装置2と光送信装置75_1との間の伝送には第1の波長帯域のサブキャリアを用いてもよく、また光受信装置2と光送信装置75_2との間の伝送には第2の波長帯域のサブキャリアを用いてもよい。ここで、第1の波長帯域と第2の波長帯域は互いに波長が重ならない帯域である。例えば、これらの波長帯域は、WDMで用いられているCバンド、Lバンド、Sバンド等である。
 また、光受信装置2と光送信装置75_1との間の通信の設定は、光受信装置2と光送信装置75_1との間の距離、通信を行う時間帯、及び光受信装置2と光送信装置75_1との間の伝送経路の状態の少なくとも一つに応じて決定してもよい。また、光受信装置2と光送信装置75_1との間の通信におけるサブキャリアの波長帯域の割り当て、光信号の経路、及び変調方式の少なくとも一つを用いて、光受信装置2と光送信装置75_1との間の通信の設定を行ってもよい。光受信装置2と光送信装置75_2との間の通信の設定についても同様である。
 例えば、光受信装置2と光送信装置75_1との間の通信距離が長くなるにつれて、1つのサブキャリア当たりの多値度を減少させると共にサブキャリアの数を増加させてもよい。逆に、光受信装置2と光送信装置75_1との間の通信距離が短くなるにつれて、1つのサブキャリア当たりの多値度を増加させると共にサブキャリアの数を減少させてもよい。光受信装置2と光送信装置75_2との間の通信における変調方式についても同様である。
 また、例えば、光受信装置2と光送信装置75_1との間の伝送経路が悪化した場合(光ファイバにテンションが作用した場合など)は、例えば1つのサブキャリア当たりの多値度を減少させてもよい。このように1つのサブキャリア当たりの多値度を減少させることで、ビット誤り率の増加を抑制することができる。
 なお、上記で説明したような光通信システムにおける通信の取り決めは、光受信装置2と光送信装置75_1、75_1が決定してもよい。また、本実施の形態にかかる光通信システムは、実施の形態11で説明した光通信システムのようにコントローラを備えていてもよい。本実施の形態においても、コントローラは、光受信装置2と光送信装置75_1の通信状態及び光受信装置2と光送信装置75_2の通信状態に応じて、光受信装置2や光送信装置75_1、75_2を制御してもよい。
 以上で説明した本実施の形態にかかる発明により、光通信ネットワークにおいて、効率的なリソース配分を実施できる光通信システム及び光通信システムの制御方法を提供することができる。
<実施の形態14>
 次に、本発明の実施の形態14について説明する。図26は、本実施の形態にかかる光通信システムを示すブロック図である。図26に示すように、本実施の形態にかかる光通信システムは、光送信装置1a、1b及び光受信装置2a、2bを備える。
 光送信装置1aは、複数のサブキャリア送信部11a、出力部12a、及び送信ポート13_1a、13_2aを備える。光送信装置1bは、複数のサブキャリア送信部11b、出力部12b、及び送信ポート13_1b、13_2bを備える。光送信装置1a、1bには、実施の形態1乃至4で説明した光送信装置1_1~1_6を用いることができる。例えば、サブキャリア送信部11a、11bは、図5の複数のサブキャリア送信部11_1~11_mに対応しており、出力部12a、12bは図5の出力部12に対応しており、送信ポート13_1a、13_2a、13_1b、13_2bは図5の送信ポート13_1、13_2に対応している。
 光受信装置2aは、受信ポート41_1a、41_2a、切替部42a、及び複数のサブキャリア受信部43aを備える。光受信装置2bは、受信ポート41_1b、41_2b、切替部42b、及び複数のサブキャリア受信部43bを備える。光受信装置2a、2bには、実施の形態5乃至8で説明した光受信装置2_1~2_6を用いることができる。例えば、受信ポート41_1a、41_2a、41_1b、41_2bは図15の受信ポート41_1、41_2に対応しており、切替部42a、42bは図15の切替部42に対応しており、サブキャリア受信部43a、43bは図15のサブキャリア受信部43_1~43_mに対応している。
 図26に示すように、光送信装置1aの送信ポート13_1aは、光受信装置2aの受信ポート41_1aと接続されている。光送信装置1aの送信ポート13_2aは、光受信装置2bの受信ポート41_1bと接続されている。光送信装置1bの送信ポート13_1bは、光受信装置2aの受信ポート41_2aと接続されている。光送信装置1bの送信ポート13_2bは、光受信装置2bの受信ポート41_2bと接続されている。
 このとき、光送信装置1aは、第1の波長帯域の複数のサブキャリアを用いて生成された光送信信号23_1aを用いて、光受信装置2aにデータを送信する。また、光送信装置1aは、第2の波長帯域の複数のサブキャリアを用いて生成された光送信信号23_2aを用いて、光受信装置2bにデータを送信する。また、光送信装置1bは、第2の波長帯域の複数のサブキャリアを用いて生成された光送信信号23_1bを用いて、光受信装置2aにデータを送信する。また、光送信装置1bは、第1の波長帯域の複数のサブキャリアを用いて生成された光送信信号23_2bを用いて、光受信装置2bにデータを送信する。ここで、第1の波長帯域と第2の波長帯域は互いに波長が重ならない帯域である。例えば、これらの波長帯域は、WDMで用いられているCバンド、Lバンド、Sバンド等である。
 光送信装置1a、1bと光受信装置2a、2bとの通信で用いられる各々の光送信信号23_1a、23_2a、23_1b、23_2bの波長帯域の組み合わせを上記のようにすることで、光送信装置1a、1bと光受信装置2a、2bとの通信において使用されるサブキャリアの波長帯域が重複することを抑制することができる。
 なお、本実施の形態にかかる光通信システムにおいても、光送信装置1a、1b及び光受信装置2a、2bの通信の設定は、光送信装置1a、1bと光受信装置2a、2bとの間の距離、通信を行う時間帯、及び光送信装置1a、1bと光受信装置2a、2bとの間の伝送経路の状態の少なくとも一つに応じて決定してもよい。また、光送信装置1a、1bと光受信装置2a、2bとの間の通信におけるサブキャリアの波長帯域の割り当て、光信号の経路、及び変調方式の少なくとも一つを用いて、光送信装置1a、1bと光受信装置2a、2bとの間の通信の設定を行ってもよい。
 以上で説明した本実施の形態にかかる発明により、光通信ネットワークにおいて、効率的なリソース配分を実施できる光通信システム及び光通信システムの制御方法を提供することができる。
<実施の形態15>
 次に、本発明の実施の形態15について説明する。図27は、本実施の形態にかかる光通信システムを示すブロック図である。図27に示すように、本実施の形態にかかる光通信システムは、光通信装置3a~3dを備える。ここで光通信装置3a~3dは送受信可能な光通信装置である。
 光通信装置3aは、サブキャリア送受信部91a、光送受信信号切替部92a、及び送受信ポート93_1a、93_2aを備える。光通信装置3bは、サブキャリア送受信部91b、光送受信信号切替部92b、及び送受信ポート93_1b、93_2bを備える。光通信装置3cは、サブキャリア送受信部91c、光送受信信号切替部92c、及び送受信ポート93_1c、93_2cを備える。光通信装置3dは、サブキャリア送受信部91d、光送受信信号切替部92d、及び送受信ポート93_1d、93_2dを備える。光通信装置3a~3dには、実施の形態9(図20参照)で説明した光通信装置3を用いることができる。より詳細な構成については、図5(実施の形態2)及び図15(実施の形態6)参照。
 ここで、光通信装置3aのサブキャリア送受信部91aは、図5のサブキャリア送信部11_1~11_m及び図15のサブキャリア受信部43_1~43_mを含み、光送受信信号切替部92aは図5の出力部12及び図15の切替部42を含み、送受信ポート93_1a、93_2aは図5の送信ポート13_1、13_2及び図15の受信ポート41_1、41_2に対応している。他の光通信装置3b~3dについても同様である。
 図27に示すように、光通信装置3aの送受信ポート93_1aは、光通信装置3cの送受信ポート93_1cと接続されている。光通信装置3aの送受信ポート93_2aは、光通信装置3dの送受信ポート93_1dと接続されている。光通信装置3bの送受信ポート93_1bは、光通信装置3cの送受信ポート93_2cと接続されている。光通信装置3bの送受信ポート93_2bは、光通信装置3dの送受信ポート93_2dと接続されている。
 このとき、光通信装置3aと光通信装置3cは、第1の波長帯域の複数のサブキャリアを用いて生成された光信号25_1を用いて通信を行う。また、光通信装置3aと光通信装置3dは、第2の波長帯域の複数のサブキャリアを用いて生成された光信号25_2を用いて通信を行う。また、光通信装置3bと光通信装置3cは、第2の波長帯域の複数のサブキャリアを用いて生成された光信号25_3を用いて通信を行う。また、光通信装置3bと光通信装置3dは、第1の波長帯域の複数のサブキャリアを用いて生成された光信号25_4を用いて通信を行う。ここで、第1の波長帯域と第2の波長帯域は互いに波長が重ならない帯域である。例えば、これらの波長帯域は、WDMで用いられているCバンド、Lバンド、Sバンド等である。
 光通信装置3a~3d間での通信で用いられる各々の光信号25_1~25_4の波長帯域の組み合わせを上記のようにすることで、光通信装置3a~3d間での通信において使用されるサブキャリアの波長帯域が重複することを抑制することができる。
 なお、本実施の形態にかかる光通信システムにおいても、光通信装置3a~3d間での通信の設定は、光通信装置3a、3bと光通信装置3c、3dとの間の距離、通信を行う時間帯、及び光通信装置3a、3bと光通信装置3c、3dとの間の伝送経路の状態の少なくとも一つに応じて決定してもよい。また、光通信装置3a、3bと光通信装置3c、3dとの間の通信におけるサブキャリアの波長帯域の割り当て、光信号の経路、及び変調方式の少なくとも一つを用いて、光通信装置3a、3bと光通信装置3c、3dとの間の通信の設定を行ってもよい。
 以上で説明した本実施の形態にかかる発明により、光通信ネットワークにおいて、効率的なリソース配分を実施できる光通信システム及び光通信システムの制御方法を提供することができる。
 上述の実施の形態では、本発明をハードウェアの構成として説明したが、本発明は、これに限定されるものではない。本発明は、任意の処理を、CPU(Central Processing Unit)にコンピュータプログラムを実行させることにより実現することも可能である。
 プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
1、1_1~1_6 光送信装置
2、2_1~2_6 光受信装置
3 光通信装置
11、11_1~11_m サブキャリア送信部
12 光送信信号切替部
13 送信ポート
14 光源
15 サブキャリア生成部
16 信号変換部
21_1~21_m 光送信信号
22_1、22_2 光送信信号
23_1、23_2 光送信信号
26_1 第1の経路
26_2 第2の経路
30 切替部
31_1、31_2 光合波器
32 光合波器
33 光分波器
41_1、41_2 受信ポート
42 切替部
43_1~43_m サブキャリア受信部
44_1、44_2 局部発振器
45 信号処理部
51_1、51_2 光受信信号
52_1~52_m サブキャリア受信信号
53_1~53_6 受信信号
60_1、60_2 光分岐器
61 光切替スイッチ
62 光合波器
63 光分波器
64 多重化された光信号
80 コントローラ
81 監視部
82 設定部

Claims (62)

  1.  第1の光送信信号を送信する第1の送信部と、
     第2の光送信信号を送信する第2の送信部と、
     前記第1の光送信信号及び前記第2の光送信信号が一連の情報を共有する場合、前記第1の光送信信号及び前記第2の光送信信号の両方を第1の経路に出力し、前記第1の光送信信号及び前記第2の光送信信号が前記一連の情報を共有しない場合、前記第1の光送信信号及び前記第2の光送信信号のいずれか一方を第2の経路に出力する出力部と、
     を備える光送信装置。
  2.  前記第1の光送信信号を生成する際に用いられる第1のサブキャリア及び前記第2の光送信信号を生成する際に用いられる第2のサブキャリアの所定のパラメータは、互いに重ならないように割り当てられている、請求項1に記載の光送信装置。
  3.  前記所定のパラメータは複数のパラメータであり、
     前記複数のパラメータを軸としたマトリックス上において、前記第1のサブキャリアと前記第2のサブキャリアとが互いに重ならないように配置されている、請求項2に記載の光送信装置。
  4.  前記所定のパラメータは、波長、偏波、時間のうちの少なくとも一つである、請求項2または3に記載の光送信装置。
  5.  前記第1及び第2の送信部は、光源から供給された光を用いて、互いに異なる波長を備える前記第1及び第2の光送信信号を生成する、請求項1乃至4のいずれか一項に記載の光送信装置。
  6.  前記第1の送信部には、第1の光源から第1のサブキャリアが供給され、
     前記第2の送信部には、第2の光源から第2のサブキャリアが供給される、
     請求項5に記載の光送信装置。
  7.  単一光源と、
     前記単一光源で生成された光を用いて第1及び第2のサブキャリアを生成し、生成した前記第1及び第2のサブキャリアをそれぞれ前記第1及び第2の送信部に供給するサブキャリア生成部と、を更に備える、
     請求項5に記載の光送信装置。
  8.  前記サブキャリア生成部は、前記単一光源で生成された光を直交周波数分割多重方式を用いて変調することで、互いに直交している前記第1及び第2のサブキャリアを生成する、請求項7に記載の光送信装置。
  9.  前記第1及び第2の送信部が一連の情報が共有されたデータを送信する場合、前記第1及び第2の送信部には直並列変換されたデータが供給され、
     前記第1及び第2の送信部は前記直並列変換されたデータを並列に送信し、
     前記出力部は前記第1及び第2の光送信信号の両方を前記第1の経路に出力する、
     請求項1乃至8のいずれか一項に記載の光送信装置。
  10.  前記出力部は、
     前記第1及び第2の送信部から出力された前記第1及び第2の光送信信号の出力先を切り替える切替部と、
     前記第1及び第2の経路と対応するように設けられ、前記切替部から出力された前記第1及び第2の光送信信号を合波する第1及び第2の光合波器と、を備える、
     請求項1乃至9のいずれか一項に記載の光送信装置。
  11.  前記切替部は、前記第1及び第2の送信部と対応するように設けられ、前記第1及び第2の送信部から出力された前記第1及び第2の光送信信号の出力先をそれぞれ、前記第1の光合波器または前記第2の光合波器に切り替える第1及び第2の光スイッチを備える、請求項10に記載の光送信装置。
  12.  前記出力部は、
     前記第1及び第2の送信部から出力された前記第1及び第2の光送信信号を合波する光合波器と、
     前記光合波器から出力された多重化された光信号に含まれている前記第1及び第2の光送信信号を前記第1及び第2の経路に選択的に出力する光分波器と、を備える、
     請求項1乃至9のいずれか一項に記載の光送信装置。
  13.  サブキャリア受信信号を受信する第1及び第2の受信部と、
     入力された第1のサブキャリア受信信号及び第2のサブキャリア受信信号を前記第1及び第2の受信部に出力する切替部と、を備え、
     前記切替部は、
     前記第1及び第2のサブキャリア受信信号が一連の情報を共有する場合、前記第1及び第2のサブキャリア受信信号を同一の経路を経由して受信すると共に、前記第1のサブキャリア受信信号を前記第1の受信部に前記第2のサブキャリア受信信号を前記第2の受信部にそれぞれ出力し、
     前記第1のサブキャリア受信信号及び前記第2のサブキャリア受信信号が前記一連の情報を共有しない場合、前記第1及び第2のサブキャリア受信信号をそれぞれ異なる経路を経由して受信すると共に、前記第1のサブキャリア受信信号を前記第1の受信部に出力し、前記第2のサブキャリア受信信号を前記第2の受信部に出力する、
     光受信装置。
  14.  前記第1の受信部から出力された第1の受信信号および前記第2の受信部から出力された第2の受信信号をそれぞれ処理する信号処理部を更に備え、
     前記信号処理部は前記第1のサブキャリア受信信号と前記第2のサブキャリア受信信号との間の相互干渉の影響を補償する、
     請求項13に記載の光受信装置。
  15.  前記第1及び第2の受信部はそれぞれ第1及び第2の局部発振器を備え、
     前記信号処理部は、前記第1及び第2のサブキャリア受信信号に応じて前記第1及び第2の局部発振器を制御することで、前記第1のサブキャリア受信信号と前記第2のサブキャリア受信信号との間の相互干渉の影響を補償する、請求項14に記載の光受信装置。
  16.  前記各々の受信部には複数のサブキャリア受信信号が入力可能に構成されており、
     前記各々の受信部は、前記各々の受信部が備える各々の局部発振器で生成された局部発振光と前記入力されたサブキャリア受信信号とを干渉させることで、前記入力された複数のサブキャリア受信信号の中から特定のサブキャリア受信信号を選択的に受信する、
     請求項13乃至15のいずれか一項に記載の光受信装置。
  17.  前記第1の受信部を含む複数の受信部は第1の局部発振器を共有しており、
     前記第2の受信部を含む複数の受信部は第2の局部発振器を共有しており、
     前記サブキャリア受信信号に応じて前記第1及び第2の局部発振器が制御される、請求項13に記載の光受信装置。
  18.  前記第1の受信部を含む複数の受信部がサブキャリア受信信号を受信しない場合、前記第1の局部発振器をオフ状態とする、請求項17に記載の光受信装置。
  19.  前記複数の受信部のうち第1の経路を経由してサブキャリア受信信号を受信した各々の受信部は直並列変換された第1のデータを並列に受信し、
     前記複数の受信部のうち第2の経路を経由してサブキャリア受信信号を受信した各々の受信部は直並列変換された第2のデータを並列に受信する、
     請求項13乃至18のいずれか一項に記載の光受信装置。
  20.  前記切替部は、
     受信した光受信信号を分岐する複数の光分岐器と、
     前記複数の光分岐器で分岐された光受信信号の中から前記各々の受信部に出力するサブキャリア受信信号を選択して出力する光切替スイッチと、を備える、
     請求項13乃至19のいずれか一項に記載の光受信装置。
  21.  前記光切替スイッチは、前記各々の受信部と対応するように設けられ、前記複数の光分岐器で分岐された光受信信号の中から前記各々の受信部に出力するサブキャリア受信信号を選択して出力する光スイッチを備える、請求項20に記載の光受信装置。
  22.  前記切替部は、
     受信した各々の光受信信号を合波する光合波器と、
     前記光合波器から出力された多重化された光信号に含まれている前記各々のサブキャリア受信信号を前記各々の受信部に選択的に出力する光分波器と、を備える、
     請求項13乃至18のいずれか一項に記載の光受信装置。
  23.  第1の光送信信号を送信する第1の送信部と、
     第2の光送信信号を送信する第2の送信部と、
     前記第1の光送信信号及び前記第2の光送信信号が一連の情報を共有する場合、前記第1の光送信信号及び前記第2の光送信信号の両方を第1の経路に出力し、前記第1の光送信信号及び前記第2の光送信信号が前記一連の情報を共有しない場合、前記第1の光送信信号及び前記第2の光送信信号のいずれか一方を第2の経路に出力する出力部と、
     サブキャリア受信信号を受信する第1及び第2の受信部と、
     入力された第1のサブキャリア受信信号及び第2のサブキャリア受信信号を前記第1及び第2の受信部に出力する切替部と、を備え、
     前記切替部は、
     前記第1及び第2のサブキャリア受信信号が一連の情報を共有する場合、前記第1及び第2のサブキャリア受信信号を同一の経路を経由して受信すると共に、前記第1のサブキャリア受信信号を前記第1の受信部に前記第2のサブキャリア受信信号を前記第2の受信部にそれぞれ出力し、
     前記第1のサブキャリア受信信号及び前記第2のサブキャリア受信信号が前記一連の情報を共有しない場合、前記第1及び第2のサブキャリア受信信号をそれぞれ異なる経路を経由して受信すると共に、前記第1のサブキャリア受信信号を前記第1の受信部に出力し、前記第2のサブキャリア受信信号を前記第2の受信部に出力する、
     光通信装置。
  24.  光送信装置と、第1及び第2の光受信装置と、を備える光通信システムであって、
     前記光送信装置は、
     第1の光送信信号を送信する第1の送信部と、
     第2の光送信信号を送信する第2の送信部と、
     前記第1の光送信信号及び前記第2の光送信信号が一連の情報を共有する場合、前記第1の光送信信号及び前記第2の光送信信号の両方を前記第1の光受信装置に出力し、前記第1の光送信信号及び前記第2の光送信信号が前記一連の情報を共有しない場合、前記第1の光送信信号及び前記第2の光送信信号のいずれか一方を前記第2の光受信装置に出力する出力部と、
     を備える光通信システム。
  25.  前記第1の光送信信号を生成する際に用いられる第1のサブキャリア及び前記第2の光送信信号を生成する際に用いられる第2のサブキャリアの所定のパラメータは、互いに重ならないように割り当てられている、請求項24に記載の光通信システム。
  26.  前記所定のパラメータは複数のパラメータであり、
     前記複数のパラメータを軸としたマトリックス上において、前記第1のサブキャリアと前記第2のサブキャリアとが互いに重ならないように配置されている、請求項25に記載の光通信システム。
  27.  前記所定のパラメータは、波長、偏波、時間のうちの少なくとも一つである、請求項25または26に記載の光通信システム。
  28.  前記第1及び第2の送信部は、光源から供給された光を用いて、互いに異なる波長を備える前記第1及び第2の光送信信号を生成する、請求項24乃至27のいずれか一項に記載の光通信システム。
  29.  前記第1の送信部には、第1の光源から第1のサブキャリアが供給され、
     前記第2の送信部には、第2の光源から第2のサブキャリアが供給される、
     請求項28に記載の光通信システム。
  30.  単一光源と、
     前記単一光源で生成された光を用いて第1及び第2のサブキャリアを生成し、生成した前記第1及び第2のサブキャリアをそれぞれ前記第1及び第2の送信部に供給するサブキャリア生成部と、を更に備える、
     請求項28に記載の光通信システム。
  31.  前記サブキャリア生成部は、前記単一光源で生成された光を直交周波数分割多重方式を用いて変調することで、互いに直交している前記第1及び第2のサブキャリアを生成する、請求項30に記載の光通信システム。
  32.  前記第1及び第2の送信部が一連の情報が共有されたデータを送信する場合、前記第1及び第2の送信部には直並列変換されたデータが供給され、
     前記第1及び第2の送信部は前記直並列変換されたデータを並列に送信し、
     前記出力部は前記第1及び第2の光送信信号の両方を前記第1の光受信装置に出力する、
     請求項24乃至31のいずれか一項に記載の光通信システム。
  33.  前記出力部は、
     前記第1及び第2の送信部から出力された前記第1及び第2の光送信信号の出力先を切り替える切替部と、
     第1及び第2の経路と対応するように設けられ、前記切替部から出力された前記第1及び第2の光送信信号を合波する第1及び第2の光合波器と、を備える、
     請求項24乃至32のいずれか一項に記載の光通信システム。
  34.  前記切替部は、前記第1及び第2の送信部と対応するように設けられ、前記第1及び第2の送信部から出力された前記第1及び第2の光送信信号の出力先をそれぞれ、前記第1の光合波器または前記第2の光合波器に切り替える第1及び第2の光スイッチを備える、請求項33に記載の光通信システム。
  35.  前記出力部は、
     前記第1及び第2の送信部から出力された前記第1及び第2の光送信信号を合波する光合波器と、
     前記光合波器から出力された多重化された光信号に含まれている前記第1及び第2の光送信信号を前記第1及び第2の光受信装置に選択的に出力する光分波器と、を備える、
     請求項24乃至32のいずれか一項に記載の光通信システム。
  36.  第1及び第2の光送信信号を送信する光送信装置と、
     前記第1及び第2の光送信信号を受信する第1及び第2の光受信装置と、
     前記光送信装置を制御するコントローラと、を備え、
     前記光送信装置は、前記コントローラからの指示に応じて、前記第1の光送信信号及び前記第1の光送信信号と一連の情報を共有する第2の光送信信号を前記第1の光受信装置に出力し、前記第1の光送信信号と一連の情報を共有しない第2の光送信信号を前記第2の光受信装置に出力する、
     光通信システム。
  37.  前記コントローラは、前記光送信装置と前記第1の光受信装置との間の距離、通信を行う時間帯、及び前記光送信装置と前記第1の光受信装置との間の伝送経路の状態の少なくとも一つに応じて、前記光送信装置と前記第1の光受信装置との間の通信の設定を行う、請求項36に記載の光通信システム。
  38.  前記コントローラは、前記光送信装置と前記第1の光受信装置との間の通信におけるサブキャリアの波長帯域の割り当て、光信号の経路、及び変調方式の少なくとも一つを用いて、前記光送信装置と前記第1の光受信装置との間の通信の設定を行う、請求項36または37に記載の光通信システム。
  39.  前記コントローラは、前記光送信装置と前記第1の光受信装置との間の通信距離が長くなるにつれて、1つのサブキャリア当たりの多値度を減少させると共に前記サブキャリアの数を増加させる、請求項36乃至38のいずれか一項に記載の光通信システム。
  40.  第1及び第2の光送信装置と、光受信装置と、を備える光通信システムであって、
     前記光受信装置は、
     サブキャリア受信信号を受信する第1及び第2の受信部と、
     入力された第1のサブキャリア受信信号及び第2のサブキャリア受信信号を前記第1及び第2の受信部に出力する切替部と、を備え、
     前記切替部は、
     前記第1及び第2のサブキャリア受信信号が一連の情報を共有する場合、前記第1及び第2のサブキャリア受信信号を同一の光送信装置から受信すると共に、前記第1のサブキャリア受信信号を前記第1の受信部に前記第2のサブキャリア受信信号を前記第2の受信部にそれぞれ出力し、
     前記第1のサブキャリア受信信号及び前記第2のサブキャリア受信信号が前記一連の情報を共有しない場合、前記第1及び第2のサブキャリア受信信号をそれぞれ異なる光送信装置から受信すると共に、前記第1のサブキャリア受信信号を前記第1の受信部に出力し、前記第2のサブキャリア受信信号を前記第2の受信部に出力する、
     光通信システム。
  41.  前記光受信装置は、前記第1の受信部から出力された第1の受信信号および前記第2の受信部から出力された第2の受信信号をそれぞれ処理する信号処理部を更に備え、
     前記信号処理部は前記第1のサブキャリア受信信号と前記第2のサブキャリア受信信号との間の相互干渉の影響を補償する、
     請求項40に記載の光通信システム。
  42.  前記第1及び第2の受信部はそれぞれ第1及び第2の局部発振器を備え、
     前記信号処理部は、前記第1及び第2のサブキャリア受信信号に応じて前記第1及び第2の局部発振器を制御することで、前記第1のサブキャリア受信信号と前記第2のサブキャリア受信信号との間の相互干渉の影響を補償する、請求項41に記載の光通信システム。
  43.  前記各々の受信部には複数のサブキャリア受信信号が入力可能に構成されており、
     前記各々の受信部は、前記各々の受信部が備える各々の局部発振器で生成された局部発振光と前記入力されたサブキャリア受信信号とを干渉させることで、前記入力された複数のサブキャリア受信信号の中から特定のサブキャリア受信信号を選択的に受信する、
     請求項40乃至42のいずれか一項に記載の光通信システム。
  44.  前記第1の受信部を含む複数の受信部は第1の局部発振器を共有しており、
     前記第2の受信部を含む複数の受信部は第2の局部発振器を共有しており、
     前記サブキャリア受信信号に応じて前記第1及び第2の局部発振器が制御される、請求項40に記載の光通信システム。
  45.  前記第1の受信部を含む複数の受信部がサブキャリア受信信号を受信しない場合、前記第1の局部発振器をオフ状態とする、請求項44に記載の光通信システム。
  46.  前記第1の光送信装置から送信されたサブキャリア受信信号を受信した各々の受信部は直並列変換された第1のデータを並列に受信し、
     前記第2の光送信装置から送信されたサブキャリア受信信号を受信した各々の受信部は直並列変換された第2のデータを並列に受信する、
     請求項40乃至45のいずれか一項に記載の光通信システム。
  47.  前記切替部は、
     受信した光受信信号を分岐する複数の光分岐器と、
     前記複数の光分岐器で分岐された光受信信号の中から前記各々の受信部に出力するサブキャリア受信信号を選択して出力する光切替スイッチと、を備える、
     請求項40乃至46のいずれか一項に記載の光通信システム。
  48.  前記光切替スイッチは、前記各々の受信部と対応するように設けられ、前記複数の光分岐器で分岐された光受信信号の中から前記各々の受信部に出力するサブキャリア受信信号を選択して出力する光スイッチを備える、請求項47に記載の光通信システム。
  49.  前記切替部は、
     受信した各々の光受信信号を合波する光合波器と、
     前記光合波器から出力された多重化された光信号に含まれている前記各々のサブキャリア受信信号を前記各々の受信部に選択的に出力する光分波器と、を備える、
     請求項40乃至46のいずれか一項に記載の光通信システム。
  50.  前記光通信システムの通信状態に応じて、前記第1及び第2の光送信装置並びに前記光受信装置をそれぞれ制御するコントローラを更に備える、請求項40乃至49のいずれか一項に記載の光通信システム。
  51.  前記コントローラは、前記第1の光送信装置と前記光受信装置との間の距離、通信を行う時間帯、及び前記第1の光送信装置と前記光受信装置との間の伝送経路の状態の少なくとも一つに応じて、前記第1の光送信装置と前記光受信装置との間の通信の設定を行う、請求項50に記載の光通信システム。
  52.  前記コントローラは、前記第1の光送信装置と前記光受信装置との間の通信におけるサブキャリアの波長帯域の割り当て、光信号の経路、及び変調方式の少なくとも一つを用いて、前記第1の光送信装置と前記光受信装置との間の通信の設定を行う、請求項50または51に記載の光通信システム。
  53.  前記コントローラは、前記第1の光送信装置と前記光受信装置との間の通信距離が長くなるにつれて、1つのサブキャリア当たりの多値度を減少させると共に前記サブキャリアの数を増加させる、請求項50乃至52のいずれか一項に記載の光通信システム。
  54.  光送信装置と、第1及び第2の光受信装置と、を備える光通信システムにおいて、
     前記光送信装置に対し、第1の光送信信号及び前記第1の光送信信号と一連の情報を共有する第2の光送信信号を前記第1の光受信装置に出力させ、前記第1の光送信信号と一連の情報を共有しない第2の光送信信号を前記第2の光受信装置に出力させる、
     コントローラ。
  55.  前記コントローラは、
     前記光通信システムの通信状態を監視する監視部と、
     前記監視部における監視結果に応じて、前記光送信装置並びに前記第1及び第2の光受信装置をそれぞれ設定する設定部と、を備える、
     請求項54に記載のコントローラ。
  56.  前記光送信装置と前記第1の光受信装置との間の距離、通信を行う時間帯、及び前記光送信装置と前記第1の光受信装置との間の伝送経路の状態の少なくとも一つに応じて、前記光送信装置と前記第1の光受信装置との間の通信の設定を行う、請求項54または55に記載のコントローラ。
  57.  前記光送信装置と前記第1の光受信装置との間の通信におけるサブキャリアの波長帯域の割り当て、光信号の経路、及び変調方式の少なくとも一つを用いて、前記光送信装置と前記第1の光受信装置との間の通信の設定を行う、請求項54乃至56のいずれか一項に記載のコントローラ。
  58.  前記光送信装置と前記第1の光受信装置との間の通信距離が長くなるにつれて、1つのサブキャリア当たりの多値度を減少させると共に前記サブキャリアの数を増加させる、請求項54乃至57のいずれか一項に記載のコントローラ。
  59.  光送信装置と、第1及び第2の光受信装置と、を備える光通信システムの制御方法であって、
     前記光送信装置は、
     第1の光送信信号を送信する第1の送信部と、
     第2の光送信信号を送信する第2の送信部と、
     前記第1の光送信信号及び前記第2の光送信信号が一連の情報を共有する場合、前記第1の光送信信号及び前記第2の光送信信号の両方を前記第1の光受信装置に出力し、前記第1の光送信信号及び前記第2の光送信信号が前記一連の情報を共有しない場合、前記第1の光送信信号及び前記第2の光送信信号のいずれか一方を前記第2の光受信装置に出力する出力部と、を備え、
     前記光通信システムの通信状態に応じて前記光送信装置並びに前記第1及び第2の光受信装置をそれぞれ制御する、
     光通信システムの制御方法。
  60.  光送信装置と、第1及び第2の光受信装置と、を備える光通信システムを制御するプログラムであって、
     前記光送信装置は、
     第1の光送信信号を送信する第1の送信部と、
     第2の光送信信号を送信する第2の送信部と、
     前記第1の光送信信号及び前記第2の光送信信号が一連の情報を共有する場合、前記第1の光送信信号及び前記第2の光送信信号の両方を前記第1の光受信装置に出力し、前記第1の光送信信号及び前記第2の光送信信号が前記一連の情報を共有しない場合、前記第1の光送信信号及び前記第2の光送信信号のいずれか一方を前記第2の光受信装置に出力する出力部と、を備え、
     前記光通信システムの通信状態に応じて前記光送信装置並びに前記第1及び第2の光受信装置をそれぞれ制御する処理をコンピュータに実行させるためのプログラム。
  61.  第1の光送信信号を生成し、
     第2の光送信信号を生成し、
     前記第1の光送信信号及び前記第2の光送信信号が一連の情報を共有する場合、前記第1の光送信信号及び前記第2の光送信信号の両方を第1の経路に出力し、前記第1の光送信信号及び前記第2の光送信信号が前記一連の情報を共有しない場合、前記第1の光送信信号及び前記第2の光送信信号のいずれか一方を第2の経路に出力する、
     光送信方法。
  62.  第1及び第2のサブキャリア受信信号が一連の情報を共有する場合、前記第1及び第2のサブキャリア受信信号を同一の経路を経由して受信すると共に、前記第1のサブキャリア受信信号を第1の受信部に前記第2のサブキャリア受信信号を第2の受信部にそれぞれ出力し、
     前記第1のサブキャリア受信信号及び前記第2のサブキャリア受信信号が前記一連の情報を共有しない場合、前記第1及び第2のサブキャリア受信信号をそれぞれ異なる経路を経由して受信すると共に、前記第1のサブキャリア受信信号を前記第1の受信部に出力し、前記第2のサブキャリア受信信号を前記第2の受信部に出力する、
     光受信方法。
PCT/JP2013/005153 2013-08-30 2013-08-30 光送信装置、光受信装置、光通信装置、光通信システム、及びこれらの制御方法 WO2015029091A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
MA38876A MA38876B1 (fr) 2013-08-30 2013-08-30 Appareil d’émission optique,appareil de réception optique,appareil de communication optique,système de communication optique,et procédés de commande d'appareil d’émission optique,d'appareil de réception optique,et de système de communication optique;
PCT/JP2013/005153 WO2015029091A1 (ja) 2013-08-30 2013-08-30 光送信装置、光受信装置、光通信装置、光通信システム、及びこれらの制御方法
JP2015533764A JP6319314B2 (ja) 2013-08-30 2013-08-30 光送信装置、光受信装置、光通信装置、光通信システム、及びこれらの制御方法
EP13892271.1A EP3041156B1 (en) 2013-08-30 2013-08-30 Optical transmission apparatus, optical reception apparatus, optical communication apparatus, optical communication system, and methods for controlling optical transmission apparatus, optical reception apparatus, optical communication apparatus, and optical communication system
RU2016111607A RU2634847C2 (ru) 2013-08-30 2013-08-30 Устройство оптической передачи, устройство оптического приема, устройство оптической связи, система оптической связи и способы управления ими
MX2016002233A MX2016002233A (es) 2013-08-30 2013-08-30 Aparato de transmisión óptica, aparato de recepción óptica, aparato de comunicación óptica, sistema de comunicación óptica y métodos para controlarlos.
US14/915,216 US10855377B2 (en) 2013-08-30 2013-08-30 Optical transmission apparatus, optical reception apparatus, optical communication apparatus, optical communication system, and methods of controlling them
US17/061,381 US11296793B2 (en) 2013-08-30 2020-10-01 Optical transmission apparatus, optical reception apparatus, optical communications apparatus, optical communication system, and methods of controlling them
US17/574,687 US11637633B2 (en) 2013-08-30 2022-01-13 Optical transmission apparatus, optical reception apparatus, optical communications apparatus, optical communication system, and methods of controlling them
US18/116,641 US11936431B2 (en) 2013-08-30 2023-03-02 Optical transmission apparatus, optical reception apparatus, optical communication apparatus, optical communication system, and methods of controlling them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/005153 WO2015029091A1 (ja) 2013-08-30 2013-08-30 光送信装置、光受信装置、光通信装置、光通信システム、及びこれらの制御方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/915,216 A-371-Of-International US10855377B2 (en) 2013-08-30 2013-08-30 Optical transmission apparatus, optical reception apparatus, optical communication apparatus, optical communication system, and methods of controlling them
US17/061,381 Continuation US11296793B2 (en) 2013-08-30 2020-10-01 Optical transmission apparatus, optical reception apparatus, optical communications apparatus, optical communication system, and methods of controlling them

Publications (1)

Publication Number Publication Date
WO2015029091A1 true WO2015029091A1 (ja) 2015-03-05

Family

ID=52585715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005153 WO2015029091A1 (ja) 2013-08-30 2013-08-30 光送信装置、光受信装置、光通信装置、光通信システム、及びこれらの制御方法

Country Status (7)

Country Link
US (4) US10855377B2 (ja)
EP (1) EP3041156B1 (ja)
JP (1) JP6319314B2 (ja)
MA (1) MA38876B1 (ja)
MX (1) MX2016002233A (ja)
RU (1) RU2634847C2 (ja)
WO (1) WO2015029091A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2016002233A (es) 2013-08-30 2016-06-21 Nec Corp Aparato de transmisión óptica, aparato de recepción óptica, aparato de comunicación óptica, sistema de comunicación óptica y métodos para controlarlos.
WO2015141188A1 (ja) * 2014-03-19 2015-09-24 日本電気株式会社 光送信器、光通信装置、光通信システムおよび光送信方法
JP6405833B2 (ja) * 2014-09-25 2018-10-17 富士通株式会社 信号処理装置及び信号処理方法
JP6488768B2 (ja) * 2015-03-04 2019-03-27 富士通株式会社 光伝送装置及び光伝送システム
CN109286578A (zh) * 2018-09-27 2019-01-29 上海联寓智能科技有限公司 消息处理方法、装置、网关设备及存储介质
CA3157060A1 (en) * 2019-10-10 2021-04-15 Infinera Corporation Optical subcarrier dual-path protection and restoration for optical communications networks

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05327616A (ja) * 1992-05-27 1993-12-10 Nippon Telegr & Teleph Corp <Ntt> 光信号受信機
JP2003008513A (ja) 2002-04-25 2003-01-10 Nec Corp 光ネットワーク装置及び光伝送方式
JP2008206063A (ja) 2007-02-22 2008-09-04 Kddi Corp 光伝送装置及び方法
JP2009010679A (ja) * 2007-06-28 2009-01-15 Nippon Telegr & Teleph Corp <Ntt> 光送信装置および光伝送システム
JP2010028470A (ja) * 2008-07-18 2010-02-04 Nippon Telegr & Teleph Corp <Ntt> 受信装置、補償演算回路、および受信方法
JP2010081374A (ja) * 2008-09-26 2010-04-08 Nippon Telegr & Teleph Corp <Ntt> 光クロスコネクト装置および光ネットワーク
WO2011030897A1 (ja) * 2009-09-14 2011-03-17 日本電信電話株式会社 帯域可変通信方法、帯域可変通信装置、伝送帯域決定装置、伝送帯域決定方法、ノード装置、通信路設定システム、及び通信路設定方法
JP2012120010A (ja) * 2010-12-02 2012-06-21 Fujitsu Ltd 光送信器および光送信装置
WO2012147889A1 (ja) * 2011-04-27 2012-11-01 日本電信電話株式会社 光通信装置及び光経路切替装置及びネットワーク
JP2013505676A (ja) * 2009-09-23 2013-02-14 アルカテル−ルーセント マルチキャリア光信号のディジタルコヒーレント検出

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410722A (ja) * 1990-04-27 1992-01-14 Hitachi Ltd コヒーレント通信方法、クロスコネクト装置及び交換装置
EP0533391A3 (en) * 1991-09-16 1993-08-25 American Telephone And Telegraph Company Packet switching apparatus using pipeline controller
US5940196A (en) 1997-05-16 1999-08-17 Harmonic Lightwaves, Inc. Optical communications system with wavelength division multiplexing
US6721315B1 (en) * 1999-09-30 2004-04-13 Alcatel Control architecture in optical burst-switched networks
FR2812988B1 (fr) * 2000-08-10 2005-06-24 Cit Alcatel Commutateur de signaux optiques
US20020154361A1 (en) * 2001-04-20 2002-10-24 Benny Pesach Wavelength division multiplexed (WDM) network element and a method for propagating data packets across the network element
US7450845B2 (en) * 2002-12-11 2008-11-11 Nortel Networks Limited Expandable universal network
US7376356B2 (en) * 2002-12-17 2008-05-20 Lucent Technologies Inc. Optical data transmission system using sub-band multiplexing
WO2005020179A1 (de) * 2003-07-29 2005-03-03 Siemens Aktiengesellschaft Mobiles bediengerät für mehrere industriegeräte
US7680475B2 (en) 2004-06-09 2010-03-16 Qualcomm Incorporated Dynamic ASBR scheduler
WO2006133226A2 (en) * 2005-06-06 2006-12-14 Intellambda Systems, Inc. Aggregating optical network device
KR100645752B1 (ko) * 2005-09-16 2006-11-14 엘지노텔 주식회사 파장분할다중방식 수동형 광 네트워크에서 광 선로종단장치
US8369706B2 (en) * 2006-07-18 2013-02-05 Novera Optics, Inc. Open access service model using WDM-PON
JP2008199284A (ja) * 2007-02-13 2008-08-28 Nec Corp 伝送システムにおける冗長切替システムおよび冗長切替方法
US8064766B2 (en) * 2007-10-08 2011-11-22 Nec Laboratories America, Inc. Orthogonal frequency division multiple access based optical ring network
US8213794B2 (en) * 2008-02-12 2012-07-03 Nec Laboratories America, Inc. Programmable optical network architecture
US8131156B2 (en) * 2008-05-01 2012-03-06 Nec Laboratories America, Inc. Centralized lightwave WDM-PON employing intensity modulated downstream and upstream
US7978975B2 (en) * 2008-08-01 2011-07-12 Nec Laboratories America, Inc. Passive optical network system employing sub-carrier multiplexing and orthogonal frequency division multiple access modulation schemes
US8184979B2 (en) * 2008-08-28 2012-05-22 Nec Laboratories America, Inc. Optical OFDMA network with dynamic sub-carrier allocation
US8204377B2 (en) * 2008-10-23 2012-06-19 Alcatel Lucent System, method and apparatus for joint self phase modulation compensation for coherent optical polarization-division-multiplexed orthogonal-frequency division-multiplexing systems
JP5121687B2 (ja) 2008-12-16 2013-01-16 株式会社日立製作所 光分岐多重システムおよび光分岐多重装置
JP5375221B2 (ja) * 2009-03-12 2013-12-25 富士通株式会社 フレーム転送装置およびフレーム転送方法
JP2010226389A (ja) 2009-03-23 2010-10-07 Nippon Telegr & Teleph Corp <Ntt> 光集束装置及び光集束方法
JP5327616B2 (ja) 2009-05-27 2013-10-30 株式会社Jvcケンウッド スピーカユニット
JP5585589B2 (ja) * 2009-11-19 2014-09-10 日本電気株式会社 光変調装置及び光変調方法
CN102075478A (zh) * 2009-11-24 2011-05-25 华为技术有限公司 无源光纤网络的信号处理方法、设备和系统
US8498542B2 (en) * 2010-01-21 2013-07-30 Ciena Corporation Multi-channel optical transceiver with offset quadrature amplitude modulation
US8457490B2 (en) * 2010-03-26 2013-06-04 Cisco Technology, Inc. Use of subcarrier deactivation in a multi-subcarrier channel to improve reach in an optical network
EP2385642B1 (en) 2010-05-07 2012-10-17 ADVA AG Optical Networking A method for providing protection in an optical communication network against connection failures
US8600231B2 (en) 2010-08-19 2013-12-03 Telefonaktiebolaget Lm Ericsson (Publ) Monitoring energy consumption in optical access networks
US9197354B2 (en) * 2010-08-26 2015-11-24 Ciena Corporation Concatenated optical spectrum transmission systems and methods
JP5601667B2 (ja) 2010-10-04 2014-10-08 Kddi株式会社 光通信ネットワークの通信装置および方法
JP5682256B2 (ja) 2010-11-24 2015-03-11 富士通株式会社 光挿入装置および光分岐装置
US9031406B2 (en) * 2010-12-17 2015-05-12 University Of Kansas Digital subcarrier cross-connect switching
US8542999B2 (en) * 2011-02-01 2013-09-24 Vello Systems, Inc. Minimizing bandwidth narrowing penalties in a wavelength selective switch optical network
JP5588374B2 (ja) * 2011-02-08 2014-09-10 富士通テレコムネットワークス株式会社 光パケット交換システム、光パケット交換装置、および光パケット送信装置
US8611743B2 (en) * 2011-02-22 2013-12-17 Nec Laboratories America, Inc. Optical-layer traffic grooming in flexible optical networks
WO2012116406A2 (en) * 2011-03-03 2012-09-07 Ofidium Pty Ltd Improvements in optical ofdm transmission
US9188741B2 (en) 2011-03-10 2015-11-17 Alcatel Lucent Adjustable multiple-channel optical switch
JP5803164B2 (ja) * 2011-03-10 2015-11-04 富士通株式会社 光送信器
EP2701334B1 (en) * 2011-04-21 2016-06-29 Fujitsu Limited Data reception apparatus and marker information extraction method
JP5426604B2 (ja) * 2011-04-26 2014-02-26 富士通テレコムネットワークス株式会社 光パケット交換システム
JP5776330B2 (ja) * 2011-05-25 2015-09-09 富士通株式会社 波長再配置方法及びノード装置
US8644710B2 (en) 2011-06-15 2014-02-04 Verizon Patent And Licensing Inc. Optical transport having full and flexible bandwidth and channel utilization
US8582437B2 (en) * 2011-06-21 2013-11-12 Broadcom Corporation System and method for increasing input/output speeds in a network switch
JP5824912B2 (ja) * 2011-06-29 2015-12-02 富士通株式会社 光伝送装置および光インターリーブ制御方法
US8559829B2 (en) * 2011-07-05 2013-10-15 Fujitsu Limited Flexible multi-band multi-traffic optical OFDM network
JP5850313B2 (ja) 2011-10-05 2016-02-03 国立大学法人名古屋大学 波長群光パスクロスコネクト装置
US9077998B2 (en) 2011-11-04 2015-07-07 Qualcomm Incorporated Padding of segments in coded slice NAL units
JP2013106187A (ja) * 2011-11-14 2013-05-30 Hitachi Ltd 波長多重光伝送装置、波長多重光伝送システム、波長多重光伝送方法
WO2012167551A1 (zh) * 2011-11-15 2012-12-13 华为技术有限公司 在光传送网上传送业务数据的方法、装置和系统
JP5906870B2 (ja) * 2012-03-23 2016-04-20 富士通株式会社 光パワーモニタ
US9473834B2 (en) * 2012-07-26 2016-10-18 Telefonaktiebolaget Lm Ericsson (Publ) Routing for super channel for bandwidth variable wavelength switched optical network
JP6028517B2 (ja) * 2012-10-19 2016-11-16 富士通株式会社 光伝送装置および光伝送方法
US9124369B2 (en) * 2013-01-18 2015-09-01 Nec Laboratories America, Inc. Multi-direction variable optical transceiver
US9312914B2 (en) * 2013-04-22 2016-04-12 Fujitsu Limited Crosstalk reduction in optical networks using variable subcarrier power levels
JP2014220575A (ja) 2013-05-01 2014-11-20 富士通株式会社 光伝送装置、光伝送システム、及び光伝送方法
MX2016002233A (es) * 2013-08-30 2016-06-21 Nec Corp Aparato de transmisión óptica, aparato de recepción óptica, aparato de comunicación óptica, sistema de comunicación óptica y métodos para controlarlos.

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05327616A (ja) * 1992-05-27 1993-12-10 Nippon Telegr & Teleph Corp <Ntt> 光信号受信機
JP2003008513A (ja) 2002-04-25 2003-01-10 Nec Corp 光ネットワーク装置及び光伝送方式
JP2008206063A (ja) 2007-02-22 2008-09-04 Kddi Corp 光伝送装置及び方法
JP2009010679A (ja) * 2007-06-28 2009-01-15 Nippon Telegr & Teleph Corp <Ntt> 光送信装置および光伝送システム
JP2010028470A (ja) * 2008-07-18 2010-02-04 Nippon Telegr & Teleph Corp <Ntt> 受信装置、補償演算回路、および受信方法
JP2010081374A (ja) * 2008-09-26 2010-04-08 Nippon Telegr & Teleph Corp <Ntt> 光クロスコネクト装置および光ネットワーク
WO2011030897A1 (ja) * 2009-09-14 2011-03-17 日本電信電話株式会社 帯域可変通信方法、帯域可変通信装置、伝送帯域決定装置、伝送帯域決定方法、ノード装置、通信路設定システム、及び通信路設定方法
JP2013505676A (ja) * 2009-09-23 2013-02-14 アルカテル−ルーセント マルチキャリア光信号のディジタルコヒーレント検出
JP2012120010A (ja) * 2010-12-02 2012-06-21 Fujitsu Ltd 光送信器および光送信装置
WO2012147889A1 (ja) * 2011-04-27 2012-11-01 日本電信電話株式会社 光通信装置及び光経路切替装置及びネットワーク

Also Published As

Publication number Publication date
US20220140910A1 (en) 2022-05-05
US11296793B2 (en) 2022-04-05
MA38876B1 (fr) 2018-05-31
EP3041156A4 (en) 2017-07-19
US20210021348A1 (en) 2021-01-21
US20160211920A1 (en) 2016-07-21
JP6319314B2 (ja) 2018-05-09
MA38876A1 (fr) 2017-09-29
US11637633B2 (en) 2023-04-25
EP3041156B1 (en) 2023-10-04
US10855377B2 (en) 2020-12-01
MX2016002233A (es) 2016-06-21
EP3041156A1 (en) 2016-07-06
JPWO2015029091A1 (ja) 2017-03-02
RU2016111607A (ru) 2017-10-04
US20230275669A1 (en) 2023-08-31
RU2634847C2 (ru) 2017-11-07
US11936431B2 (en) 2024-03-19

Similar Documents

Publication Publication Date Title
US11637633B2 (en) Optical transmission apparatus, optical reception apparatus, optical communications apparatus, optical communication system, and methods of controlling them
JP5398839B2 (ja) 帯域可変通信方法、帯域可変通信装置、伝送帯域決定装置、伝送帯域決定方法、ノード装置、通信路設定システム、及び通信路設定方法
US8861977B2 (en) Multiplexer and modulation arrangements for multi-carrier optical modems
Vizcaíno et al. Protection in optical transport networks with fixed and flexible grid: Cost and energy efficiency evaluation
JPWO2012147889A1 (ja) 光通信装置及び光経路切替装置及びネットワーク
US10250351B2 (en) Efficient network utilization using optically switched superchannels
Wu et al. Energy-efficient survivable grooming in software-defined elastic optical networks
JP2015220590A (ja) 光送信装置、光受信装置、及び、光伝送方法
JP2023086981A (ja) 光送信装置、光受信装置、光通信装置、光通信システム、及びこれらの制御方法
JP6572980B2 (ja) 光送信装置、光受信装置、光通信装置、光通信システム、及びこれらの制御方法
JP6908076B2 (ja) 光送信装置、光受信装置、光通信装置、光通信システム、及びこれらの制御方法
US11350189B2 (en) Dynamic allocation of network resources in datacenters
CN102907025B (zh) 利用光信号传输数据信息的方法、系统和装置
JP4016953B2 (ja) 光伝送システム
JP2010114622A (ja) 光通信システム、osuの送信器、onuの受信器、およびosuの下り信号送信方法
EP2609754A1 (en) An optical-electrical switching node
US20230209230A1 (en) Transport of packets over optical networks
JP2018137507A (ja) 光伝送システム及び光伝送方法
JP6875868B2 (ja) 光伝送装置および光伝送システム
Yan et al. Hardware-programmable optical networks
WO2013017451A1 (en) Method and apparatus for routing and bandwidth assignment in wavelength multiplexed optical transmission
Pointurier et al. A comparison of elastic and mixed line rate optical slot switching WDM metro rings
WO2013044954A1 (en) Optical transmission apparatus
JP2015185761A (ja) 光マルチキャリア発生器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892271

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015533764

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/002233

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 16047302

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 14915216

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016003104

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2013892271

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013892271

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016111607

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016003104

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160215