WO2015025843A1 - 内視鏡用対物光学系 - Google Patents

内視鏡用対物光学系 Download PDF

Info

Publication number
WO2015025843A1
WO2015025843A1 PCT/JP2014/071652 JP2014071652W WO2015025843A1 WO 2015025843 A1 WO2015025843 A1 WO 2015025843A1 JP 2014071652 W JP2014071652 W JP 2014071652W WO 2015025843 A1 WO2015025843 A1 WO 2015025843A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
cemented
objective optical
negative
Prior art date
Application number
PCT/JP2014/071652
Other languages
English (en)
French (fr)
Inventor
正弘 片倉
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to EP14838726.9A priority Critical patent/EP3037858A4/en
Priority to JP2015512940A priority patent/JP5855793B2/ja
Priority to CN201480040015.9A priority patent/CN105378535B/zh
Publication of WO2015025843A1 publication Critical patent/WO2015025843A1/ja
Priority to US15/019,264 priority patent/US10101575B2/en
Priority to US15/999,014 priority patent/US10670854B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143507Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • G02B23/2438Zoom objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only

Definitions

  • the present invention relates to an objective optical system, and more particularly to an endoscope objective optical system applied to a medical endoscope.
  • the medical endoscope acquires a high-definition and wide-angle image quality while ensuring minimal invasiveness to the patient.
  • high image quality and low invasiveness that is, in order to acquire a high-quality image, the number of pixels must be increased, and it is preferable to enlarge the image sensor.
  • the imaging lens diameter also increases, resulting in an increase in the outer diameter of the endoscope, making it difficult to ensure minimally invasiveness.
  • Patent Document 1 and Patent Document 2 disclose an objective optical system adapted to an image sensor in which the pixel pitch is reduced to several microns or less as described above.
  • the present invention has been made in view of the above-described circumstances, and is an endoscope that can obtain a high-definition and wide-angle image while satisfactorily correcting the aberration while ensuring minimal invasiveness.
  • An object of the present invention is to provide a mirror objective optical system.
  • One embodiment of the present invention is an endoscope objective optical system that includes at least a first cemented lens of a positive lens and a negative lens, and the cemented lens satisfies the following conditional expression. 15.0 ⁇ A-ndA ⁇ 15.75 (1) -0.2> rdyA1 / ih> -20 (2) Where ⁇ A is the Abbe number of the negative lens, ndA is the refractive index of the negative lens at the d-line, rdyA1 is the radius of curvature of the negative lens cemented surface, and ih is the image height.
  • the axial chromatic aberration and the lateral chromatic aberration are favorably corrected by using at least the first cemented lens of the positive lens and the negative lens and satisfying the conditional expression (1) and the conditional expression (2) simultaneously. be able to.
  • the negative lens of the first cemented lens satisfies the following conditional expression. -0.2> (rdyA1 + rdyA2) / (rdyA1-rdyA2)>-10 ... (3)
  • rdyA1 is the radius of curvature of the cemented surface of the negative lens of the first cemented lens
  • rdyA2 is the radius of curvature of the air contact surface of the negative lens of the first cemented lens.
  • the front group includes an aperture stop and a rear group, and the rear group has a positive refractive index, and the first group is included in at least one of the front group and the rear group.
  • cemented lenses are preferably arranged.
  • the number of lenses in each group can be reduced, and the total length of the endoscope objective optical system can be shortened and the cost can be reduced.
  • a long back focus can be ensured while suppressing the size of the lens in the radial direction.
  • axial and lateral chromatic aberration can be corrected well.
  • the front group includes a negative lens and a positive lens in order from the object side
  • the rear group includes the first cemented lens
  • the number of lenses in each group can be reduced, and the total length of the endoscope objective optical system can be shortened and the cost can be reduced.
  • a long back focus can be ensured while suppressing the size of the lens in the radial direction.
  • axial and lateral chromatic aberration can be corrected well.
  • the rear group has a plurality of the first cemented lenses.
  • the number of lenses in each group can be reduced, and the total length of the endoscope objective optical system can be shortened and the cost can be reduced.
  • a long back focus can be ensured while suppressing the size of the lens in the radial direction.
  • axial and lateral chromatic aberration can be corrected well.
  • the front group includes a negative lens and a cemented lens in which at least one positive lens and at least one negative lens are cemented in order from the object side
  • the rear group includes a plurality of the cemented lenses. And having the first cemented lens in at least one of the front group and the rear group.
  • the number of lenses in each group can be reduced, and the total length of the endoscope objective optical system can be shortened and the cost can be reduced.
  • a long back focus can be ensured while suppressing the size of the lens in the radial direction.
  • axial and lateral chromatic aberration can be corrected well.
  • the front group includes a negative lens and a cemented lens in which at least one positive lens and at least one negative lens are cemented in order from the object side
  • the rear group includes the cemented lens and the positive lens. It is preferable that at least one of the front group and the rear group has the first cemented lens.
  • the number of lenses in each group can be reduced, and the total length of the endoscope objective optical system can be shortened and the cost can be reduced.
  • a long back focus can be ensured while suppressing the size of the lens in the radial direction.
  • axial and lateral chromatic aberration can be corrected well.
  • the positive lens on the most image side it becomes possible to make the exit ray angle gentle, and the shading can be corrected well.
  • a positive first lens group in order from the object side, a positive first lens group, a movable negative second lens group, and a positive third lens group are provided. By moving the second lens group, normal observation and magnified observation are performed. It is preferable that switching is possible, and the third lens group includes at least one first cemented lens.
  • the negative first lens group, the second lens group movable during focusing, and the positive third lens group are provided, and normal observation is performed by moving the second lens group. It is possible to switch between magnification observation and it is preferable that the third lens group has at least one first cemented lens.
  • the second lens group preferably has a positive refractive power or a negative refractive power.
  • rdy12 is the image-side radius of curvature of the negative first lens
  • rdyA1 is the radius of curvature of the cemented surface of the negative lens of the first cemented lens.
  • Conditional expression (4) is a conditional expression of the image side curvature radius of the negative first lens and the curvature radius of the cemented lens.
  • the image side curvature radius of the negative first lens is The balance of the curvature radius of the cemented lens can be kept good, and coma aberration, field curvature, axial chromatic aberration, and lateral chromatic aberration can be corrected well.
  • the first cemented lens satisfies the following conditional expression.
  • DA is the medium thickness of the negative lens of the first cemented lens
  • DB is the median thickness of the positive lens of the first cemented lens
  • ih is the image height.
  • Conditional expression (5) and conditional expression (6) are conditional expressions concerning the inner thickness of the cemented lens. By satisfying conditional expression (5) and conditional expression (6), it is possible to achieve an endoscope objective optical system that is less likely to cause manufacturing defects such as cracks and chipping in the lens with an appropriate total length.
  • PW1 is the refractive power of the negative first lens
  • PW4 is the refractive power of the negative lens of the first cemented lens.
  • conditional expression (7) it is possible to maintain a good balance between the refractive power of the negative first lens and the refractive power of the negative lens of the first cemented lens, and coma aberration, field curvature, and axial chromatic aberration.
  • the chromatic aberration of magnification can be corrected satisfactorily.
  • rdy11 is the object-side radius of curvature of the negative first lens.
  • Necessary negative refractive power can be obtained by satisfying conditional expression (8).
  • rdyB1 is the radius of curvature of the air contact surface of the positive lens in the first cemented lens
  • rdyB2 is the radius of curvature of the cemented surface of the positive lens in the first cemented lens.
  • FIG. 3 is an aberration diagram of the objective optical system according to Example 1 of the present invention. It is sectional drawing which shows the whole structure of the objective optical system which concerns on Example 2 of this invention, (A) shows a normal observation state, (B) shows an enlarged observation state.
  • FIG. 1 is a cross-sectional view showing the overall configuration of the objective optical system.
  • the objective optical system includes a front group GF, an aperture stop S, and a rear group GR in order from the object side.
  • the front group GF includes a negative first lens L1 and a positive second lens L2 in order from the object side surface, and has a positive refractive power.
  • the rear group GR includes a parallel plate F and a cemented lens CL1 (first cemented lens) in which a positive third lens L3 and a negative fourth lens L4 are cemented, and has a positive refractive power. Yes.
  • the cemented lens CL1 is configured to satisfy the following conditional expressions (1) and (2). 15.0 ⁇ A-ndA ⁇ 15.75 (1) -0.2> rdyA1 / ih> -20 (2) Where ⁇ A is the Abbe number of the negative lens of the cemented lens CL1, ndA is the refractive index at the d-line of the negative lens, rdyA1 is the radius of curvature of the cemented surface of the negative lens of the cemented lens CL1, and ih is the image. Is high.
  • the negative refractive power of the negative lens is too low to obtain the necessary negative refractive power. In order to obtain a negative refractive power, it is necessary to increase the curvature of the joint surface and the air contact surface, but in particular, an off-axis aberration is generated.
  • the lower limit of conditional expression (1) the Abbe number of the negative lens is too small, and axial and off-axis chromatic aberration is likely to occur.
  • the upper limit of conditional expression (2) is exceeded, the curvature of the cemented lens becomes too weak, and the color correction effect of the cemented lens becomes weak, so that on-axis and off-axis chromatic aberration is likely to occur. If the lower limit of conditional expression (2) is exceeded, the curvature of the cemented lens becomes too strong, and it is easy to generate on-axis and off-axis chromatic aberration.
  • conditional expression (1) ′ and conditional expression (2) ′ or conditional expression (1) ′′ and conditional expression (2) ′′ are applied instead of conditional expression (1) and conditional expression (2). More preferably. 15.3 ⁇ A ⁇ ndA ⁇ 15.7 (1) ′ ⁇ 1.0> rdyA1 / ih> ⁇ 5.0 (2) ′ 15.5 ⁇ A ⁇ ndA ⁇ 15.6 (1) ” -1.2> rdyA1 / ih> -2.5 (2) "
  • the negative fourth lens L4 of the cemented lens CL1 is configured to satisfy the following conditional expression (3). -0.2> (rdyA1 + rdyA2) / (rdyA1-rdyA2)>-10 ... (3)
  • rdyA2 is the radius of curvature of the air contact surface of the negative lens of the cemented lens CL1.
  • Conditional expression (3) is a conditional expression related to the shape factor of the negative fourth lens L4 of the cemented lens CL1.
  • the negative fourth lens L4 of the cemented lens CL1 satisfies the conditional expression (3), it is possible to correct on-axis and off-axis chromatic aberration while obtaining the necessary negative refractive power.
  • the upper limit of conditional expression (3) is exceeded, the radius of curvature of the joint surface becomes too tight and machining becomes difficult.
  • the curvature of the positive third lens L3 of the cemented lens CL1 becomes tight, it becomes difficult to secure a border of the positive third lens L3.
  • the lower limit of conditional expression (3) is exceeded, the radius of curvature of the joint surface becomes too loose, making it difficult to correct on-axis and off-axis chromatic aberration.
  • conditional expression (3) ′ or conditional expression (3) ′′ instead of conditional expression (3).
  • conditional expression (3) -0.3> (rdyA1 + rdyA2) / (rdyA1-rdyA2)>-3.0 ... (3) ' further -0.4> (rdyA1 + rdyA2) / (rdyA1-rdyA2)>-2.5 ...
  • a negative lens is disposed on the most object side surface like the first lens L1 of the front group GF in FIG. 1, and the most negative lens on the object side surface is The following conditional expression (4) is satisfied. ⁇ 3.0 ⁇ rdy12 / rdyA1 ⁇ 0.2 (4)
  • rdy12 represents the image-side radius of curvature of the negative first lens.
  • Conditional expression (4) is a conditional expression of the image-side curvature radius of the negative first lens L1 and the curvature radius of the cemented lens CL1, and satisfying the conditional expression (4) results in the image side of the negative first lens L1.
  • the balance between the radius of curvature and the radius of curvature of the cemented lens CL1 can be kept good, and coma, curvature of field, axial chromatic aberration, and lateral chromatic aberration can be corrected well.
  • the upper limit of conditional expression (4) when the upper limit of conditional expression (4) is exceeded, the radius of curvature of the negative first lens L1 becomes loose, and coma aberration, field curvature, and distortion become difficult. If the lower limit of conditional expression (4) is exceeded, the radius of curvature of the cemented lens CL1 becomes too loose, making it difficult to correct axial chromatic aberration and lateral chromatic aberration.
  • conditional expression (4) ′ or conditional expression (4) ′′ instead of conditional expression (4).
  • the cemented lens CL1 is configured to satisfy the following conditional expression (5). 1.0 ⁇ DB / DA ⁇ 10 (5) 0.1 ⁇ DA / ih ⁇ 2.0 (6)
  • DA is the thickness of the negative fourth lens L4 of the cemented lens CL1
  • DB is the thickness of the positive third lens L3 of the cemented lens CL1.
  • Conditional expressions (5) and (6) are conditional expressions relating to the medium thickness of the cemented lens CL1.
  • conditional expression (5) and conditional expression (6) it is possible to achieve an objective optical system that is less prone to manufacturing defects such as cracks and chips in the lens with an appropriate overall length.
  • conditional expression (5) When the upper limit of conditional expression (5) is exceeded, the inside of the negative fourth lens L4 of the cemented lens CL1 becomes too thin, and cracks and chips are likely to occur. If the lower limit of conditional expression (5) is exceeded, the inner thickness of the positive third lens L3 of the cemented lens becomes too thin, so that a border cannot be secured and the workability is remarkably deteriorated.
  • conditional expression (5) ′ and conditional expression (6) ′ or conditional expression (5) ′′ and conditional expression (6) ′′ are applied instead of conditional expression (5) and conditional expression (6). More preferably. 2.5 ⁇ DB / DA ⁇ 7.5 (5) ′ 0.15 ⁇ DA / ih ⁇ 1.0 (6) ′ Furthermore, 4.0 ⁇ DB / DA ⁇ 4.5 (5) " 0.2 ⁇ DA / ih ⁇ 0.7 (6) "
  • the negative first lens L1 disposed closest to the object side surface and the negative lens of the cemented lens CL1 are configured to satisfy the following conditional expression. 0.5 ⁇ PW1 / PW4 ⁇ 10 (7)
  • PW1 is the refractive power of the negative first lens
  • PW4 is the refractive power of the negative lens among the cemented lenses.
  • Conditional expression (7) is a conditional expression of the refractive power of the negative first lens L1 and the refractive power of the negative fourth lens L4 of the cemented lens CL1.
  • conditional expression (7) the balance between the refractive power of the negative first lens L1 and the refractive power of the negative third lens L3 of the cemented lens CL1 can be kept good, and coma aberration, field curvature, It is possible to satisfactorily correct axial chromatic aberration and lateral chromatic aberration.
  • the refractive power of the negative first lens L1 becomes too strong, and coma aberration, field curvature, and distortion become difficult.
  • the lower limit of conditional expression (7) the refractive power of the negative fourth lens L4 of the cemented lens CL1 becomes too strong, making it difficult to correct axial chromatic aberration and lateral chromatic aberration.
  • conditional expression (7) ′ or conditional expression (7) ′′ instead of conditional expression (7).
  • conditional expression (7) ′ 1.58 ⁇ PW1 / PW4 ⁇ 3.0 (7)
  • the negative first lens arranged closest to the object side is configured to satisfy the following conditional expression (8).
  • rdy11 is the object-side radius of curvature of the negative first lens
  • rdy12 is the image-side radius of curvature of the negative first lens.
  • Conditional expression (8) is a conditional expression related to the shape factor of the first lens L1 of the negative lens. By satisfying conditional expression (8), the necessary negative refractive power can be obtained. If the lower limit of conditional expression (8) is exceeded, the refractive power of the negative first lens L1 will decrease. If the upper limit of conditional expression (8) is exceeded, the productivity of the lens will be significantly reduced.
  • conditional expression (8) ′ or conditional expression (8) ′′ instead of conditional expression (8).
  • the cemented lens CL1 is configured to satisfy the following conditional expression (9). 0.05 ⁇ (rdyB1 + rdyB2) / (rdyB1-rdyB2) ⁇ 2.0 ... (9)
  • rdyB1 is the radius of curvature of the air contact surface of the positive third lens L3 in the cemented lens CL1
  • rdyB2 is the radius of curvature of the cemented surface of the positive third lens L3 in the cemented lens CL1.
  • Conditional expression (9) is a conditional expression related to the shape factor of the positive third lens L3 of the cemented lens CL1. By satisfying conditional expression (9), it is possible to obtain an appropriate radius of curvature, and it is possible to secure the lens edge while obtaining the necessary positive refractive power. When the upper limit or the lower limit of conditional expression (9) is exceeded, either one of the radii of curvature becomes too tight, and a border cannot be secured, making manufacturing extremely difficult.
  • conditional expression (9) ′ or conditional expression (9) ′′ instead of conditional expression (9).
  • the rear group GR has been described as including one cemented lens CL1, but the rear group GR may include a plurality of cemented lenses. Further, both the front group GF and the rear group GR may be provided with a cemented lens.
  • FIG. 2 is a cross-sectional view showing the overall configuration of the objective optical system.
  • the objective optical system includes a first lens group G1, an aperture stop S, a second lens group, and a third lens group G3 in order from the object side.
  • the first lens group G1 includes, in order from the object side, a negative first lens L1, a parallel plate F, a positive second lens L2, and a positive third lens L3 and a negative fourth lens L4.
  • 1-junction lens CL1 is provided and has positive refractive power.
  • the second lens group G2 includes a cemented lens CL2 in which a negative fifth lens L5 and a positive sixth lens L6 are cemented, and has a negative refractive power.
  • the second lens group G2 is movable on the optical axis, and switching between normal observation and magnified observation is possible by moving the second lens group G2.
  • the third lens group G3 includes a positive seventh lens L7, a cemented lens CL3 in which a positive eighth lens L8 and a negative ninth lens L9 are cemented, and a parallel plate F, and has a positive refractive power. is doing.
  • the objective optical system according to the present embodiment is also configured to satisfy the conditional expressions (1) to (9) in the first embodiment.
  • the objective optical system according to the present embodiment is further configured to satisfy the following conditional expression (10). 1 ⁇ FL2G * ⁇ 2G / FL 2 ⁇ 200 (10)
  • ⁇ 2G is the absolute value of the amount of movement of the second lens group from the normal observation state to the close-up magnification state
  • FL is the focal length of the entire objective optical system in the normal observation state
  • FL2G is the second lens group The focal length.
  • Conditional expression (10) is a conditional expression related to the amount of movement of the second lens group G2 from the normal observation state to the close-up magnification state.
  • conditional expression (10) is satisfied, an appropriate amount of movement can be obtained, and a focus stroke that matches the operator's sense can be realized. If the upper limit of conditional expression (10) is exceeded, the amount of movement will be too long, which undesirably increases the overall length.
  • the lower limit of conditional expression (10) is exceeded, the focus changes with a small amount of movement, and the usability of the surgeon deteriorates.
  • conditional expression (10) ′ or conditional expression (10) ′′ instead of conditional expression (10).
  • conditional expression (10) 3 ⁇ FL2G * ⁇ 2G / FL 2 ⁇ 10 (10) ′ 4.4 ⁇ FL2G * ⁇ 2G / FL 2 ⁇ 6.0 (10) "
  • FIG. 3 is a cross-sectional view showing the overall configuration of the objective optical system.
  • the objective optical system includes a first lens group G1, a second lens group, an aperture stop S, and a third lens group G3 in order from the object side.
  • the first lens group G1 includes, in order from the object side, a negative first lens L1, a parallel plate F, and a positive second lens L2, and has a positive refractive power.
  • the second lens group G2 includes a positive third lens L3 that can move during focusing, and switching between normal observation and magnified observation is possible by moving the second lens group G2.
  • the third lens group G3 includes a cemented lens CL1 in which a positive fourth lens L4 and a negative fifth lens L5 are cemented, and a cemented lens CL2 in which a positive sixth lens L6 and a negative seventh lens L7 are cemented. And a parallel plate F, and has a positive refractive power.
  • the objective optical system according to this embodiment is also configured to satisfy the conditional expressions (1) to (9) in the first embodiment.
  • Examples 1 to 15 of the objective optical system according to any one of the above-described embodiments will be described with reference to FIGS. 4 to 33.
  • r is a radius of curvature (unit: mm)
  • d is a surface interval (mm)
  • Nd is a refractive index with respect to the d line
  • Vd is an Abbe number with respect to the d line.
  • FIG. 4 is a sectional view showing the entire configuration of the objective optical system according to Example 1 of the present invention
  • FIG. 5 is an aberration diagram
  • lens data of the objective optical system according to Example 1 is shown below.
  • FIG. 6 is a cross-sectional view showing the entire configuration of the objective optical system according to Example 2 of the present invention, and FIGS. 7 and 8 show aberration diagrams, and lens data of the objective optical system according to Example 2 is as follows. Show.
  • FIG. 9 is a cross-sectional view showing the overall configuration of the objective optical system according to Example 3 of the present invention, and FIGS. 10 and 11 show aberration diagrams.
  • Lens data of the objective optical system according to Example 3 are as follows. Show.
  • FIG. 12 is a sectional view showing the overall configuration of the objective optical system according to Example 4 of the present invention
  • FIG. 13 and FIG. 14 are aberration diagrams
  • lens data of the objective optical system according to Example 4 is as follows. Show.
  • FIG. 15 is a sectional view showing the overall configuration of the objective optical system according to Example 5 of the present invention
  • FIG. 16 is an aberration diagram
  • lens data of the objective optical system according to Example 5 is shown below.
  • FIG. 17 is a sectional view showing the overall configuration of the objective optical system according to Example 6 of the present invention
  • FIG. 18 is an aberration diagram
  • lens data of the objective optical system according to Example 6 is shown below.
  • FIG. 19 is a cross-sectional view showing the overall configuration of the objective optical system according to Example 7 of the present invention
  • FIG. 20 and FIG. 21 are aberration diagrams
  • lens data of the objective optical system according to Example 7 is as follows. Show.
  • FIG. 22 is a sectional view showing the overall configuration of the objective optical system according to Example 8 of the present invention
  • FIG. 23 is an aberration diagram
  • lens data of the objective optical system according to Example 8 is shown below.
  • FIG. 24 is a sectional view showing the overall configuration of the objective optical system according to Example 9 of the present invention
  • FIG. 25 is an aberration diagram
  • lens data of the objective optical system according to Example 9 is shown below.
  • FIG. 26 is a sectional view showing the overall configuration of the objective optical system according to Example 10 of the present invention
  • FIG. 27 is an aberration diagram
  • lens data of the objective optical system according to Example 10 is shown below.
  • FIG. 28 is a sectional view showing the entire configuration of the objective optical system according to Example 11 of the present invention
  • FIG. 29 is an aberration diagram
  • lens data of the objective optical system according to Example 11 is shown below.
  • FIG. 30 is a sectional view showing the entire configuration of the objective optical system according to Example 12 of the present invention
  • FIG. 31 is an aberration diagram
  • lens data of the objective optical system according to Example 12 is shown below.
  • FIG. 32 is a sectional view showing the overall configuration of the objective optical system according to Example 13 of the present invention
  • FIG. 33 and FIG. 34 are aberration diagrams
  • lens data of the objective optical system according to Example 13 is as follows. Show.
  • FIG. 35 is a sectional view showing the overall configuration of the objective optical system according to Example 14 of the present invention
  • FIG. 36 and FIG. 37 are aberration diagrams
  • lens data of the objective optical system according to Example 14 is as follows. Show.
  • FIG. 38 is a sectional view showing the overall configuration of the objective optical system according to Example 15 of the present invention
  • FIG. 39 and FIG. 40 are aberration diagrams
  • lens data of the objective optical system according to Example 15 is as follows. Show.
  • Tables 1 and 2 show values related to the above-described formulas (1) to (10) in Examples 1 to 15.
  • G1 1st group G2 2nd group L1 1st lens L2 2nd lens L3 3rd lens L4 4th lens L5 5th lens L6 6th lens L7 7th lens CL1 Joint lens

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Lenses (AREA)
  • Nonlinear Science (AREA)

Abstract

低侵襲性を確保しながら、緒収差を良好に補正して、高精細かつ広画角の画像を取得する。少なくとも正レンズと負レンズとの接合レンズを備え、該接合レンズが以下の条件式を満足する対物光学系を提供する。 15.0<νA-ndA<15.75 ・・・(1) -0.2>rdyA1/ih>-20 ・・・(2) 但し、νAは負レンズのアッベ数、ndAは負レンズのd線における屈折率であり、rdyA1は負レンズの接合面の曲率半径であり、ihは像高である。

Description

内視鏡用対物光学系
 本発明は、対物光学系に関し、特に、医療用内視鏡に適用される内視鏡用対物光学系に関する。
 医療用内視鏡は、患者に対して低侵襲性を確保しながら、高精細かつ広画角な画質の画像を取得することが好ましい。しかしながら、高画質と低侵襲性とは相反する。すなわち、高画質の画像を取得するためには、画素数を増やさなければならず、撮像素子を大きくすることが好ましい。その反面、撮像素子が大きくなるのに伴って、撮像レンズ径も大きくなり結果的に内視鏡外径が大きくなり、低侵襲性を確保することが困難となる。
 そこで、近年、画素ピッチを小さくすることで、撮像素子を大型化させずに画素数を増やし、高画質の画像を取得する方法が主流となりつつある。画素ピッチは時代が進むにつれますます小型化しており、数ミクロン以下の画素ピッチをもつ撮像素子も開発されている。
 例えば、特許文献1及び特許文献2には、上述のような画素ピッチが数ミクロン以下に小型化された撮像素子に適応する対物光学系が開示されている。
特開2007-249189号公報 特開2011-247949号公報
 しかしながら、画素ピッチが小型化された撮像素子を適用する場合、対物光学系において諸収差がより良好に補正されなければ高精細かつ広画角の画像を得ることができない。上述した特許文献1及び特許文献2の対物光学系では、広画角の画像を得るためにはレンズ枚数を増やす必要がある。このため、レンズ径が太く、また対物光学系の全長が長くなり、低侵襲性を確保することが困難となる。
 本発明は、上述した事情に鑑みてなされたものであって、低侵襲性を確保しながら、緒収差を良好に補正して、高精細かつ広画角の画像を取得することのできる内視鏡用対物光学系を提供することを目的とする。
 上記目的を達成するため、本発明は以下の手段を提供する。
 本発明の一態様は、少なくとも正レンズと負レンズとの第1の接合レンズを備え、該接合レンズが以下の条件式を満足する内視鏡用対物光学系である。
 15.0<νA-ndA<15.75   ・・・(1)
 -0.2>rdyA1/ih>-20   ・・・(2)
 但し、νAは負レンズのアッベ数、ndAは負レンズのd線における屈折率であり、rdyA1は負レンズの接合面の曲率半径であり、ihは像高である。
 本態様によれば、少なくとも正レンズと負レンズとの第1の接合レンズを用い、条件式(1)及び条件式(2)を同時に満たすことで、軸上色収差及び倍率色収差を良好に補正することができる。
 上記態様において、前記第1の接合レンズの負レンズが以下の条件式を満足することが好ましい。
-0.2>(rdyA1+rdyA2)/(rdyA1-rdyA2)>-10
                            ・・・(3)
 但し、rdyA1は第1の接合レンズの負レンズの接合面の曲率半径であり、rdyA2は第1の接合レンズの負レンズの空気接触面の曲率半径である。
 このようにすることで、必要な負の屈折力を得ながらも軸上および軸外の色収差を補正することができる。
 上記態様において、物体側から順に、前群、明るさ絞り及び後群から構成され、該後群が正の屈折率を有し、前記前群又は前記後群の少なくとも何れか一方に前記第1の接合レンズが配置されていることが好ましい。
 このようにすることで、構成する各群のレンズ枚数を削減することができ、内視鏡用対物光学系全長を短縮するとともにコストを削減することができる。また、レンズの径方向の大きさを抑えながらも長いバックフォーカスを確保することができる。さらに、前群又は後群の少なくとも何れか一方に接合レンズを配置することにより、軸上および倍率色収差を良好に補正することができる。
 上記態様において、前記前群が、物体側から順に負レンズ及び正レンズを有し、前記後群が、前記第1の接合レンズを有することが好ましい。
 このようにすることで、構成する各群のレンズ枚数を削減することができ、内視鏡用対物光学系全長を短縮するとともにコストを削減することができる。また、レンズの径方向の大きさを抑えながらも長いバックフォーカスを確保することができる。また、後群に接合レンズを配置することにより、軸上および倍率色収差を良好に補正することができる。
 上記態様において、前記後群が、複数の前記第1の接合レンズを有することが好ましい。
 このようにすることで、構成する各群のレンズ枚数を削減することができ、内視鏡用対物光学系全長を短縮するとともにコストを削減することができる。また、レンズの径方向の大きさを抑えながらも長いバックフォーカスを確保することができる。さらに、後群に接合レンズを配置することにより、軸上および倍率色収差を良好に補正することができる。
 上記態様において、前記前群が、物体側から順に負レンズ及び少なくとも1枚の正レンズと少なくとも1枚の負レンズとを接合した接合レンズを有し、前記後群が、複数の前記接合レンズを有し、前記前群又は前記後群の少なくとも何れか一方に前記第1の接合レンズを有することが好ましい。
 このようにすることで、構成する各群のレンズ枚数を削減することができ、内視鏡用対物光学系全長を短縮するとともにコストを削減することができる。また、レンズの径方向の大きさを抑えながらも長いバックフォーカスを確保することができる。さらに、後群に接合レンズを配置することにより、軸上および倍率色収差を良好に補正することができる。
 上記態様において、前記前群が、物体側から順に負レンズ及び少なくとも1枚の正レンズと少なくとも1枚の負レンズとを接合した接合レンズを有し、前記後群が、前記接合レンズおよび正レンズを有し、前記前群又は前記後群の少なくとも何れか一方に前記第1の接合レンズを有することが好ましい。
 このようにすることで、構成する各群のレンズ枚数を削減することができ、内視鏡用対物光学系全長を短縮するとともにコストを削減することができる。また、レンズの径方向の大きさを抑えながらも長いバックフォーカスを確保することができる。さらに、後群に接合レンズを配置することにより、軸上および倍率色収差を良好に補正することができる。さらにまた、最も像側に正レンズを配置することで射出光線角度を緩やかにすることが可能になり、シェーディングを良好に補正することができる。
 上記態様において、物体側から順に、正の第1レンズ群、可動の負の第2レンズ群及び正の第3レンズ群を備え、第2レンズ群を移動させることにより通常観察と拡大観察との切替えが可能であり、前記第3レンズ群が、少なくとも1枚の前記第1の接合レンズを有することが好ましい。
 このようにすることで、広画角かつ通常観察から拡大観察まで合焦可能ながらも、構成する各群のレンズ枚数を削減することができ、内視鏡用対物光学系の全長を短縮するとともにコストを削減することができる。
 上記態様において、物体側から順に、負の第1レンズ群、フォーカシング時に移動可能な第2レンズ群、及び、正の第3レンズ群を備え、前記第2レンズ群を移動させることにより通常観察と拡大観察との切替えが可能であり、前記第3レンズ群が、少なくとも1枚の前記第1の接合レンズを有することが好ましい。
 このようにすることで、長いバックフォーカスを確保しながらも、フォーカシング時の収差変動が小さくすることができ、製造誤差に強い対物光学系を実現することができる。また、第3レンズ群に少なくとも一枚の接合レンズが配置されたことにより軸上および倍率色収差を良好に補正することができる。なお、第2レンズ群は正の屈折力または負の屈折力を有することが好ましい。
 上記態様において、最も物体側に負の第1レンズを配置し、以下の条件式を満足することが好ましい。
 -3.0≦rdy12/rdyA1<-0.2   ・・・(4)
 但し、rdy12は負の第1レンズの像側曲率半径であり、rdyA1は第1の接合レンズの負レンズの接合面の曲率半径である。
 条件式(4)は、負の第1レンズの像側曲率半径と接合レンズの曲率半径の条件式であり、条件式(4)を満たすことで、負の第1レンズの像側曲率半径と接合レンズの曲率半径のバランスを良好に保つことができ、コマ収差や像面湾曲、軸上色収差、倍率色収差を良好に補正することができる。
 上記態様において、前記第1の接合レンズが、以下の条件式を満足することが好ましい。
 1.0<DB/DA<10    ・・・(5)
 0.1<DA/ih<2.0   ・・・(6)
 但し、DAは、第1の接合レンズのうち負レンズの中肉厚であり、DBは第1の接合レンズのうち正レンズの中肉厚であり、ihは像高である。
 条件式(5)及び条件式(6)は接合レンズの中肉厚に関する条件式である。条件式(5)及び条件式(6)を満たすことで、適切な全長で、レンズに割れや欠けなどの製造不良が発生しにくい内視鏡用対物光学系を達成することができる。
 上記態様において、以下の条件式を満足することが好ましい。
 0.5<PW1/PW4<10   ・・・(7)
 但し、PW1は、負の第1レンズの屈折力であり、PW4は第1の接合レンズのうち負レンズの屈折力である。
 条件式(7)を満たすことで、負の第1レンズの屈折力と第1の接合レンズの負レンズの屈折力のバランスを良好に保つことができ、コマ収差や像面湾曲、軸上色収差、倍率色収差を良好に補正することができる。
 上記態様において、以下の条件式を満足することが好ましい。
0.5<(rdy11+rdy12)/(rdy11-rdy12)<1.7
                           ・・・(8)
 但し、rdy11は、負の第1レンズの物体側曲率半径である。
 条件式(8)を満たすことで、必要な負の屈折力をえることができる。
 上記態様において、以下の条件式を満足することが好ましい。
0.05<(rdyB1+rdyB2)/(rdyB1-rdyB2)<2.0
                            ・・・(9)
 但し、rdyB1は第1の接合レンズのうち正レンズの空気接触面の曲率半径であり、rdyB2は第1の接合レンズのうち正レンズの接合面の曲率半径である。
 条件式(9)を満足することで、適切な曲率半径とすることができ、必要な正の屈折力を得ながらレンズフチ肉を確保することができる。
 上記態様において、以下の条件式を満足することが好ましい。
 1<FL2G*Δ2G/FL<200   ・・・(10)
 但し、Δ2Gは第2レンズ群の通常観察状態から近接拡大状態までの移動量の絶対値であり、FLは通常観察状態における対物光学系全系の焦点距離であり、FL2Gは第2レンズ群の焦点距離である。
 条件式(10)を満たすことで、適切な移動量とすることができ、術者の感覚に合致したフォーカスストロークを実現することができる。
 本発明によれば、低侵襲性を確保しながら、緒収差を良好に補正して、高精細かつ広画角の画像を取得することができるという効果を奏する。
本発明の第1の実施形態に係る対物光学系の全体構成を示す断面図である。 本発明の第2の実施形態に係る対物光学系の全体構成を示す断面図である。 本発明の第3の実施形態に係る対物光学系の全体構成を示す断面図である。 本発明の実施例1に係る対物光学系の全体構成を示す断面図である。 本発明の実施例1に係る対物光学系の収差図である。 本発明の実施例2に係る対物光学系の全体構成を示す断面図であり、(A)は通常観察状態を、(B)は拡大観察状態を示す。 本発明の実施例2に係る対物光学系の通常観察状態における収差図である。 本発明の実施例2に係る対物光学系の拡大観察状態における収差図である。 本発明の実施例3に係る対物光学系の全体構成を示す断面図であり、(A)は通常観察状態を、(B)は拡大観察状態を示す。 本発明の実施例3に係る対物光学系の通常観察状態における収差図である。 本発明の実施例3に係る対物光学系の拡大観察状態における収差図である。 本発明の実施例4に係る対物光学系の全体構成を示す断面図であり、(A)は通常観察状態を、(B)は拡大観察状態を示す。 本発明の実施例4に係る対物光学系の通常観察状態における収差図である。 本発明の実施例4に係る対物光学系の拡大観察状態における収差図である。 本発明の実施例5に係る対物光学系の全体構成を示す断面図である。 本発明の実施例5に係る対物光学系の収差図である。 本発明の実施例6に係る対物光学系の全体構成を示す断面図である。 本発明の実施例6に係る対物光学系の収差図である。 本発明の実施例7に係る対物光学系の全体構成を示す断面図であり、(A)は通常観察状態を、(B)は拡大観察状態を示す。 本発明の実施例7に係る対物光学系の通常観察状態における収差図である。 本発明の実施例7に係る対物光学系の拡大観察状態における収差図である。 本発明の実施例8に係る対物光学系の全体構成を示す断面図である。 本発明の実施例8に係る対物光学系の収差図である。 本発明の実施例9に係る対物光学系の全体構成を示す断面図である。 本発明の実施例9に係る対物光学系の収差図である。 本発明の実施例10に係る対物光学系の全体構成を示す断面図である。 本発明の実施例10に係る対物光学系の収差図である。 本発明の実施例11に係る対物光学系の全体構成を示す断面図である。 本発明の実施例11に係る対物光学系の収差図である。 本発明の実施例12に係る対物光学系の全体構成を示す断面図である。 本発明の実施例12に係る対物光学系の収差図である。 本発明の実施例13に係る対物光学系の全体構成を示す断面図であり、(A)は通常観察状態を、(B)は拡大観察状態を示す。 本発明の実施例13に係る対物光学系の通常観察状態における収差図である。 本発明の実施例13に係る対物光学系の拡大観察状態における収差図である。 本発明の実施例14に係る対物光学系の全体構成を示す断面図であり、(A)は通常観察状態を、(B)は拡大観察状態を示す。 本発明の実施例14に係る対物光学系の通常観察状態における収差図である。 本発明の実施例14に係る対物光学系の拡大観察状態における収差図である。 本発明の実施例15に係る対物光学系の全体構成を示す断面図であり、(A)は通常観察状態を、(B)は拡大観察状態を示す。 本発明の実施例15に係る対物光学系の通常観察状態における収差図である。 本発明の実施例15に係る対物光学系の拡大観察状態における収差図である。
(第1の実施形態)
 以下に、本発明の第1の実施形態に係る対物光学系について図面を参照して説明する。
 図1は、対物光学系の全体構成を示す断面図を示している。図1に示すように、対物光学系は、物体側から順に、前群GF、明るさ絞りS及び後群GRを備えている。
 前群GFは、物体側の面から順に負の第1レンズL1及び正の第2レンズL2を備え、正の屈折力を有している。後群GRは、平行平板Fと、正の第3レンズL3及び負の第4レンズL4とが接合された接合レンズCL1(第1の接合レンズ)とを備え、正の屈折力を有している。
 そして、接合レンズCL1は、以下の条件式(1)及び条件式(2)を満足するように構成されている。
 15.0<νA-ndA<15.75   ・・・(1)
 -0.2>rdyA1/ih>-20   ・・・(2)
 但し、νAは接合レンズCL1の負のレンズのアッベ数、ndAは負のレンズのd線における屈折率であり、rdyA1は接合レンズCL1の負のレンズの接合面の曲率半径であり、ihは像高である。
 条件式(1)の上限を超えると、負レンズの屈折率が低すぎるため必要な負の屈折力が得られない。負の屈折力を得るためには接合面および空気接触面の曲率を強くする必要があるが、特に軸外の収差を発生させてしまう。条件式(1)の下限を超えると、負レンズのアッベ数が小さすぎ、軸上および軸外の色収差を発生させやすくなる。
 また、条件式(2)の上限を超えると、接合レンズの曲率が弱くなりすぎるため、接合レンズの色補正効果が弱くなってしまうため、軸上および軸外の色収差を発生させやすくなる。条件式(2)の下限を超えると、接合レンズの曲率が強くなりすぎるため、軸上および軸外の色収差を発生させやすくなる。
 このため、条件式(1)及び条件式(2)に代えて、以下の条件式(1)’及び条件式(2)’又は、条件式(1)”及び条件式(2)”を適用することが更に好ましい。
 15.3<νA-ndA<15.7    ・・・(1)’
 -1.0>rdyA1/ih>-5.0  ・・・(2)’
 15.5<νA-ndA<15.6    ・・・(1)”
 -1.2>rdyA1/ih>-2.5  ・・・(2)”
 また、接合レンズCL1の負の第4レンズL4は、以下の条件式(3)を満足するように構成されている。
-0.2>(rdyA1+rdyA2)/(rdyA1-rdyA2)>-10
                           ・・・(3)
 但し、rdyA2は接合レンズCL1の負レンズの空気接触面の曲率半径である。
 条件式(3)は接合レンズCL1の負の第4レンズL4のshape factorに関する条件式である。接合レンズCL1の負の第4レンズL4が条件式(3)を満たすことで、必要な負の屈折力を得ながらも軸上および軸外の色収差を補正することができる。条件式(3)の上限を超えると接合面の曲率半径がきつくなりすぎて加工が困難となる。また、接合レンズCL1の正の第3レンズL3の曲率もきつくなるため正の第3レンズL3のフチ肉確保が難しくなる。条件式(3)の下限を超えると、接合面の曲率半径がゆるくなりすぎてしまい、軸上および軸外の色収差の補正が難しくなる。
 このため、条件式(3)に代えて、以下の条件式(3)’又は、条件式(3)”を適用することが更に好ましい。
-0.3>(rdyA1+rdyA2)/(rdyA1-rdyA2)>-3.0
                          ・・・(3)’
さらに
-0.4>(rdyA1+rdyA2)/(rdyA1-rdyA2)>-2.5
                          ・・・(3)”
 本実施形態に係る対物光学系は、図1における前群GFの第1レンズL1のように、最も物体側面に負のレンズを配置していることが好ましく、最も物体側面の負のレンズが、以下の条件式(4)を満足するように構成されている。
 -3.0≦rdy12/rdyA1<-0.2   ・・・(4)
 但し、rdy12は負の第1レンズの像側曲率半径を表す。
 条件式(4)は、負の第1レンズL1の像側曲率半径と接合レンズCL1の曲率半径の条件式であり、条件式(4)を満たすことで、負の第1レンズL1の像側曲率半径と接合レンズCL1の曲率半径のバランスを良好に保つことができ、コマ収差や像面湾曲、軸上色収差、倍率色収差を良好に補正することができる。一方、条件式(4)の上限を超えると負の第1レンズL1の曲率半径がゆるくなり、コマ収差や像面湾曲、歪曲が困難になる。また、条件式(4)の下限を超えると接合レンズCL1の曲率半径がゆるくなりすぎ、軸上色収差、倍率色収差の補正が困難となる。
 このため、条件式(4)に代えて、以下の条件式(4)’又は条件式(4)”を適用することが更に好ましい。
 -2.5≦rdy12/rdyA1<-0.3   ・・・(4)’
 -2.0≦rdy12/rdyA1<-0.39  ・・・(4)”
 また、接合レンズCL1は、以下の条件式(5)を満たすように構成されている。
 1.0<DB/DA<10    ・・・(5)
 0.1<DA/ih<2.0   ・・・(6)
 但し、DAは、接合レンズCL1のうち負の第4レンズL4の中肉厚であり、DBは接合レンズCL1のうち正の第3レンズL3の中肉厚である。
 条件式(5)及び条件式(6)は接合レンズCL1の中肉厚に関する条件式である。条件式(5)及び条件式(6)を満たすことで、適切な全長で、レンズに割れや欠けなどの製造不良が発生しにくい対物光学系を達成することができる。
 条件式(5)の上限を超えると、接合レンズCL1の負の第4レンズL4の中肉が薄くなりすぎてしまい、割れや欠けが発生しやすくなる。条件式(5)の下限を超えると、接合レンズの正の第3レンズL3の中肉が薄くなりすぎるため、フチ肉が確保できず加工性が著しく悪くなる。
 条件式(6)の上限を超えると、負の第4レンズL4の中肉が厚くなりすぎてしまい全長が長くなりすぎてしまう。条件式(6)の下限を超えると、負の第4レンズL4の中肉が薄くなりすぎてしまい、割れや欠けが発生しやすくなる。
 このため、条件式(5)及び条件式(6)に代えて、以下の条件式(5)’及び条件式(6)’又は、条件式(5)”及び条件式(6)”を適用することが更に好ましい。
 2.5<DB/DA<7.5    ・・・(5)’
 0.15<DA/ih<1.0   ・・・(6)’
さらに
 4.0<DB/DA<4.5   ・・・(5)”
 0.2<DA/ih<0.7   ・・・(6)”
 また、最も物体側面に配置された負の第1レンズL1と、接合レンズCL1の負のレンズは以下の条件式を満たすように構成されている。
 0.5<PW1/PW4<10   ・・・(7)
 但し、PW1は、負の第1レンズの屈折力であり、PW4は接合レンズのうち負レンズの屈折力である。
 条件式(7)は負の第1レンズL1の屈折力と接合レンズCL1の負の第4レンズL4の屈折力の条件式である。条件式(7)を満たすことで、負の第1レンズL1の屈折力と接合レンズCL1の負の第3レンズL3の屈折力のバランスを良好に保つことができ、コマ収差や像面湾曲、軸上色収差、倍率色収差を良好に補正することができる。条件式(7)の上限を超えると負の第1レンズL1の屈折力が強くなりすぎ、コマ収差や像面湾曲、歪曲が困難となる。条件式(7)の下限を超えると、接合レンズCL1の負の第4レンズL4の屈折力が強くなりすぎ、軸上色収差、倍率色収差の補正が困難となる。
 このため、条件式(7)に代えて、以下の条件式(7)’又は条件式(7)”を適用することが更に好ましい。
 1.5<PW1/PW4<5.0    ・・・(7)’
 1.58<PW1/PW4<3.0   ・・・(7)”
 最も物体側面に配置された負の第1レンズが、以下の条件式(8)を満たすように構成されている。
0.5<(rdy11+rdy12)/(rdy11-rdy12)<1.7
                           ・・・(8)
 但し、rdy11は、負の第1レンズの物体側曲率半径であり、rdy12は負の第1レンズの像側曲率半径である。
  条件式(8)は、負レンズの第1レンズL1のshape factorに関する条件式である。条件式(8)を満たすことで、必要な負の屈折力をえることができる。条件式(8)の下限を超えると、負の第1レンズL1の屈折力が低下してしまう。条件式(8)の上限を超えてしまうとレンズの生産性が著しく低下する。
 このため、条件式(8)に代えて、以下の条件式(8)’又は条件式(8)”を適用することが更に好ましい。
0.7<(rdy11+rdy12)/(rdy11-rdy12)<1.3
                          ・・・(8)’
さらに
0.99<(rdy11+rdy12)/(rdy11-rdy12)<1.01
                          ・・・(8)”
 接合レンズCL1が以下の条件式(9)を満たすように構成されている。
0.05<(rdyB1+rdyB2)/(rdyB1-rdyB2)<2.0
                            ・・・(9)
 但し、rdyB1は接合レンズCL1のうち正の第3レンズL3の空気接触面の曲率半径であり、rdyB2は接合レンズCL1のうち正の第3レンズL3の接合面の曲率半径を表す。
 条件式(9)は接合レンズCL1の正の第3レンズL3のshape factorに関する条件式である。条件式(9)を満足することで、適切な曲率半径とすることができ、必要な正の屈折力を得ながらレンズフチ肉を確保することができる。条件式(9)の上限又は下限を超えると、何れか一方の曲率半径がきつくなりすぎ、フチ肉が確保できず、製造が著しく困難となる。
 このため、条件式(9)に代えて、以下の条件式(9)’又は条件式(9)”を適用することが更に好ましい。
0.1<(rdyB1+rdyB2)/(rdyB1-rdyB2)<0.5
                          ・・・(9)’
0.13<(rdyB1+rdyB2)/(rdyB1-rdyB2)<0.45
                          ・・・(9)”
 このように、本実施形態によれば、低侵襲性を確保しながら、緒収差を良好に補正して、高精細かつ広画角の画像を取得することのできる対物光学系とすることができる。
 なお、上述した実施形態において、後群GRが1枚の接合レンズCL1を備える構成として説明したが、後群GRが複数の接合レンズを備えていてもよい。また、前群GF及び後群GRの双方が接合レンズを備える構成とすることもできる。
(第2の実施形態)
 以下に、本発明の第2の実施形態に係る対物光学系について図面を参照して説明する。
 図2は、対物光学系の全体構成を示す断面図を示している。図2に示すように、対物光学系は、物体側から順に、第1レンズ群G1、明るさ絞りS、第2レンズ群及び第3レンズ群G3を備えている。
 第1レンズ群G1は、物体側から順に、負の第1レンズL1、平行平板F、正の第2レンズL2、及び正の第3レンズL3と負の第4レンズL4とが接合された第1接合レンズCL1を備えており、正の屈折力を有している。
 第2レンズ群G2は、負の第5レンズL5と正の第6レンズL6とが接合された接合レンズCL2を備えており、負の屈折力を有している。また、第2レンズ群G2は、光軸上を移動可能となっており、第2レンズ群G2を移動させることにより通常観察と拡大観察との切替えが可能となっている。
 第3レンズ群G3は、正の第7レンズL7、正の第8レンズL8と負の第9レンズL9とが接合された接合レンズCL3及び平行平板Fを備えており、正の屈折力を有している。
 そして、本実施形態に係る対物光学系も、上記第1の実施形態における条件式(1)乃至条件式(9)を満たすように構成されている。ここで、接合レンズCL1と接合レンズCL2とは少なくとも何れか一方が各条件式を満たすように構成されていればよい。
 また、本実施形態に係る対物光学系は、さらに、以下の条件式(10)を満足するように構成されている。
 1<FL2G*Δ2G/FL<200   ・・・(10)
 但し、Δ2Gは第2レンズ群の通常観察状態から近接拡大状態までの移動量の絶対値であり、FLは通常観察状態における対物光学系全系の焦点距離であり、FL2Gは第2レンズ群の焦点距離である。
 条件式(10)は第2レンズ群G2の通常観察状態から近接拡大状態までの移動量に関する条件式である。条件式(10)を満たすことで適切な移動量とすることができ、術者の感覚に合致したフォーカスストロークを実現することができる。条件式(10)の上限を超えると移動量が長すぎてしまうため、全長が肥大化してしまい好ましくない。条件式(10)の下限を超えると、少ない移動量でフォーカスが変化してしまい、術者の使い勝手が悪化する。
 このため、条件式(10)に代えて、以下の条件式(10)’又は条件式(10)”を適用することが更に好ましい。
 3<FL2G*Δ2G/FL<10      ・・・(10)’
 4.4<FL2G*Δ2G/FL<6.0   ・・・(10)”
(第3の実施形態)
 以下に、本発明の第3の実施形態に係る対物光学系について図面を参照して説明する。
 図3は、対物光学系の全体構成を示す断面図を示している。図3に示すように、対物光学系は、物体側から順に、第1レンズ群G1、第2レンズ群、明るさ絞りS及び第3レンズ群G3を備えている。
 第1レンズ群G1は、物体側から順に、負の第1レンズL1、平行平板F及び正の第2レンズL2を備えており、正の屈折力を有している。
 第2レンズ群G2は、フォーカシング時に移動可能な正の第3レンズL3からなり、第2レンズ群G2を移動させることにより通常観察と拡大観察との切替えが可能となっている。
 第3レンズ群G3は、正の第4レンズL4と負の第5レンズL5とが接合された接合レンズCL1、正の第6レンズL6と負の第7レンズL7とが接合された接合レンズCL2及び平行平板Fを備えており、正の屈折力を有している。
 そして、本実施形態に係る対物光学系も、上記第1の実施形態における条件式(1)乃至条件式(9)を満たすように構成されている。ここで、接合レンズCL1と接合レンズCL2とは、少なくとも何れか一方が各条件式を満たすように構成されていればよい。
 続いて、上述した何れかの実施形態に係る対物光学系の実施例1乃至実施例15について、図4乃至図33を参照して説明する。各実施例に記載のレンズデータにおいて、rは曲率半径(単位mm)、dは面間隔(mm)、Ndはd線に対する屈折率、Vdはd線に対するアッベ数を示している。
(実施例1)
 本発明の実施例1に係る対物光学系の全体構成を示す断面図を図4に、収差図を図5に夫々示すと共に、実施例1に係る対物光学系のレンズデータを以下に示す。
 レンズデータ
面番号    r     d       Nd       Vd
 1     ∞    0.20   1.88300   40.76
 2   0.462  0.27
 3     ∞    0.03
 4   3.254  1.05   1.83400   37.16
 5  -1.041  0.07
 6    絞り    0.03
 7     ∞    0.60   1.52100   65.12
 8     ∞    0.10
 9   2.124  0.85   1.75500   52.32
10  -0.804  0.30   1.95906   17.47
11  -2.068  0.38
12     ∞    0.50   1.51633   64.14
13     ∞    0.01   1.00000   64.00
14     ∞    0.50   1.00000   50.49
15     ∞
 各種データ
  焦点距離     0.67
  FNO.     5.00
  画角2ω   133.48
 各群焦点距離
  前群     後群
 2.25    1.93
(実施例2)
 本発明の実施例2に係る対物光学系の全体構成を示す断面図を図6に、収差図を図7及び図8に夫々示すと共に、実施例2に係る対物光学系のレンズデータを以下に示す。
 レンズデータ
面番号    r     d       Nd       Vd
 1     ∞    0.35   1.88300   40.76
 2   1.158  0.85
 3     ∞    0.40   1.52100   65.12
 4     ∞    0.20
 5  -3.355  1.70   1.58144   40.75
 6  -2.430  0.30
 7   5.659  0.80   1.51742   52.43
 8  -1.284  0.30   1.92286   18.90
 9  -2.002  0.05
10    絞り    0.03
11     ∞    D11
12     ∞    0.30   1.77250   49.60
13   1.216  0.55   1.72825   28.46
14   3.618  0.10
15     ∞    D15
16   4.765  1.15   1.81600   46.62
17  -6.127  0.05
18   3.997  1.53   1.61800   63.33
19  -2.843  0.35   1.95906   17.47
20   8.733  0.09
21     ∞    0.10
22     ∞    0.40   1.52300   58.59
23     ∞    0.75
24     ∞    0.75   1.51633   64.14
25     ∞    0.01   1.51300   64.01
26     ∞    0.65   1.50510   63.26
27     ∞
 ズームデータ
         通常観察状態   拡大観察状態
  焦点距離    1.15     1.40
  FNO.    6.06     7.39
  画角2ω  159.91    90.36
 各種データ
  D11     0.31   1.71
  D15     1.72   0.32
 各群焦点距離
  第1群     第2群     第3群
  1.94   -4.17    3.09
(実施例3)
 本発明の実施例3に係る対物光学系の全体構成を示す断面図を図9に、収差図を図10及び図11に夫々示すと共に、実施例3に係る対物光学系のレンズデータを以下に示す。
 レンズデータ
面番号    r     d       Nd       Vd
 1     ∞    0.35   1.88300   40.76
 2   1.148  0.85
 3     ∞    0.40   1.52100   65.12
 4     ∞    0.20
 5  -3.309  1.70   1.58144   40.75
 6  -2.474  0.30
 7   6.028  0.80   1.51742   52.43
 8  -1.255  0.30   1.95906   17.47
 9  -1.910  0.05
10    絞り    0.03
11     ∞    D11
12     ∞    0.30   1.77250   49.60
13   1.089  0.55   1.72825   28.46
14   3.739  0.10
15     ∞    D15
16   4.574  1.15   1.81600   46.62
17  -6.626  0.05
18   3.758  1.53   1.61800   63.33
19  -2.858  0.35   1.95906   17.47
20   6.853  0.09
21     ∞    0.10
22     ∞    0.40   1.52300   58.59
23     ∞    0.76
24     ∞    0.75   1.51633   64.14
25     ∞    0.01   1.51300   64.01
26     ∞    0.65   1.50510   63.26
27     ∞
 ズームデータ
         通常観察状態   拡大観察状態
  焦点距離    1.15    1.40
  FNO.    6.21    7.49
  画角2ω  160.04   90.53
 各種データ
   D11     0.31   1.71
   D15     1.72   0.32
 各群焦点距離
 第1群     第2群     第3群
  1.91   -4.20   3.12
(実施例4)
 本発明の実施例4に係る対物光学系の全体構成を示す断面図を図12に、収差図を図13及び図14に夫々示すと共に、実施例4に係る対物光学系のレンズデータを以下に示す。
 レンズデータ
面番号    r     d       Nd       Vd
 1     ∞    0.35   1.88300   40.76
 2   1.139  0.85
 3     ∞    0.40   1.52100   65.12
 4     ∞    0.20
 5  -3.688  1.52   1.58144   40.75
 6  -2.511  0.30
 7  19.344  0.80   1.58144   40.75
 8  -1.041  0.30   1.95906   17.47
 9  -1.693  0.05
10     絞り   0.03
11     ∞    D11
12     ∞    0.30   1.77250   49.60
13   1.124  0.55   1.72825   28.46
14   3.702  0.10
15     ∞    D15
16   4.569  1.15   1.81600   46.62
17  -6.842  0.05
18   3.908  1.53   1.61800   63.33
19  -2.836  0.35   1.95906   17.47
20   8.387  0.09
21     ∞    0.10
22     ∞    0.40   1.52300   58.59
23     ∞    0.81
24     ∞    0.75   1.51633   64.14
25     ∞    0.01   1.51300   64.01
26     ∞    0.65   1.50510   63.26
27     ∞
 ズームデータ
         通常観察状態   拡大観察状態
  焦点距離    1.15    1.40
  FNO.    6.20    7.53
  画角2ω   59.91   90.33
 各種データ
   D11     0.31   1.71
   D15     1.72   0.32
 各群焦点距離
 第1群     第2群     第3群
  1.92   -4.19   3.14
(実施例5)
 本発明の実施例5に係る対物光学系の全体構成を示す断面図を図15に、収差図を図16に夫々示すと共に、実施例5に係る対物光学系のレンズデータを以下に示す。
 レンズデータ
面番号    r     d       Nd       Vd
 1     ∞    0.27   1.88300   40.76
 2   0.427  0.36
 3  22.369  0.30   1.88300   40.76
 4   1.152  0.68   1.69895   30.13
 5  -0.908  0.05
 6     絞り   0.10
 7 449.945  0.30   1.88300   40.76
 8   1.223  0.82   1.48749   70.23
 9  -1.385  0.05
10   1.912  1.06   1.72916   54.68
11  -0.884  0.30   1.95906   17.47
12  -1.771  0.05
13     ∞    0.31   1.51400   85.67
14     ∞    0.36
15     ∞    0.30   1.51633   64.14
16     ∞    0.01   1.51300   64.01
17     ∞    0.40   1.50510   63.26
18     ∞
 各種データ
  焦点距離     0.45
  FNO.     3.00
  画角2ω   159.51
 各群焦点距離
  前群      後群
 -43.52   1.33
(実施例6)
 本発明の実施例6に係る対物光学系の全体構成を示す断面図を図17に、収差図を図18に夫々示すと共に、実施例6に係る対物光学系のレンズデータを以下に示す。
 レンズデータ
面番号    r     d       Nd       Vd
 1     ∞    0.25   1.88300   40.76
 2   0.442  0.42
 3  -5.140  0.70   1.69895   30.13
 4  -0.900  0.05
 5     ∞    0.31   1.51400   85.67
 6     ∞    0.05
 7     絞り   0.05
 8     ∞    0.25   1.88300   40.76
 9   1.578  0.67   1.51633   64.14
10  -1.264  0.03
11     ∞    0.03
12     ∞    0.03
13   1.572  0.78   1.72916   54.68
14  -0.925  0.25   1.95906   17.47
15  -2.261  0.36
16     ∞    0.30   1.51633   64.14
17     ∞    0.52   1.50510   63.26
18     ∞
 各種データ
  焦点距離    0.44
  FNO.    2.99
  画角2ω   162.55
 各群焦点距離
  前群         後群
  -10.3449   1.2124
(実施例7)
 本発明の実施例7に係る対物光学系の全体構成を示す断面図を図19に、収差図を図20及び図21に夫々示すと共に、実施例7に係る対物光学系のレンズデータを以下に示す。
 レンズデータ
面番号    r     d       Nd       Vd
 1     ∞    0.30   1.88300   40.76
 2   1.044  0.51
 3     ∞    0.40   1.52100   65.12
 4     ∞    0.19
 5  -1.668  0.41   1.84666   23.78
 6  -1.756  0.10
 7     ∞    0.01
 8     ∞    0.02
 9   2.070  0.35   1.84666   23.78
10   2.000  0.07
11     ∞    1.18
12     ∞    0.20
13     絞り   0.10
14   6.829  0.50   1.88300   40.76
15  -2.715  0.31   1.71999   50.23
16  -5.630  0.31
17   2.888  0.89   1.72916   54.68
18  -1.087  0.30   1.95906   17.47
19  -2.708  0.32
20     ∞    0.40   1.52300   58.59
21     ∞    0.02
22     ∞    1.00   1.51633   64.14
23     ∞    0.00   1.51300   64.01
24     ∞    0.65   1.50510   63.26
25     ∞
 ズームデータ
         通常観察状態   拡大観察状態
  焦点距離    0.64    0.62
  FNO.    3.00    3.00
  画角2ω   88.15    89.87
 各種データ
   D7      0.01   1.41
   D11     1.18   0.01
 各群焦点距離
 第1群     第2群     第3群
 -1.43   54.09   1.73
(実施例8)
 本発明の実施例8に係る対物光学系の全体構成を示す断面図を図22に、収差図を図23に夫々示すと共に、実施例8に係る対物光学系のレンズデータを以下に示す。
 レンズデータ
面番号    r     d       Nd       Vd
 1     ∞    0.30   1.88300   40.76
 2   0.427  0.52
 3   2.314  0.30   1.88300   40.76
 4   0.650  0.60   1.62004   36.26
 5  -0.738  0.02
 6     絞り   0.01
 7     ∞    0.55
 8   1.578  0.60   1.72916   54.68
 9  -0.800  0.20   1.95906   17.47
10  -2.029  0.38
11     ∞    0.50   1.51633   64.14
12     ∞    0.00   1.51300   64.01
13     ∞    0.50   1.50510   63.26
14     ∞
 各種データ
  焦点距離    0.48
  FNO.    2.98
  画角2ω   132.22
 各群焦点距離
  前群     後群
  2.55   1.65
(実施例9)
 本発明の実施例9に係る対物光学系の全体構成を示す断面図を図24に、収差図を図25に夫々示すと共に、実施例9に係る対物光学系のレンズデータを以下に示す。
 レンズデータ
面番号    r     d       Nd       Vd
 1     ∞    0.30   1.88300   40.76
 2   0.427  0.54
 3   2.638  0.30   1.88300   40.76
 4   0.650  0.60   1.62004   36.26
 5  -0.729  0.02
 6     絞り   0.01
 7     ∞    0.44
 8   1.562  0.75   1.72916   54.68
 9  -0.800  0.20   1.95906   17.47
10  -2.453  0.02
11   7.876  0.30   1.51633   64.14
12  -5.104  0.06
13     ∞    0.50   1.51633   64.14
14     ∞    0.00   1.51300   64.01
15     ∞    0.50   1.50510   63.26
16     ∞    D16
 各種データ
 焦点距離     0.44
  FNO.    2.99
  画角2ω  174.40
 各群焦点距離
  前群      後群
  2.49    1.53
(実施例10)
 本発明の実施例10に係る対物光学系の全体構成を示す断面図を図26に、収差図を図27に夫々示すと共に、実施例10に係る対物光学系のレンズデータを以下に示す。
 レンズデータ
面番号    r     d       Nd       Vd
 1     ∞    0.20   1.88300   40.76
 2   0.561  0.37
 3     ∞    0.31   1.51400   85.67
 4     ∞    0.03
 5     ∞    0.72   1.95906   17.47
 6  -2.598  0.05
 7     絞り   0.10
 8     ∞    0.20   1.88300   40.76
 9   1.020  0.70   1.69680   55.53
10  -1.169  0.03
11   1.290  0.90   1.72916   54.68
12  -0.949  0.28   1.95906   17.47
13  -7.770  0.21
14     ∞    0.30   1.51633   64.14
15     ∞    0.42   1.50510   63.26
16     ∞
 各種データ
  焦点距離     0.44
  FNO.     2.98
  画角2ω   161.78
 各群焦点距離
  前群     後群
 -1.57   1.02
(実施例11)
 本発明の実施例11に係る対物光学系の全体構成を示す断面図を図28に、収差図を図29に夫々示すと共に、実施例11に係る対物光学系のレンズデータを以下に示す。
 レンズデータ
面番号    r     d       Nd       Vd
 1     ∞    0.20   1.88300   40.76
 2   0.561  0.76
 3     ∞    0.40   1.95906   17.47
 4  -2.691  0.05
 5     絞り   0.17
 6     ∞    0.20   1.88300   40.76
 7   1.020  0.70   1.69680   55.53
 8  -1.135  0.03
 9   1.269  0.90   1.72916   54.68
10  -0.949  0.28   1.95906   17.47
11  -22.869 0.21
12     ∞    0.30   1.51633   64.14
13     ∞    0.42   1.50510   63.26
14     ∞
 各種データ
 焦点距離      0.44
  FNO.     2.98
  画角2ω   161.76
 各群焦点距離
  前群     後群
 -1.47   1.02
(実施例12)
 本発明の実施例12に係る対物光学系の全体構成を示す断面図を図30に、収差図を図31に夫々示すと共に、実施例12に係る対物光学系のレンズデータを以下に示す。
 レンズデータ
面番号    r     d       Nd       Vd
 1     ∞    0.20   1.88300   40.76
 2   0.558  0.80
 3  -21.491 0.40   1.95906   17.47
 4  -2.925  0.05
 5     絞り   0.25
 6   4.374  0.20   1.88300   40.76
 7   1.019  0.70   1.69680   55.53
 8  -1.346  0.03
 9   1.331  0.90   1.72916   54.68
10  -0.980  0.28   1.95906   17.47
11  -36.237 0.21
12     ∞    0.30   1.51633   64.14
13     ∞    0.42   1.50510   63.26
14     ∞
 各種データ
  焦点距離    0.45
  FNO.    2.98
  画角2ω   159.66
 各群焦点距離
  前群     後群
 -1.21   1.04
(実施例13)
 本発明の実施例13に係る対物光学系の全体構成を示す断面図を図32に、収差図を図33及び図34に夫々示すと共に、実施例13に係る対物光学系のレンズデータを以下に示す。
 レンズデータ
面番号    r     d       Nd       Vd
 1     ∞    0.35   1.88300   40.76
 2   1.108  1.18
 3  -2.043  1.57   1.72916   54.68
 4  -2.391  0.05
 5   5.855  1.03   1.77250   49.60
 6  -2.460  0.34   1.92286   18.90
 7  -4.244  0.20
 8     絞り   0.03
 9     ∞    0.30   1.77250   49.60
10   1.358  0.50   1.59270   35.31
11   9.321  1.90
12   4.364  1.40   1.48749   70.23
13  -3.267  0.05
14   5.198  1.70   1.48749   70.23
15  -2.130  0.24   1.95906   17.47
16  -5.691  0.30
17     ∞    0.03
18     ∞    0.40   1.52300   58.59
19     ∞    0.72
20     ∞    0.75   1.51633   64.14
21     ∞    0.01   1.51300   64.01
22     ∞    0.65   1.50510   63.26
23     ∞
 ズームデータ
        通常観察状態   拡大観察状態
  焦点距離    1.11   1.40
  FNO.    7.62   7.37
  画角2ω  159.99  90.11
 各種データ
   D7      0.20   1.80
   D11     1.90   0.30
 各群焦点距離
 第1群     第2群     第3群
  2.06   -5.03   3.37
(実施例14)
 本発明の実施例14に係る対物光学系の全体構成を示す断面図を図35に、収差図を図36及び図37に夫々示すと共に、実施例14に係る対物光学系のレンズデータを以下に示す。
 レンズデータ
面番号    r     d       Nd       Vd
 1     ∞    0.35   1.88300   40.76
 2   1.108  1.16
 3  -2.043  1.60   1.72916   54.68
 4  -2.419  0.05
 5   5.700  1.03   1.77250   49.60
 6  -2.629  0.34   1.95906   17.47
 7  -4.273  0.20
 8     絞り   0.03
 9     ∞    0.30   1.77250   49.60
10   1.352  0.50   1.59270   35.31
11   9.392  1.90
12   4.363  1.40   1.48749   70.23
13  -3.271  0.05
14   5.197  1.70   1.48749   70.23
15  -2.130  0.24   1.95906   17.47
16  -5.686  0.30
17     ∞    0.03
18     ∞    0.40   1.52300   58.59
19     ∞    0.72
20     ∞    0.75   1.51633   64.14
21     ∞    0.01   1.51300   64.01
22     ∞    0.65   1.50510   63.26
23     ∞
 ズームデータ
         通常観察状態   拡大観察状態
  焦点距離    1.11    1.40
  FNO.    7.62    7.37
  画角2ω   159.98  90.12
 各種データ
   D7      0.20   1.80
   D11     1.90   0.30
各群焦点距離
 第1群     第2群     第3群
  2.06   -5.03   3.37
(実施例15)
 本発明の実施例15に係る対物光学系の全体構成を示す断面図を図38に、収差図を図39及び図40に夫々示すと共に、実施例15に係る対物光学系のレンズデータを以下に示す。
 レンズデータ
面番号    r     d       Nd       Vd
 1     ∞    0.35   1.88300   40.76
 2   1.108  1.17
 3  -2.100  1.64   1.72916   54.68
 4  -2.340  0.05
 5   5.895  1.03   1.77250   49.60
 6  -2.751  0.34   1.95906   17.47
 7  -4.576  0.20
 8     絞り   0.03
 9 -17.951  0.30   1.77250   49.60
10   1.424  0.50   1.59270   35.31
11  22.538  1.90
12   4.648  1.40   1.48749   70.23
13  -3.193  0.05
14   5.299  1.70   1.48749   70.23
15  -2.130  0.24   1.95906   17.47
16  -5.590  1.38
17     ∞    0.75   1.51633   64.14
18     ∞    0.01   1.51300   64.01
19     ∞    0.65   1.50510   63.26
20     ∞
 ズームデータ
         通常観察状態   拡大観察状態
  焦点距離    1.10    1.40
  FNO.    7.55    7.32
  画角2ω  159.99   90.12
 各種データ
   D7      0.20   1.80
   D11     1.90   0.30
 各群焦点距離
 第1群     第2群     第3群
  2.06   -5.05   3.40
 なお、上記した実施例1乃至実施例15における上記(1)乃至(10)式に係る値を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 G1 第1群
 G2 第2群
 L1 第1レンズ
 L2 第2レンズ
 L3 第3レンズ
 L4 第4レンズ
 L5 第5レンズ
 L6 第6レンズ
 L7 第7レンズ
 CL1 接合レンズ

Claims (15)

  1.  少なくとも正レンズと負レンズとの第1の接合レンズを備え、
     該接合レンズが以下の条件式を満足する内視鏡用対物光学系。
      15.0<νA-ndA<15.75   ・・・(1)
      -0.2>rdyA1/ih>-20   ・・・(2)
     但し、νAは負レンズのアッベ数、ndAは負レンズのd線における屈折率であり、rdyA1は負レンズの接合面の曲率半径であり、ihは像高である。
  2.  前記第1の接合レンズの負レンズが以下の条件式を満足する請求項1記載の内視鏡用対物光学系。
     -0.2>(rdyA1+rdyA2)/(rdyA1-rdyA2)>-10
                                 ・・・(3)
     但し、rdyA1は第1の接合レンズの負レンズの接合面の曲率半径であり、rdyA2は第1の接合レンズの負レンズの空気接触面の曲率半径である。
  3.  物体側から順に、前群、明るさ絞り及び後群から構成され、該後群が正の屈折率を有し、前記前群又は前記後群の少なくとも何れか一方に前記第1の接合レンズが配置された請求項1又は請求項2記載の内視鏡用対物光学系。
  4.  前記前群が、物体側から順に負レンズ及び正レンズを有し、
     前記後群が、前記第1の接合レンズを有する請求項3記載の内視鏡用対物光学系。
  5.  前記後群が、複数の前記第1の接合レンズを有する請求項4記載の内視鏡用対物光学系。
  6.  前記前群が、物体側から順に負レンズ及び少なくとも1枚の正レンズと少なくとも1枚の負レンズとを接合した接合レンズを有し、
     前記後群が、複数の前記接合レンズを有し、
     前記前群又は前記後群の少なくとも何れか一方に前記第1の接合レンズを有する請求項3記載の内視鏡用対物光学系。
  7.  前記前群が、物体側から順に負レンズ及び少なくとも1枚の正レンズと少なくとも1枚の負レンズとを接合した接合レンズを有し、
     前記後群が、前記接合レンズおよび正レンズを有し、
     前記前群又は前記後群の少なくとも何れか一方に前記第1の接合レンズを有する請求項3記載の内視鏡用対物光学系。
  8.  物体側から順に、正の第1レンズ群、可動の負の第2レンズ群及び正の第3レンズ群を備え、
     第2レンズ群を移動させることにより通常観察と拡大観察との切替えが可能であり、
     前記第3レンズ群が、少なくとも1枚の前記第1の接合レンズを有する請求項1又は請求項2に記載の内視鏡用対物光学系。
  9.  物体側から順に、負の第1レンズ群、フォーカシング時に移動可能な第2レンズ群、及び、正の第3レンズ群を備え、
     前記第2レンズ群を移動させることにより通常観察と拡大観察との切替えが可能であり、
     前記第3レンズ群が、少なくとも1枚の前記第1の接合レンズを有する請求項1又は請求項2に記載の内視鏡用対物光学系。
  10.  最も物体側に負の第1レンズを配置し、以下の条件式を満足する請求項3乃至請求項9の何れか1項に記載の内視鏡用対物光学系。
     -3.0≦rdy12/rdyA1<-0.2   ・・・(4)
     但し、rdy12は負の第1レンズの像側曲率半径であり、rdyA1は第1の接合レンズの負レンズの接合面の曲率半径である。
  11.  前記第1の接合レンズが、以下の条件式を満足する請求項3乃至請求項10記載の何れか1項に記載の内視鏡用対物光学系。
     1.0<DB/DA<10    ・・・(5)
     0.1<DA/ih<2.0   ・・・(6)
     但し、DAは、第1の接合レンズのうち負レンズの中肉厚であり、DBは第1の接合レンズのうち正レンズの中肉厚であり、ihは像高である。
  12.  以下の条件式を満足する請求項10記載の内視鏡用対物光学系。
     0.5<PW1/PW4<10   ・・・(7)
     但し、PW1は、負の第1レンズの屈折力であり、PW4は第1の接合レンズのうち負レンズの屈折力である。
  13.  以下の条件式を満足する請求項10記載の内視鏡用対物光学系。
     0.5<(rdy11+rdy12)/(rdy11-rdy12)<1.7
                                 ・・・(8)
     但し、rdy11は、負の第1レンズの物体側曲率半径であり、rdy12は負の第1レンズの像側曲率半径である。
  14.  以下の条件式を満足することを特徴とする請求項10記載の内視鏡用対物光学系。
     0.05<(rdyB1+rdyB2)/(rdyB1-rdyB2)<2.0
                                 ・・・(9)
     但し、rdyB1は第1の接合レンズのうち正レンズの空気接触面の曲率半径であり、rdyB2は接合レンズのうち正レンズの接合面の曲率半径である。
  15.  以下の条件式を満足する請求項8記載の内視鏡用対物光学系。
     1<FL2G*Δ2G/FL<200   ・・・(10)
     但し、Δ2Gは第2レンズ群の通常観察状態から近接拡大状態までの移動量の絶対値であり、FLは通常観察状態における対物光学系全系の焦点距離であり、FL2Gは第2レンズ群の焦点距離である。
     
PCT/JP2014/071652 2013-08-22 2014-08-19 内視鏡用対物光学系 WO2015025843A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14838726.9A EP3037858A4 (en) 2013-08-22 2014-08-19 Endoscope objective optical system
JP2015512940A JP5855793B2 (ja) 2013-08-22 2014-08-19 内視鏡用対物光学系
CN201480040015.9A CN105378535B (zh) 2013-08-22 2014-08-19 内窥镜用物镜光学系统
US15/019,264 US10101575B2 (en) 2013-08-22 2016-02-09 Endoscope objective optical system
US15/999,014 US10670854B2 (en) 2013-08-22 2018-08-20 Endoscope objective optical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013172239 2013-08-22
JP2013-172239 2013-08-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/019,264 Continuation US10101575B2 (en) 2013-08-22 2016-02-09 Endoscope objective optical system

Publications (1)

Publication Number Publication Date
WO2015025843A1 true WO2015025843A1 (ja) 2015-02-26

Family

ID=52483617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071652 WO2015025843A1 (ja) 2013-08-22 2014-08-19 内視鏡用対物光学系

Country Status (5)

Country Link
US (2) US10101575B2 (ja)
EP (1) EP3037858A4 (ja)
JP (1) JP5855793B2 (ja)
CN (1) CN105378535B (ja)
WO (1) WO2015025843A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5930257B1 (ja) * 2014-06-20 2016-06-08 オリンパス株式会社 内視鏡用対物光学系
CN106249393A (zh) * 2015-06-08 2016-12-21 富士胶片株式会社 摄像透镜以及摄像装置
WO2017043352A1 (ja) * 2015-09-07 2017-03-16 Hoya株式会社 内視鏡用変倍光学系、及び内視鏡
JP2017102182A (ja) * 2015-11-30 2017-06-08 富士フイルム株式会社 撮像レンズおよび撮像装置
JP2017102183A (ja) * 2015-11-30 2017-06-08 富士フイルム株式会社 撮像レンズおよび撮像装置
US20170184815A1 (en) * 2015-12-24 2017-06-29 Ningbo Sunny Automotive Optech Co., Ltd. Optical Imaging Lens and Lens Assembly
CN106959505A (zh) * 2016-01-12 2017-07-18 富士胶片株式会社 成像透镜及摄像装置
JP2017219592A (ja) * 2016-06-03 2017-12-14 株式会社リコー 撮像光学系および撮像装置
WO2018008460A1 (ja) * 2016-07-04 2018-01-11 オリンパス株式会社 内視鏡光学系
WO2019167310A1 (ja) * 2018-02-27 2019-09-06 オリンパス株式会社 内視鏡用対物光学系
WO2020208748A1 (ja) * 2019-04-10 2020-10-15 オリンパス株式会社 内視鏡対物光学系
JPWO2019107153A1 (ja) * 2017-11-28 2020-11-19 京セラ株式会社 撮像レンズおよび撮像装置および車載カメラシステム
JP2022016256A (ja) * 2020-07-09 2022-01-21 エーエーシー オプティクス (チャンジョウ)カンパニーリミテッド 撮像光学レンズ
US11487101B2 (en) 2017-09-12 2022-11-01 Hoya Corporation Endoscope objective lens unit and endoscope
US12032153B2 (en) 2021-10-07 2024-07-09 Olympus Corporation Endoscope objective optical system and endoscope

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108474926B (zh) * 2016-01-06 2020-09-29 奥林巴斯株式会社 物镜光学系统
CN106154500B (zh) * 2016-08-30 2018-08-28 广东弘景光电科技股份有限公司 低成本大广角高清光学系统及其应用的镜头
JP6368065B1 (ja) * 2016-09-28 2018-08-01 オリンパス株式会社 内視鏡対物光学系
CN109983383B (zh) * 2016-12-28 2021-12-21 奥林巴斯株式会社 内窥镜物镜光学系统
DE102017113273A1 (de) * 2017-06-16 2018-12-20 avateramedical GmBH Objektiv für ein Endoskop und Endoskop
EP3611552B1 (en) * 2018-08-16 2023-03-08 Jabil Optics Germany GmbH Camera lens system for an endoscope, method for producing a camera lens system and an endoscope
CN110221400B (zh) * 2019-05-02 2021-10-19 诚瑞光学(常州)股份有限公司 一种摄像光学镜头

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007249189A (ja) 2006-02-14 2007-09-27 Fujinon Corp 内視鏡用対物レンズ
JP2007334291A (ja) * 2006-02-14 2007-12-27 Fujinon Corp 内視鏡用対物レンズ
JP2008257108A (ja) * 2007-04-09 2008-10-23 Fujinon Corp 内視鏡用対物レンズおよび内視鏡
JP2009265569A (ja) * 2008-04-30 2009-11-12 Olympus Imaging Corp 結像光学系及びそれを有する電子撮像装置
JP2010032680A (ja) * 2008-07-28 2010-02-12 Olympus Medical Systems Corp 内視鏡用対物光学系
JP2011017918A (ja) * 2009-07-09 2011-01-27 Olympus Medical Systems Corp 対物レンズ
WO2011070897A1 (ja) * 2009-12-07 2011-06-16 オリンパスメディカルシステムズ株式会社 対物レンズおよび内視鏡装置
JP2011247949A (ja) 2010-05-24 2011-12-08 Olympus Imaging Corp 結像光学系及びそれを有する電子撮像装置
WO2013065294A1 (ja) * 2011-11-01 2013-05-10 富士フイルム株式会社 対物光学系およびこれを用いた内視鏡装置
JP2013114261A (ja) * 2011-11-28 2013-06-10 Samsung Electronics Co Ltd 内視鏡用対物レンズ及び内視鏡システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590928A (en) * 1978-12-29 1980-07-10 Olympus Optical Co Ltd Endoscope objective lens which performs changing of magnification and focusing simultaneously
JPS6046410B2 (ja) * 1980-10-08 1985-10-16 オリンパス光学工業株式会社 内視鏡対物レンズ
JPS60169818A (ja) * 1984-02-15 1985-09-03 Olympus Optical Co Ltd 内視鏡用対物レンズ
JPH07294827A (ja) * 1994-04-20 1995-11-10 Olympus Optical Co Ltd 内視鏡
JP4245985B2 (ja) * 2003-05-30 2009-04-02 オリンパス株式会社 内視鏡用対物レンズ
US7907352B2 (en) * 2007-04-09 2011-03-15 Fujinon Corporation Endoscope objective lens and endoscope
JP4695662B2 (ja) * 2008-03-18 2011-06-08 オリンパスメディカルシステムズ株式会社 内視鏡用対物レンズ
EP2498114A4 (en) * 2009-12-24 2012-11-07 Olympus Medical Systems Corp ENDOSCOPE LENS LENS AND ENDOSCOPE USING SAME
CN102713717B (zh) * 2010-05-20 2014-07-02 奥林巴斯医疗株式会社 内窥镜物镜单元及内窥镜
JP5436518B2 (ja) * 2011-10-21 2014-03-05 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP5825983B2 (ja) * 2011-11-09 2015-12-02 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007249189A (ja) 2006-02-14 2007-09-27 Fujinon Corp 内視鏡用対物レンズ
JP2007334291A (ja) * 2006-02-14 2007-12-27 Fujinon Corp 内視鏡用対物レンズ
JP2008257108A (ja) * 2007-04-09 2008-10-23 Fujinon Corp 内視鏡用対物レンズおよび内視鏡
JP2009265569A (ja) * 2008-04-30 2009-11-12 Olympus Imaging Corp 結像光学系及びそれを有する電子撮像装置
JP2010032680A (ja) * 2008-07-28 2010-02-12 Olympus Medical Systems Corp 内視鏡用対物光学系
JP2011017918A (ja) * 2009-07-09 2011-01-27 Olympus Medical Systems Corp 対物レンズ
WO2011070897A1 (ja) * 2009-12-07 2011-06-16 オリンパスメディカルシステムズ株式会社 対物レンズおよび内視鏡装置
JP2011247949A (ja) 2010-05-24 2011-12-08 Olympus Imaging Corp 結像光学系及びそれを有する電子撮像装置
WO2013065294A1 (ja) * 2011-11-01 2013-05-10 富士フイルム株式会社 対物光学系およびこれを用いた内視鏡装置
JP2013114261A (ja) * 2011-11-28 2013-06-10 Samsung Electronics Co Ltd 内視鏡用対物レンズ及び内視鏡システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3037858A4 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5930257B1 (ja) * 2014-06-20 2016-06-08 オリンパス株式会社 内視鏡用対物光学系
CN106249393A (zh) * 2015-06-08 2016-12-21 富士胶片株式会社 摄像透镜以及摄像装置
JP2017003678A (ja) * 2015-06-08 2017-01-05 富士フイルム株式会社 撮像レンズおよび撮像装置
CN106249393B (zh) * 2015-06-08 2020-04-03 富士胶片株式会社 摄像透镜以及摄像装置
JPWO2017043352A1 (ja) * 2015-09-07 2018-06-21 Hoya株式会社 内視鏡用変倍光学系、及び内視鏡
WO2017043352A1 (ja) * 2015-09-07 2017-03-16 Hoya株式会社 内視鏡用変倍光学系、及び内視鏡
US10036883B2 (en) 2015-09-07 2018-07-31 Hoya Corporation Endoscope magnification optical system and endoscope
JP2017102182A (ja) * 2015-11-30 2017-06-08 富士フイルム株式会社 撮像レンズおよび撮像装置
JP2017102183A (ja) * 2015-11-30 2017-06-08 富士フイルム株式会社 撮像レンズおよび撮像装置
CN106896483A (zh) * 2015-11-30 2017-06-27 富士胶片株式会社 摄像透镜以及摄像装置
CN106896483B (zh) * 2015-11-30 2020-10-02 天津欧菲光电有限公司 摄像透镜以及摄像装置
US20170184815A1 (en) * 2015-12-24 2017-06-29 Ningbo Sunny Automotive Optech Co., Ltd. Optical Imaging Lens and Lens Assembly
US11815664B2 (en) 2015-12-24 2023-11-14 Ningbo Sunny Automotive Optech Co., Ltd. Optical imaging lens and lens assembly
CN106918890A (zh) * 2015-12-24 2017-07-04 宁波舜宇车载光学技术有限公司 光学成像镜头及其透镜组
JP2017125887A (ja) * 2016-01-12 2017-07-20 富士フイルム株式会社 撮像レンズおよび撮像装置
CN106959505A (zh) * 2016-01-12 2017-07-18 富士胶片株式会社 成像透镜及摄像装置
CN106959505B (zh) * 2016-01-12 2020-11-20 天津欧菲光电有限公司 成像透镜及摄像装置
US10866387B2 (en) 2016-06-03 2020-12-15 Ricoh Company, Ltd. Imaging optical system and imaging apparatus
JP2017219592A (ja) * 2016-06-03 2017-12-14 株式会社リコー 撮像光学系および撮像装置
JP6279195B1 (ja) * 2016-07-04 2018-02-14 オリンパス株式会社 内視鏡光学系
WO2018008460A1 (ja) * 2016-07-04 2018-01-11 オリンパス株式会社 内視鏡光学系
US10845586B2 (en) 2016-07-04 2020-11-24 Olympus Corporation Endoscope optical system
US11487101B2 (en) 2017-09-12 2022-11-01 Hoya Corporation Endoscope objective lens unit and endoscope
JPWO2019107153A1 (ja) * 2017-11-28 2020-11-19 京セラ株式会社 撮像レンズおよび撮像装置および車載カメラシステム
JPWO2019167310A1 (ja) * 2018-02-27 2020-12-03 オリンパス株式会社 対物光学系、及び内視鏡
US11460676B2 (en) 2018-02-27 2022-10-04 Olympus Corporation Objective optical system and endoscope
WO2019167310A1 (ja) * 2018-02-27 2019-09-06 オリンパス株式会社 内視鏡用対物光学系
WO2020208748A1 (ja) * 2019-04-10 2020-10-15 オリンパス株式会社 内視鏡対物光学系
JP2022016256A (ja) * 2020-07-09 2022-01-21 エーエーシー オプティクス (チャンジョウ)カンパニーリミテッド 撮像光学レンズ
JP7093398B2 (ja) 2020-07-09 2022-06-29 エーエーシー オプティクス (チャンジョウ)カンパニーリミテッド 撮像光学レンズ
US12032153B2 (en) 2021-10-07 2024-07-09 Olympus Corporation Endoscope objective optical system and endoscope

Also Published As

Publication number Publication date
US10670854B2 (en) 2020-06-02
US10101575B2 (en) 2018-10-16
CN105378535B (zh) 2017-12-05
JPWO2015025843A1 (ja) 2017-03-02
EP3037858A4 (en) 2017-03-15
EP3037858A1 (en) 2016-06-29
US20180373018A1 (en) 2018-12-27
US20160154230A1 (en) 2016-06-02
CN105378535A (zh) 2016-03-02
JP5855793B2 (ja) 2016-02-09

Similar Documents

Publication Publication Date Title
JP5855793B2 (ja) 内視鏡用対物光学系
JP4934233B2 (ja) 対物光学系
JP4685510B2 (ja) 内視鏡用対物レンズ
JP4653823B2 (ja) 対物光学系
JP5767423B1 (ja) 拡大内視鏡光学系
JP5580953B1 (ja) 内視鏡対物レンズ
WO2014132494A1 (ja) 対物光学系
JP5374667B1 (ja) 内視鏡対物光学系
JP2008107391A (ja) 内視鏡対物光学系
JP2009223183A (ja) 内視鏡用対物レンズ
US20210096324A1 (en) Objective optical system, image pickup apparatus, endoscope and endoscope system
WO2014155821A1 (ja) 内視鏡用光学系
JP6279195B1 (ja) 内視鏡光学系
JP2009251432A (ja) 内視鏡用対物光学系
JP6836466B2 (ja) 内視鏡対物光学系
JP2010122536A (ja) ズームレンズ
JP2014126652A (ja) 結像光学系
JPWO2009044836A1 (ja) ズーム接眼レンズ系
JP5580956B1 (ja) 内視鏡用光学系
JP4648670B2 (ja) 内視鏡対物光学系および内視鏡
JP7079892B2 (ja) 内視鏡用対物光学系及び内視鏡
JP2019032407A (ja) 内視鏡用対物光学系
JP7079895B2 (ja) 内視鏡対物光学系及び内視鏡
JPWO2019163744A1 (ja) 内視鏡用変倍光学系及び内視鏡
JP2017215407A (ja) 光学系および光学機器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015512940

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014838726

Country of ref document: EP