WO2015024280A1 - 一种镀膜机坩埚 - Google Patents

一种镀膜机坩埚 Download PDF

Info

Publication number
WO2015024280A1
WO2015024280A1 PCT/CN2013/082853 CN2013082853W WO2015024280A1 WO 2015024280 A1 WO2015024280 A1 WO 2015024280A1 CN 2013082853 W CN2013082853 W CN 2013082853W WO 2015024280 A1 WO2015024280 A1 WO 2015024280A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
metal
radial
coating machine
axial
Prior art date
Application number
PCT/CN2013/082853
Other languages
English (en)
French (fr)
Inventor
邹清华
吴泰必
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/117,031 priority Critical patent/US9328961B2/en
Publication of WO2015024280A1 publication Critical patent/WO2015024280A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/10Crucibles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/10Crucibles
    • F27B2014/104Crucible linings

Definitions

  • the present invention relates to the field of image display, and in particular to a coating machine.
  • the organic electroluminescent device is a self-luminous device, which has the advantages of low voltage, wide viewing angle, fast response speed and good temperature adaptability, and is a new generation display technology.
  • the organic electroluminescent device is classified into a small molecule organic electroluminescent device (OLED) and a polymer electroluminescent device (PLED), and organic electroluminescence due to the difference in molecular weight.
  • OLED organic electroluminescent device
  • PLED polymer electroluminescent device
  • organic electroluminescence due to the difference in molecular weight The process of the device is also very different.
  • the OLED is mainly prepared by thermal evaporation, and the PLED is prepared by spin coating or inkjet printing.
  • the thermal evaporation method mainly heats the organic material in a vacuum environment (E-5 Pa), vaporizes the sublimation type or the molten type organic material at a high temperature, and deposits on the substrate having the thin film field effect transistor TFT structure or the anode structure. on.
  • the mainstream evaporation sources are mainly a type of vapor deposition source and a linear evaporation source.
  • the space of the point-type evaporation source is small, and a plurality of point-type evaporation sources can be installed in a coating chamber, which can be filled with a variety of materials, mainly used in experimental lines and early production lines. Since the material utilization rate and film thickness uniformity of the linear vapor deposition source are superior to those of the point type vapor deposition source, most of the recently constructed mass production lines use a linear evaporation source.
  • the evaporation temperature of the organic material is very different from the cracking temperature.
  • the interior of the point-type evaporation source tends to have a large temperature difference (upper heat and cold). If the material is filled in a large amount, the material cannot reach a state of stable heat balance. The rate cannot be stabilized; the temperature is raised to make the material thermally stable, and often the material above is at risk of cracking. If the material is filled in less, at high evaporation rates, the temperature at the top of the crucible tends to exceed the cracking temperature of the material, and the vaporized material tends to crack as it passes through this region.
  • the heat-conducting ball is mainly used, and when the organic material is filled in the crucible, it is mixed. Into the heat transfer ball, through the heat transfer of the heat transfer ball, the temperature of the material is uniform. However, this method only has a good effect on the sublimation type material. The molten type material is melted at a high temperature, and the heat conduction small ball is gradually deposited on the bottom of the crucible due to the difference in density from the organic material. Heat transfer. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a coating machine which reduces the internal temperature difference, improves the heat transfer efficiency, and makes the material more uniform in heat.
  • the present invention provides a coating machine, wherein a heat conducting device is disposed in the crucible, and the heat conducting device includes one or more radial wires or metal strips disposed radially along the crucible, and one or A plurality of axial wires or metal strips disposed along the axial direction of the crucible.
  • the radial wire or strip is perpendicular or substantially perpendicular to the major axis of the crucible, and the axial wire or strip is parallel or substantially parallel to the major axis of the crucible.
  • a plurality of radial wires or strips form a planar honeycomb structure composed of at least two polygons in a radial plane of the crucible.
  • the planar honeycomb structure is provided with at least two layers along the axial direction of the crucible, and a plurality of axial wires or metal strips are respectively connected between the intersections corresponding to the sides of the polygons in the adjacent two layers of the planar honeycomb structure to form a three-dimensional honeycomb shape. structure.
  • the radial wire or the metal strip is formed into a planar honeycomb structure by weaving or welding, and the axial wire or the metal strip is connected by knitting or welding between the intersections corresponding to the sides of the polygons in the adjacent two planar honeycomb structures, A three-dimensional honeycomb structure is formed.
  • the volume of the internal pores of the heat conducting device accounts for a percentage of the total volume of the heat conducting device P: 10% ⁇ P ⁇ 99%.
  • At least one of the radial wire or strip and the axial wire or strip is in contact with the inner wall of the crucible.
  • the polygon is a polygon of a pentagon, a hexagon, an octagon or an irregular side.
  • the radial metal wire or the metal strip and the axial metal wire or the metal strip are made of metal aluminum, aluminum alloy, titanium alloy or copper alloy.
  • the invention also provides a coating machine, wherein the heat transfer device comprises one or more radial wires or metal strips disposed along the radial direction of the crucible, and one or more An axial wire or metal strip disposed along the axial direction of the crucible, the plurality of radial wires or strips forming a planar honeycomb structure composed of at least two polygons in a radial plane of the crucible, the planar honeycomb structure being along the crucible At least two layers are arranged in the axial direction, and a plurality of axial wires or metal strips are respectively connected between intersections corresponding to the sides of the polygons in the adjacent two layers of the planar honeycomb structure to form a three-dimensional honeycomb structure.
  • the invention also provides a coating machine, wherein the heat transfer device comprises one or more radial wires or metal strips arranged along the radial direction of the crucible, and one or more radial axes along the crucible At least one of the axial wire or metal strip, the radial wire or the metal strip and the axial wire or metal strip is placed in contact with the inner wall of the crucible.
  • the coating machine provided by the invention newly adds a heat conducting device formed of a metal wire or a metal strip, can better heat transfer, and the organic material placed in the crucible is heated uniformly to reach a heat stable state. Moreover, the crucible can be filled with more materials, the evaporation rate is increased, the number of open cavities is reduced, and the production efficiency is improved.
  • FIG. 1 is a perspective view showing the structure of a coating machine of an embodiment of the present invention.
  • FIG. 2 is a top plan view of a coating machine ⁇ according to an embodiment of the present invention.
  • FIG. 3 is a schematic perspective view showing the heat transfer device of the coating machine of the embodiment of the present invention.
  • FIG. 4 is a schematic perspective view showing another heat conduction device of the coating machine of the embodiment of the present invention.
  • Fig. 5 is a schematic view showing a heat transfer device of a three-dimensional honeycomb structure in a coating machine according to an embodiment of the present invention.
  • an embodiment of the present invention provides a crucible 1 having a heat conducting device 2 in the crucible 1 and the heat conducting device 2 including one or more edges.
  • the radial wire or metal strip 21 and The main shaft 10 of the crucible 1 is vertical or substantially vertical
  • the axial wire or metal strip 22 is parallel or substantially parallel to the main axis 10 of the crucible 1.
  • the length of the wire or strip, the angle to the ⁇ spindle 10 is determined by the actual size of the ⁇ 1 and the actual temperature difference to ensure optimum heat transfer. Since the heat conductivity of the wire or the metal strip is significantly better than that of the organic material, the heat transfer device 2 is added to the crucible 1 to make the organic material in different regions of the crucible 1 uniform in heat temperature, and to improve the thermal equilibrium state of the organic material, and More materials can be filled in, the evaporation rate can be increased, the number of open cavities can be reduced, and the production efficiency can be improved. At least one of the radial wire or metal strip 21, the axial wire or the metal strip 22 is in contact with the inner wall 11 of the crucible 1 to take heat directly from the inner wall 11 of the crucible 1, further improving heat transfer efficiency.
  • a plurality of radial wires or metal strips 21 radially disposed along the crucible 1 form a planar honeycomb structure 4 composed of at least two polygons 3 in a radial plane of the crucible.
  • the planar honeycomb structure 4 is layered along the axial direction of the crucible.
  • the planar honeycomb structure 4 is disposed in two layers along the axial direction, which are an upper layer 41 and a lower layer 42, respectively, and a plurality of axial wires or metal strips 22 disposed along the axial direction of the crucible are respectively connected to the adjacent two.
  • the intersection of the sides of the polygon 3 in the layer-planar honeycomb structure 4 forms a three-dimensional honeycomb structure.
  • the heat conducting device of the three-dimensional honeycomb structure has more heat transfer in the crucible 1 whether it is radial or axial due to its structural rule. Uniform, more conducive to internal temperature difference reduction, but also easy to remove or put.
  • the outermost wire or the metal strip can be in good contact with the inner wall 11 of the crucible 1 to directly obtain heat from the inner wall 11 of the crucible 1, thereby further improving the heat transfer efficiency.
  • the radial wire or metal strip 21 is formed into a planar honeycomb structure 4 by weaving or welding.
  • the axial wires or strips 22 are also joined by weaving or welding between the intersections of the polygons 3 in the adjacent two planar honeycomb structures 4.
  • a polygon can be a polygon of a pentagon, a hexagon, an octagon, or an irregular side.
  • the thickness of the wire or strip and the material, the size of the heat transfer, the size and density of the honeycomb structure are determined based on the actual crucible size and the actual temperature difference to ensure optimum heat transfer.
  • the wire or metal strip in the heat conducting device 2 is made of aluminum or aluminum alloy with good thermal conductivity, and the heat conducting device 2 having a honeycomb structure (referred to as a honeycomb heat conducting device). 2)
  • This embodiment defines the porosity P (the percentage of the total volume of the thermal device 2 in the honeycomb heat transfer device 2):
  • V Indicates the total volume of the honeycomb heat transfer device 2; V indicates the absolute compact volume of the honeycomb heat transfer device (i.e., the sum of the volumes of the materials). In the present embodiment, 10% ⁇ ⁇ ⁇ 99%, preferably 80% ⁇ P ⁇ 95%.
  • the honeycomb heat conduction device 2 also has various structures.
  • the thermal conductivity in the axial direction is relatively high, so that a plurality of layers can be provided.
  • the three-dimensional honeycomb heat conduction device 2 as shown in FIG. 4, has three planar honeycomb structures 41 to 43 composed of radial wires or metal strips 21, and passes between the intersections of the hexagons constituting the planar honeycomb structure.
  • the axial wire or the metal strip 22 is connected to form a three-dimensional honeycomb structure, so that the upper, middle and lower three-layer planar honeycomb structures 41 to 43 are included in the axial direction of the crucible 1, which can better transmit the organic material therebetween.
  • a planar honeycomb structure composed of a plurality of polygons may be provided, and as shown in FIG. 5, it is formed of seven hexagonal sides on a radial plane of the crucible 1.
  • the planar honeycomb structure of the shape will contribute to radial heat conduction.
  • the invention solves the problem that the heat conductive ball is deposited in the molten material, and the heat conduction device formed by the metal wire or the metal strip is added, the heat transfer can be better, the heating temperature of the organic material is uniform, and a heat stable state is achieved. . Moreover, the crucible can be filled with more materials, the evaporation rate is increased, the number of caulking fillers is reduced, and the production efficiency is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供一种镀膜机坩埚,在坩埚内具有导热装置,导热装置包括一根或多根沿坩埚径向设置的径向金属丝或金属条,以及一根或多根沿坩埚轴向设置的轴向金属丝或金属条。本发明所提供的镀膜机坩埚,新增由金属丝或金属条形成的导热装置,可以更好的传热,使放入坩埚内的有机材料受热温度均匀,达到一个热稳定的状态。并且这种坩埚可以填入较多的材料,提高蒸镀速率,减少开腔填料次数,提高生产效率。

Description

一种镀膜机坩埚
本申请要求于 2013 年 8 月 23 日提交中国专利局、 申请号为 201310372062.0、发明名称为 "一种镀膜机坩埚" 的中国专利申请的优先权, 上述专利的全部内容通过引用结合在本申请中。 技术领域
本发明涉及图像显示领域, 尤其涉及一种镀膜机坩埚。
背景技术
有机电致发光器件是一种自发光器件, 具有电压低, 视角宽、 响应速度 快、 温度适应性好等优势, 是新一代的显示技术。
从使用的有机电致发光材料的分子量来看,有机电致发光器件分为小分 子有机电致发光器件(OLED )和高分子电致发光器件(PLED ), 由于分子 量的不同, 有机电致发光器件的制程也有很大的区别, OLED主要通过热蒸 镀方式制备, PLED通过旋涂或者喷墨打印方式制备。
热蒸镀方式主要是在真空环境下 (E-5 Pa )加热有机材料, 使升华型或 者熔融型的有机材料在高温状态下气化, 沉积在有薄膜场效应晶体管 TFT 结构或者阳极结构的基板上。 目前主流的蒸镀源主要有点型蒸镀源和线型蒸 镀源。 点型蒸镀源的空间小, 一个镀膜腔体里可以安装很多个点型蒸镀源, 可以填入很多种材料, 主要用在实验线和早期的量产线。 由于线型蒸镀源的 材料利用率和膜厚均一性要优于点型蒸镀源,近期建设的量产线大部分使用 线性蒸镀源。
有机材料的蒸发温度与其裂解温度相差很小, 点型蒸镀源的坩埚内部往 往温差较大(上热下冷), 若材料填入量较多, 材料无法达到一个热平衡稳 定的状态, 蒸镀速率无法稳定; 提高温度, 使材料热稳定, 往往上面的材料 又有裂解的风险。 若材料填入量较少, 在高蒸镀速率下, 坩埚上部的温度往 往超过材料的裂解温度, 气化的材料在经过此段区域时容易裂解。
为解决此问题, 目前主要使用导热小球, 在往坩埚中填入有机材料时混 入导热小球, 通过导热小球的传热, 使材料的温度均匀。 但是此种方法只对 升华型的材料有 ^艮好的效果, 熔融型的材料由于在高温下熔融, 导热小球由 于与有机材料的密度不同, 会渐渐的沉积于坩埚底部, 无法 4艮好的传热。 发明内容
本发明所要解决的技术问题在于, 提供一种缩小内部温差, 提高传热效 率, 使材料受热更均匀的镀膜机坩埚。
为了解决上述技术问题, 本发明提供一种镀膜机坩埚, 其中, 在坩埚内 具有导热装置,导热装置包括一根或多根沿坩埚径向设置的径向金属丝或金 属条, 以及一根或多根沿坩埚轴向设置的轴向金属丝或金属条。
其中, 径向金属丝或金属条与坩埚的主轴垂直或大致垂直, 轴向金属丝 或金属条与坩埚的主轴平行或大致平行。
其中, 多根径向金属丝或金属条在坩埚的径向平面内形成由至少两个多 边形组成的平面蜂窝状结构。
其中, 平面蜂窝状结构沿坩埚的轴向至少设置两层, 多根轴向金属丝或 金属条分别连接在相邻两层平面蜂窝状结构中多边形各边对应的交点之间, 形成立体蜂窝状结构。
其中, 径向金属丝或者金属条通过编织或者焊接形成平面蜂窝状结构, 轴向金属丝或者金属条通过编织或者焊接连接在相邻两层平面蜂窝状结构 中多边形各边对应的交点之间, 形成立体蜂窝状结构。
其中, 导热装置内部孔隙的体积占导热装置总体积的百分率 P 满足: 10%<P<99%。
其中, 80%<P<95%。
其中,径向金属丝或金属条和轴向金属丝或金属条中的至少一根与坩埚 的内壁相接触。
其中, 多边形是五边形、 六边形、 八边形或者不规则边长的多边形。 其中, 径向金属丝或金属条和轴向金属丝或金属条的材质为金属铝、 铝 合金、 钛合金或铜合金。
本发明还提供一种镀膜机坩埚, 其中, 在坩埚内具有导热装置, 导热装 置包括一根或多根沿坩埚径向设置的径向金属丝或金属条, 以及一根或多根 沿坩埚轴向设置的轴向金属丝或金属条, 多根径向金属丝或金属条在坩埚的 径向平面内形成由至少两个多边形组成的平面蜂窝状结构,平面蜂窝状结构 沿坩埚的轴向至少设置两层, 多根轴向金属丝或金属条分别连接在相邻两层 平面蜂窝状结构中多边形各边对应的交点之间, 形成立体蜂窝状结构。
本发明还提供一种镀膜机坩埚, 其中, 在坩埚内具有导热装置, 导热装 置包括一根或多根沿坩埚径向设置的径向金属丝或金属条, 以及一根或多根 沿坩埚轴向设置的轴向金属丝或金属条,径向金属丝或金属条和轴向金属丝 或金属条中的至少一根与坩埚的内壁相接触。
本发明所提供的镀膜机坩埚, 新增由金属丝或金属条形成的导热装置, 可以更好的传热, 使放入坩埚内的有机材料受热温度均匀, 达到一个热稳定 的状态。 并且这种坩埚可以填入较多的材料, 提高蒸镀速率, 减少开腔填料 次数, 提高生产效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例镀膜机坩埚的立体结构示意图。
图 2是本发明实施例镀膜机坩埚的俯视示意图。
图 3是本发明实施例镀膜机坩埚的导热装置立体结构示意图。
图 4是本发明实施例镀膜机坩埚的导热装置又一立体结构示意图。 图 5 是本发明实施例镀膜机坩埚装有立体蜂窝状结构导热装置的示意 图。
具体实施方式
下面参考附图对本发明的优选实施例进行描述。
为解决导热小球在熔融型材料里沉积的问题, 请参照图 1所示, 本发明 实施例提供一种坩埚 1 , 在坩埚 1 内具有导热装置 2, 导热装置 2包括一根 或多根沿坩埚 1径向设置的径向金属丝或金属条 21 ,以及一根或多根沿坩埚 1轴向设置的轴向金属丝或金属条 22。 具体地, 径向金属丝或金属条 21与 坩埚 1的主轴 10垂直或大致垂直, 轴向金属丝或金属条 22与坩埚 1的主轴 10平行或大致平行。 金属丝或者金属条的长度、 与坩埚主轴 10的角度根据 坩埚 1实际大小和实际温差确定, 以确保最优化传热。 由于金属丝或者金属 条的导热能力明显优于有机材料, 在坩埚 1中加入此种导热装置 2, 可以使 坩埚 1内不同区域的有机材料受热温度均一,提升有机材料的热平衡热稳定 状态, 并且可以填入较多的材料, 提高蒸镀速率, 减少开腔填料次数, 提高 生产效率。 径向金属丝或金属条 21、 轴向金属丝或金属条 22中至少一根与 坩埚 1的内壁 11相接触, 以直接从坩埚 1的内壁 11获取热量, 进一步提高 传热效率。
如图 2所示, 作为进一步的改进, 多根沿坩埚 1径向设置的径向金属丝 或金属条 21在坩埚径向平面内形成由至少两个多边形 3组成的平面蜂窝状 结构 4, 该平面蜂窝状结构 4沿坩埚轴向分层设置。 如图 3所示, 平面蜂窝 状结构 4沿坩埚轴向设置为两层, 分别是上层 41和下层 42, 多根沿坩埚轴 向设置的轴向金属丝或金属条 22分别连接在相邻两层平面蜂窝状结构 4中 多边形 3各边对应的交点(例如 al和 a2 )之间, 从而形成立体蜂窝状结构。 相较于图 1所示的由零散的多根金属丝或者金属条构成的导热装置, 立体蜂 窝状结构的导热装置由于其结构规则,在坩埚 1内不论是径向还是轴向的传 热更加均匀, 更有利于内部温差减小, 同时还便于取出或放入。 另外, 最外 围金属丝或者金属条与坩埚 1的内壁 11能良好的接触, 以直接从坩埚 1的 内壁 11获取热量, 进一步提高传热效率。
具体地, 径向金属丝或者金属条 21通过编织或者焊接形成平面蜂窝状 结构 4。轴向金属丝或者金属条 22也通过编织或者焊接连接在相邻两层平面 蜂窝状结构 4中多边形 3对应的交点之间。 多边形可以是五边形、 六边形、 八边形或者不规则边长的多边形。 金属丝或金属条的粗细以及材质、 导热装 置的大小、 蜂窝状结构的大小和疏密根据实际坩埚大小和实际温差确定, 以 确保最优化传热。 通常材质有金属铝、 铝合金、 钛合金、 铜合金等。
坩埚 1越大, 轴向和径向的温差越大, 导热装置 2中的金属丝或金属条 采用导热系数较好的铝或者铝合金, 具有蜂窝状结构的导热装置 2 (简称蜂 窝状导热装置 2 ) 的网格越密, 导热越好, 但如果过密, 所占用的体积也越 多, 能填充的有机材料便越少。 本实施例采用孔隙率 P (指蜂窝状导热装置 2内 热装置 2总体积的百分率)来定义:
Figure imgf000007_0001
其中, V。表示蜂窝状导热装置 2的总体积; V表示蜂窝状导热装置的绝 对密实体积 (即材质的体积之和)。 本实施例中, 10%<Ρ<99% , 优选 80%<P<95%。
根据坩埚 1的实际大小, 蜂窝状导热装置 2也相应有多种结构, 例如, 对于细长型结构的坩埚 1 , 其在轴向上对导热均勾性相对较高, 因此可以设 置多层的立体蜂窝状导热装置 2, 如图 4所示, 具有 3层由径向金属丝或金 属条 21组成的平面蜂窝状结构 41〜43 ,组成平面蜂窝状结构的各个六边形的 交点之间通过轴向金属丝或金属条 22连接, 形成立体蜂窝状结构, 因此在 坩埚 1的轴向上包括上、 中、 下三层平面蜂窝状结构 41〜43 , 可以对其间的 有机材料更好的传热, 满足了轴向上的导热均勾性。 又如, 对于在径向上导 热均匀性较高的坩埚 1 , 可以设置由较多多边形组成的平面蜂窝状结构, 如 图 5所示, 其在坩埚 1的径向平面上形成由 7个六边形组成的平面蜂窝状结 构, 将有利于径向的导热。 当然, 根据具体场合的需求, 还可以综合上述情 况, 自行组合成最优化的导热装置,设置例如多层多蜂窝数量的导热装置 2。
本发明解决了导热小球在熔融型材料里沉积的问题,新增由金属丝或金 属条形成的导热装置, 可以更好的传热, 使有机材料的受热温度均匀, 达到 一个热稳定的状态。 并且这种坩埚可以填入较多的材料, 提高蒸镀速率, 减 少开腔填料次数, 提高生产效率。
以上所揭露的仅为本发明较佳实施例而已, 当然不能以此来限定本发明 之权利范围, 因此依本发明权利要求所作的等同变化, 仍属本发明所涵盖的 范围。

Claims

权 利 要 求
1、 一种镀膜机坩埚, 其中, 在所述坩埚内具有导热装置, 所述导热装 置包括一根或多根沿所述坩埚径向设置的径向金属丝或金属条, 以及一根或 多根沿所述坩埚轴向设置的轴向金属丝或金属条。
2、 根据权利要求 1 所述的镀膜机坩埚, 其中, 所述径向金属丝或金属 条与所述坩埚的主轴垂直或大致垂直, 所述轴向金属丝或金属条与所述坩埚 的主轴平行或大致平行。
3、 根据权利要求 2所述的镀膜机坩埚, 其中, 所述多根径向金属丝或 金属条在所述坩埚的径向平面内形成由至少两个多边形组成的平面蜂窝状 结构。
4、 根据权利要求 3所述的镀膜机坩埚, 其中, 所述平面蜂窝状结构沿 所述坩埚的轴向至少设置两层, 多根所述轴向金属丝或金属条分别连接在相 邻两层平面蜂窝状结构中多边形各边对应的交点之间, 形成立体蜂窝状结 构。
5、 根据权利要求 4所述的镀膜机坩埚, 其中, 所述径向金属丝或者金 属条通过编织或者焊接形成平面蜂窝状结构, 所述轴向金属丝或者金属条通 过编织或者焊接连接在所述相邻两层平面蜂窝状结构中多边形各边对应的 交点之间, 形成立体蜂窝状结构。
6、 根据权利要求 4所述的镀膜机坩埚, 其中, 所述导热装置内部孔隙 的体积占所述导热装置总体积的百分率 P满足: 10%<P<99%。
7、 根据权利要求 6所述的镀膜机坩埚, 其中, 80%<P<95%。
8、 根据权利要求 1 所述的镀膜机坩埚, 其中, 所述径向金属丝或金属 条和轴向金属丝或金属条中的至少一根与所述坩埚的内壁相接触。
9、 根据权利要求 8所述的镀膜机坩埚, 其中, 所述多边形是五边形、 六边形、 八边形或者不规则边长的多边形。
10、 根据权利要求 8所述的镀膜机坩埚, 其中, 所述径向金属丝或金属 条和轴向金属丝或金属条的材质为金属铝、 铝合金、 钛合金或铜合金。
11、 一种镀膜机坩埚, 其中, 在所述坩埚内具有导热装置, 所述导热装 置包括一根或多根沿所述坩埚径向设置的径向金属丝或金属条, 以及一根或 多根沿所述坩埚轴向设置的轴向金属丝或金属条, 所述多根径向金属丝或金 属条在所述坩埚的径向平面内形成由至少两个多边形组成的平面蜂窝状结 构, 所述平面蜂窝状结构沿所述坩埚的轴向至少设置两层, 多根所述轴向金 属丝或金属条分别连接在相邻两层平面蜂窝状结构中多边形各边对应的交 点之间, 形成立体蜂窝状结构。
12、 一种镀膜机坩埚, 其中, 在所述坩埚内具有导热装置, 所述导热装 置包括一根或多根沿所述坩埚径向设置的径向金属丝或金属条, 以及一根或 多根沿所述坩埚轴向设置的轴向金属丝或金属条, 所述径向金属丝或金属条 和轴向金属丝或金属条中的至少一根与所述坩埚的内壁相接触。
PCT/CN2013/082853 2013-08-23 2013-09-03 一种镀膜机坩埚 WO2015024280A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/117,031 US9328961B2 (en) 2013-08-23 2013-09-03 Crucible of coating machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310372062.0 2013-08-23
CN201310372062.0A CN103409720B (zh) 2013-08-23 2013-08-23 一种镀膜机坩埚

Publications (1)

Publication Number Publication Date
WO2015024280A1 true WO2015024280A1 (zh) 2015-02-26

Family

ID=49602758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082853 WO2015024280A1 (zh) 2013-08-23 2013-09-03 一种镀膜机坩埚

Country Status (3)

Country Link
US (1) US9328961B2 (zh)
CN (1) CN103409720B (zh)
WO (1) WO2015024280A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103938160A (zh) * 2014-03-06 2014-07-23 京东方科技集团股份有限公司 一种坩埚
CN104233196B (zh) * 2014-09-01 2017-04-19 京东方科技集团股份有限公司 蒸镀坩埚和蒸镀装置
KR20170090452A (ko) * 2014-11-26 2017-08-07 어플라이드 머티어리얼스, 인코포레이티드 증발 목적들을 위한 도가니 조립체
CN104928628B (zh) * 2015-05-15 2018-03-09 京东方科技集团股份有限公司 一种蒸镀坩埚
CN105603364B (zh) * 2016-03-16 2018-11-23 深圳市华星光电技术有限公司 导热装置与蒸镀坩埚
CN108342693A (zh) * 2017-01-23 2018-07-31 南京高光半导体材料有限公司 防止蒸发源坩埚内材料劣化的方法
TWI664306B (zh) 2017-10-30 2019-07-01 財團法人工業技術研究院 蒸鍍裝置及其校正方法
CN109680246B (zh) * 2019-02-25 2020-12-08 深圳市华星光电技术有限公司 蒸镀组件
CN114524424A (zh) * 2021-12-17 2022-05-24 青海泰丰先行锂能科技有限公司 一种高压实高容量磷酸铁锂正极材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123973A (en) * 1981-01-22 1982-08-02 Fuji Electric Co Ltd Container for vacuum-depositing material
JPS60149765A (ja) * 1984-01-11 1985-08-07 Nec Corp 蒸着用ボ−ト
CN1421542A (zh) * 2001-11-29 2003-06-04 电子科技大学 有机材料蒸发源
KR20070064736A (ko) * 2005-12-19 2007-06-22 엘지.필립스 엘시디 주식회사 유기박막증착장비
KR20120131947A (ko) * 2011-05-27 2012-12-05 엘지디스플레이 주식회사 증발원 및 이를 이용한 증착장치

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1394954A (en) * 1919-12-04 1921-10-25 Gen Electric Metal-melting pot
US1535307A (en) * 1922-10-17 1925-04-28 Roscoe C Hawk Electric melting pot
US1523647A (en) * 1923-06-07 1925-01-20 Warren S Smith Galvanizing furnace
US1623209A (en) * 1925-12-16 1927-04-05 Schuster Frank Electric melting pot
US2190135A (en) * 1936-07-17 1940-02-13 Power Patents Co Solder melting pot
US2357845A (en) * 1941-09-17 1944-09-12 American Can Co Coating machine
US2463329A (en) * 1947-06-12 1949-03-01 Thermo Electric Company Therapeutic bath
US3392970A (en) * 1966-09-21 1968-07-16 Richard A. Falk Induction furnace crucible
CH610396A5 (zh) * 1975-03-06 1979-04-12 Prolizenz Ag
US4590043A (en) * 1982-12-27 1986-05-20 Sri International Apparatus for obtaining silicon from fluosilicic acid
KR100804521B1 (ko) * 2001-10-26 2008-02-20 삼성에스디아이 주식회사 진공 증착장치의 가열용기
JP2004095330A (ja) * 2002-08-30 2004-03-25 Tohoku Pioneer Corp 電子部品を覆う保護膜の形成方法および保護膜を備えた電子機器
KR100889758B1 (ko) * 2002-09-03 2009-03-20 삼성모바일디스플레이주식회사 유기박막 형성장치의 가열용기
JP4439894B2 (ja) * 2003-12-01 2010-03-24 株式会社半導体エネルギー研究所 蒸着用るつぼ及び蒸着装置
US7796674B2 (en) * 2004-01-16 2010-09-14 Consarc Corporation Cold crucible induction furnace
KR200365703Y1 (ko) * 2004-08-09 2004-10-25 오리온전기 주식회사 유기 박막 증착 장치
WO2007108417A1 (ja) * 2006-03-23 2007-09-27 Murata Manufacturing Co., Ltd. 熱処理炉
KR101484341B1 (ko) * 2007-03-05 2015-01-19 산드빅 인터렉츄얼 프로퍼티 에이비 히터 요소 및 전기로용 인서트
US8461761B2 (en) * 2007-11-16 2013-06-11 Ceravision Limited Lucent plasma crucible
JP2009203091A (ja) * 2008-02-26 2009-09-10 Ibiden Co Ltd ルツボ保持部材
JP5286591B2 (ja) * 2008-05-21 2013-09-11 イビデン株式会社 ルツボ保持部材及びその製造方法
JP2011052301A (ja) * 2009-09-04 2011-03-17 Hitachi Zosen Corp 真空蒸着用蒸着材料の蒸発、昇華方法および真空蒸着用るつぼ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123973A (en) * 1981-01-22 1982-08-02 Fuji Electric Co Ltd Container for vacuum-depositing material
JPS60149765A (ja) * 1984-01-11 1985-08-07 Nec Corp 蒸着用ボ−ト
CN1421542A (zh) * 2001-11-29 2003-06-04 电子科技大学 有机材料蒸发源
KR20070064736A (ko) * 2005-12-19 2007-06-22 엘지.필립스 엘시디 주식회사 유기박막증착장비
KR20120131947A (ko) * 2011-05-27 2012-12-05 엘지디스플레이 주식회사 증발원 및 이를 이용한 증착장치

Also Published As

Publication number Publication date
CN103409720A (zh) 2013-11-27
CN103409720B (zh) 2016-02-03
US9328961B2 (en) 2016-05-03
US20150111165A1 (en) 2015-04-23

Similar Documents

Publication Publication Date Title
WO2015024280A1 (zh) 一种镀膜机坩埚
WO2015051604A1 (zh) 蒸镀装置
WO2017161624A1 (zh) 蒸镀坩埚
CN104928628A (zh) 一种蒸镀坩埚
WO2015013987A1 (zh) 具有导热装置的坩埚
CN104233196B (zh) 蒸镀坩埚和蒸镀装置
CN205839115U (zh) 一种坩埚和蒸发装置
KR20070080635A (ko) 유기물증발 보트
TWI596224B (zh) 真空蒸鍍裝置
CN103938160A (zh) 一种坩埚
WO2020113676A1 (zh) 蒸镀坩埚
US20160230272A1 (en) Evaporation source heating device
JP2009030169A (ja) 整形されたるつぼ及びこのるつぼを有する蒸発装置
WO2017156827A1 (zh) 导热装置与蒸镀坩埚
JP2011165403A5 (zh)
CN105047815A (zh) 一种含石墨烯层的相变存储器及其制备方法
TWI494531B (zh) 扁平熱導管及其製造方法
WO2023050664A1 (zh) 一种相变存储器单元
CN110846635A (zh) 一种控温接触板和蒸镀设备
JP2007084911A5 (ja) 蒸着物の作製方法、表示装置の作製方法
JP2007197789A (ja) 蒸着用るつぼ及びその製造方法
JP6282852B2 (ja) 蒸着装置、成膜方法及び有機el装置の製造方法
JP6271241B2 (ja) 蒸着装置、及び有機el装置の製造方法
TWI597375B (zh) 沉積源及具有其之沉積設備
TWI551736B (zh) 二維晶體的長晶方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14117031

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891945

Country of ref document: EP

Kind code of ref document: A1