WO2015051604A1 - 蒸镀装置 - Google Patents

蒸镀装置 Download PDF

Info

Publication number
WO2015051604A1
WO2015051604A1 PCT/CN2014/071068 CN2014071068W WO2015051604A1 WO 2015051604 A1 WO2015051604 A1 WO 2015051604A1 CN 2014071068 W CN2014071068 W CN 2014071068W WO 2015051604 A1 WO2015051604 A1 WO 2015051604A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal conductor
evaporation device
vapor deposition
accounts
conductor
Prior art date
Application number
PCT/CN2014/071068
Other languages
English (en)
French (fr)
Inventor
邹清华
罗长诚
王宜凡
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/240,347 priority Critical patent/US20150159263A1/en
Publication of WO2015051604A1 publication Critical patent/WO2015051604A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Definitions

  • the present invention relates to a heating apparatus, and more particularly to an evaporation apparatus which is heated as a vapor deposition source to vaporize a coating material on a surface of a substrate or a workpiece. Fibrillation
  • the organic electroluminescent device is a self-luminous device having the advantages of low voltage, wide viewing angle, fast response, and good temperature adaptability.
  • Organic electroluminescence used organic electroluminescent devices are classified into small molecule organic electroluminescent devices (OLEDs) and polymer electroluminescent devices (PLEDs). Due to the difference in molecular weight, organic electroluminescence Hair: The process of optical devices is also very different. PLEDs are prepared by spin coating or inkjet printing, while OLEDs are mainly prepared by thermal evaporation.
  • the thermal evaporation is mainly performed by heating the organic material in a vacuum environment ( ⁇ -5 ⁇ 3 ⁇ 4) in an OLED evaporation apparatus, so that the sublimation type or the molten type organic material is vaporized at a high temperature state, and then deposited in a TFT structure or an anode structure.
  • the main evaporation source is mainly a type of vapor deposition source and a linear evaporation source.
  • the space of the point-type evaporation source is small, and a plurality of point-type evaporation sources can be installed in one coating chamber, which can be filled with a variety of materials, mainly used in experimental lines and early production lines.
  • the material utilization rate and film thickness uniformity of the linear vapor deposition source are better than those of the point type evaporation source.
  • Most of the recently constructed mass production lines use a linear evaporation source.
  • the temperature difference between the interior of the crucible-type evaporation source is large, the upper temperature of the crucible is high and the lower temperature is low, and the temperature around the bottom of the crucible is high and the central temperature is low. If the material is filled in a relatively large amount, the material located in the lower part, especially the bottom center, is slower in heat and lower in vapor deposition rate. In order to increase the temperature inside the crucible, especially at the bottom center, it is necessary to increase the temperature of the overall heating inside the crucible.
  • the temperature at the bottom of the crucible can only reach 360 ⁇ due to uneven heating inside the crucible and the heat conduction effect. In order to make the temperature of the bottom of the crucible, especially the bottom center reach 370 ° C, it needs to be improved.
  • the overall heating temperature is 380 or even 390' ⁇ .
  • the internal heating temperature of the crucible reaches 38 CTC or more
  • the upper temperature of the crucible reaches the cracking temperature of the organic material, and the upper organic material has a risk of cracking.
  • the amount of material is relatively small, at a high vapor deposition rate, the temperature at the top of the crucible tends to exceed the cracking temperature of the material, and the vaporized organic material is susceptible to cracking as it passes through this region.
  • the prior art uses heat transfer balls 2' (generally small steel balls) to transfer heat, that is, adding a layer of heat conduction when adding a layer of organic material to the crucible.
  • the ball 2' through the heat transfer of the thermally conductive ball 2', gradually makes the temperature of the material in the crucible uniform.
  • this method only has a good effect on the sublimation type material.
  • the thermal conductive ball 2' is different from the density of the organic material, and the thermal conductive ball 2' will Gradually deposited to the bottom of the crucible, it does not provide good heat transfer to the upper and middle layers of material.
  • a temperature difference is formed between the upper part of the crucible, especially the upper part of the crucible, and the lower part of the crucible, which does not achieve the purpose of uniform heating or heat transfer. Summary of the invention
  • the problem to be solved by the present invention is to provide an evaporation apparatus which can better transfer heat so that the overall heating temperature is lowered to reduce the cracking of organic materials.
  • the technical solution of the present invention is to provide a vapor deposition device having the following structure, including a vapor deposition device body, wherein the vapor deposition device body is provided with a plurality of heat conduction bodies that are in contact with each other, and the heat conduction body is provided There are a plurality of holes, and the holes on the heat conductor, the gap between the heat conductor and the body of the vapor deposition device, and/or the gap between the heat conductor and the heat conductor are provided with a coating material for dry evaporation.
  • the vapor deposition device of the present invention has the following advantages: Since the vapor deposition device of the present invention is provided with a plurality of heat conductors, generally a metal heat conductor with good heat conduction, the heat conductors are in contact with each other for heat transfer. It can achieve a better heat transfer effect, so that the temperature in the body of the evaporation device, especially between the upper portion and the lower portion, is reduced or even no temperature. Since the temperature difference is small or there is no temperature difference, it is not necessary to heat the upper part to a higher temperature than the preset temperature in order to raise the bottom temperature to a preset value, and only need to be heated to a preset temperature, such as the need to heat up to the upper part.
  • the temperature reaches 380 ⁇ or more, and now only needs to be heated to a preset temperature of 370 ° C.
  • the overall heating temperature is lowered, and the cracking temperature of the organic material is not easily reached or exceeded due to the decrease in the overall temperature, thereby reducing the cracking of the material.
  • the heat conductor is a hollow metal heat conductor or a hollow metal heat conductor having a plurality of through holes on the surface.
  • the hollow metal heat conductor is woven or cast from a wire. Hollow or hollow metal heat conductors are lighter, can fill more organic materials, reduce the number of open cavities and increase evaporation efficiency.
  • the heat conductor is a hollow polyhedron or a hollow sphere.
  • Hollowed polyhedrons or hollowed-out spheres are easy to manufacture and produce, and are prone to contact heat transfer between them.
  • the surface of the hollow polyhedron or the surface of the hollowed sphere is provided with a polygonal hole and
  • the coating material enters the heat conductor or the gap between the heat conductor and the heat conductor or the gap between the vapor deposition device body and the heat conductor from the polygonal hole and/or the round hole, and the hole and the gap are gasified and discharged during the vapor deposition.
  • the heat conductor includes an aluminum heat conductor, a titanium heat conductor, or an aluminum alloy heat conductor.
  • Aluminum, titanium or aluminum alloys are more common, and the heat conductors made are better in heat conduction and cost.
  • the hollow portion in the heat conductor accounts for 60% to 98% of the total volume of the heat conductor. It can fill in more organic materials and increase the evaporation rate.
  • the hollow portion of the heat conductor accounts for 80% to 90% of the total volume of the heat conductor.
  • the hollowed out part has an increased volume and can accommodate more organic materials, but at the same time it has an effect on the heat transfer efficiency.
  • the heat conduction effect will be deteriorated as the volume of the hollow portion increases, and the hollow portion of the heat conductor accounts for 80% to 90% of the total volume of the heat conductor, which can be used in the vapor deposition rate and the heat conduction effect. A good balance is achieved.
  • the evaporation device body is a closed crucible provided with a gasification outlet. Convenient heating and gasification evaporation.
  • the preset temperature in the 3 ⁇ 4 ⁇ is 2001 to 400 ⁇ .
  • the vaporization temperature of organic materials used for thermal evaporation is generally below 400 ⁇ . »Illustration
  • Figure 1 is a schematic view showing the structure of the vapor deposition device of the present invention.
  • FIG. 2 shows a specific embodiment of the heat conductor of Figure 1.
  • Fig. 3 shows another specific implementation of the heat conductor of Fig. 1.
  • FIG 4 shows a further embodiment of the heat conductor of Figure 1.
  • Fig. 5 is a schematic view showing the structure of a vapor deposition apparatus of the prior art.
  • the vapor deposition device includes a vapor deposition device body i, and the vapor deposition device body 1 is provided with a plurality of heat conduction bodies 2 that are in contact with each other for heat transfer, and the heat conduction body 2 is provided with a plurality of holes. 3, the hole 3 in the heat conductor 2, the gap 4 between the heat conductor 2 and the vapor deposition device body and/or the gap 4 between the heat conductor 2 and the heat conductor 2 are provided with a plating material for vapor deposition.
  • the coating material is generally an organic material f bucket.
  • the heat conductor 2 is a hollow metal heat conductor 2 having a plurality of through holes on the surface or a hollow metal heat conductor 2.
  • the shape of the through hole may be set according to actual conditions.
  • the size of the through hole is set according to the volume of the vapor deposition device body 1 and the heat conductor 2.
  • the through hole is one or more of a polygonal hole, a circular hole and an elliptical hole.
  • the metal heat conductor 2 includes a heat conductor made of a metal material such as aluminum, titanium aluminum alloy or titanium alloy.
  • Metal materials such as aluminum, titanium aluminum alloys, and titanium alloys are generally relatively light in weight, low in cost, and have good thermal conductivity.
  • the heat conductor 2 is a hollow sphere woven from a wire.
  • the wire is preferably a twisted wire or a titanium alloy wire.
  • the surface of the hollowed sphere is formed with thousands of polygonal holes 3.1.
  • the heat conductor 2 is a hollow ball having a plurality of circular holes 3.2 and Z or elliptical holes on the surface.
  • the surface of the heat conductor 2 is provided with a plurality of hollow polyhedrons of polygonal holes 3, 1.
  • the polyhedron is preferably cast from aluminum or an aluminum alloy.
  • the volume of the hollow portion in the heat conductor 2 should be increased as much as possible.
  • the hollow portion of the heat conductor 2 accounts for 60% to 98% of the total volume of the heat conductor 2.
  • the volume of the hollow portion is further increased, which has an effect on the heat conduction efficiency, that is, the larger the volume of the hollow portion, the heat conduction effect gradually deteriorates. Therefore, it is preferable that the hollow portion in the heat conductor 2 accounts for 80% to 90% of the total volume of the heat conductor 2.
  • the vapor deposition device body 1 is a closed crucible provided with vaporization outlets 1, 1.
  • the vapor deposition device The body 1 has the function of a crucible and can be heated.
  • the vapor deposition apparatus body 1 of the present invention is a closed crucible provided with a gasification outlet 1.1 at the upper portion, as shown in FIG. .
  • the preset temperature in the crucible is 200 ⁇ to 400 ⁇ .
  • select the corresponding evaporation preset temperature Generally corresponding to a specific coating material, there is a certain preset temperature.
  • the vapor deposition method is similar to the vapor deposition method using the vapor deposition apparatus of the prior art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种蒸镀装置,包括蒸镀装置本体(1),蒸镀装置本体(1)内设有若干个相互接触传热的导热体(2),导热体(2)上设有若干个孔(3),导热体(2)上的孔(3)、导热体(2)与蒸镀装置本体(1)之间的间隙(4)和/或导热体(2)与导热体(2)之间的间隙(4)设有用于蒸镀的蒸镀材料。蒸镀装置能更好地传热使得整体加热温度降低从而减小有机材料裂解。

Description

技术领域
本发明涉及一种加热装置,具体涉及一种作为蒸镀源来加热使镀膜材料气化沉积在基体或 工件表面的蒸镀装置。 背纖术
有机电致发光器件是一种自发光器件, 具有电压低, 视角宽、 响应速度快、温度适应性好 等优势。 使用的有机电致发:光材料的分子量来看,有机电致发光器件分为小分子有机电致发 光器件(OLED)和高分子电致发光器件 (PLED), 由于分子量的不同, 有机电致发:光器件的制 程也有很大的区别, PLED通过旋涂或者喷墨打印的方式制备, 而 OLED则主要通过热蒸镀的 方式制备。
热蒸镀主要是 OLED蒸镀设备在真空环境下 (Ε-5 Ι¾)加热有机材料, 使升华型或者熔融 型的有机材料在高温状态 Τ气化后, 然后沉积在有 TFT结构或者阳极结构的基板上。 目前主 流的蒸镀源主要有点型蒸镀源和线型蒸镀源。点型蒸镀源的空间小, 一个镀膜腔体里可以安装 很多个点型蒸镀源, 可以填入很多种材料, 主要用于实验线和早期的量产线中。 线型蒸镀源的 材料利用率和膜厚均一性要优于点型蒸镀源, 近期建设的量产线大部分使用线性蒸镀源。
由于一般有机材料的蒸发温度与其裂解温度相差很小,而诈为点型蒸镀源的坩埚内部往往 温差较大, 坩埚上部温度高而下部温度低, 坩埚底部四周温度较高而中心温度低。若是材料 填入量相对较多, 位于下部尤其是底部中心的材料受热较慢, 蒸镀速率较低。 为了提高坩埚内 尤其是底部中心的温度,需要提高坩埚内部整体加热的温度。如实际蒸镀需要的温度是 370Ό , 由于坩埚内部受热不均匀和导热效果不理想, 坩埚底部的温度只能达到 360'Ό , 为了使坩埚底 部尤其是底部中心的温度达到 370°C, 需要提高整体的加热温度到 380 甚至 390'Ό。 而当坩 埚内部整体的加热温度达到 38CTC或以上时, 坩埚上部温度达到有机材料的裂解温度, 上部的 有机材料有裂解的风险。 尤其是, 当材料的量相对较少时, 在高蒸镀速率下, 坩埚上部的温度 往往超过材料的裂解温度, 气化的有机材料在经过此段区域时容易发生裂解。
为解决该问题, 如图 5所示, 现有技术是通过使用导热小球 2' (—般为小钢球) 来传热, 即往坩埚 Γ中添加一层有机材料时加入一层导热小球 2' , 通过导热小球 2'的传热, 使坩埚 Γ 内材料的温度逐渐均匀。但是此种方法只对升华型的材料有很好的效果,对于熔融型的材料由 于其在高温 Τ处于瑢融状态, 而导热小球 2'与有机材料的密度不同, 导热小球 2'会渐渐的沉 积至坩埚 Γ的底部, 而无法对上层和中层的材料起到很好的传热作用。 造成坩埚 Γ内尤其是 坩埚 Γ的上部和坩埚 Γ的下部之间形成温差, 达不到均匀加热或传热的目的。 发明内容
本发明所要解决的技术 题是,提供一种能更好地传热使得整体加热温度降低从而减少有 机材料裂解的蒸镀装置。
本发明的技术解决方案是, 提供一种具有以下结构的蒸镀装置, 包括蒸镀装置本体, 所述 蒸镀装置本体内设有若干个相互接触传热的导热体, 所述导热体上设有若干个孔, 所述导热体 上的孔、 导热体与蒸镀装置本体之间的间隙和 /或导热体与导热体之间的间隙设有用干蒸镀的 镀膜材料。
与现有技术相比,本发明的蒸镀装置具有以下优点: 由于本发明的蒸镀装置本体内设有若 千个导热体, 一般是导热良好的金属导热体, 导热体相互接触传热, 能起到更好的传热效果, 从而使得蒸镀装置本体内,尤其是上部和下部之间的温度缩小甚至没有温度。 由于温差很小或 不存在温差, 不需要为了底部温度升高到预设值而使上部加热到比预设温度更高的温度, 只需 要加热到预设温度即可, 如原先需要加热到上部温度达到 380Ό以上, 现在只需要加热到预设 温度 370°C即可。 使得整体加热温度降低, 由于整体温度降低, 不容易达到或超过有机材料的 裂解温度, 从而减少了材料的裂解。
作为本发明的一种改进,所述导热体为中空的、表面设有若千个通孔的金属导热体或镂空 的金属导热体。所述镂空的金属导热体由金属丝编织而成或者浇注而成。中空的或者镂空的金 属导热体较轻, 能填入更多的有机材料, 减少开腔填料次数, 提高蒸镀效率。
作为本发明的 ·种优选, 所述导热体为中空的多面体或镂空的球体。镂空的多面体或镂空 的球体容易制造和生产, 而且相互之间容易形成接触传热。
作为本发明的另一种优选,所述中空的多面体的表面或镂空的球体的表面设有多边形孔和
/或圆孔。 填料时镀膜材料从多边形孔和 /或圆孔进入导热体内或导热体与导热体之间的间隙或 蒸镀装置本体与导热体之间的间隙中, 蒸镀时认孔和间隙气化流出。
作为本发明的还有一种优选, 所述导热体包括铝导热体、 钛导热体或铝合金导热体。 铝、 钛或铝合金比较常见, 做成的导热体导热效果较好, 成本也不高。
作为本发明的另一种改进, 所述导热体中的镂空部分占导热体的总体积的 60 %〜98 %。 能 填入更多的有机材料, 提高蒸镀速度。
作为本发明的还有一种优选, 所述导热体中的缕空部分占导热体的总体积的 80 %~90 %。 镂空部分体积增多, 可以容纳更多的有机材料, 但同时会对导热效率有影响。尤其是镂空部分 体积达到一定比重后, 随着镂空部分体积的增加, 导热效果会变差, 而导热体中镂空部分占导 热体总体积的 80 %〜90 %能在蒸镀速率和导热效果之间达到较好的平衡。
作为本发明的还有一种改进,所述蒸镀装置本体为设有气化出口的封闭的坩埚。方便加热 和气化蒸镀。
作为本发明的还有一种优选, 所述 ¾埚内的预设温度为 2001〜 400Ό。 用于热蒸镀的有机 材料的气化温度一般都在 400 Ό以下。 »图说明
图 i所示是本发明的蒸镀装置的结构示意图。
图 2所示是图 1中的导热体的一种具体实施例。
图 3所示是图 1中的导热体的另一种具体实施倒。
图 4所示是图 1中的导热体的还有一种具体实施例。
图 5所示是现有技术的蒸镀装置的结构示意图。
图: I〜图 4中所示: I、 蒸镀装置本体, 1. 气化出口, 2、 导热体, 3、 孔, 3.1、 多边形 孔, 3.2、 圆孔, 4、 间隙。
图 5所示: 〗'、 坩埚, 2 导热小球。 具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。
如图 1所示为本发明的蒸镀装置的一种具体实施例。在该实施例中, 该蒸镀装置包括蒸镀 装置本体 i , 所述蒸镀装置本体 1內设有若千个相互接触传热的导热体 2, 所述导热体 2上设 有若干个孔 3 , 所述导热体 2上的孔 3、 导热体 2与蒸镀装置本体〗之间的间隙 4和 /或导热体 2与导热体 2之间的间隙 4设有用于蒸镀的镀膜材料。 在本实施例中, 镀膜材料一般为有机材 f斗。
如图 2〜图 4所示, 所述导热体 2为中空的、 表面设有若千个通孔的金属导热体 2或为镂 空的金属导热体 2。 通孔的形状可根据实际进行设置, 通孔的大小根据蒸镀装置本体 1和导热 体 2的体积大小来设置, 优选通孔为多边形孔、 圆孔和椭圆形孔中的一种或多种。所述金属导 热体 2包括由铝、 钛铝合金、 钛合金等金属材料制作而成的导热体。 铝、 钛铝合金、 钛合金等 金属材料一般重量相对较轻、 成本较低而且具有良好的导热性能。
如图 2所示, 所述导热体 2为由金属丝编织而成的镂空的球体。 所述金属丝优选是钕丝、 钛合金丝。 所述镂空的球体的表面形成有若千个多边形孔 3.1。
如图 3所示, 所述导热体 2为表面设有多个圆孔 3.2和 Z或椭圆形孔的中部镂空的球体。 如图 4所示, 所述导热体 2表面设有若干个多边形孔 3,1的中空的多面体。 所述多面体优 选由铝或铝合金浇注成型。
为了提高生产效率和蒸镀效率, 需要减少填料次数, 也就是一次添加能尽可能多地填入镀 膜材料。因此应尽量增加导热体 2中的镂空部分的体积,一般所述导热体 2中的镂空部分占导 热体 2的总体积的 60 %〜98 %。 但由于镂空部分体积增大到一定程度, 镂空部分体积再增加^ 会对导热效率产生影响, 也就是镂空部分体积越大, 导热效果逐渐变差。 故而, 优选所述导热 体 2中的镂空部分占导热体 2的总体积的 80 %〜90 %。
在本实施例中, 所述蒸镀装置本体 1为设有气化出口 1 ,1的封闭的坩埚。 所述蒸镀装置本 体 1具有坩埚的功能, 能进行加热, 同时由于热蒸镀一般是在真空环境中进行, 本发明的蒸镀 装置本体 1为上部设有气化出口 1.1的封闭的坩埚, 如图 i所示。
一般所述坩埚内的预设温度为 200Ό〜400Ό。 针对不同的镀膜材料, 选择相对应的蒸镀预 设温度。 一般对应一种具体的镀膜材料, 有一个确定的预设温度。
采用本发明的蒸镀装置进行热蒸镀时,其蒸镀方法与采用现有技术的蒸镀装置进行蒸镀的 方法类似。
虽然已经结合具体实施例对本发明进行了描述, 然而可以理解,在不] ¾离本发明的范围的 情况下, 可以对其进行各种改进或替换。 尤其是, 只要不存在结构上的冲突, 各实施例中的特 征均可相互结合起来,所形成的组合式特征仍属于本发明的范围内。本发明并不局限于文中公 开的特定实施例, 而是包括落入权利要求的范围内的所有技术方案。

Claims

权利要求书
1. 一种蒸镀装置, 包括蒸镀装置本体 (1) , 所述蒸镀装置本体 (1) 内设有若千个相互 接触传热的导热体(2),所述导热体(2)上设有若干个孔(3) ,所述导热体(2)上的孔(3) 、 导热体 (2) 与蒸镀装置本体 (1) 之间的间隙 (4) 和 /或导热体 (2) 与导热体 (2) 之间的间 隙 (4) 设有用于蒸镀的镀膜材料。
2. 根据权利要求 1所述的蒸镀装置, 其中, 所述导热体 Q)为中空的、 表面设有若千个 通孔的金属导热体 (2) 或镂空的金属导热体 (2) 。
3. 根据权利要求 2所述的蒸镀装置, 其中, 所述导热体(2)为中空的多面体或镂空的球 体。
4. 根据权利要求 3所述的蒸镀装置, 其中, 所述中空的多面体的表面或镂空的球体的表 面设有多边形孔 (3.1) 和 Z或圆孔 (3.2) 。
5. 根据权利要求 4所述的蒸镀装置, 其中, 所述导热体 (2) 包括铝导热体 (2) 、 钛导 热体 (2) 或铝合金导热体 (2) 。
6. 根据权利要求 1所述的蒸镀装置, 其中, 所述导热体(2) 中的镂空部分占导热体(2) 的总体积的 60%~98%。
7. 根据权利要求 2所述的蒸镀装置, 其中, 所述导热体(2) 中的镂空部分占导热体(2) 的总体积的 60%~98%。
8. 根据权利要求 3所述的蒸镀装置, 其中, 所述导热体 (2) 中的镂空部分占导热体(2) 的总体积的 60%〜98%。
9. 根据权利要求 4所述的蒸镀装置, 其中, 所述导热体(2) 中的镂空部分占导热体(2) 的总体积的 60%〜98%。
】0. 根据权利要求 5所述的蒸镀装置, 其中, 所述导热体(2)中的镂空部分占导热体(2) 的总体积的 60%〜98%。
11. 根据权利要求 6所述的蒸镀装置, 其中, 所述导热体(2)中的镂空部分占导热体(2) 的总体积的 80%〜90%。
12. 根据权利要求 7所述的蒸镀装置, 其中, 所述导热体(2)中的镂空部分占导热体(2) 的总体积的 80%~90%。
13. 根据权利要求 8所述的蒸镀装置, 其中, 所述导热体(2)中的镂空部分占导热体(2) 的总体积的 80%.、'魏。
14. 根据权利要求 9所述的蒸镀装置, 其中, 所述导热体(2)中的镂空部分占导热体 Q) 的总体积的 80%〜讓。
15.根据权利要求 0所述的蒸镀装置,其中,所述导热体(2)中的镂空部分占导热体(2) 的总体积的 80%〜90%。
16.根据权利要求 i所述的蒸镀装置,其中,所述蒸镀装置本体(1 )为设有气化出口(1.1 ) 的封闭的坩埚。
17. 根据权利要求 16所述的蒸镀装置, 其中, 所述坩埚内的预设温度为 200 〜 400 。
PCT/CN2014/071068 2013-10-12 2014-01-22 蒸镀装置 WO2015051604A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/240,347 US20150159263A1 (en) 2013-10-12 2014-01-22 Evaporation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310475906.4A CN103556118B (zh) 2013-10-12 2013-10-12 蒸镀装置
CN201310475906.4 2013-10-12

Publications (1)

Publication Number Publication Date
WO2015051604A1 true WO2015051604A1 (zh) 2015-04-16

Family

ID=50010458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071068 WO2015051604A1 (zh) 2013-10-12 2014-01-22 蒸镀装置

Country Status (3)

Country Link
US (1) US20150159263A1 (zh)
CN (1) CN103556118B (zh)
WO (1) WO2015051604A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103938160A (zh) * 2014-03-06 2014-07-23 京东方科技集团股份有限公司 一种坩埚
CN104294219A (zh) * 2014-08-14 2015-01-21 京东方科技集团股份有限公司 蒸镀线源
CN104593730B (zh) * 2014-12-24 2017-02-22 深圳市华星光电技术有限公司 防止oled材料裂解的坩埚
CN106967952A (zh) * 2016-01-13 2017-07-21 张家港康得新光电材料有限公司 加热装置
CN105603364B (zh) * 2016-03-16 2018-11-23 深圳市华星光电技术有限公司 导热装置与蒸镀坩埚
CN106654058B (zh) * 2016-12-02 2019-01-22 深圳市华星光电技术有限公司 有机材料蒸镀设备和方法
CN108342693A (zh) * 2017-01-23 2018-07-31 南京高光半导体材料有限公司 防止蒸发源坩埚内材料劣化的方法
CN111188013A (zh) * 2018-11-14 2020-05-22 深圳市融光纳米科技有限公司 一种真空蒸发镀膜方法、混合物、制备光学薄膜的方法
CN109440068A (zh) * 2018-12-27 2019-03-08 厦门天马微电子有限公司 蒸镀装置以及蒸镀设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320718A (zh) * 2000-03-09 2001-11-07 城户淳二 有机化合物的汽相沉积法和精制法
CN1393575A (zh) * 2001-06-26 2003-01-29 爱美思公司 薄膜沉积用分子束源装置和分子束沉积薄膜的方法
KR20120131947A (ko) * 2011-05-27 2012-12-05 엘지디스플레이 주식회사 증발원 및 이를 이용한 증착장치
CN103205716A (zh) * 2013-04-15 2013-07-17 光驰科技(上海)有限公司 用于蒸镀防污膜的蒸镀材料的吸附载体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5104695A (en) * 1989-09-08 1992-04-14 International Business Machines Corporation Method and apparatus for vapor deposition of material onto a substrate
US5139999A (en) * 1990-03-08 1992-08-18 President And Fellows Of Harvard College Chemical vapor deposition process where an alkaline earth metal organic precursor material is volatilized in the presence of an amine or ammonia and deposited onto a substrate
JPH0752716B2 (ja) * 1990-06-05 1995-06-05 松下電器産業株式会社 熱分解セル
US5887117A (en) * 1997-01-02 1999-03-23 Sharp Kabushiki Kaisha Flash evaporator
JP4439894B2 (ja) * 2003-12-01 2010-03-24 株式会社半導体エネルギー研究所 蒸着用るつぼ及び蒸着装置
TWI535874B (zh) * 2006-12-13 2016-06-01 環球展覽公司 用於固相材料之改良蒸發方法
ES2355274T3 (es) * 2007-03-30 2011-03-24 Amminex A/S Sistema para almacenar amoniaco y liberar amoniaco de un material de almacenamiento y procedimiento para almacenar y liberar amoniaco.
CN201526962U (zh) * 2009-11-16 2010-07-14 丁波 一种酒精安全燃烧装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320718A (zh) * 2000-03-09 2001-11-07 城户淳二 有机化合物的汽相沉积法和精制法
CN1393575A (zh) * 2001-06-26 2003-01-29 爱美思公司 薄膜沉积用分子束源装置和分子束沉积薄膜的方法
KR20120131947A (ko) * 2011-05-27 2012-12-05 엘지디스플레이 주식회사 증발원 및 이를 이용한 증착장치
CN103205716A (zh) * 2013-04-15 2013-07-17 光驰科技(上海)有限公司 用于蒸镀防污膜的蒸镀材料的吸附载体

Also Published As

Publication number Publication date
US20150159263A1 (en) 2015-06-11
CN103556118A (zh) 2014-02-05
CN103556118B (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
WO2015051604A1 (zh) 蒸镀装置
KR100823508B1 (ko) 증발원 및 이를 구비한 증착 장치
WO2015024280A1 (zh) 一种镀膜机坩埚
KR20070080635A (ko) 유기물증발 보트
WO2015013987A1 (zh) 具有导热装置的坩埚
WO2016033932A1 (zh) 蒸镀坩埚和蒸镀装置
CN109385605A (zh) 蒸发源装置及其控制方法
WO2015180210A1 (zh) 蒸镀源加热装置
US9786868B2 (en) Electronic structure having at least one metal growth layer and method for producing an electronic structure
Xie et al. Solution processable small molecule based organic light-emitting devices prepared by dip-coating method
CN103762198B (zh) 一种tsv填孔方法
TW201246651A (en) Vacuum deposition device and manufacturing method of organic electroluminescent display
Verboven et al. Ultrasonic Spray Coating of Silver Nanowire‐Based Electrodes for Organic Light‐Emitting Diodes
JP2013076120A (ja) 蒸発源および成膜装置
CN106654058B (zh) 有机材料蒸镀设备和方法
US11462599B2 (en) Display panel with a thermal insulation layer, manufacturing method thereof, and display apparatus
Yoon et al. Post-annealing effect on the interface morphology and current efficiency of organic light-emitting diodes
CN106148899A (zh) 一种蒸镀坩埚及蒸发源装置
CN110846635A (zh) 一种控温接触板和蒸镀设备
JP6471194B2 (ja) 有機発光ダイオードの製造方法及び製造装置
TW201443259A (zh) 沉積源及具有其之沉積設備
TW201212105A (en) Organic vapor jet printing with a blanket gas
CN207552429U (zh) 塑件表面气化镀铜设备
TWI589046B (zh) 具透明電極之有機發光二極體及其製造方法(一)
CN106756803B (zh) 一种蒸镀用材料、制备方法和蒸镀方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14240347

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14851923

Country of ref document: EP

Kind code of ref document: A1