WO2015022867A1 - セルロースアシレートフィルム、偏光板及び液晶表示装置 - Google Patents

セルロースアシレートフィルム、偏光板及び液晶表示装置 Download PDF

Info

Publication number
WO2015022867A1
WO2015022867A1 PCT/JP2014/070305 JP2014070305W WO2015022867A1 WO 2015022867 A1 WO2015022867 A1 WO 2015022867A1 JP 2014070305 W JP2014070305 W JP 2014070305W WO 2015022867 A1 WO2015022867 A1 WO 2015022867A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
cellulose acylate
group
acid
range
Prior art date
Application number
PCT/JP2014/070305
Other languages
English (en)
French (fr)
Inventor
貴史 世良
佐藤 浩一
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN201480044795.4A priority Critical patent/CN105473653B/zh
Priority to KR1020167002315A priority patent/KR101841854B1/ko
Priority to JP2015531761A priority patent/JP6428621B2/ja
Publication of WO2015022867A1 publication Critical patent/WO2015022867A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/40Materials having a particular birefringence, retardation

Definitions

  • the present invention relates to a cellulose acylate film, a polarizing plate and a liquid crystal display device. More specifically, it contains a compound that suppresses fluctuations in phase difference even when the humidity of the environment fluctuates, and even if the compound volatilizes and scatters in the production line, the scattered matter is efficiently collected and filtered.
  • the present invention relates to a cellulose acylate film that improves the clogging of the film and achieves both stability of phase difference against humidity fluctuation and suitability for continuous production.
  • a retardation film mainly composed of cellulose acylate has a larger variation in retardation with respect to moisture than a retardation film mainly composed of cycloolefin or polycarbonate, and many studies have been conducted from the past to solve this problem. Has been done.
  • the present invention has been made in view of the above-described problems and situations, and a solution to that problem is that a compound that suppresses fluctuations in the phase difference with respect to humidity volatilizes and scatters in the production line and adheres to a cotton-like bulk.
  • a compound that suppresses fluctuations in the phase difference with respect to humidity volatilizes and scatters in the production line and adheres to a cotton-like bulk.
  • it is intended to provide a cellulose acylate film that improves the contamination of the wall surface and the clogging of the filter, and achieves both stability of the phase difference against humidity fluctuation and suitability for continuous production.
  • it is to provide a highly durable polarizing plate and a liquid crystal display device comprising the cellulose acylate film.
  • cellulose acylate In order to solve the above problems, the present inventor, in the process of examining the cause of the above problems, cellulose acylate, a nitrogen-containing heterocyclic compound having a molecular weight in the range of 100 to 800, and a melting point of ⁇ 60 to It has been found that the problem of the present invention can be solved by a cellulose acylate film containing an organic ester having a temperature range of 120 ° C. and a 1% mass reduction temperature Td1 in the range of 100 to 350 ° C.
  • Cellulose acylate a nitrogen-containing heterocyclic compound having a molecular weight in the range of 100 to 800, a melting point in the range of ⁇ 60 to 120 ° C., and a 1% mass reduction temperature Td1 by differential thermal / thermogravimetric measurement is A cellulose acylate film comprising an organic ester within a range of 100 to 350 ° C.
  • A represents a pyrazole ring.
  • Ar 1 and Ar 2 each represent an aromatic hydrocarbon ring or an aromatic heterocyclic ring and may have a substituent.
  • R 1 represents a hydrogen atom, an alkyl group, or an acyl group. Represents a sulfonyl group, an alkyloxycarbonyl group, or an aryloxycarbonyl group, q represents an integer of 1 to 2, and n and m represent an integer of 1 to 3.
  • the cellulose acylate according to any one of items 1 to 3, wherein the organic ester is at least one selected from sugar esters, polycondensation esters, and polyhydric alcohol esters. the film.
  • the cellulose acylate film contains the nitrogen-containing heterocyclic compound in a range of 0.5 to 10% by mass and the organic ester in a range of 0.5 to 20% by mass.
  • the cellulose acylate film according to any one of items 1 to 4 above.
  • the retardation value Ro in the in-plane direction represented by the following formula (i) in the measurement at an optical wavelength of 590 nm under an environment of 7.23 ° C. and 55% RH is in the range of 40 to 70 nm
  • n x represents a refractive index in the direction x in which the refractive index is maximized in the plane direction of the film.
  • n y in-plane direction of the film, the refractive index in the direction y perpendicular to the direction x.
  • nz represents the refractive index in the thickness direction z of the film.
  • d represents the thickness (nm) of the film.
  • a polarizing plate wherein the cellulose acylate film according to any one of items 1 to 7 is bonded to a polarizer using a water paste or an active energy ray-curable adhesive. .
  • a liquid crystal display device comprising the cellulose acylate film according to any one of items 1 to 7.
  • a liquid crystal display device comprising the polarizing plate according to item 8 or item 9.
  • the compound that suppresses the fluctuation of the phase difference with respect to the humidity volatilizes and scatters in the production line, and adheres in a bulky manner like cotton, thereby contaminating the wall surface or causing clogging of the filter.
  • a cellulose acylate film that achieves both stability of phase difference against humidity fluctuation and suitability for continuous production.
  • a highly durable polarizing plate and a liquid crystal display device including the cellulose acylate film can be provided.
  • the cellulose acylate film includes the nitrogen-containing heterocyclic compound and an organic compound having a melting point within the range of ⁇ 60 to 120 ° C. and a 1% mass reduction temperature Td1 within the range of 100 to 350 ° C.
  • the nitrogen-containing heterocyclic compound is scattered, and at the same time, the organic ester is also scattered, and the scattered matter is cooled in the production line and liquefied to adhere to the filter as a highly viscous deposit. Therefore, the flocculent matter of the nitrogen-containing heterocyclic compound can be easily captured on the filter, and at the same time, the bulk of the matter can be reduced by the viscosity, thereby reducing the filter clogging and reducing the filter life. It is estimated that can be extended.
  • the organic ester having a melting point and a 1% mass reduction temperature Td1 within a specific range has volatility, ease of liquefaction when the volatiles are cooled, and appropriate viscosity. It is estimated that the scattered substances of the nitrogen heterocyclic compound can be effectively captured on the filter.
  • the schematic diagram which shows an example of the dope preparation process, casting process, and drying process of the preferable solution casting film forming method of the cellulose acylate film of this invention
  • the cellulose acylate film of the present invention has cellulose acylate, a nitrogen-containing heterocyclic compound having a molecular weight in the range of 100 to 800, a melting point in the range of ⁇ 60 to 120 ° C., and differential heat / thermogravimetric weight. It contains an organic ester having a 1% mass reduction temperature Td1 measured in the range of 100 to 350 ° C. This feature is a technical feature common to the inventions according to claims 1 to 11.
  • the nitrogen-containing heterocyclic compound is at least one selected from compounds having a pyrazole ring, a triazole ring, and an imidazole ring from the viewpoint of manifesting the effects of the present invention.
  • the compound having the structure represented by the general formula (3) further simplifies the packaging, and even if moisture enters the package by being exposed to a high humidity environment during panel transportation, It is preferable that the cellulose acylate film hardly changes in phase difference and has high durability over time.
  • the organic ester is preferably at least one selected from sugar esters, polycondensation esters, and polyhydric alcohol esters, and the cellulose acylate film contains 0.5 to 10 mass of the nitrogen-containing heterocyclic compound. % And the organic ester in the range of 0.5 to 20% by mass is liquefied when it is cooled in the production line and adheres to the filter. This is preferable because the bulk of the filter collection of the ring compound can be reduced.
  • Cellulose acetate having a total acyl group substitution degree of cellulose acylate in the range of 2.0 to 2.7 or cellulose acetate propionate is used as a retardation film for widening the viewing angle.
  • the retardation value of the retardation film is in the range of the retardation value Ro in the in-plane direction in the measurement at a light wavelength of 590 nm under the environment of 23 ° C. and 55% RH, and in the thickness direction.
  • the retardation value Rt is preferably in the range of 100 to 300 nm.
  • the cellulose acylate film of the present invention is provided with a polarizing plate having a small phase difference variation due to environmental humidity variation, wherein the cellulose acylate film is bonded to a polarizer using water glue or an active energy ray-curable adhesive. Further, a polyester film or an acrylic film is polarized on the surface of the polarizer opposite to the surface on which the cellulose acylate film is bonded using water glue or an active energy ray-curable adhesive. It is preferable from the viewpoint of providing a more durable polarizing plate that is bonded to the child.
  • the cellulose acylate film and the polarizing plate of the present invention are suitably provided in a liquid crystal display device.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the cellulose acylate film of the present invention has cellulose acylate, a nitrogen-containing heterocyclic compound having a molecular weight in the range of 100 to 800, a melting point in the range of ⁇ 60 to 120 ° C., and differential heat / thermogravimetric weight. It contains an organic ester having a 1% mass reduction temperature Td1 measured in the range of 100 to 350 ° C.
  • Td1 1% mass reduction temperature
  • the present invention uses the organic ester having a melting point in the range of ⁇ 60 to 120 ° C. and the Td1 in the range of 100 to 350 ° C. together with the nitrogen-containing heterocyclic compound, so that the nitrogen-containing heterocyclic ring is used.
  • the organic ester also scatters, and when the scatter is cooled in the production line, it liquefies and adheres to the air conditioning filter. Since it can be easily captured on the filter and the bulk of the flying object can be reduced by the viscosity to reduce the clogging of the filter and lengthen the filter life, the stability of the phase difference against humidity fluctuation is high, In addition, a cellulose acylate film having high suitability for continuous production has been realized.
  • the cellulose acylate constituting the cellulose acylate film of the present invention is preferably cellulose acetate or cellulose acetate propionate having a total acyl group substitution degree in the range of 2.0 to 2.7.
  • Examples of the raw material cellulose include cotton linter and wood pulp (hardwood pulp, conifer pulp).
  • Cellulose acylate obtained from any raw material cellulose can be used, and in some cases, it may be mixed and used.
  • Detailed descriptions of these raw material celluloses can be found, for example, by Marusawa and Uda, “Plastic Materials Course (17) Fibrous Resin”, published by Nikkan Kogyo Shimbun (published in 1970), and the Japan Institute of Invention and Technology Publication No. 2001
  • the cellulose described in No.-1745 pages 7 to 8) can be used.
  • the cellulose acylate is a cellulose acylate having a total acyl group substitution degree in the range of 2.0 to 2.7, and is nitrogen-containing via a hydrogen bond donating site (for example, a hydrogen atom of a hydroxy group). Since it is easy to hydrogen bond with a heterocyclic compound and organic ester, it is preferable from a viewpoint of being excellent in compatibility. Further, from the viewpoint of improving the castability and stretchability during film formation and further improving the uniformity of the film thickness, the total acyl group substitution degree of cellulose acylate is 2.1 to 2.5. Is preferred.
  • the cellulose acylate according to the present invention is preferably at least one selected from cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate benzoate, cellulose propionate, and cellulose butyrate, Among these, more preferred cellulose acylates are cellulose acetate and cellulose acetate propionate.
  • the degree of substitution of the acetyl group and the degree of substitution of other acyl groups can be determined by the method prescribed in ASTM-D817-96.
  • the weight average molecular weight (Mw) of the cellulose acylate according to the present invention is preferably 75,000 or more, more preferably in the range of 75,000 to 300,000, still more preferably in the range of 100,000 to 24,000, and more preferably from 160000 to Particularly preferred is 240,000. If the weight average molecular weight (Mw) of the cellulose acylate resin is 75000 or more, the self-film forming property and adhesion improving effect of the cellulose acylate layer itself are exhibited, which is preferable. In the present invention, two or more kinds of cellulose acylate resins can be mixed and used.
  • the average molecular weight (Mn, Mw) of the cellulose acylate can be measured by gel permeation chromatography under the following measurement conditions.
  • the nitrogen-containing heterocyclic compound according to the present invention is a nitrogen-containing heterocyclic compound having a molecular weight in the range of 100 to 800, and among them, a compound having a structure represented by the following general formula (1) is preferable.
  • the compound having the structure represented by the following general formula (1) is used together with cellulose acylate, so that when a polarizing plate is used in a liquid crystal display device, occurrence of phase difference due to environmental humidity fluctuation is suppressed, and contrast is lowered. And color unevenness can be suppressed. Furthermore, it can function as a phase difference increasing agent.
  • the molecular weight is in the range of 250 to 450, which is a preferable range from the viewpoint of the effect of suppressing fluctuations in the phase difference due to humidity fluctuations and the generation of scattered matter.
  • a 1 , A 2 and B are each independently an alkyl group (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group, 2- An ethenyl group), a cycloalkyl group (cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), an aromatic hydrocarbon ring or an aromatic heterocycle.
  • an aromatic hydrocarbon ring or an aromatic heterocycle is preferable, and a 5-membered or 6-membered aromatic hydrocarbon ring or an aromatic heterocycle is particularly preferable.
  • the structure of the 5-membered or 6-membered aromatic hydrocarbon ring or aromatic heterocyclic ring is not limited, but for example, benzene ring, pyrrole ring, pyrazole ring, imidazole ring, 1,2,3-triazole ring, 1,2 , 4-triazole ring, tetrazole ring, furan ring, oxazole ring, isoxazole ring, oxadiazole ring, isoxadiazole ring, thiophene ring, thiazole ring, isothiazole ring, thiadiazole ring, isothiadiazole ring, etc. .
  • the 5-membered or 6-membered aromatic hydrocarbon ring or aromatic heterocyclic ring represented by A 1 , A 2 and B may have a substituent.
  • substituents include a halogen atom ( Fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl group (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl Groups (cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), alkenyl groups (vinyl group, allyl group, etc.), cycloalkenyl groups (2-cyclopenten-1-yl, 2-cyclohexen-1-yl group, etc.) ), Alkynyl groups (ethynyl
  • a 1 , A 2 and B represent a benzene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, a 1,2,3-triazole ring or a 1,2,4-triazole ring. It is preferable because a cellulose acylate film having excellent optical property variation effects and excellent durability can be obtained.
  • T 1 and T 2 preferably each independently represent a pyrrole ring, a pyrazole ring, an imidazole ring, a 1,2,3-triazole ring or a 1,2,4-triazole ring. .
  • a pyrazole ring, a triazole ring, or an imidazole ring is preferable because a resin composition that is particularly excellent in the effect of suppressing variation in retardation with respect to humidity variation and that has excellent durability can be obtained. It is particularly preferred.
  • the pyrazole ring, 1,2,3-triazole ring, 1,2,4-triazole ring and imidazole ring represented by T 1 and T2 may be tautomers. Specific structures of the pyrrole ring, pyrazole ring, imidazole ring, 1,2,3-triazole ring or 1,2,4-triazole ring are shown below.
  • R 5 represents a hydrogen atom or a non-aromatic substituent.
  • the non-aromatic substituent represented by R 5 include the same groups as the non-aromatic substituent among the substituents that A 1 in the general formula (1) may have.
  • the substituent represented by R 5 is a substituent having an aromatic group, A 1 and T 1 or B and T 1 are easily twisted, and A 1 , B and T 1 interact with cellulose acylate. Since it cannot be formed, it is difficult to suppress fluctuations in optical characteristics.
  • R 5 is preferably a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an acyl group having 1 to 5 carbon atoms, and particularly preferably a hydrogen atom.
  • T 1 and T 2 may have a substituent, and examples of the substituent include a substituent that A 1 and A 2 in the general formula (1) may have Similar groups can be mentioned.
  • L 1 , L 2 , L 3 and L 4 each independently represent a single bond or a divalent linking group, and are 5 or 6 via 2 or less atoms. Membered aromatic hydrocarbon rings or aromatic heterocycles are linked.
  • the term “via two or less atoms” refers to the minimum number of atoms existing between the connected substituents among the atoms constituting the linking group.
  • the divalent linking group having 2 or less linking atoms is not particularly limited, but includes an alkylene group, an alkenylene group, an alkynylene group, O, (C ⁇ O), NR, S, and (O ⁇ S ⁇ O). It is a divalent linking group selected from the group consisting of or a linking group in which two of them are combined.
  • R represents a hydrogen atom or a substituent.
  • substituent represented by R include an alkyl group (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl group ( Cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), aromatic hydrocarbon ring group (phenyl group, p-tolyl group, naphthyl group, etc.), aromatic heterocyclic group (2-furyl group, 2-thienyl group, etc.) Group, 2-pyrimidinyl group, 2-benzothiazolyl group, 2-pyridyl group, etc.), cyano group and the like.
  • the divalent linking group represented by L 1 , L 2 , L 3 and L 4 may have a substituent, and the substituent is not
  • L 1 , L 2 , L 3 and L 4 are a resin that adsorbs water by increasing the planarity of the compound having the structure represented by the general formula (1). And the fluctuation of optical properties is suppressed, so that a single bond or O, (C ⁇ O) —O, O— (C ⁇ O), (C ⁇ O) —NR or NR— (C ⁇ O) is preferable, and a single bond is more preferable.
  • n represents an integer of 0 to 5.
  • the plurality of A 2 , T 2 , L 3 , and L 4 in the general formula (1) may be the same or different.
  • n is preferably an integer of 1 to 3, more preferably an integer of 1 or 2.
  • the compound having a structure represented by the general formula (1) is preferably a compound having a structure represented by the general formula (2).
  • a 1 , A 2 , T 1 , T 2 , L 1 , L 2 , L 3 and L 4 are respectively A 1 , A 2 , T 1 , T 2 , L in the general formula (1). 1, L 2, L 3 and .A 3 and T 3 L 4 as synonymous, the .L 5 and L 6 represent the same group as a 1 and T 1, respectively, in the general formula (1), the general And represents the same group as L 1 in Formula (1), m represents an integer of 0 to 4.) A smaller m is more compatible with cellulose acylate, and therefore m is preferably an integer of 0 to 2, more preferably an integer of 0 to 1.
  • the compound having a structure represented by the general formula (1) is preferably a triazole compound having a structure represented by the following general formula (1.1).
  • the triazole compound having a structure represented by the general formula (1.1) is preferably a triazole compound having a structure represented by the following general formula (1.2).
  • Z represents the structure of the following general formula (1.2a).
  • Q represents an integer of 2 to 3.
  • At least two Zs represent at least one Z substituted on a benzene ring. Bonded to ortho or meta position.
  • R 10 represents a hydrogen atom, an alkyl group or an alkoxy group.
  • P represents an integer of 1 to 5.
  • * represents a bonding position with a benzene ring.
  • T 1 represents a 1,2,4-triazole ring.
  • the compound having the structure represented by the general formula (1), (2), (1.1) or (1.2) may form a hydrate, a solvate or a salt.
  • the hydrate may contain an organic solvent
  • the solvate may contain water. That is, “hydrate” and “solvate” include mixed solvates containing both water and organic solvents. Salts include acid addition salts formed with inorganic or organic acids.
  • inorganic acids include, but are not limited to, hydrohalic acids (hydrochloric acid, hydrobromic acid, etc.), sulfuric acid, phosphoric acid, and the like.
  • organic acids include acetic acid, trifluoroacetic acid, propionic acid, butyric acid, oxalic acid, citric acid, benzoic acid, alkylsulfonic acid (methanesulfonic acid, etc.), allylsulfonic acid (benzenesulfonic acid, 4-toluene) Sulfonic acid, 1,5-naphthalenedisulfonic acid, and the like), but are not limited thereto.
  • hydrochloride, acetate, propionate and butyrate are preferable.
  • salts are those in which the acidic moiety present in the parent compound is a metal ion (eg, an alkali metal salt, such as sodium or potassium salt, an alkaline earth metal salt, such as calcium or magnesium salt, an ammonium salt, an alkali metal ion, alkaline earth And salts formed when substituted with organic bases (ethanolamine, diethanolamine, triethanolamine, morpholine, piperidine, etc.) It is not limited. Of these, sodium salts and potassium salts are preferred.
  • a metal ion eg, an alkali metal salt, such as sodium or potassium salt, an alkaline earth metal salt, such as calcium or magnesium salt, an ammonium salt, an alkali metal ion, alkaline earth
  • organic bases ethanolamine, diethanolamine, triethanolamine, morpholine, piperidine, etc.
  • sodium salts and potassium salts are preferred.
  • Examples of the solvent contained in the solvate include any common organic solvent. Specifically, alcohol (eg, methanol, ethanol, 2-propanol, 1-butanol, 1-methoxy-2-propanol, t-butanol), ester (eg, ethyl acetate), hydrocarbon (eg, toluene, hexane) , Heptane), ether (eg, tetrahydrofuran), nitrile (eg, acetonitrile), ketone (acetone) and the like.
  • alcohol eg, methanol, ethanol, 2-propanol, 1-butanol, 1-methoxy-2-propanol, t-butanol
  • ester eg, ethyl acetate
  • hydrocarbon eg, toluene, hexane
  • Heptane Heptane
  • ether eg, tetrahydrofuran
  • nitrile
  • solvates of alcohols eg, methanol, ethanol, 2-propanol, 1-butanol, 1-methoxy-2-propanol, t-butanol.
  • solvents may be a reaction solvent used at the time of synthesizing the compound, a solvent used at the time of crystallization purification after synthesis, or a mixture thereof.
  • two or more kinds of solvents may be included at the same time, or a form containing water and a solvent (for example, water and alcohol (for example, methanol, ethanol, t-butanol, etc.)) may be used.
  • a solvent for example, water and alcohol (for example, methanol, ethanol, t-butanol, etc.)
  • the nitrogen-containing heterocyclic compound according to the present invention is more preferably a compound having a structure represented by the following general formula (3).
  • A represents a pyrazole ring.
  • Ar 1 and Ar 2 each represent an aromatic hydrocarbon ring or an aromatic heterocyclic ring and may have a substituent.
  • R 1 represents a hydrogen atom, an alkyl group, or an acyl group. Represents a sulfonyl group, an alkyloxycarbonyl group, or an aryloxycarbonyl group, q represents an integer of 1 to 2, and n and m represent an integer of 1 to 3.
  • the aromatic hydrocarbon ring or aromatic heterocyclic ring represented by Ar 1 and Ar 2 may be the 5-membered or 6-membered aromatic hydrocarbon ring or aromatic heterocyclic ring mentioned in the general formula (1), respectively. preferable. Examples of the substituent for Ar 1 and Ar 2 include the same substituents as those shown for the compound having the structure represented by the general formula (1).
  • R 1 examples include halogen atoms (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl groups (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group).
  • halogen atoms fluorine atom, chlorine atom, bromine atom, iodine atom, etc.
  • alkyl groups methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group.
  • Q represents an integer of 1 to 2
  • n and m represent an integer of 1 to 3.
  • the compound having a 5-membered or 6-membered aromatic hydrocarbon ring or aromatic heterocycle used in the present invention will be exemplified.
  • the compound having a 5-membered or 6-membered aromatic hydrocarbon ring or aromatic heterocyclic ring that can be used in the present invention is not limited by the following specific examples.
  • the following specific examples may be tautomers, and may form hydrates, solvates or salts.
  • the compound having the structure represented by the general formula (1) can be synthesized by a known method.
  • any compound having a 1,2,4-triazole ring may be used, but a nitrile derivative or imino ether derivative and a hydrazide derivative may be used.
  • a reaction method is preferred.
  • the solvent used for the reaction may be any solvent as long as it does not react with the raw material, but may be any ester type (eg, ethyl acetate, methyl acetate), amide type (dimethylformamide, dimethylacetamide, etc.), ether type (Ethylene glycol dimethyl ether, etc.), alcohols (eg, methanol, ethanol, propanol, isopropanol, n-butanol, 2-butanol, ethylene glycol, ethylene glycol monomethyl ether, etc.), aromatic hydrocarbons (eg, toluene, xylene, etc.) ), Water can be mentioned.
  • an alcohol solvent is preferable. These solvents may be used as a mixture.
  • the amount of the solvent used is not particularly limited, but is preferably in the range of 0.5 to 30 times the amount of the hydrazide derivative used, more preferably 1.0 to 25 times the amount. Yes, particularly preferably in the range of 3.0 to 20 times the amount.
  • a catalyst When reacting a nitrile derivative and a hydrazide derivative, it is not necessary to use a catalyst, but it is preferable to use a catalyst in order to accelerate the reaction.
  • a catalyst to be used an acid may be used and a base may be used.
  • the acid include hydrochloric acid, sulfuric acid, nitric acid, acetic acid and the like, preferably hydrochloric acid.
  • the acid may be added after diluted in water, or may be added by a method of blowing a gas into the system.
  • Bases include inorganic bases (potassium carbonate, sodium carbonate, potassium bicarbonate, sodium bicarbonate, potassium hydroxide, sodium hydroxide, etc.) and organic bases (sodium methylate, sodium ethylate, potassium methylate, potassium ethylate, Sodium butyrate, potassium butyrate, diisopropylethylamine, N, N′-dimethylaminopyridine, 1,4-diazabicyclo [2.2.2] octane, N-methylmorpholine, imidazole, N-methylimidazole, pyridine, etc.) Any of them may be used, and the inorganic base is preferably potassium carbonate, and the organic base is preferably sodium ethylate, sodium ethylate or sodium butyrate.
  • the inorganic base may be added as a powder or may be added in a state dispersed in a solvent.
  • the organic base may be added in a state dissolved in a solvent (for example, a
  • the amount of the catalyst used is not particularly limited as long as the reaction proceeds, but it is preferably in the range of 1.0 to 5.0 moles relative to the formed triazole ring, and more preferably 1.05 to 3. A range of 0-fold mole is preferable.
  • the target product can be obtained by heating in a solvent.
  • the addition method of the raw material, solvent and catalyst used for the reaction is not particularly limited, and the catalyst may be added last, or the solvent may be added last. Also preferred is a method of dispersing or dissolving a nitrile derivative in a solvent, adding a catalyst, and then adding a hydrazide derivative.
  • the solution temperature during the reaction may be any temperature as long as the reaction proceeds, but is preferably in the range of 0 to 150 ° C., more preferably in the range of 20 to 140 ° C. Moreover, you may react, removing the water to produce
  • any method may be used for treating the reaction solution, but when a base is used as a catalyst, a method of neutralizing the reaction solution by adding an acid is preferable.
  • the acid used for neutralization include hydrochloric acid, sulfuric acid, nitric acid, and acetic acid. Acetic acid is particularly preferable.
  • the amount of the acid used for neutralization is not particularly limited as long as the pH of the reaction solution is in the range of 4 to 9, but is preferably 0.1 to 3 moles, particularly preferably, relative to the base used. , In the range of 0.2 to 1.5 moles.
  • the appropriate organic solvent is a water-insoluble solvent such as ethyl acetate, toluene, dichloromethane, ether, or a mixed solvent of the water-insoluble solvent and tetrahydrofuran or an alcohol solvent, preferably Ethyl acetate.
  • Exemplified Compound 1 can be synthesized by the following scheme.
  • the precipitate collected by filtration was dissolved in 80 ml of methanol, 300 ml of pure water was added, and acetic acid was added dropwise until the pH of the solution reached 7.
  • the precipitated crystals were collected by filtration, washed with pure water, and blown and dried at 50 ° C. to obtain 38.6 g of Exemplified Compound 1.
  • the yield was 70% based on benzoylhydrazine.
  • the 1 H-NMR spectrum of the obtained exemplary compound 176 is as follows. In order to avoid complication of chemical shift due to the presence of tautomers, the measurement was performed by adding a few drops of trifluoroacetic acid to the measurement solvent.
  • the compound having the structure represented by the general formula (1) according to the present invention can be appropriately adjusted and contained in the cellulose acylate film, but the addition amount is 0 in the cellulose acylate film. It is preferable to contain 5 to 10% by mass. If it is in the said range, the effect which suppresses the phase difference fluctuation
  • the content is preferably 0.5 to 5% by mass.
  • the compound having the structure represented by the general formula (1) may be added as a powder to the resin forming the cellulose acylate film. After dissolving in a solvent, the cellulose acylate film is added. It may be added to the resin forming the.
  • the organic ester according to the present invention is an organic ester having a melting point in the range of ⁇ 60 to 120 ° C. and a 1% mass reduction temperature Td1 in the range of 100 to 350 ° C. by differential heat / thermogravimetry.
  • the said organic ester is at least 1 sort (s) selected from sugar ester, polycondensation ester, and polyhydric alcohol ester,
  • the said polycondensation ester is An ester that does not contain a nitrogen atom in the structure is preferred.
  • the melting point was measured using a differential thermal / thermogravimetric simultaneous measurement apparatus EXSTAR 6220DSC manufactured by Seiko Instruments Inc. 10 mg of the sample compound was placed in an aluminum pan, and the melting point was determined from the endothermic / exothermic peak when the temperature was changed from 30 ° C. to 350 ° C. and from 350 ° C. to 30 ° C. at 10 ° C./min. When a compound having a melting point of 0 ° C. or lower was measured, the melting point was determined from endothermic / exothermic peaks at temperatures of ⁇ 50 ° C. to 30 ° C. and 30 ° C. to ⁇ 50 ° C. at 5 ° C./min.
  • the organic ester according to the present invention needs to have a melting point within the range of ⁇ 60 to 120 ° C., and preferably within the range of ⁇ 45 ° C. to 90 ° C., in order to exhibit the effects of the present invention.
  • the melting point of the organic ester is in the range of ⁇ 60 to 120 ° C., it is likely to be liquefied after being scattered in the production line and after cooling, so that it is preferably within this range from the viewpoint of manifesting the effects of the present invention. .
  • the measurement of the 1% mass reduction temperature Td1 of the organic ester is carried out by, for example, adding 10 mg of a sample compound to an aluminum pan using a differential thermal / thermogravimetric simultaneous measuring apparatus manufactured by Seiko Instruments Inc., EXSTAR 6200TG / DTA, and 100 ° C. at 50 ° C./min.
  • the temperature when heated to 40 ° C. at a rate of 10 ° C./min and then monitored for mass fluctuation while the temperature is reduced by 1% by mass is defined as 1% mass decrease temperature. To do.
  • the measurement is performed under dry air (dew point ⁇ 30 ° C.).
  • the 1% mass reduction temperature needs to be in the range of 100 to 300 ° C, and preferably in the range of 200 to 270 ° C. is there.
  • the 1% mass reduction temperature of the organic ester is 100 ° C. or higher, the viscosity when liquefied after scattering and cooling is moderate, and the bulk of the scattered nitrogen-containing heterocyclic compound can be reduced.
  • the% mass reduction temperature is 350 ° C. or less, the organic ester is scattered in an amount necessary for reducing the bulk of the nitrogen-containing heterocyclic compound, and a sufficient effect can be obtained. .
  • the content of the organic ester of the present invention is preferably in the range of 0.5 to 20% by mass in the cellulose acylate film of the present invention. If it is within this range, the nitrogen-containing heterocyclic compound is scattered at the same time, the organic ester is also scattered, the scattered matter is cooled in the production line and liquefied, and adheres to the filter as a highly viscous deposit.
  • the bulk of the spatter can be reduced by the viscosity, reducing filter clogging and extending filter life
  • sugar esters polycondensation esters, and polyhydric alcohol esters will be described as organic esters preferably used in the present invention.
  • a compound having the melting point and 1% mass reduction temperature Td1 within the scope of the present invention can be appropriately selected and used from the following preferred organic esters.
  • the sugar ester according to the present invention is preferably a sugar ester in which at least one pyranose ring or furanose ring is 1 to 12 and all or part of the OH groups in the structure are esterified.
  • the sugar ester according to the present invention is a compound containing at least one of a furanose ring and a pyranose ring, and may be a monosaccharide or a polysaccharide having 2 to 12 sugar structures linked together.
  • the sugar ester is preferably a compound in which at least one OH group of the sugar structure is esterified.
  • the average ester substitution degree is preferably within the range of 4.0 to 8.0, and more preferably within the range of 5.0 to 7.5.
  • the sugar ester according to the present invention is not particularly limited, and examples thereof include sugar esters represented by the following general formula (A).
  • G represents a monosaccharide or disaccharide residue
  • R 2 represents an aliphatic group or an aromatic group
  • m is directly bonded to the monosaccharide or disaccharide residue
  • N is the total number of — (O—C ( ⁇ O) —R 2 ) groups directly bonded to the monosaccharide or disaccharide residue, 3 ⁇ m + n ⁇ 8, and n ⁇ 0.
  • the sugar ester having the structure represented by the general formula (A) is a single kind of hydroxy group (m) and-(O—C ( ⁇ O) —R 2 ) groups in which the number (n) is fixed. It is difficult to isolate as a compound, and it is known that a compound in which several components different in m and n in the formula are mixed is obtained. Therefore, performance as a mixture in which the number of hydroxy groups (m) and the number of — (O—C ( ⁇ O) —R 2 ) groups (n) are changed is important, and the cellulose acylate film of the present invention In this case, sugar esters having an average ester substitution degree in the range of 5.0 to 7.5 are preferred.
  • G represents a monosaccharide or disaccharide residue.
  • monosaccharides include allose, altrose, glucose, mannose, gulose, idose, galactose, talose, ribose, arabinose, xylose, lyxose, and the like.
  • disaccharide residue examples include trehalose, sucrose, maltose, cellobiose, gentiobiose, lactose, and isotrehalose.
  • R 2 represents an aliphatic group or an aromatic group.
  • the aliphatic group and the aromatic group may each independently have a substituent.
  • m is the total number of hydroxy groups directly bonded to the monosaccharide or disaccharide residue, and n is directly bonded to the monosaccharide or disaccharide residue.
  • the total number of — (O—C ( ⁇ O) —R 2 ) groups it is necessary that 3 ⁇ m + n ⁇ 8, and it is preferable that 4 ⁇ m + n ⁇ 8. Further, n ⁇ 0.
  • the — (O—C ( ⁇ O) —R 2 ) groups may be the same as or different from each other.
  • the aliphatic group in the definition of R 2 may be linear, branched or cyclic, and preferably has 1 to 25 carbon atoms, more preferably 1 to 20 carbon atoms. Those of ⁇ 15 are particularly preferred. Specific examples of the aliphatic group include, for example, methyl, ethyl, n-propyl, iso-propyl, cyclopropyl, n-butyl, iso-butyl, tert-butyl, amyl, iso-amyl, tert-amyl, n- Examples include hexyl, cyclohexyl, n-heptyl, n-octyl, bicyclooctyl, adamantyl, n-decyl, tert-octyl, dodecyl, hexadecyl, octadecyl, didecyl and the like.
  • the aromatic group in the definition of R 2 may be an aromatic hydrocarbon group or an aromatic heterocyclic group, and more preferably an aromatic hydrocarbon group.
  • the aromatic hydrocarbon group preferably has 6 to 24 carbon atoms, more preferably 6 to 12 carbon atoms. Specific examples of the aromatic hydrocarbon group include rings such as benzene, naphthalene, anthracene, biphenyl, and terphenyl.
  • rings such as benzene, naphthalene, anthracene, biphenyl, and terphenyl.
  • a benzene ring, a naphthalene ring, and a biphenyl ring are particularly preferable.
  • As the aromatic heterocyclic group a ring containing at least one of an oxygen atom, a nitrogen atom or a sulfur atom is preferable.
  • heterocyclic ring examples include, for example, furan, pyrrole, thiophene, imidazole, pyrazole, pyridine, pyrazine, pyridazine, triazole, triazine, indole, indazole, purine, thiazoline, thiadiazole, oxazoline, oxazole, oxadiazole, quinoline, Examples of each ring include isoquinoline, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, acridine, phenanthroline, phenazine, tetrazole, benzimidazole, benzoxazole, benzthiazole, benzotriazole, and tetrazaindene.
  • aromatic heterocyclic group a pyridine ring, a triazine ring, and a quinoline ring are particularly preferable
  • sugar ester represented by the general formula (A) is shown below, but the present invention is not limited to these exemplified compounds.
  • the following exemplified compounds all have a melting point and 1% mass reduction temperature Td1 within the scope of the present invention.
  • a sugar ester may contain two or more different substituents in one molecule, contains an aromatic substituent and an aliphatic substituent in one molecule, and contains two or more different aromatic substituents. Two or more different aliphatic substituents contained in one molecule can be contained in one molecule.
  • the addition amount of the sugar ester is preferably 0.5 to 20% by mass with respect to the cellulose acylate film from the viewpoint of enhancing optical stability against environmental fluctuations. It is more preferable to add in the range of 1 to 15% by mass.
  • ⁇ Polycondensed ester> In the cellulose acylate film of the present invention, it is preferable to use a polycondensed ester having a structure represented by the following general formula (4) as the organic ester.
  • the polycondensed ester is preferably contained in the range of 0.5 to 20% by mass relative to the cellulose acylate film from the viewpoint of its plastic effect in addition to the effects of the present invention. More preferably, it is contained in the range of 1 to 10% by mass.
  • B 3 and B 4 each independently represent an aliphatic or aromatic monocarboxylic acid residue or a hydroxy group.
  • G 2 represents an alkylene glycol residue having 2 to 12 carbon atoms, an aryl glycol residue having 6 to 12 carbon atoms, or an oxyalkylene glycol residue having 4 to 12 carbon atoms.
  • A represents an alkylene dicarboxylic acid residue having 4 to 12 carbon atoms or an aryl dicarboxylic acid residue having 6 to 12 carbon atoms.
  • n represents an integer of 1 or more.
  • the polycondensed ester is a polycondensed ester containing a repeating unit obtained by reacting a dicarboxylic acid and a diol, A represents a carboxylic acid residue in the polycondensed ester, and G 2 represents an alcohol residue.
  • the dicarboxylic acid constituting the polycondensed ester is an aromatic dicarboxylic acid, an aliphatic dicarboxylic acid or an alicyclic dicarboxylic acid, preferably an aromatic dicarboxylic acid.
  • the dicarboxylic acid may be one type or a mixture of two or more types. In particular, it is preferable to mix aromatic and aliphatic.
  • the diol constituting the polycondensed ester is an aromatic diol, an aliphatic diol or an alicyclic diol, preferably an aliphatic diol, more preferably a diol having 1 to 4 carbon atoms.
  • the diol may be one type or a mixture of two or more types.
  • Both ends of the polycondensed ester molecule may or may not be sealed.
  • alkylene dicarboxylic acid constituting A in the general formula (4) examples include 1,2-ethanedicarboxylic acid (succinic acid), 1,3-propanedicarboxylic acid (glutaric acid), 1,4-butanedicarboxylic acid. Divalent groups derived from (adipic acid), 1,5-pentanedicarboxylic acid (pimelic acid), 1,8-octanedicarboxylic acid (sebacic acid) and the like are included.
  • alkenylene dicarboxylic acid constituting A include maleic acid and fumaric acid.
  • aryl dicarboxylic acid constituting A examples include 1,2-benzenedicarboxylic acid (phthalic acid), 1,3-benzenedicarboxylic acid, 1,4-benzenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and the like. Can be mentioned.
  • A may be one type or two or more types may be combined. Among them, A is preferably a combination of an alkylene dicarboxylic acid having 4 to 12 carbon atoms and an aryl dicarboxylic acid having 8 to 12 carbon atoms.
  • G 2 in the general formula (4) is a divalent group derived from an alkylene glycol having 2 to 12 carbon atoms, a divalent group derived from an aryl glycol having 6 to 12 carbon atoms, or a carbon atom. It represents a divalent group derived from oxyalkylene glycol of 4 to 12.
  • Examples of the divalent group derived from an alkylene glycol having 2 to 12 carbon atoms in G 2 include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, , 3-butanediol, 1,2-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (Neopentyl glycol), 2,2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-di-) Methylol heptane), 3-methyl-1,5-pentanediol, 1,6-hexanediol, 2,2,4-trimethyl-1,3-p
  • divalent groups derived from aryl glycols having 6 to 12 carbon atoms in G 2 include 1,2-dihydroxybenzene (catechol), 1,3-dihydroxybenzene (resorcinol), 1,4-dihydroxy Divalent groups derived from benzene (hydroquinone) and the like are included.
  • divalent group derived from oxyalkylene glycol having 4 to 12 carbon atoms in G are derived from diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol and the like. Divalent groups are included.
  • G 2 may be a single type or a combination of two or more types.
  • G 2 is preferably a divalent group derived from an alkylene glycol having 2 to 12 carbon atoms, more preferably 2 to 5, and most preferably 2 to 4.
  • B 3 and B 4 in the general formula (4) are each a monovalent group derived from an aromatic ring-containing monocarboxylic acid or an aliphatic monocarboxylic acid, or a hydroxy group.
  • the aromatic ring-containing monocarboxylic acid in the monovalent group derived from the aromatic ring-containing monocarboxylic acid is a carboxylic acid containing an aromatic ring in the molecule, and not only those in which the aromatic ring is directly bonded to a carboxy group, Also included are those in which an aromatic ring is bonded to a carboxy group via an alkylene group or the like.
  • monovalent groups derived from aromatic ring-containing monocarboxylic acids include benzoic acid, para-tert-butyl benzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethyl benzoic acid, ethyl benzoic acid, and normal propyl benzoic acid.
  • Examples of monovalent groups derived from aliphatic monocarboxylic acids include monovalent groups derived from acetic acid, propionic acid, butanoic acid, caprylic acid, caproic acid, decanoic acid, dodecanoic acid, stearic acid, oleic acid and the like. Is included. Among these, a monovalent group derived from an alkyl monocarboxylic acid having 1 to 3 carbon atoms in the alkyl portion is preferable, and an acetyl group (a monovalent group derived from acetic acid) is more preferable.
  • the weight average molecular weight of the polycondensed ester according to the present invention is preferably in the range of 500 to 3000, more preferably in the range of 600 to 2000.
  • the weight average molecular weight can be measured by the gel permeation chromatography (GPC).
  • the flask is charged and gradually heated with stirring until it reaches 230 ° C. in a nitrogen stream.
  • the dehydration condensation reaction was carried out while observing the degree of polymerization.
  • unreacted 1,2-propylene glycol was distilled off at 200 ° C. under reduced pressure to obtain the following polycondensed ester P2.
  • the cellulose acylate film of the present invention preferably contains a polyhydric alcohol ester.
  • the polyhydric alcohol ester is a compound composed of an ester of a dihydric or higher aliphatic polyhydric alcohol and a monocarboxylic acid, and preferably has an aromatic ring or a cycloalkyl ring in the molecule.
  • a divalent to 20-valent aliphatic polyhydric alcohol ester is preferred.
  • the polyhydric alcohol preferably used in the present invention is represented by the following general formula (5).
  • R 11 represents an n-valent organic group
  • n represents a positive integer of 2 or more
  • the OH group represents an alcoholic and / or phenolic hydroxyl group.
  • Examples of preferred polyhydric alcohols include the following, but the present invention is not limited to these.
  • triethylene glycol triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, sorbitol, trimethylolpropane, and xylitol are preferable.
  • monocarboxylic acid used for polyhydric alcohol ester there is no restriction
  • Preferred examples of the monocarboxylic acid include the following, but the present invention is not limited to this.
  • aliphatic monocarboxylic acid a fatty acid having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used.
  • the number of carbon atoms is more preferably 1-20, and particularly preferably 1-10.
  • the inclusion of acetic acid is preferred because the compatibility with cellulose acetate increases, and it is also preferred to use a mixture of acetic acid and other monocarboxylic acids.
  • Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanoic acid, undecylic acid, lauric acid, tridecylic acid, Saturated fatty acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, laccelic acid, undecylenic acid, olein Examples thereof include unsaturated fatty acids such as acid, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid.
  • Examples of preferable alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
  • aromatic monocarboxylic acids examples include those in which 1 to 3 alkoxy groups such as alkyl group, methoxy group or ethoxy group are introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, biphenylcarboxylic acid, Examples thereof include aromatic monocarboxylic acids having two or more benzene rings such as naphthalenecarboxylic acid and tetralincarboxylic acid, or derivatives thereof. Benzoic acid is particularly preferable.
  • the molecular weight of the polyhydric alcohol ester is not particularly limited, but is preferably in the range of 300 to 1500, and more preferably in the range of 350 to 750. A higher molecular weight is preferable because it is less likely to volatilize, and a lower molecular weight is preferable in terms of moisture permeability and compatibility with cellulose acylate.
  • the carboxylic acid used in the polyhydric alcohol ester may be one kind or a mixture of two or more kinds. Moreover, all the OH groups in the polyhydric alcohol may be esterified, or a part of the OH groups may be left as they are.
  • the following are specific compounds of polyhydric alcohol esters.
  • the following exemplified compounds all have a melting point and 1% mass reduction temperature Td1 within the scope of the present invention.
  • the polyhydric alcohol ester according to the present invention is preferably contained in the range of 0.5 to 20% by mass with respect to the cellulose acylate film from the viewpoint of obtaining the effects of the present invention and the plastic effect. % Is more preferable, and the content is particularly preferably in the range of 1 to 10% by mass.
  • the polyhydric alcohol ester according to the present invention can be synthesized according to a conventionally known general synthesis method.
  • the cellulose acylate film of the present invention can use a phosphate ester.
  • phosphoric acid esters triaryl phosphoric acid esters, diaryl phosphoric acid esters, monoaryl phosphoric acid esters, aryl phosphonic acid compounds, aryl phosphine oxide compounds, condensed aryl phosphoric acid esters, halogenated alkyl phosphoric acid esters, halogen-containing condensed phosphoric acid Examples thereof include esters, halogen-containing condensed phosphonic acid esters, and halogen-containing phosphorous acid esters.
  • Specific phosphoric acid esters include triphenyl phosphate, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phenylphosphonic acid, tris ( ⁇ -chloroethyl) phosphate, tris (dichloro) Propyl) phosphate, tris (tribromoneopentyl) phosphate, and the like.
  • glycolic acid esters (glycolate compounds) can be used as one kind of polyhydric alcohol esters.
  • the glycolate compound applicable to the present invention is not particularly limited, but alkylphthalylalkyl glycolates can be preferably used.
  • alkyl phthalyl alkyl glycolates include methyl phthalyl methyl glycolate, ethyl phthalyl ethyl glycolate, propyl phthalyl propyl glycolate, butyl phthalyl butyl glycolate, octyl phthalyl octyl glycolate, methyl phthalyl Ethyl glycolate, ethyl phthalyl methyl glycolate, ethyl phthalyl propyl glycolate, methyl phthalyl butyl glycolate, ethyl phthalyl butyl glycolate, butyl phthalyl methyl glycolate, butyl phthalyl ethyl glycolate, propyl phthalyl butyl Glycolate, butyl phthalyl propyl glycolate, methyl phthalyl octyl glycolate, ethyl phthalyl octyl glycolate, octyl phthalyl
  • the cellulose acylate film of the present invention preferably contains an ultraviolet absorber from the viewpoint of improving light resistance.
  • the ultraviolet absorber is intended to improve light resistance by absorbing ultraviolet rays of 400 nm or less, and in particular, the transmittance at a wavelength of 370 nm is preferably in the range of 2 to 30%, more preferably 4 It is in the range of -20%, more preferably in the range of 5-10%.
  • the UV absorbers preferably used in the present invention are benzotriazole UV absorbers, benzophenone UV absorbers, and triazine UV absorbers, and particularly preferably benzotriazole UV absorbers and benzophenone UV absorbers.
  • a discotic compound such as a compound having a 1,3,5-triazine ring is also preferably used as the ultraviolet absorber.
  • the cellulose acylate film of the present invention preferably contains two or more kinds of ultraviolet absorbers.
  • a polymeric ultraviolet absorber can be preferably used, and in particular, a polymer type ultraviolet absorber described in JP-A-6-148430 is preferably used. Moreover, it is preferable that the ultraviolet absorber does not have a halogen group.
  • the method of adding the UV absorber can be added to the dope after dissolving the UV absorber in an alcohol such as methanol, ethanol or butanol, an organic solvent such as methylene chloride, methyl acetate, acetone or dioxolane or a mixed solvent thereof. Or you may add directly in dope composition.
  • an alcohol such as methanol, ethanol or butanol
  • an organic solvent such as methylene chloride, methyl acetate, acetone or dioxolane or a mixed solvent thereof.
  • the amount of the UV absorber used is not uniform depending on the type of UV absorber, usage conditions, etc., but when the dry thickness of the cellulose acylate film is 15 to 50 ⁇ m, it is 0.5% relative to the cellulose acylate film.
  • the range of ⁇ 10% by mass is preferred, and the range of 0.6 ⁇ 4% by mass is more preferred.
  • Antioxidants are also referred to as deterioration inhibitors.
  • the cellulose acylate film may be deteriorated.
  • the antioxidant has a role of delaying or preventing the cellulose acylate film from being decomposed by, for example, the residual solvent amount of halogen in the cellulose acylate film or phosphoric acid of the phosphoric acid plasticizer. It is preferably contained in the cellulose acylate film of the invention.
  • a hindered phenol compound is preferably used.
  • 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di- -T-butyl-4-hydroxyphenyl) propionate] triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3 -(3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino)- 1,3,5-triazine, 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], oct Decyl-3- (3,5-di-t-butyl-4-hydroxyphenyl
  • 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3 -(3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate] is preferred.
  • hydrazine-based metal deactivators such as N, N′-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine and tris (2,4-di- A phosphorus processing stabilizer such as t-butylphenyl) phosphite may be used in combination.
  • the amount of these compounds to be added is preferably in the range of 1 ppm to 1.0% by mass with respect to the cellulose acylate film, and more preferably in the range of 10 to 1000 ppm.
  • the cellulose acylate film may further contain fine particles (matting agent) as necessary in order to enhance the slipperiness of the surface.
  • the fine particles may be inorganic fine particles or organic fine particles.
  • inorganic fine particles include silicon dioxide (silica), titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, Examples include magnesium silicate and calcium phosphate.
  • silicon dioxide and zirconium oxide are preferable, and silicon dioxide is more preferable in order to reduce the increase in haze of the obtained film.
  • Examples of the fine particles of silicon dioxide include Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600, NAX50 (manufactured by Nippon Aerosil Co., Ltd.), Seahoster KE-P10, KE-P30, KE-P50, KE-P100 (manufactured by Nippon Shokubai Co., Ltd.) and the like are included.
  • Aerosil R972V, NAX50, Seahoster KE-P30 and the like are particularly preferable because they reduce the coefficient of friction while keeping the turbidity of the resulting film low.
  • the primary particle diameter of the fine particles is preferably in the range of 5 to 50 nm, more preferably in the range of 7 to 20 nm.
  • a larger primary particle size has a larger effect of increasing the slipperiness of the resulting film, but the transparency tends to decrease. Therefore, the fine particles may be contained as secondary aggregates having a particle diameter in the range of 0.05 to 0.3 ⁇ m.
  • the size of the primary particles or the secondary aggregates of the fine particles is determined by observing the primary particles or secondary aggregates with a transmission electron microscope at a magnification of 500 to 2 million times, and 100 particles of primary particles or secondary aggregates. It can obtain
  • the content of the fine particles is preferably in the range of 0.05 to 1.0% by mass, more preferably in the range of 0.1 to 0.8% by mass with respect to the resin forming the cellulose acylate film. preferable.
  • ⁇ Phase difference control agent> In order to improve the display quality of image display devices such as liquid crystal display devices, a retardation control agent is added to the cellulose acylate film, or an alignment film is formed to provide a liquid crystal layer, derived from the polarizing plate protective film and the liquid crystal layer By combining the above retardation, optical compensation ability can be imparted to the cellulose acylate film.
  • Examples of the retardation control agent include aromatic compounds having two or more aromatic rings as described in EP 911,656A2, and rod-like compounds described in JP-A-2006-2025. It is done. Two or more aromatic compounds may be used in combination.
  • the aromatic ring of the aromatic compound is preferably an aromatic heterocyclic ring including an aromatic heterocyclic ring in addition to the aromatic hydrocarbon ring.
  • the aromatic heterocycle is generally an unsaturated heterocycle. Of these, the 1,3,5-triazine ring described in JP-A-2006-2026 is preferable.
  • the compound having the structure represented by the general formula (1) also functions as a retardation control agent.
  • the compound which has a structure represented by General formula (1) can provide the function of both phase difference control and the optical value fluctuation
  • the addition amount of these retardation control agents is preferably in the range of 0.5 to 20% by mass, preferably in the range of 1 to 10% by mass, with respect to 100% by mass of the resin used as the film substrate. More preferably.
  • a method for producing the cellulose acylate film of the present invention production methods such as a normal inflation method, a T-die method, a calendar method, a cutting method, a casting method, an emulsion method, and a hot press method can be used. From the viewpoint of suppressing foreign matter defects, optical defects such as die lines, etc., a film casting method can be selected from a solution casting film forming method and a melt casting film forming method, and in particular, a solution casting film forming method. From the viewpoint of obtaining a uniform and smooth surface.
  • the cellulose acylate film of the present invention is prepared by dissolving at least additives such as cellulose acylate, nitrogen-containing heterocyclic compound and organic ester in a solvent to prepare a dope, and supporting the dope with a belt-shaped or drum-shaped metal support It is performed by a step of casting on a body, a step of drying the cast dope as a web, a step of peeling from a metal support, a step of stretching, a step of further drying, and a step of winding after cooling.
  • the cellulose acylate film of the present invention preferably contains cellulose acylate in the solid content in the range of 60 to 95% by mass.
  • Dissolution step In an organic solvent mainly composed of a good solvent for cellulose acylate, the cellulose acylate in a dissolution vessel, and in some cases, a nitrogen-containing heterocyclic compound, a sugar ester, a polycondensed ester, a polyvalent ester according to the present invention
  • any organic solvent useful for forming a dope can be used without limitation as long as it dissolves cellulose acylate and other compounds simultaneously. .
  • methylene chloride as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc.
  • Methylene chloride, methyl acetate, ethyl acetate, and acetone can be preferably used.
  • the dope preferably contains a linear or branched aliphatic alcohol having 1 to 4 carbon atoms in the range of 1 to 40% by mass.
  • a linear or branched aliphatic alcohol having 1 to 4 carbon atoms in the range of 1 to 40% by mass.
  • the ratio of alcohol in the dope increases, the web gels and peeling from the metal support becomes easy.
  • the ratio of alcohol is small, cellulose acylate and other compounds in a non-chlorine organic solvent system There is also a role to promote dissolution.
  • the dope having an alcohol concentration in the range of 0.5 to 15.0% by mass is formed from the viewpoint of improving the flatness of the obtained cellulose acylate film. The method to do can be applied.
  • a dope in which cellulose acylate and other compounds are dissolved in a total amount of 15 to 45% by mass in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • a composition is preferred.
  • linear or branched aliphatic alcohol having 1 to 4 carbon atoms examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Methanol and ethanol are preferred because of the stability, boiling point of these inner dopes, and good drying properties.
  • Cellulose acylate, nitrogen-containing heterocyclic compound, sugar ester, polycondensation ester, polyhydric alcohol ester, or other compounds are dissolved by a method of performing at normal pressure, a method of performing at or below the boiling point of the main solvent, A method of pressurizing at a boiling point or higher, a method of performing a cooling dissolution method as described in JP-A-9-95544, JP-A-9-95557, or JP-A-9-95538, JP-A-11-21379
  • Various dissolution methods such as a method performed at a high pressure described in the publication can be used, but a method performed by pressurizing at a temperature equal to or higher than the boiling point of the main solvent is particularly preferable.
  • the concentration of cellulose acylate in the dope is preferably in the range of 10 to 40% by mass.
  • a filter medium having a collected particle diameter of 0.5 to 5 ⁇ m and a drainage time of 10 to 25 sec / 100 ml.
  • the aggregate remaining at the time of particle dispersion and the aggregate generated when the main dope is added are aggregated by using a filter medium having a collected particle diameter of 0.5 to 5 ⁇ m and a drainage time of 10 to 25 sec / 100 ml. Can only be removed.
  • the concentration of particles is sufficiently thinner than that of the additive solution, so that aggregates do not stick together at the time of filtration and the filtration pressure does not increase suddenly.
  • FIG. 1 is a diagram schematically showing an example of a dope preparation step, a casting step, and a drying step of a solution casting film forming method preferable for the present invention.
  • the main dope is filtered by the main filter 3, and an ultraviolet absorber additive solution is added inline to the main dope 16.
  • the main dope may contain about 10 to 50% by weight of recycled material.
  • Recycled material is a finely pulverized cellulose acylate film, which is generated when the cellulose acylate film is formed, and has exceeded the specified value of the film due to a material that has been cut off on both sides of the film, or due to scratches, etc.
  • a cellulose acylate film raw material is used.
  • a material obtained by pelletizing cellulose acylate and other compounds in advance can be preferably used as a raw material for the resin used for preparing the dope.
  • the metal support in the casting process is preferably a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
  • the cast width can be in the range of 1 to 4 m, preferably in the range of 1.5 to 3 m, more preferably in the range of 2 to 2.8 m.
  • the surface temperature of the metal support in the casting step is set in the range of ⁇ 50 ° C. to below the temperature at which the solvent boils and does not foam, more preferably in the range of ⁇ 30 to 0 ° C. A higher temperature is preferable because the web can be dried faster, but if it is too high, the web may foam or the flatness may deteriorate.
  • a preferable support temperature is appropriately determined at 0 to 100 ° C., and more preferably within a range of 5 to 30 ° C.
  • the method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing warm air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short.
  • ⁇ Pressure dies that can adjust the slit shape of the die base and make the film thickness uniform are preferred.
  • the pressure die include a coat hanger die and a T die, and any of them is preferably used.
  • the surface of the metal support is a mirror surface. In order to increase the film forming speed, two or more pressure dies may be provided on the metal support, and the dope amount may be divided and stacked.
  • the web on the support after casting is preferably dried on the support in an atmosphere of 40 to 100 ° C. In order to maintain the atmosphere at 40 to 100 ° C., it is preferable to apply hot air at this temperature to the upper surface of the web or heat by means such as infrared rays.
  • the temperature at the peeling position on the metal support is preferably in the range of 10 to 40 ° C, more preferably in the range of 11 to 30 ° C.
  • the amount of residual solvent at the time of peeling of the web on the metal support at the time of peeling is preferably 50 to 120% by mass depending on the strength of drying conditions, the length of the metal support, and the like.
  • the amount of solvent is determined.
  • the residual solvent amount of the web is defined by the following formula (Z).
  • Residual solvent amount (%) (mass before web heat treatment ⁇ mass after web heat treatment) / (mass after web heat treatment) ⁇ 100 Note that the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
  • the peeling tension when peeling the metal support from the film is usually in the range of 196 to 245 N / m. However, when wrinkles are likely to occur during peeling, peeling with a tension of 190 N / m or less is preferable. .
  • the temperature at the peeling position on the metal support is preferably in the range of ⁇ 50 to 40 ° C., more preferably in the range of 10 to 40 ° C., and in the range of 15 to 30 ° C. Is most preferred.
  • the drying step can be divided into a preliminary drying step and a main drying step.
  • the web obtained by peeling from the metal support is dried.
  • the web may be dried while being conveyed by a large number of rollers arranged above and below, or may be dried while being conveyed while fixing both ends of the web with clips like a tenter dryer. .
  • the means for drying the web is not particularly limited, and can be generally performed with hot air, infrared rays, a heating roller, microwave, or the like, but it is preferably performed with hot air in terms of simplicity.
  • the drying temperature in the web drying step is preferably a glass transition temperature of the film of ⁇ 5 ° C. or lower, and it is effective to perform heat treatment at 100 ° C. or higher and 10 minutes or longer and 60 minutes or shorter. Drying is performed at a drying temperature in the range of 100 to 200 ° C, more preferably in the range of 110 to 160 ° C.
  • the cellulose acylate film of the present invention is preferably stretched in the MD direction and / or TD direction, and is preferably produced by stretching in the TD direction by at least a tenter stretching apparatus.
  • the stretching may be uniaxial stretching or biaxial stretching, and biaxial stretching includes a mode in which stretching is performed in one direction and the tension in the other direction is relaxed and contracted.
  • the cellulose acetate film of the present invention has (Tg + 15) when the glass transition temperature of the film is defined as Tg in the MD direction and / or TD direction, preferably in the TD direction so that the film thickness after stretching is in a desired range. ) To (Tg + 50) ° C. is preferably stretched. If the stretching is performed within the above temperature range, the retardation can be easily adjusted, and the stretching stress can be reduced, so that the haze is lowered. Moreover, the polarizing plate cellulose acylate film which suppressed generation
  • the stretching temperature is preferably in the range of (Tg + 20) to (Tg + 40) ° C.
  • the glass transition temperature Tg referred to here is a midpoint glass transition temperature (Tmg) measured at a rate of temperature increase of 20 ° C./min using a commercially available differential scanning calorimeter and determined according to JIS K7121 (1987). It is.
  • a specific method for measuring the glass transition temperature Tg of the cellulose acylate film is measured using a differential scanning calorimeter DSC220 manufactured by Seiko Instruments Inc. according to JIS K7121 (1987).
  • the cellulose acylate film of the present invention preferably stretches the web at least 1.1 times in the TD direction.
  • the range of stretching is preferably 1.1 to 1.5 times the original width, more preferably 1.05 to 1.3 times.
  • the movement of molecules in the film is large, and not only a desired retardation value can be obtained, but also the behavior of the dimensional change of the film can be controlled within the desired range.
  • the film in the MD direction when the residual solvent amount is 40% by mass or more after film formation, and in the TD direction when the residual solvent amount is less than 40% by mass. It is preferable to stretch.
  • peeling is preferably performed at a peeling tension of 130 N / m or more, particularly preferably 150 to 170 N / m. Since the web after peeling is in a high residual solvent state, stretching in the MD direction can be performed by maintaining the same tension as the peeling tension. As the web dries and the residual solvent amount decreases, the draw ratio in the MD direction decreases.
  • the draw ratio in the MD direction can be calculated from the rotation speed of the belt support and the tenter operation speed.
  • the entire drying process or a part of the process as disclosed in Japanese Patent Application Laid-Open No. 62-46625 can be performed while holding the width ends of the web with clips or pins in the width direction.
  • a drying method (referred to as a tenter method), among them, a tenter method using clips and a pin tenter method using pins are preferably used.
  • the cellulose acylate film of the present invention inevitably has retardation by stretching, but the in-plane retardation value Ro and the retardation value Rt in the thickness direction are measured by an automatic birefringence meter Axoscan (Axo Scan Mueller Matrix).
  • Polarimeter manufactured by Axometrics Co., Ltd.
  • Polarimeter can be calculated from the obtained refractive indexes nx, ny, and nz by performing a three-dimensional refractive index measurement at a wavelength of 590 nm in an environment of 23 ° C. and 55% RH. .
  • the cellulose acylate film of the present invention has an in-plane retardation value Ro defined by the following formula (i) within a range of 40 to 70 nm, and a thickness direction retarder defined by the following formula (ii): It is preferable that the foundation value Rt is in the range of 100 to 300 nm from the viewpoint of improving the visibility when the VA mode liquid crystal display device is provided.
  • the cellulose acylate film can be adjusted within the above retardation value by stretching at least while adjusting the stretching ratio in the TD direction.
  • n x represents a refractive index in the direction x in which the refractive index is maximized in the plane direction of the film.
  • n y in-plane direction of the film, the refractive index in the direction y perpendicular to the direction x.
  • nz represents the refractive index in the thickness direction z of the film.
  • d represents the thickness (nm) of the film.
  • the knurling process can be formed by pressing a heated embossing roller. Fine embossing is formed on the embossing roller, and by pressing the embossing roller, unevenness can be formed on the film and the end can be made bulky.
  • the height of the knurling at both ends of the width of the retardation film of the present invention is preferably 4 to 20 ⁇ m and the width is 5 to 20 mm.
  • the knurling process is preferably provided after the drying in the film forming process and before winding.
  • Winding step This is a step of winding as a film after the residual solvent amount in the web is 2% by mass or less, and the film having good dimensional stability by making the residual solvent amount 0.4% by mass or less. Can be obtained.
  • a generally used method may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, and the like.
  • (B) Melt casting method The method for producing the cellulose acylate film of the present invention by the melt casting method is as follows: B1) Step for producing molten pellets (pelletizing step), B2) Extruding after melt-kneading the molten pellets A step (melt extrusion step), B3) a step of cooling and solidifying the molten resin to obtain a web (cooling solidification step), and B4) a step of stretching the web (stretching step).
  • the composition containing the cellulose acylate which is the main component of the cellulose acylate film is previously kneaded and pelletized.
  • Pelletization can be performed by a known method. For example, a resin composition containing the above-described cellulose acylate and, if necessary, an additive such as a plasticizer is melt-kneaded in an extruder, and then die-molded. Extruded into strands. The molten resin extruded in a strand form can be cooled with water or air, and then cut to obtain pellets.
  • the raw material of the pellet is preferably dried before being supplied to the extruder in order to prevent decomposition.
  • the mixture of the antioxidant and the thermoplastic resin may be mixed with each other, may be mixed by impregnating the thermoplastic resin with an antioxidant dissolved in a solvent, or the antioxidant may be thermoplastic.
  • the resin may be sprayed and mixed.
  • the atmosphere around the feeder portion of the extruder and the outlet portion of the die is preferably an atmosphere of dehumidified air or nitrogen gas in order to prevent deterioration of the raw material of the pellet.
  • the extruder it is preferable to knead at a low shearing force or at a low temperature so as not to cause deterioration of the resin (decrease in molecular weight, coloring, gel formation, etc.).
  • a twin-screw extruder it is preferable to use a deep groove type screw so that the rotational directions of the two screws are the same.
  • two screw shapes mesh with each other.
  • the melting temperature of the film material in the extruder is preferably in the range of Tg to (Tg + 100) ° C., more preferably when the glass transition temperature of the film is Tg (° C.), although it depends on the type of film material. Is in the range of (Tg + 10) to (Tg + 90) ° C.
  • a mixing device such as a static mixer is further arranged on the downstream side of the extruder to uniformly mix these components. May be.
  • the molten resin extruded from the extruder is filtered through a leaf disc filter or the like as necessary, and further mixed with a static mixer or the like, and extruded from a die into a film.
  • the extrusion flow rate is preferably stabilized using a gear pump.
  • the leaf disk filter used for removal of a foreign material is a stainless fiber sintered filter.
  • the stainless steel fiber sintered filter is an integrated, intricately intertwined stainless steel fiber body that is compressed and sintered by integrating the contact points. The density is changed according to the thickness of the fiber and the amount of compression, and the filtration accuracy is adjusted. it can.
  • the melting temperature of the resin at the exit of the die can be in the range of about 200-300 ° C.
  • Cooling and solidifying step The resin extruded from the die is nipped between the cooling roller and the elastic touch roller to make the film-like molten resin a predetermined thickness. Then, the film-like molten resin is cooled and solidified stepwise by a plurality of cooling rollers.
  • the surface temperature of the cooling roller can be Tg (° C.) or lower when the glass transition temperature of the obtained film is Tg (° C.).
  • the surface temperatures of the plurality of cooling rollers may be different.
  • the elastic touch roller is also called a pinching rotary body.
  • a commercially available elastic touch roller can also be used.
  • the film surface temperature on the elastic touch roller side can be in the range of Tg to (Tg + 110) ° C. of the film.
  • the film-like molten resin solidified from the cooling roller is peeled off with a peeling roller or the like to obtain a web.
  • peeling the film-like molten resin it is preferable to adjust the tension in order to prevent deformation of the obtained web.
  • Stretching step The obtained web is stretched with a stretching machine to obtain a film. Stretching is performed in any of the web width direction, the conveyance direction, or the oblique direction.
  • the web stretching method, stretching ratio, and stretching temperature may be the same as described above.
  • the cellulose acylate film of the present invention preferably has a haze of less than 1%, more preferably less than 0.5%.
  • a haze meter Nippon Denshoku Industries Co., Ltd.
  • the equilibrium water content at 25 ° C. and 60% relative humidity is preferably 4% or less, and more preferably 3% or less.
  • Equilibrium moisture content is determined by leaving the sample film in a room conditioned at 23 ° C. and 20% relative humidity for 4 hours or more and then leaving it in a room conditioned at 23 ° C. and 80% RH for 24 hours. Using a meter (for example, CA-20, manufactured by Mitsubishi Chemical Corporation), moisture is dried and vaporized at a temperature of 150 ° C., and then quantified by the Karl Fischer method.
  • the cellulose acylate film of the present invention is preferably long and, specifically, preferably has a length of about 100 to 10,000 m, and is wound up in a roll shape.
  • the width of the cellulose acylate film of the present invention is preferably 1 m or more, more preferably 1.4 m or more, and particularly preferably 1.4 to 4 m.
  • the film thickness is preferably in the range of 10 to 100 ⁇ m from the viewpoint of thinning of the display device and productivity. If the film thickness is 10 ⁇ m or more, a certain level of film strength and retardation can be expressed. If the film thickness is 100 ⁇ m or less, fluctuations in phase difference due to heat and humidity can be suppressed. Preferably, it is in the range of 20 to 70 ⁇ m.
  • the film thickness unevenness of the film is preferably in the range of 0 to 5 ⁇ m, more preferably in the range of 0 to 3 ⁇ m, and still more preferably in the range of 0 to 2 ⁇ m in both the thickness direction and the width direction.
  • the cellulose acylate film of the present invention is bonded to at least one surface of a polarizer using a water paste or an active energy ray-curable adhesive.
  • a polyester film or an acrylic film is bonded to the polarizer using water glue or an active energy ray-curable adhesive on the surface of the polarizer opposite to the surface on which the cellulose acylate film is bonded. It is preferable that the phase difference is made smaller because fluctuations in the phase difference with respect to humidity are further reduced.
  • the viewing side film of the polarizing plate is provided with an antiglare layer or a clear hard coat layer, an antireflection layer, an antistatic layer, an antifouling layer, and the like. Is preferred.
  • the polarizer which is the main component of the polarizing plate of the present invention, is an element that passes only light having a plane of polarization in a certain direction, and a typical known polarizer is a polyvinyl alcohol polarizing film.
  • the polyvinyl alcohol polarizing film includes those obtained by dyeing iodine on a polyvinyl alcohol film and those obtained by dyeing a dichroic dye.
  • polarizer a polarizer obtained by forming a polyvinyl alcohol aqueous solution into a film and dyeing it by uniaxial stretching or dyeing and then uniaxially stretching and then preferably performing a durability treatment with a boron compound may be used.
  • the thickness of the polarizer is preferably 2 to 30 ⁇ m, particularly preferably 2 to 15 ⁇ m.
  • the ethylene unit content described in JP-A-2003-248123, JP-A-2003-342322, etc. is 1 to 4 mol%
  • the degree of polymerization is 2000 to 4000
  • the degree of saponification is 99.0 to 99.99 mol%.
  • the ethylene-modified polyvinyl alcohol is also preferably used.
  • an ethylene-modified polyvinyl alcohol film having a hot water cutting temperature of 66 to 73 ° C. is preferably used.
  • a polarizer using this ethylene-modified polyvinyl alcohol film is excellent in polarization performance and durability, and has little color unevenness, and is particularly preferably used for a large-sized liquid crystal display device.
  • the polarizing plate of the present invention is preferably a thin film, and the thickness of the polarizer is particularly preferably in the range of 2 to 15 ⁇ m from the viewpoint of achieving both the strength of the polarizing plate and the reduction of the thickness.
  • a laminated film type polarizer can be produced by the method described in JP 2011-1000016 A, JP 4691205 A, JP 4751481 A, and JP 4804589 A. Is preferred.
  • the polarizing laminated film includes a polarizer layer composed of a polyvinyl alcohol-based resin layer in which a dichroic dye is adsorbed and oriented, and can be used as a polarizing plate itself.
  • a polarizer layer composed of a polyvinyl alcohol-based resin layer in which a dichroic dye is adsorbed and oriented, and can be used as a polarizing plate itself.
  • the polyvinyl alcohol layer of the polarizing laminated film is peeled from the substrate film, whereby the polyvinyl alcohol layer is related to the present invention. It is to be used as a polarizer. According to the above method, since the thickness of the polarizer layer can be 15 ⁇ m or less, a thin polarizer can be obtained.
  • the polarizing plate of the present invention can be produced by a general method.
  • the saponified polyvinyl alcohol aqueous solution water glue
  • the saponified polyvinyl alcohol aqueous solution water glue
  • the saponified polyvinyl alcohol aqueous solution water glue
  • Another polarizing plate protective film can be bonded to the other surface.
  • the cellulose acylate film of the present invention is a liquid crystal display device, it is preferably provided on the liquid crystal cell side of the polarizer, and a conventional polarizing plate protective film can be used as the film outside the polarizer.
  • cellulose ester films for example, Konica Minoltak KC8UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC6UY, KC6UA, KC4UY, KC8UE, KC8UE, KC8UE, KC8UE, KC8UE, RHA, KC8UXW-RHA-C, KC8UXW-RHA-NC, KC4UXW-RHA-NC, manufactured by Konica Minolta Co., Ltd.
  • cellulose ester films for example, Konica Minoltak KC8UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC6UY, KC6UA, KC4UY, KC8UE, KC8UE, KC8UE, KC8UE, KC8UE, KC8UE, RHA, KC8UX
  • the cellulose acylate film of this invention and a polarizer are bonded by the active energy ray hardening adhesive.
  • the active energy ray curable adhesive As the active energy ray curable adhesive, the following ultraviolet curable adhesive is preferably used.
  • UV curable adhesive composition for polarizing plates a photo radical polymerization composition using photo radical polymerization, a photo cation polymerization composition using photo cation polymerization, and photo radical polymerization and photo cation polymerization are used in combination.
  • Hybrid type compositions are known.
  • the radical photopolymerizable composition includes a radically polymerizable compound containing a polar group such as a hydroxy group and a carboxy group described in JP-A-2008-009329 and a radically polymerizable compound not containing a polar group at a specific ratio.
  • Composition) and the like are known.
  • the radical polymerizable compound is preferably a compound having a radical polymerizable ethylenically unsaturated bond.
  • the compound having an ethylenically unsaturated bond capable of radical polymerization include a compound having a (meth) acryloyl group.
  • Examples of the compound having a (meth) acryloyl group include an N-substituted (meth) acrylamide compound and a (meth) acrylate compound.
  • (Meth) acrylamide means acrylamide or methacrylamide.
  • cationic photopolymerization type composition as disclosed in JP2011-08234A, ( ⁇ ) a cationic polymerizable compound, ( ⁇ ) a cationic photopolymerization initiator, and ( ⁇ ) a wavelength longer than 380 nm.
  • an ultraviolet curable adhesive composition containing each component of a photosensitizer exhibiting maximum absorption in the light of ( ⁇ ) and a naphthalene-based photosensitization aid.
  • other ultraviolet curable adhesives may be used.
  • Pretreatment process A pretreatment process is a process of performing an easy adhesion process on the adhesive surface of the cellulose acylate film with the polarizer.
  • Examples of the easy adhesion treatment include corona treatment and plasma treatment.
  • the ultraviolet curable adhesive is applied to at least one of the adhesive surfaces of the polarizer and the cellulose acylate film.
  • the application method is not particularly limited. For example, various wet coating methods such as a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater can be used.
  • various wet coating methods such as a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater can be used.
  • a pressure is applied with a roller or the like to uniformly spread the adhesive.
  • an uncured UV curable adhesive is irradiated with UV rays, and a cationic polymerizable compound (for example, an epoxy compound or an oxetane compound) or a radical polymerizable compound (for example, an acrylate compound, acrylamide).
  • a cationic polymerizable compound for example, an epoxy compound or an oxetane compound
  • a radical polymerizable compound for example, an acrylate compound, acrylamide.
  • the ultraviolet curable adhesive layer containing the compound and the like is cured, and the overlapped polarizer and the cellulose acylate film are bonded via the ultraviolet curable adhesive.
  • the active energy ray may be irradiated from either the polarizer side or the cellulose acylate film side.
  • the ultraviolet irradiation conditions can be adopted as the ultraviolet irradiation conditions as long as the ultraviolet curable adhesive applied to the present invention can be cured.
  • the dose of ultraviolet rays in the range of 50 ⁇ 1500mJ / cm 2 in accumulated light quantity, and even more preferably in the range of 100 ⁇ 500mJ / cm 2.
  • the line speed depends on the curing time of the adhesive, but is preferably in the range of 1 to 500 m / min, more preferably in the range of 5 to 300 m / min, and still more preferably in the range of 10 to The range is 100 m / min.
  • productivity can be ensured, or damage to the cellulose acylate film can be suppressed, and a polarizing plate having excellent durability can be produced.
  • the line speed is 500 m / min or less, the ultraviolet curable adhesive is sufficiently cured, and an ultraviolet curable adhesive layer having a desired hardness and excellent adhesiveness can be formed.
  • a polyester film or an acrylic film is bonded to the polarizer using water glue or an active energy ray-curable adhesive.
  • water glue or the ultraviolet curable adhesive which is an active energy ray curable adhesive can be used, but it is preferable to use an ultraviolet curable adhesive from the viewpoint of the effect of the present invention. .
  • the outer film is a polyester film or acrylic film having low moisture permeability
  • the inner film is a cellulose acylate film with improved fluctuation of retardation relative to humidity fluctuation of the present invention.
  • polyester resin forming the polyester film is not particularly limited.
  • terephthalic acid isophthalic acid, orthophthalic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalene Dicarboxylic acid, 1,5-naphthalenedicarboxylic acid, diphenylcarboxylic acid, diphenoxyethanedicarboxylic acid, diphenylsulfonecarboxylic acid, anthracene dicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4 -Cyclohexanedicarboxylic acid, hexahydroterephthalic acid, hexahydroisophthalic acid, malonic acid, dimethylmalonic acid, succinic acid, 3,3-diethylsuccinic acid, glutaric acid, 2,2-dimethylglutari
  • the polyester film can be obtained, for example, by a method in which the above-described polyester resin is melt-extruded into a film and cooled and solidified with a casting drum to form a film.
  • any of an unstretched film and a stretched film can be used.
  • an unstretched film can be suitably used.
  • a stretched film can be suitably used.
  • a stretched film, particularly a biaxially stretched film, is also preferably used from the viewpoint of strength.
  • Polyester films are more durable than TAC films, but unlike TAC films, they tend to have birefringence, so when used as a polarizing plate protective film, rainbow-like color unevenness occurs when observed from an oblique direction. , The image quality is degraded.
  • the polyester film is preferably a polyester film having an in-plane retardation value of 3000 to 30000 nm.
  • the polarizing plate protective film on the outgoing light side of the polarizing plate disposed on the outgoing light side with respect to the liquid crystal cell is preferably a polyester film having a retardation value of 3000 to 30000 nm.
  • the ratio value (Ro / Rt) of the retardation value Ro in the in-plane direction and the retardation value Rt in the thickness direction of the polyester film is 0.200 or more.
  • Such a polyester film can use polyethylene terephthalate or polyethylene naphthalate, but may contain other copolymerization components. These resins are excellent in transparency and excellent in thermal and mechanical properties, and the retardation value can be easily controlled by stretching.
  • polyethylene terephthalate is the most suitable material because it has a large intrinsic birefringence and a relatively large retardation value can be obtained relatively easily even if the film is thin.
  • the retardation value can be obtained by measuring the refractive index and thickness in the biaxial direction, and a commercially available automatic birefringence measuring device such as KOBRA-21ADH (Oji Scientific Instruments) or Axoscan from Axometrics is used. It can also be obtained using.
  • a commercially available automatic birefringence measuring device such as KOBRA-21ADH (Oji Scientific Instruments) or Axoscan from Axometrics is used. It can also be obtained using.
  • the polyester film can be manufactured according to a general polyester film manufacturing method.
  • the polyester resin is melted and the non-oriented polyester extruded and formed into a sheet shape is stretched in the longitudinal direction by utilizing the speed difference of the roll at a temperature equal to or higher than the glass transition temperature, and then stretched in the transverse direction by a tenter.
  • the method of performing heat processing is mentioned.
  • the polyester film according to the present invention may be a uniaxially stretched film or a biaxially stretched film, but when the biaxially stretched film is used as a polarizing plate protective film, it is observed from directly above the film surface. Although no rainbow-like color unevenness is observed, rainbow-like color unevenness may be observed when observed from an oblique direction.
  • This phenomenon is because the biaxially stretched film consists of refractive index ellipsoids having different refractive indexes in the running direction, width direction, and thickness direction, and the in-plane retardation is zero due to the light transmission direction inside the film. This is because there exists a direction in which the refractive index ellipsoid appears to be a perfect circle. Therefore, when the liquid crystal display screen is observed from a specific oblique direction, a point where the retardation value in the in-plane direction becomes zero may occur, and rainbow-like color unevenness occurs concentrically around that point. It becomes.
  • the polyester film according to the present invention has biaxiality (biaxial symmetry) within a range that does not substantially cause rainbow-like color unevenness or a range that does not cause rainbow-like color unevenness in a viewing angle range required for a liquid crystal display screen. ) Is preferable.
  • the retardation (in-plane direction retardation) value and the thickness direction retardation (Rt) value of the polarizing plate protective film are preferable to control so that the value of the ratio falls within a specific range.
  • the ratio value (Ro / Rt) of the retardation value Ro in the in-plane direction and the retardation value Rt in the thickness direction of the polyester film according to the present invention is preferably 0.200 or more, more preferably 0.500 or more, More preferably, it is 0.600 or more.
  • the larger the ratio (Ro / Rt) of the retardation value Ro in the in-plane direction and the retardation value Rt in the thickness direction the more the birefringence action is isotropic, and the occurrence of rainbow-like color unevenness depending on the observation angle. Is less likely to occur.
  • the ratio value (Ro / Rt) of the retardation value Ro in the in-plane direction and the retardation value Rt in the thickness direction is 2.0.
  • the mechanical strength in the direction orthogonal to the orientation direction is significantly lowered as the film approaches a complete uniaxial (uniaxial symmetry) film.
  • the ratio value (Ro / Rt) of the retardation value Ro in the in-plane direction and the retardation value Rt in the thickness direction of the polyester film according to the present invention is preferably 1.2 or less, more preferably 1.0. It is as follows. In order to completely suppress the occurrence of rainbow-like color unevenness due to the observation angle, the ratio value (Ro / Rt) of the in-plane retardation value Ro to the thickness direction retardation value Rt is 2.0. There is no need, and 1.2 or less is sufficient. Even if the ratio is 1.0 or less, it is possible to satisfy the viewing angle characteristics (180 degrees left and right, 120 degrees up and down) required for the liquid crystal display device.
  • the longitudinal stretching temperature and the transverse stretching temperature are preferably from 80 to 130 ° C, particularly preferably from 90 to 120 ° C.
  • the longitudinal draw ratio is preferably from 1.0 to 3.5 times, particularly preferably from 1.0 to 3.0 times.
  • the transverse draw ratio is preferably from 2.5 to 6.0 times, particularly preferably from 3.0 to 5.5 times.
  • setting the stretching temperature low is a preferable measure for increasing the retardation.
  • the treatment temperature is preferably from 100 to 250 ° C., particularly preferably from 180 to 245 ° C.
  • the thickness unevenness of the film is small. Since the stretching temperature and the stretching ratio greatly affect the thickness unevenness of the film, it is necessary to optimize the film forming conditions from the viewpoint of the thickness unevenness. In particular, when the longitudinal stretching ratio is lowered to increase the retardation, unevenness in the longitudinal thickness may be deteriorated. Since there is a region where the vertical thickness unevenness becomes extremely worse within a specific range of the draw ratio, it is desirable to set the film forming conditions outside this range.
  • the thickness unevenness of the film is preferably 5.0% or less, more preferably 4.5% or less, still more preferably 4.0% or less, and 3.0% or less. Is particularly preferred.
  • the retardation value of the film in order to control the retardation value of the film within a specific range, it can be carried out by appropriately setting the stretching ratio, the stretching temperature, and the thickness of the film.
  • the higher the stretching ratio, the lower the stretching temperature, and the thicker the film the easier it is to obtain a higher retardation value.
  • the lower the stretching ratio, the higher the stretching temperature, and the thinner the film the easier it is to obtain a lower retardation value.
  • the retardation value in the thickness direction tends to increase. Therefore, it is desirable to set the film thickness appropriately in the range described later.
  • the thickness of the polyester film according to the present invention is arbitrary, but is preferably in the range of 15 to 300 ⁇ m, more preferably in the range of 15 to 200 ⁇ m. Even in the case of a film having a thickness of less than 15 ⁇ m, it is possible in principle to obtain a retardation value of 3000 nm or more. However, in that case, the anisotropy of the mechanical properties of the film becomes remarkable, and it becomes easy to cause tearing, tearing, etc., and the practicality as an industrial material is remarkably lowered. A particularly preferable lower limit of the thickness is 25 ⁇ m.
  • the upper limit of the thickness of the polyester film exceeds 300 ⁇ m, the thickness of the polarizing plate becomes too thick, which is not preferable.
  • the upper limit of the thickness is preferably 200 ⁇ m.
  • a particularly preferable upper limit of the thickness is 100 ⁇ m, which is about the same as a general TAC film.
  • the polyester used as the film substrate is preferably polyethylene terephthalate.
  • additives may be used.
  • other additives include plasticizers, ultraviolet absorbers, fluorine-based surfactants, release agents, matting agents, deterioration preventing agents, optical anisotropy control agents, infrared absorbers, and the like. Can be used.
  • Acrylic film The acrylic resin contained in an acrylic film (hereinafter also referred to as an acrylic resin film) means a (meth) acrylic resin and is a concept including both an acrylic resin and a methacrylic resin.
  • an acrylic resin film means a (meth) acrylic resin and is a concept including both an acrylic resin and a methacrylic resin.
  • the acrylic resin will be described.
  • the acrylic resin is a (meth) acrylic resin as described above, and means a polymer of acrylic acid ester or methacrylic acid ester.
  • a polymer composed mainly of an alkyl methacrylate is preferable.
  • the monomer composition of the alkyl methacrylate is preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more, based on a total of 100% by mass of all monomers.
  • alkyl methacrylate is 99% by mass or less.
  • the acrylic resin may be a homopolymer of alkyl methacrylate or a copolymer of 50% by mass or more of alkyl methacrylate and 50% by mass or less of a monomer other than alkyl methacrylate. Good.
  • alkyl methacrylate those having 1 to 4 carbon atoms of the alkyl group are usually used, and methyl methacrylate is preferably used among them.
  • the monomer other than alkyl methacrylate may be a monofunctional monomer having one polymerizable carbon-carbon double bond in the molecule, or two or more polymerizable carbons in the molecule.
  • -It may be a polyfunctional monomer having a carbon double bond.
  • monofunctional monomers are preferably used, and examples thereof include alkyl acrylates such as methyl acrylate and ethyl acrylate, and further, such as styrene and alkyl styrene as long as the effects of the present invention are not impaired. Examples include styrene monomers and unsaturated nitriles such as acrylonitrile and methacrylonitrile.
  • alkyl acrylate is used as a copolymerization component, the carbon number is usually 1-8.
  • the acrylic resin preferably has no glutarimide derivative, glutaric anhydride derivative, lactone ring structure, or the like. These acrylic resins may not provide sufficient mechanical strength and heat-and-moisture resistance as an acrylic resin film.
  • the weight average molecular weight (Mw) of the acrylic resin applied to the present invention can be reduced from the viewpoint that the content of the organic solvent in the dope can be reduced, the drying time can be shortened, and the surface shape of the film to be formed is excellent.
  • Mw weight average molecular weight
  • the weight average molecular weight of the acrylic resin is in the range of 100,000 to 4000000. preferable.
  • the upper limit of the weight average molecular weight of the acrylic resin can maintain the solution casting suitability without excessively increasing the viscosity, and can ensure compatibility with organic solvents and additives during dope preparation.
  • the upper limit is preferably 4000000.
  • the weight average molecular weight of the acrylic resin used in the present invention can be measured by the gel permeation chromatography.
  • the rubber elastic particles are particles containing a rubber elastic body, and may be particles composed only of a rubber elastic body, or may be particles having a multilayer structure having a rubber elastic body layer.
  • the rubber elastic body include olefin-based elastic polymers, diene-based elastic polymers, styrene-diene-based elastic copolymers, and acrylic-based elastic polymers.
  • an acrylic elastic polymer is preferable from the viewpoint of surface hardness, light resistance, and transparency of the acrylic resin film.
  • the acrylic elastic polymer is preferably a polymer mainly composed of alkyl acrylate, may be a homopolymer of alkyl acrylate, or may be a single polymer other than alkyl acrylate 50 mass% or more and alkyl acrylate. It may be a copolymer with 50% by mass or less of the monomer.
  • alkyl acrylate those having 4 to 8 carbon atoms in the alkyl group are usually used.
  • Examples of monomers other than alkyl acrylate include alkyl methacrylates such as methyl methacrylate and ethyl methacrylate, styrene monomers such as styrene and alkyl styrene, acrylonitrile and methacrylonitrile.
  • Monofunctional monomers such as unsaturated nitriles, alkenyl esters of unsaturated carboxylic acids such as allyl (meth) acrylate and methallyl (meth) acrylate, dialkenyl esters of dibasic acids such as diallyl maleate,
  • polyfunctional monomers such as unsaturated carboxylic acid diesters of glycols such as alkylene glycol di (meth) acrylate.
  • the rubber elastic particle containing the acrylic elastic polymer is preferably a particle having a multilayer structure having an acrylic elastic polymer layer, and a polymer mainly composed of alkyl methacrylate outside the acrylic elastic polymer. It may be a two-layer structure having the above-mentioned layer, or a three-layer structure having a polymer layer mainly composed of alkyl methacrylate inside the acrylic elastic polymer.
  • the example of the monomer composition of the polymer mainly composed of alkyl methacrylate constituting the layer formed on the outside or inside of the acrylic elastic polymer is the same as the alkyl methacrylate previously mentioned as an example of the acrylic resin. This is the same as the monomer composition example of the main polymer.
  • Such acrylic rubber elastic particles having a multilayer structure can be produced, for example, by the method described in Japanese Patent Publication No. 55-27576.
  • the rubber elastic particles those having a number average particle diameter of 10 to 300 nm of the rubber elastic material contained therein can be used. Thereby, when an acrylic resin film is laminated
  • the number average particle diameter of the rubber elastic body is preferably 50 nm or more and 250 nm or less.
  • the rubber elastic particle in which the outermost layer is a polymer mainly composed of methyl methacrylate and the acrylic elastic polymer is encapsulated in the polymer when the rubber elastic particle is mixed with the base acrylic resin, the rubber elastic particle The outermost layer is mixed with the base acrylic resin. Therefore, in the cross section, when the acrylic elastic polymer is dyed with ruthenium oxide and observed with an electron microscope, the rubber elastic particles can be observed as particles excluding the outermost layer.
  • the inner layer is an acrylic elastic polymer. The portion is dyed and observed as particles having a single layer structure.
  • the center part of the innermost layer particle is not dyed, and only the acrylic elastic polymer part of the intermediate layer is dyed and observed as a two-layered particle.
  • the number average particle diameter of the rubber elastic particles is, as described above, when the rubber elastic particles are mixed with the base resin and the cross section is dyed with ruthenium oxide, and is dyed in a substantially circular shape. It is the number average value of the diameters of the parts observed in FIG.
  • the blending amount of the rubber elastic particles is not particularly limited. For example, 25 to 45% by mass of rubber elastic particles having a number average particle diameter of 10 to 300 nm are blended in a transparent acrylic resin. Those are preferred.
  • the acrylic resin may be produced, for example, by obtaining rubber elastic particles and then polymerizing a monomer as a raw material of the acrylic resin in the presence thereof to produce a base acrylic resin, or rubber. After obtaining the elastic particles and the acrylic resin, they may be produced by mixing them by melt kneading or the like.
  • the glass transition temperature Tg of the acrylic resin is preferably in the range of 80 to 120 ° C. Further, the acrylic resin preferably has a high surface hardness when formed into a film, specifically, a pencil hardness (according to JIS K5600-5-4 at a load of 500 g) of B or more.
  • the acrylic resin film preferably has a flexural modulus (JIS K7171) of 1500 MPa or less from the viewpoint of the flexibility of the acrylic resin.
  • the flexural modulus is more preferably 1300 MPa or less, and still more preferably 1200 MPa or less.
  • This bending elastic modulus varies depending on the type and amount of acrylic resin and rubber elastic particles in the acrylic resin film. For example, the bending elastic modulus generally decreases as the content of rubber elastic particles increases.
  • the flexural modulus is generally smaller when an acrylic resin is a copolymer of alkyl methacrylate and alkyl acrylate than a homopolymer of alkyl methacrylate.
  • the elastic elastic polymer particles having the two-layer structure are generally used as the elastic rubber particles, rather than the acrylic elastic polymer particles having the two-layer structure.
  • the flexural modulus is smaller when the acrylic elastic polymer particles having a layer structure are used.
  • the rubber elastic body particles as the average particle diameter of the rubber elastic body is smaller or the amount of the rubber elastic body is larger, the bending elastic modulus is generally smaller. Therefore, it is preferable to adjust the kind and amount of acrylic resin and rubber elastic body particles within the predetermined range so that the flexural modulus is 1500 MPa or less.
  • the layer that can exist other than the layer of the acrylic resin composition is not particularly limited in composition, for example, an acrylic resin that does not contain rubber elastic particles or a layer of the composition.
  • it may be a layer made of an acrylic resin in which the content of the rubber elastic body particles and the average particle diameter of the rubber elastic body in the rubber elastic body particles are not specified above.
  • a two-layer or three-layer structure for example, a two-layer structure including an acrylic resin layer / an acrylic resin not containing rubber elastic particles or a layer of the composition thereof, or an acrylic resin.
  • a three-layer structure comprising an acrylic resin not containing rubber elastic particles or a composition layer / acrylic resin composition layer may be employed. What is necessary is just to let the surface of the layer of an acrylic resin composition be a bonding surface with a polarizer in the multilayer acrylic film.
  • the content of each layer of the rubber elastic particles and the above compounding agent may be different from each other.
  • a layer containing an ultraviolet absorber and / or an infrared absorber and a layer not containing an ultraviolet absorber and / or an infrared absorber may be laminated with this layer interposed therebetween.
  • the content of the ultraviolet absorber in the acrylic resin composition layer may be higher than the content of the ultraviolet absorber in the acrylic resin or the composition layer containing no rubber elastic particles, Specifically, the former is preferably 0.5 to 10% by mass, more preferably 1 to 5% by mass, and the latter is preferably 0 to 1% by mass, more preferably 0 to 0.5% by mass.
  • the acrylic film may be non-oriented or unstretched, and may be stretched.
  • the stretching treatment is not performed, the total film thickness of the polarizing plate is likely to be increased because the film thickness is increased, but on the other hand, the handling property of the acrylic film is improved due to the thick film thickness.
  • Such an acrylic film can be obtained from an unstretched film (raw film) obtained by forming an acrylic resin composition.
  • unstretched film obtained by forming an acrylic resin composition.
  • stretching has the advantage that the thickness of the acrylic film is reduced and the rigidity is improved.
  • the stretched film can be produced by stretching an unstretched film by an arbitrary method.
  • the acrylic resin can be formed into an unstretched film by any method.
  • This unstretched film is preferably transparent and substantially free of in-plane retardation.
  • the film forming method include an extrusion method in which a molten resin is extruded to form a film, and a solvent cast method in which a solvent dissolved in an organic solvent is cast on a flat plate and then the solvent is removed to form a film. Etc. can be adopted.
  • the extrusion molding method for example, there is a method of forming a film in a state where the acrylic resin composition is sandwiched between two rolls. At this time, by varying the rigidity of the roll surface, it is possible to make one surface of the acrylic resin film smooth and the other surface rough.
  • the extrusion molding method for example, there is a method of forming a film in a state where the acrylic resin composition is sandwiched between two metal rolls.
  • the metal roll is preferably a mirror roll.
  • the unstretched film excellent in surface smoothness can be obtained.
  • the thickness of the unstretched film thus obtained is preferably in the range of 5 to 200 ⁇ m, more preferably in the range of 10 ⁇ m to 85 ⁇ m.
  • liquid crystal display device By using the polarizing plate on which the cellulose acylate film of the present invention is bonded to a liquid crystal display device, the liquid crystal display device of the present invention having excellent visibility can be produced.
  • the polarizing plate of the present invention can be used for liquid crystal display devices of various driving systems such as STN, TN, OCB, HAN, VA (MVA, PVA), IPS, OCB.
  • a VA (MVA, PVA) type liquid crystal display device is preferable.
  • the polarizing plate of the present invention is preferably used as a viewing-side polarizing plate that directly touches the external environment.
  • the cellulose acylate film of the present invention is preferably disposed on the liquid crystal cell side as a retardation film. .
  • the polarizing plate on the backlight side can also be a polarizing plate other than the present invention.
  • both sides of the polarizer are, for example, a commercially available cellulose acylate film (for example, Konica Minoltack KC8UX, KC5UX, KC4UX, KC8UCR3 KC4SR, KC4BR, KC4CR, KC4DR, KC4FR, KC4KR, KC8UY, KC6UY, KC4UY, KC4UE, KC8UE, KC8UY-HA, KC2UA, KC4UA, KC6UA, KC2UAH, KC2UAH, KC2UAH, KC2UAH Fujitac T60UZ, Fujitac T80UZ, Fujitac TD80UL, Fujitac TD80UL, Fujitac TD60UL, Fujitac TD40UL, Fujitac R02, Fujita
  • the cellulose acylate film of the present invention is used on the liquid crystal cell side of the polarizer, and the above-mentioned commercially available cellulose acylate film, polyester film, acrylic film, polycarbonate film, or A polarizing plate on which a cycloolefin polymer film is bonded can also be preferably used.
  • the polarizing plate of the present invention By using the polarizing plate of the present invention, it is possible to obtain a liquid crystal display device excellent in visibility such as display unevenness and front contrast even in the case of a large screen liquid crystal display device having a screen of 30 type or more.
  • the polarizing plate of the present invention can be preferably used for an organic electroluminescence display device as well as a liquid crystal display device.
  • the cellulose acylate film of the present invention is stretched in an oblique 45 ° direction with respect to the transport direction, and is bonded with a polarizer having an absorption axis in the transport direction with a roll-to-roll, thereby circularly polarizing plate
  • a display device with high visibility can be obtained.
  • ⁇ Nitrogen-containing heterocyclic compound> A compound selected from the group of exemplary compounds of nitrogen-containing heterocyclic compounds, It showed in.
  • the melting point was measured using a differential thermal / thermogravimetric simultaneous measurement apparatus EXSTAR 6220DSC manufactured by Seiko Instruments Inc. 10 mg of the sample compound was placed in an aluminum pan, and the melting point was determined from the endothermic / exothermic peak when the temperature was changed from 30 ° C. to 350 ° C. and from 350 ° C. to 30 ° C. at 10 ° C./min. When a compound having a melting point of 0 ° C. or lower was measured, the melting point was determined from endothermic / exothermic peaks at temperatures of ⁇ 50 ° C. to 30 ° C. and 30 ° C. to ⁇ 50 ° C. at 5 ° C./min.
  • the 1% mass reduction temperature Td1 of the organic ester was measured by adding 10 mg of a sample compound to an aluminum pan with a differential thermal / thermogravimetric simultaneous measurement apparatus EXSTAR 6200TG / DTA manufactured by Seiko Instruments Inc. and measuring 100 at 50 ° C./min. After heating up to 40 ° C., the mixture is heated as it is for 40 minutes, and then the mass fluctuation is monitored while the temperature is raised to 400 ° C. at 10 ° C./min. It was. The measurement was performed under dry air (dew point ⁇ 30 ° C.).
  • Example 1 Preparation of Cellulose Acylate Film 101> ⁇ Fine particle dispersion 1> Fine particles (Aerosil R812 manufactured by Nippon Aerosil Co., Ltd.) 11 parts by mass Ethanol 89 parts by mass The above was stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin.
  • Fine particle addition liquid 1 The fine particle dispersion 1 was slowly added to the dissolution tank containing methylene chloride with sufficient stirring. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution 1.
  • a main dope having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Cellulose acylate C1 having an acetyl group substitution degree of 2.41 was charged into a pressure dissolution tank containing a solvent while stirring. This is completely dissolved with heating and stirring. This was designated as Azumi Filter Paper No. The main dope was prepared by filtration using 244.
  • the solvent was evaporated until the amount of residual solvent in the cast (cast) film reached 75%, and then peeled off from the stainless steel belt support with a peeling tension of 130 N / m.
  • the peeled cellulose acylate film was stretched 30% in the width direction using a tenter while applying heat at 150 ° C.
  • the residual solvent at the start of stretching was 15%.
  • drying was completed while the drying zone was conveyed by a number of rollers.
  • the drying temperature was 130 ° C. and the transport tension was 100 N / m.
  • a cellulose acylate film 101 having a dry film thickness of 40 ⁇ m was obtained.
  • the type of cellulose acylate (C2 to C7, and mixing (mass ratio)), the type of nitrogen-containing heterocyclic compound, and the type of organic ester were changed as shown in Table 2 and Table 3.
  • cellulose acylate films 102 to 135 were produced.
  • the retardation value of the cellulose acylate film is an in-plane retardation value (Ro) defined by the following formula (i) at a wavelength of 590 nm in an environment of a temperature of 23 ° C. and a relative humidity of 55%, and the following formula (
  • the retardation value (Rt) in the thickness direction defined by ii) was measured using an Axoscan manufactured by Axometrics.
  • n x represents a refractive index in the direction x in which the refractive index is maximized in the plane direction of the film.
  • n y in-plane direction of the film, the refractive index in the direction y perpendicular to the direction x.
  • nz represents the refractive index in the thickness direction z of the film.
  • d represents the thickness (nm) of the film.
  • the internal haze is for evaluating the turbidity inside the film due to bleed-out of additives and the like after the film production process and film production, and the lower the value, the better.
  • Measurement environment In-plane retardation Ro of the sample film and retardation Rt in the thickness direction were measured using Axoscan (Axometrics) at 23 ° C. and 55% RH (measured value I).
  • the evaluation device 50 was assembled and used as a system for artificially evaluating clogging of the filter, and the filter life was evaluated.
  • the filter 51 was a 1 mm mesh mesh filter.
  • 1 g of the nitrogen-containing heterocyclic compound and the organic ester are collected at a mass ratio constituting the cellulose acylate film and heated to 170 ° C.
  • the air flows into the lower flask so that the volatilized nitrogen heterocyclic compound and the scattered organic ester 52 are transferred to the cylinder.
  • the degree of clogging of the filter 51 was visually evaluated while passing through a path through which 2 ° C. cooling water was circulated.
  • the cellulose acylate film of the present invention has excellent durability against humidity fluctuations because it has low internal haze, small retardation value fluctuation due to humidity fluctuation, and long filter life. In addition, it can be seen that the suitability for continuous production is high.
  • Example 2 ⁇ Preparation of Cellulose Acylate Film 201> A cellulose acylate film 201 was produced in the same manner as in the production of the cellulose acylate 107 of Example 1, except that the following main dope was used.
  • 205 was prepared and evaluated in the same manner as in Example 1.
  • Table 4 shows the structure of the cellulose acylate film and the evaluation results.
  • Example 3 Using the cellulose acylate films 101, 108, 113, 114, 115, 132, 201, 204, and 205 produced in Example 1 and Example 2, a polarizing plate and a liquid crystal display device were produced according to the following procedure.
  • Step 1 Cellulose acylate films 101 and 108 that were immersed in a 2 mol / L sodium hydroxide solution at 60 ° C. for 90 seconds, then washed with water and dried, and subjected to saponification treatment on the side to be bonded to the polarizer. 113, 114, 115, 132, 201, 204, 205 and KC6UA.
  • Step 2 The polarizer was immersed in a polyvinyl alcohol adhesive tank having a solid content of 2% by mass for 1 to 2 seconds.
  • Step 3 The excess adhesive adhering to the polarizer in Step 2 is gently wiped off, and the cellulose acylate film 101, 108, 113, 114, 115, 132, 201, 204, processed in Step 1 on this one surface is removed. And 205 were placed with the KC6UA placed on the opposite surface (the cellulose acylate film and the slow axis of KC6UA were placed so as to be orthogonal to the absorption axis of the polarizing plate).
  • Step 4 The cellulose acylate film, the polarizer, and KC6UA laminated in Step 3 were bonded at a pressure of 20 to 30 N / cm 2 and a conveyance speed of about 2 m / min.
  • Step 5 A sample obtained by bonding the cellulose acylate film, the polarizer, and KC6UA prepared in Step 4 in a drier at 80 ° C. was dried for 2 minutes to prepare polarizing plates 301 to 309.
  • the direction of bonding of the polarizing plate is determined in advance so that the surfaces of the cellulose acylate films 101, 108, 113, 114, 115, 132, 201, 204, and 205 are on the liquid crystal cell side.
  • Liquid crystal display devices 301 to 309 corresponding to the polarizing plates 301 to 309 were produced, respectively, so that the absorption axis was directed in the same direction as the bonded polarizing plates.
  • the luminance from the normal direction of the display screen of white display and black display was measured with a liquid crystal display device using EZ-Contrast 160D manufactured by ELDIM, and the ratio was defined as the front contrast.
  • Front contrast (brightness of white display measured from normal direction of display device) / (brightness of black display measured from normal direction of display device) The front contrast at any 10 points of the liquid crystal display device was measured and evaluated according to the following criteria.
  • ⁇ Evaluation of color unevenness Evaluation of color unevenness due to water content variation> The prepared liquid crystal display device was laid and placed on a stand or the like, and Bencot (manufactured by Asahi Kasei Fibers Co., Ltd.) was placed on a part of the evaluation polarizing plate to contain water.
  • A 0 or more and 1.0 or less: No occurrence of color unevenness is observed at all.
  • More than 1.0 and 1.50 or less: Generation of a very slight color unevenness is recognized, but the quality has no practical problem.
  • More than 1.50 and less than 2.4: Color unevenness is slightly observed, but there is no problem in practical use.
  • More than 2.4: Strong color unevenness occurs, and there is a problem with moisture resistance. Table 5 shows the evaluation results of quality.
  • the polarizing plate using the cellulose acylate film of the present invention and the liquid crystal display device having the same have high contrast and excellent resistance to variation in color unevenness with respect to humidity.
  • Example 4 A polyester film and an acrylic film were prepared according to the following procedure.
  • the obtained polyethylene terephthalate resin (A) had an intrinsic viscosity of 0.62 dl / g and contained substantially no inert particles and internally precipitated particles.
  • PET (A) (Hereafter, abbreviated as PET (A).)
  • PET (B) (Production Example 2-Polyester B) Next, 10 parts by weight of a dried UV absorber (2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazinon-4-one), PET (A) containing no particles 90 parts by mass (inherent viscosity is 0.62 dl / g) was mixed, and a polyethylene terephthalate resin (B) containing an ultraviolet absorber was obtained using a kneading extruder (hereinafter abbreviated as PET (B)).
  • a dried UV absorber (2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazinon-4-one)
  • PET (B) containing no particles 90 parts by mass (inherent viscosity is 0.62 dl / g) was mixed, and a polyethylene terephthalate resin (B) containing an
  • a transesterification reaction and a polycondensation reaction were carried out by a conventional method, and as a dicarboxylic acid component (based on the whole dicarboxylic acid component) 46 mol% terephthalic acid, 46 mol% isophthalic acid and 8 mol% sodium 5-sulfonatoisophthalate, A water-dispersible sulfonic acid metal group-containing copolymer polyester resin having a composition of 50 mol% ethylene glycol and 50 mol% neopentyl glycol (relative to the entire glycol component) was prepared as a glycol component.
  • PET film After drying 90 parts by mass of PET (A) resin pellets containing no particles as a raw material for the base film intermediate layer and 10 parts by mass of PET (B) resin pellets containing an ultraviolet absorber at 135 ° C. for 6 hours under reduced pressure (1 Torr) , And supplied to the extruder 2 (for the intermediate layer II layer). Also, the PET (A) was dried by a conventional method and supplied to the extruder 1 (for the outer layer I layer and the outer layer III). And dissolved.
  • the unstretched film on which this coating layer was formed was guided to a tenter stretching machine, guided to a hot air zone at a temperature of 125 ° C. while being gripped by a clip, and stretched 4.0 times in the width direction.
  • the film was treated at a temperature of 225 ° C. for 30 seconds and further subjected to a relaxation treatment of 3% in the width direction to obtain a uniaxially oriented polyester film having a film thickness of 60 ⁇ m.
  • acrylic resin and acrylic elastic polymer particles As the acrylic resin, a copolymer having a mass ratio of methyl methacrylate / methyl acrylate of 96/4 was used. Further, as the elastic rubber particles, acrylic elastic polymer particles having a three-layer structure including an innermost layer, an intermediate layer, and an outermost layer were used.
  • the innermost layer is a hard polymer obtained by polymerizing methyl methacrylate with a small amount of allyl methacrylate
  • the intermediate layer is mainly composed of butyl acrylate, styrene and a small amount of Soft elastic body polymerized using allyl methacrylate
  • outermost layer is made of a hard polymer polymerized with a small amount of ethyl acrylate in methyl methacrylate, and the average particle size up to the elastic body that is the intermediate layer The diameter is 240 nm.
  • thermoplastic resin and a rubber component were sequentially prepared in the same reaction vessel by a reactor blend method. Specifically, propylene monomer was fed in the gas phase as a first step using a Ziegler-Natta type catalyst to produce a propylene homopolymer as a thermoplastic resin. After stopping the reaction by stopping the propylene monomer feed, the ethylene monomer and the propylene monomer are fed into the reaction vessel as they are in the gas phase as the second step, and the ethylene-propylene copolymer as the rubber component is fed. Thus, a propylene homopolymer in which an ethylene-propylene copolymer as a rubber component was dispersed in a particulate form was obtained.
  • the ethylene unit content in the copolymer was determined from the material balance during polymerization and found to be 35% by mass. Further, the content of ethylene units in the entire resin (total of thermoplastic resin and rubber component) is determined according to the method described on page 616 of the Polymer Handbook (published by Kinokuniya Shoten in 1995), and the resin is determined from this value. When the content of the ethylene-propylene copolymer in the whole was calculated, it was 29% by mass (that is, the content of the ethylene-propylene copolymer was 40.8% by mass of the thermoplastic resin).
  • the obtained mixed resin was melt-kneaded at 250 ° C. and then melt-extruded with a T-die at a temperature of 280 ° C. to obtain a base film having a thickness of 100 ⁇ m.
  • the obtained mixed aqueous solution is coated on the corona-treated surface of the base film subjected to the corona treatment using a micro gravure coater and dried at 80 ° C. for 10 minutes, whereby a primer layer having a thickness of 0.2 ⁇ m. Formed.
  • Polyvinyl alcohol powder (“PVA124” manufactured by Kuraray Co., Ltd., average polymerization degree 2400, average saponification degree 98.0 to 99.0 mol%) is dissolved in hot water at 95 ° C.
  • An aqueous polyvinyl alcohol solution having a concentration of 8% by mass was prepared.
  • the obtained aqueous solution was coated on the primer layer using a lip coater, and dried under conditions of 80 ° C. for 2 minutes, 70 ° C. for 2 minutes, and then 60 ° C. for 4 minutes, whereby a base film A laminated film having a polyvinyl alcohol resin layer laminated thereon with a primer layer interposed therebetween was produced.
  • the thickness of the polyvinyl alcohol-based resin layer was 9.8 ⁇ m.
  • the laminated film was uniaxially stretched 5.8 times at a stretching temperature of 160 ° C. to obtain a stretched film.
  • the obtained stretched film had a thickness of 28.5 ⁇ m, and the polyvinyl alcohol-based resin layer had a thickness of 5.0 ⁇ m.
  • UV curable adhesive solution 1 Preparation of UV curable adhesive solution 1 After mixing the following components, defoaming was performed to prepare an ultraviolet curable adhesive liquid 1. Triarylsulfonium hexafluorophosphate was blended as a 50% propylene carbonate solution, and the solid content of triarylsulfonium hexafluorophosphate was shown below.
  • 3,4-Epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate 45 parts by mass Epolide GT-301 (alicyclic epoxy resin manufactured by Daicel Chemical Industries) 40 parts by mass 1,4-butanediol diglycidyl ether 15 parts by mass Triarylsulfonium hexafluorophosphate 2.3 parts by mass 9,10-dibutoxyanthracene 0.1 parts by mass 1,4-diethoxynaphthalene 2.0 parts by mass (Preparation of polarizing plate) Polarizing plates 401 to 406 were prepared according to the following method.
  • the surface of the cellulose acylate film was subjected to corona discharge treatment.
  • the corona discharge treatment was performed at a corona output intensity of 2.0 kW and a line speed of 18 m / min.
  • the ultraviolet curable adhesive liquid 1 prepared above is applied to the corona discharge-treated surface of the cellulose acylate film with a bar coater so that the film thickness after curing is about 3 ⁇ m, and the ultraviolet curable adhesive layer is applied. Formed.
  • the polarizer (thickness 5 ⁇ m) side of the produced polarizing laminated film was bonded to the obtained ultraviolet curable adhesive layer, and then the base film was peeled off.
  • the produced polyester film and acrylic film were each subjected to corona discharge treatment.
  • the conditions of the corona discharge treatment were a corona output intensity of 2.0 kW and a speed of 18 m / min.
  • the ultraviolet curable adhesive liquid 1 prepared above is applied to the corona discharge treated surfaces of the polyester film and the acrylic film with a bar coater so that the film thickness after curing is about 3 ⁇ m, and the ultraviolet curable adhesive is applied. A layer was formed.
  • a polarizer bonded to one side of the cellulose acylate film is bonded to this ultraviolet curable adhesive layer, and cellulose acylate film / ultraviolet curable adhesive layer / polarizer / ultraviolet curable adhesive layer / A laminate in which a polyester film or an acrylic film film was laminated was obtained. In that case, it bonded so that the slow axis of a cellulose acylate film and a polyester film or an acrylic film, and the absorption axis of a polarizer might become mutually orthogonal.
  • UV light was applied so that the integrated light amount was 750 mJ / cm 2.
  • the ultraviolet curable adhesive layer was cured to prepare polarizing plates 401 to 408 having a total film thickness of 91 ⁇ m shown in Table 6.
  • the direction of bonding of the polarizing plate is the same as that of the polarizing plate previously bonded so that the surfaces of the cellulose acylate films 101, 108, 201, and 205 are on the liquid crystal cell side.
  • the liquid crystal display devices 401 to 408 corresponding to the polarizing plates 401 to 408 were respectively produced.
  • Table 6 shows the configuration of the polarizing plate and the evaluation results.
  • the compound that suppresses the variation in retardation with respect to humidity volatilizes and scatters in the production line, and adheres in a bulky manner like cotton, thereby contaminating the wall surface or clogging the filter.
  • a polarizing plate and a liquid crystal display device as an optical film that achieves both stability of retardation against humidity fluctuation and suitability for continuous production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Nonlinear Science (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

 本発明の課題は、湿度に対する位相差の変動を抑制する化合物が揮発して製造ライン内で飛散し、綿状に嵩高く付着することで、壁面を汚染したり、フィルターの目詰まりが発生することを改善し、湿度変動に対する位相差の安定性と連続生産適性とを両立したセルロースアシレートフィルムを提供することである。 本発明のセルロースアシレートフィルムは、セルロースアシレートと、分子量が100~800の範囲内である含窒素複素環化合物と、融点が-60~120℃の範囲内であり、かつ示差熱・熱重量測定による1%質量減少温度Td1が100~350℃の範囲内である有機エステルとを含有することを特徴とする。

Description

セルロースアシレートフィルム、偏光板及び液晶表示装置
 本発明は、セルロースアシレートフィルム、偏光板及び液晶表示装置に関する。より詳しくは、環境の湿度が変動しても位相差の変動を抑制する化合物を含有し、かつ当該化合物が製造ライン内で揮発して飛散した場合でも、飛散物を効率よく捕集してフィルターの目詰まりを改善し、湿度変動に対する位相差の安定性と連続生産適性とを両立したセルロースアシレートフィルムに関する。
 液晶ディスプレイのコモディティ化が進み、パネルメーカーはあらゆる場面で効率化・コストダウンが求められている。そのような動きの中で、近年、梱包の簡素化が進み、パネル輸送時に高湿環境にさらされることで梱包内に水分が侵入し、パネルを構成する位相差フィルムの位相差の変動が生じ、輸送後当該パネルを点灯すると画面に色ムラが発生することが問題になっている。
 特にセルロースアシレートを主成分とする位相差フィルムは、水分に対する位相差の変動がシクロオレフィンやポリカーボネートを主成分とする位相差フィルムよりも大きく、この問題を解決するために過去から多くの検討が行われている。
 過去の検討では、湿度変動による位相差の変動を抑制する化合物として、ポリエステル系の化合物を20質量%以上添加してフィルム内の疎水化を図る検討(例えば、特許文献1~3参照。)や、水素結合性化合物を添加し、セルロース分子との相互作用を強める検討(例えば、特許文献4及び5参照。)などがなされているが、位相差の変動の大きさを十分なレベルまで低減することができない点に加え、経時での耐久性に問題があった。
 我々はこの問題を解決するために検討を重ねた結果、特定の含窒素複素環化合物を用いることで、上記耐久性を維持したまま湿度変動による位相差の変動を改善できることを見出したが、一方でこれらの化合物は低分子量でかつ融点が高いため、製造ライン内で飛散しやすく、製造ライン内に綿状に嵩高く付着することで、壁面を汚染したり、フィルターを閉塞してフィルターライフを短くしたりする等の問題が発生し、従来の当該化合物を含まない製品よりも連続生産適性が低下するという新たな問題が発生した。
特開2012-027103号公報 特開2012-063748号公報 特開2012-042938号公報 特開2011-227508号公報 特開2012-082235号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、湿度に対する位相差の変動を抑制する化合物が揮発して製造ライン内で飛散し、綿状に嵩高く付着することで、壁面を汚染したり、フィルターの目詰まりが発生することを改善し、湿度変動に対する位相差の安定性と連続生産適性とを両立したセルロースアシレートフィルムを提供することである。加えて、当該セルロースアシレートフィルムを具備する耐久性の高い偏光板及び液晶表示装置を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、セルロースアシレートと、分子量が100~800の範囲内である含窒素複素環化合物と、融点が-60~120℃の範囲内であり、かつ1%質量減少温度Td1が100~350℃の範囲内である有機エステルとを含有するセルロースアシレートフィルムによって、本発明の課題が解決できることを見出した。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.セルロースアシレートと、分子量が100~800の範囲内である含窒素複素環化合物と、融点が-60~120℃の範囲内であり、かつ示差熱・熱重量測定による1%質量減少温度Td1が100~350℃の範囲内である有機エステルとを含有することを特徴とするセルロースアシレートフィルム。
 2.前記含窒素複素環化合物が、ピラゾール環、トリアゾール環、及びイミダゾール環を有する化合物から選択される少なくともいずれか1種であることを特徴とする第1項に記載のセルロースアシレートフィルム。
 3.前記含窒素複素環化合物が、下記一般式(3)で表される構造を有する化合物であることを特徴とする第2項に記載のセルロースアシレートフィルム。
Figure JPOXMLDOC01-appb-C000002
(式中Aはピラゾール環を表す。Ar及びArはそれぞれ芳香族炭化水素環又は芳香族複素環を表し、置換基を有してもよい。Rは水素原子、アルキル基、アシル基、スルホニル基、アルキルオキシカルボニル基、又はアリールオキシカルボニル基を表す。qは1~2の整数を表す。n及びmは1~3の整数を表す。)
 4.前記有機エステルが、糖エステル、重縮合エステル、及び多価アルコールエステルから選択される少なくとも1種であることを特徴とする第1項から第3項までのいずれか一項に記載のセルロースアシレートフィルム。
 5.前記セルロースアシレートフィルムが、前記含窒素複素環化合物を0.5~10質量%の範囲内で含有し、かつ前記有機エステルを0.5~20質量%の範囲内で含有することを特徴とする第1項から第4項までのいずれか一項に記載のセルロースアシレートフィルム。
 6.前記セルロースアシレートの総アシル基置換度が、2.0~2.7の範囲内であるセルロースアセテート、又はセルロースアセテートプロピオネートであることを特徴とする第1項から第5項までのいずれか一項に記載のセルロースアシレートフィルム。
 7.23℃、55%RHの環境下で、光波長590nmの測定での、下記式(i)で表される面内方向のリターデーション値Roが40~70nmの範囲内であり、かつ下記式(ii)で表される厚さ方向のリターデーション値Rtが100~300nmの範囲内であることを特徴とする第1項から第6項までのいずれか一項に記載のセルロースアシレートフィルム。
 式(i):Ro=(n-n)×d
 式(ii):Rt={(n+n)/2-n}×d
〔式(i)及び式(ii)において、nは、フィルムの面内方向において屈折率が最大になる方向xにおける屈折率を表す。nは、フィルムの面内方向において、前記方向xと直交する方向yにおける屈折率を表す。nは、フィルムの厚さ方向zにおける屈折率を表す。dは、フィルムの厚さ(nm)を表す。〕
 8.第1項から第7項までのいずれか一項に記載のセルロースアシレートフィルムが、水糊又は活性エネルギー線硬化性接着剤を用いて偏光子と貼合されていることを特徴とする偏光板。
 9.前記偏光子の前記セルロースアシレートフィルムが貼合されている面とは反対側の面に、ポリエステルフィルム又はアクリルフィルムが、水糊又は活性エネルギー線硬化性接着剤を用いて偏光子と貼合されていることを特徴とする第8項に記載の偏光板。
 10.第1項から第7項までのいずれか一項に記載のセルロースアシレートフィルムが具備されていることを特徴とする液晶表示装置。
 11.第8項又は第9項に記載の偏光板が具備されていることを特徴とする液晶表示装置。
 本発明の上記手段により、湿度に対する位相差の変動を抑制する化合物が揮発して製造ライン内で飛散し、綿状に嵩高く付着することで、壁面を汚染したり、フィルターの目詰まりが発生することを改善し、湿度変動に対する位相差の安定性と連続生産適性とを両立したセルロースアシレートフィルムを提供することができる。加えて、当該セルロースアシレートフィルムを具備する耐久性の高い偏光板及び液晶表示装置を提供することができる。
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
 本発明者の検討によれば、特定の含窒素複素環化合物をセルロースアシレートフィルムに用いることによって、湿度に対する位相差の変動を小さくすることができる。一方、これらの化合物は低分子量でかつ融点が高いため、製造ライン内で飛散しやすく、空調内のフィルターに綿状に嵩高く付着することで壁面を汚染したり、当該フィルターを目詰まりさせてフィルターライフを短くしたりする等の連続生産適性に問題があった。
 当該含窒素複素環化合物の分子量と飛散量の関係、及び湿度に対する位相差の変動抑制効果を検討したところ、分子量が100より小さい化合物は、分子量が小さいため飛散量が多く、フィルター目詰まりが発生しやすい上に湿度変動抑制剤やリターデーション上昇剤としての性能が低く有用ではない。また、分子量が800を超える化合物は、飛散物の発生が少なくフィルター目詰まりを起こさないことが分かったが、湿度変動抑制剤やリターデーション上昇剤としての性能や、フィルムの透明性が確保できず有用ではないことを確認した。したがって、湿度変動抑制剤やリターデーション上昇剤としての性能を期待するには、分子量が100~800の範囲内であることが好ましいが、この分子量の範囲内にある化合物は、製造ライン内で飛散しやすく改善が必要である。
 本発明によれば、セルロースアシレートフィルムに、当該含窒素複素環化合物と、融点が-60~120℃の範囲内であり、かつ1%質量減少温度Td1が100~350℃の範囲内の有機エステルとを含有させることで、当該含窒素複素環化合物が飛散すると同時に、当該有機エステルも飛散して、その飛散物が製造ライン内で冷却されて液状化し粘性の高い付着物としてフィルターに付着するため、上記含窒素複素環化合物の綿状の飛散物を容易にフィルター上で捕獲するのと同時に、当該粘性によって当該飛散物の嵩高さを小さくできるため、フィルターの目詰まりを低減してフィルターライフを伸ばすことができるものと推定される。
 すなわち、融点と1%質量減少温度Td1が特定の範囲内にある有機エステルが、揮発性、揮発物が冷却されたときの液状化のしやすさ、及び適度な粘性を有することによって、上記含窒素複素環化合物の飛散物を効果的にフィルター上で捕獲できるものと推定される。
本発明のセルロースアシレートフィルムの好ましい溶液流延製膜方法のドープ調製工程、流延工程及び乾燥工程の一例を示す模式図 飛散物によるフィルターライフ(目詰まり)を評価する系の模式図
 本発明のセルロースアシレートフィルムは、セルロースアシレートと、分子量が100~800の範囲内である含窒素複素環化合物と、融点が-60~120℃の範囲内であり、かつ示差熱・熱重量測定による1%質量減少温度Td1が100~350℃の範囲内である有機エステルとを含有することを特徴とする。この特徴は、請求項1から請求項11までの請求項に係る発明に共通する技術的特徴である。
 本発明の実施態様としては、本発明の効果発現の観点から、前記含窒素複素環化合物が、ピラゾール環、トリアゾール環、及びイミダゾール環を有する化合物から選択される少なくともいずれか1種であることが好ましく、さらに前記一般式(3)で表される構造を有する化合物であることが、梱包の簡素化が進み、パネル輸送時に高湿環境にさらされることで梱包内に水分が侵入しても、セルロースアシレートフィルムの位相差の変動が生じにくく、また経時での耐久性も高く好ましい。
 前記有機エステルは、糖エステル、重縮合エステル、及び多価アルコールエステルから選択される少なくとも1種であることが好ましく、前記セルロースアシレートフィルムが、前記含窒素複素環化合物を0.5~10質量%の範囲内で含有し、かつ前記有機エステルを0.5~20質量%の範囲内で含有することが、製造ライン内で冷却されたときに液状化してフィルターに付着し、前記含窒素複素環化合物のフィルター捕集物の嵩高さを小さくできるため、好ましい。
 前記セルロースアシレートの総アシル基置換度が、2.0~2.7の範囲内であるセルロースアセテート、又はセルロースアセテートプロピオネートであることが、視野角拡大のための位相差フィルムとして用いるセルロースアシレート樹脂として、好ましい。当該位相差フィルムのリターデーション値は、23℃・55%RHの環境下で、光波長590nmの測定での面内方向のリターデーション値Roが40~70nmの範囲内であり、かつ厚さ方向のリターデーション値Rtが100~300nmの範囲内であることが、好ましい。
 本発明のセルロースアシレートフィルムは、水糊又は活性エネルギー線硬化性接着剤を用いて偏光子と貼合されていることが、環境の湿度変動による位相差の変動が小さい偏光板を提供することができ好ましく、さらに前記偏光子の前記セルロースアシレートフィルムが貼合されている面とは反対側の面に、ポリエステルフィルム又はアクリルフィルムが、水糊又は活性エネルギー線硬化性接着剤を用いて偏光子と貼合されていることが、より耐久性の高い偏光板を提供する観点から、好ましい。
 本発明のセルロースアシレートフィルム及び偏光板は、液晶表示装置に好適に具備される。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 ≪本発明のセルロースアシレートフィルムの概要≫
 本発明のセルロースアシレートフィルムは、セルロースアシレートと、分子量が100~800の範囲内である含窒素複素環化合物と、融点が-60~120℃の範囲内であり、かつ示差熱・熱重量測定による1%質量減少温度Td1が100~350℃の範囲内である有機エステルとを含有することを特徴とする。かかる構成によって、湿度に対する位相差の変動を抑制する含窒素複素環化合物が揮発して製造ライン内で飛散し、綿状に嵩高く付着することで、壁面を汚染したり、空調フィルターの目詰まりが発生することを改善し、湿度変動に対する位相差の安定性と連続生産適性とを両立したセルロースアシレートフィルムを提供することができることを見出し、本発明に至ったものである。
 本発明は、融点が-60~120℃の範囲内であり、かつ前記Td1が100~350℃の範囲内である有機エステルを、前記含窒素複素環化合物とともに用いることで、当該含窒素複素環化合物が飛散すると同時に、当該有機エステルも飛散し、その飛散物が製造ライン内で冷却されたときに液状化して空調フィルターに付着するため、含窒素複素環化合物の上記綿状の飛散物を当該フィルター上で容易に捕獲し、かつ粘性によって当該飛散物の嵩高さを小さくしてフィルターの目詰まりを低減してフィルターライフを長くすることができるため、湿度変動に対する位相差の安定性が高く、かつ連続生産適性の高いセルロースアシレートフィルムを実現できたものである。
 ≪本発明のセルロースアシレートフィルムの構成≫
 <セルロースアシレート>
 本発明のセルロースアシレートフィルムを構成するセルロースアシレートは、総アシル基置換度が、2.0~2.7の範囲内であるセルロースアセテート、又はセルロースアセテートプロピオネートであることが好ましい。
 原料のセルロースとしては、綿花リンタや木材パルプ(広葉樹パルプ,針葉樹パルプ)などがあり、いずれの原料セルロースから得られるセルロースアシレートでも使用でき、場合により混合して使用してもよい。これらの原料セルロースについての詳細な記載は、例えば、丸澤、宇田著、「プラスチック材料講座(17)繊維素系樹脂」日刊工業新聞社(1970年発行)や発明協会公開技報公技番号2001-1745号(7頁~8頁)に記載のセルロースを用いることができる。
 セルロースアシレートは、総アシル基置換度が2.0~2.7の範囲内のセルロースアシレートであることが、有する水素結合供与性部位(例えばヒドロキシ基の水素原子など)を介して含窒素複素環化合物や有機エステルと水素結合しやすいことから、相溶性に優れる観点から好ましい。また、製膜の際の流延性及び延伸性を向上させ、膜厚の均一性が一層向上する観点からは、セルロースアシレートの総アシル基置換度は、2.1~2.5であることが好ましい。
 本発明に係るセルロースアシレートとしては、特にセルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートベンゾエート、セルロースプロピオネート、セルロースブチレートから選ばれる少なくとも1種であることが好ましいが、これらのなかでより好ましいセルロースアシレートは、セルロースアセテート、セルロースアセテートプロピオネートである。
 なお、アセチル基の置換度や他のアシル基の置換度は、ASTM-D817-96に規定の方法により求めることができる。
 本発明に係るセルロースアシレートの重量平均分子量(Mw)は、好ましくは75000以上であり、75000~300000の範囲であることがより好ましく、100000~240000の範囲内であることが更に好ましく、160000~240000のものが特に好ましい。セルロースアシレート樹脂の重量平均分子量(Mw)が75000以上であればセルロースアシレート層自身の自己成膜性や密着の改善効果が発揮され、好ましい。本発明では2種以上のセルロースアシレート樹脂を混合して用いることもできる。
 前記セルロースアアシレートの平均分子量(Mn、Mw)は、それぞれゲルパーミエーションクロマトグラフィーにより以下の測定条件で測定することができる。
 溶媒:   メチレンクロライド
 カラム:  Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000(日立製作所(株)製)
 流量:   1.0ml/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=500~2800000の範囲内の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
 <含窒素複素環化合物>
 本発明に係る含窒素複素環化合物は、分子量が100~800の範囲内である含窒素複素環化合物であり、中でも下記一般式(1)で表される構造の化合物であることが好ましい。下記一般式(1)で表される構造を有する化合物はセルロースアシレートとともに用いることにより、偏光板を液晶表示装置に用いたとき、環境の湿度変動による位相差の変動の発生を抑え、コントラスト低下や色ムラの発生を抑制することができる。さらに、位相差上昇剤としても機能することができる。
 分子量は250~450の範囲内であることが、湿度変動による位相差の変動抑制効果と、飛散物発生の観点から好ましい範囲である。
 〈一般式(1)で表される構造を有する化合物〉
Figure JPOXMLDOC01-appb-C000003
 前記一般式(1)において、A、A及びBは、それぞれ独立に、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等)、芳香族炭化水素環又は芳香族複素環を表す。この中で、芳香族炭化水素環又は芳香族複素環が好ましく、特に、5員若しくは6員の芳香族炭化水素環又は芳香族複素環であることが好ましい。
 5員若しくは6員の芳香族炭化水素環又は芳香族複素環の構造に制限はないが、例えば、ベンゼン環、ピロール環、ピラゾール環、イミダゾール環、1,2,3-トリアゾール環、1,2,4-トリアゾール環、テトラゾール環、フラン環、オキサゾール環、イソオキサゾール環、オキサジアゾール環、イソオキサジアゾール環、チオフェン環、チアゾール環、イソチアゾール環、チアジアゾール環、イソチアジアゾール環等が挙げられる。
 A、A及びBで表される5員若しくは6員の芳香族炭化水素環又は芳香族複素環は、置換基を有していてもよく、当該置換基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等)、アルケニル基(ビニル基、アリル基等)、シクロアルケニル基(2-シクロペンテン-1-イル、2-シクロヘキセン-1-イル基等)、アルキニル基(エチニル基、プロパルギル基等)、芳香族炭化水素環基(フェニル基、p-トリル基、ナフチル基等)、芳香族複素環基(2-ピロール基、2-フリル基、2-チエニル基、ピロール基、イミダゾリル基、オキサゾリル基、チアゾリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、2-ベンゾチアゾリル基、ピラゾリノン基、ピリジル基、ピリジノン基、2-ピリミジニル基、トリアジン基、ピラゾール基、1,2,3-トリアゾール基、1,2,4-トリアゾール基、オキサゾール基、イソオキサゾール基、1,2,4-オキサジアゾール基、1,3,4-オキサジアゾール基、チアゾール基、イソチアゾール基、1,2,4-チオジアゾール基、1,3,4-チアジアゾール基等)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基(メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、n-オクチルオキシ基、2-メトキシエトキシ基等)、アリールオキシ基(フェノキシ基、2-メチルフェノキシ基、4-tert-ブチルフェノキシ基、3-ニトロフェノキシ基、2-テトラデカノイルアミノフェノキシ基等)、アシルオキシ基(ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p-メトキシフェニルカルボニルオキシ基等)、アミノ基(アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N-メチル-アニリノ基、ジフェニルアミノ基等)、アシルアミノ基(ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基等)、アルキル及びアリールスルホニルアミノ基(メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5-トリクロロフェニルスルホニルアミノ基、p-メチルフェニルスルホニルアミノ基等)、メルカプト基、アルキルチオ基(メチルチオ基、エチルチオ基、n-ヘキサデシルチオ基等)、アリールチオ基(フェニルチオ基、p-クロロフェニルチオ基、m-メトキシフェニルチオ基等)、スルファモイル基(N-エチルスルファモイル基、N-(3-ドデシルオキシプロピル)スルファモイル基、N,N-ジメチルスルファモイル基、N-アセチルスルファモイル基、N-ベンゾイルスルファモイル基、N-(N’-フェニルカルバモイル)スルファモイル基等)、スルホ基、アシル基(アセチル基、ピバロイルベンゾイル基等)、カルバモイル基(カルバモイル基、N-メチルカルバモイル基、N,N-ジメチルカルバモイル基、N,N-ジ-n-オクチルカルバモイル基、N-(メチルスルホニル)カルバモイル基等)等の各基が挙げられる。
 前記一般式(1)において、A、A及びBは、ベンゼン環、ピロール環、ピラゾール環、イミダゾール環、1,2,3-トリアゾール環又は1,2,4-トリアゾール環を表すことが、光学特性の変動効果に優れ、かつ耐久性に優れたセルロースアシレートフィルムが得られるために好ましい。
 前記一般式(1)において、T及びTは、それぞれ独立に、ピロール環、ピラゾール環、イミダゾール環、1,2,3-トリアゾール環又は1,2,4-トリアゾール環を表すことが好ましい。これらの中で、ピラゾール環、トリアゾール環又はイミダゾール環であることが、湿度変動に対する位相差の変動抑制効果に特に優れ、かつ耐久性に優れた樹脂組成物が得られるために好ましく、ピラゾール環であることが特に好ましい。T及びT2で表されるピラゾール環、1,2,3-トリアゾール環又は1,2,4-トリアゾール環、イミダゾール環は、互変異性体であってもよい。ピロール環、ピラゾール環、イミダゾール環、1,2,3-トリアゾール環又は1,2,4-トリアゾール環の具体的な構造を下記に示す。
Figure JPOXMLDOC01-appb-C000004
 式中、※は一般式(1)におけるL、L、L又はLとの結合位置を表す。Rは水素原子又は非芳香族置換基を表す。Rで表される非芳香族置換基としては、前記一般式(1)におけるAが有してもよい置換基のうちの非芳香族置換基と同様の基を挙げることができる。Rで表される置換基が芳香族基を有する置換基の場合、AとT又はBとTがねじれやすくなり、A、B及びTがセルロースアシレートとの相互作用を形成できなくなるため、光学的特性の変動を抑制することが難しい。光学的特性の変動抑制効果を高めるためには、Rは水素原子、炭素数1~5のアルキル基又は炭素数1~5のアシル基であることが好ましく、水素原子であることが特に好ましい。
 前記一般式(1)において、T及びTは置換基を有してもよく、当該置換基としては、前記一般式(1)におけるA及びAが有してもよい置換基と同様の基を挙げることができる。
 前記一般式(1)において、L、L、L及びLは、それぞれ独立に、単結合又は、2価の連結基を表し、2個以下の原子を介して、5員若しくは6員の芳香族炭化水素環又は芳香族複素環が連結されている。2個以下の原子を介してとは、連結基を構成する原子のうち連結される置換基間に存在する最小の原子数を表す。連結原子数2個以下の2価の連結基としては、特に制限はないが、アルキレン基、アルケニレン基、アルキニレン基、O、(C=O)、NR、S、(O=S=O)からなる群より選ばれる2価の連結基であるか、それらを2個組み合わせた連結基を表す。Rは、水素原子又は置換基を表す。Rで表される置換基の例には、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等)、芳香族炭化水素環基(フェニル基、p-トリル基、ナフチル基等)、芳香族複素環基(2-フリル基、2-チエニル基、2-ピリミジニル基、2-ベンゾチアゾリル基、2-ピリジル基等)、シアノ基等が含まれる。L、L、L及びLで表される2価の連結基は置換基を有してもよく、置換基としては特に制限はないが、例えば、前記一般式(1)におけるA及びAが有してもよい置換基と同様の基を挙げることができる。
 前記一般式(1)において、L、L、L及びLは、前記一般式(1)で表される構造を有する化合物の平面性が高くなることで、水を吸着する樹脂との相互作用が強くなり、光学的特性の変動が抑制されるため、単結合又は、O、(C=O)-O、O-(C=O)、(C=O)-NR又はNR-(C=O)であることが好ましく、単結合であることがより好ましい。
 前記一般式(1)において、nは0~5の整数を表す。nが2以上の整数を表すとき、前記一般式(1)における複数のA、T、L、Lは同じであってもよく、異なっていてもよい。nが大きい程、前記一般式(1)で表される構造を有する化合物と水を吸着する樹脂との相互作用が強くなることで光学的特性の変動抑制効果が優れ、nが小さいほど、水を吸着する樹脂との相溶性が優れる。このため、nは1~3の整数であることが好ましく、1又は2の整数であることがより好ましい。
 〈一般式(2)で表される構造を有する化合物〉
 一般式(1)で表される構造を有する化合物は、一般式(2)で表される構造を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
(式中、A、A、T、T、L、L、L及びLは、それぞれ前記一般式(1)におけるA、A、T、T、L、L、L及びLと同義である。A及びTは、それぞれ一般式(1)におけるA及びTと同様の基を表す。L及びLは、前記一般式(1)におけるLと同様の基を表す。mは0~4の整数を表す。)
 mが小さい方がセルロースアシレートとの相溶性に優れるため、mは0~2の整数であることが好ましく、0~1の整数であることがより好ましい。
 <一般式(1.1)で表される構造を有する化合物>
 一般式(1)で表される構造を有する化合物は、下記一般式(1.1)で表される構造を有するトリアゾール化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
 (式中、A、B、L及びLは、上記一般式(1)におけるA、B、L及びLと同様の基を表す。kは、1~4の整数を表す。Tは、1,2,4-トリアゾール環を表す。)
 さらに、上記一般式(1.1)で表される構造を有するトリアゾール化合物は、下記一般式(1.2)で表される構造を有するトリアゾール化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000007
 (式中、Zは、下記一般式(1.2a)の構造を表す。qは、2~3の整数を表す。少なくとも二つのZは、ベンゼン環に置換された少なくとも一つのZに対してオルト位又はメタ位に結合する。)
Figure JPOXMLDOC01-appb-C000008
 (式中、R10は水素原子、アルキル基又はアルコキシ基を表す。pは1~5の整数を表す。*はベンゼン環との結合位置を表す。Tは1,2,4-トリアゾール環を表す。)
 前記一般式(1)、(2)、(1.1)又は(1.2)で表される構造を有する化合物は、水和物、溶媒和物若しくは塩を形成してもよい。なお、本発明において、水和物は有機溶媒を含んでいてもよく、また溶媒和物は水を含んでいてもよい。即ち、「水和物」及び「溶媒和物」には、水と有機溶媒のいずれも含む混合溶媒和物が含まれる。塩としては、無機又は有機酸で形成された酸付加塩が含まれる。無機酸の例として、ハロゲン化水素酸(塩酸、臭化水素酸など)、硫酸、リン酸などが含まれ、またこれらに限定されない。また、有機酸の例には、酢酸、トリフルオロ酢酸、プロピオン酸、酪酸、シュウ酸、クエン酸、安息香酸、アルキルスルホン酸(メタンスルホン酸など)、アリルスルホン酸(ベンゼンスルホン酸、4-トルエンスルホン酸、1,5-ナフタレンジスルホン酸など)などが挙げられ、またこれらに限定されない。これらのうち好ましくは、塩酸塩、酢酸塩、プロピオン酸塩、酪酸塩である。
 塩の例としては、親化合物に存在する酸性部分が、金属イオン(例えばアルカリ金属塩、例えばナトリウム又はカリウム塩、アルカリ土類金属塩、例えばカルシウム又はマグネシウム塩、アンモニウム塩アルカリ金属イオン、アルカリ土類金属イオン、又はアルミニウムイオンなど)により置換されるか、あるいは有機塩基(エタノールアミン、ジエタノールアミン、トリエタノールアミン、モルホリン、ピペリジン、など)と調整されたときに形成される塩が挙げられ、またこれらに限定されない。これらのうち好ましくはナトリウム塩、カリウム塩である。
 溶媒和物が含む溶媒の例には、一般的な有機溶剤のいずれも含まれる。具体的には、アルコール(例、メタノール、エタノール、2-プロパノール、1-ブタノール、1-メトキシ-2-プロパノール、t-ブタノール)、エステル(例、酢酸エチル)、炭化水素(例、トルエン、ヘキサン、ヘプタン)、エーテル(例、テトラヒドロフラン)、ニトリル(例、アセトニトリル)、ケトン(アセトン)などが挙げられる。好ましくは、アルコール(例、メタノール、エタノール、2-プロパノール、1-ブタノール、1-メトキシ-2-プロパノール、t-ブタノール)の溶媒和物である。これらの溶媒は、前記化合物の合成時に用いられる反応溶媒であっても、合成後の晶析精製の際に用いられる溶媒であってもよく、又はこれらの混合であってもよい。
 また、2種類以上の溶媒を同時に含んでもよいし、水と溶媒を含む形(例えば、水とアルコール(例えば、メタノール、エタノール、t-ブタノールなど)など)であってもよい。
 なお、前記一般式(1)、(2)、(1.1)又は(1.2)で表される構造を有する化合物を、水や溶媒、塩を含まない形態で添加しても、本発明における樹脂組成物又はセルロースアシレートフィルム中において、水和物、溶媒和物又は塩を形成してもよい。
 また、本発明に係る含窒素複素環化合物は、下記一般式(3)で表される構造を有する化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000009
(式中Aはピラゾール環を表す。Ar及びArはそれぞれ芳香族炭化水素環又は芳香族複素環を表し、置換基を有してもよい。Rは水素原子、アルキル基、アシル基、スルホニル基、アルキルオキシカルボニル基、又はアリールオキシカルボニル基を表す。qは1~2の整数を表す。n及びmは1~3の整数を表す。)
 Ar及びArで表される芳香族炭化水素環又は芳香族複素環は、それぞれ一般式(1)で挙げた5員若しくは6員の芳香族炭化水素環又は芳香族複素環であることが好ましい。また、Ar及びArの置換基としては、前記一般式(1)で表される構造を有する化合物で示したのと同様な置換基が挙げられる。
 Rの具体例としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等)、アシル基(アセチル基、ピバロイルベンゾイル基等)、スルホニル基(例えば、メチルスルホニル基、エチルスルホニル基等)、アルキルオキシカルボニル基(例えば、メトキシカルボニル基)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基等)等が挙げられる。
 qは1~2の整数を表し、n及びmは1~3の整数を表す。
 以下に、本発明に用いられる5員若しくは6員の芳香族炭化水素環又は芳香族複素環を有する化合物の具体例を例示する。中でも前記一般式(1)、(2)、(1.1)、(1.2)で表される構造を有する化合物、又は一般式(3)で表される構造を有する化合物であることが好ましい。本発明で用いることができる前記5員若しくは6員の芳香族炭化水素環又は芳香族複素環を有する化合物は、以下の具体例によって何ら限定されることはない。なお、前述のように、以下の具体例は互変異性体であってもよく、水和物、溶媒和物又は塩を形成していてもよい。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
 次に、前記一般式(1)で表される構造を有する化合物の合成方法について説明する。
 前記一般式(1)で表される構造を有する化合物は、公知の方法で合成することができる。前記一般式(1)で表される構造を有する化合物において、1,2,4-トリアゾール環を有する化合物は、いかなる原料を用いても構わないが、ニトリル誘導体又はイミノエーテル誘導体と、ヒドラジド誘導体を反応させる方法が好ましい。反応に用いる溶媒としては、原料と反応しないと溶媒であれば、いかなる溶媒でも構わないが、エステル系(例えば、酢酸エチル、酢酸メチル等)、アミド系(ジメチルホルムアミド、ジメチルアセトアミド等)、エーテル系(エチレングリコールジメチルエーテル等)、アルコール系(例えば、メタノール、エタノール、プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、エチレングリコール、エチレングリコールモノメチルエーテル等)、芳香族炭化水素系(例えば、トルエン、キシレン等)、水を挙げられることができる。使用する溶媒として、好ましくは、アルコール系溶媒である。また、これらの溶媒は、混合して用いても良い。
 溶媒の使用量は、特に制限はないが、使用するヒドラジド誘導体の質量に対して、0.5~30倍量の範囲内であることが好ましく、更に好ましくは、1.0~25倍量であり、特に好ましくは、3.0~20倍量の範囲内である。
 ニトリル誘導体とヒドラジド誘導体を反応させる場合、触媒を使用しなくても構わないが、反応を加速させるために触媒を使用する方が好ましい。使用する触媒としては、酸を用いても良く、塩基を用いても良い。酸としては、塩酸、硫酸、硝酸、酢酸等が挙げられ、好ましくは塩酸である。酸は、水に希釈して添加しても良く、ガスを系中に吹き込む方法で添加しても良い。塩基としては、無機塩基(炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム、水酸化カリウム、水酸化ナトリウム等)及び有機塩基(ナトリウムメチラート、ナトリウムエチラート、カリウムメチラート、カリウムエチラート、ナトリウムブチラート、カリウムブチラート、ジイソプロピルエチルアミン、N,N′-ジメチルアミノピリジン、1,4-ジアザビシクロ[2.2.2]オクタン、N-メチルモルホリン、イミダゾール、N-メチルイミダゾール、ピリジン等)のいずれを用いて良く、無機塩基としては、炭酸カリウムが好ましく、有機塩基としては、ナトリウムエチラート、ナトリウムエチラート、ナトリウムブチラートが好ましい。無機塩基は、粉体のまま添加しても良く、溶媒に分散させた状態で添加しても良い。また、有機塩基は、溶媒に溶解した状態(例えば、ナトリウムメチラートの28%メタノール溶液等)で添加しても良い。
 触媒の使用量は、反応が進行する量であれば特に制限はないが、形成されるトリアゾール環に対して1.0~5.0倍モルの範囲内が好ましく、更に1.05~3.0倍モルの範囲内が好ましい。
 イミノエーテル誘導体とヒドラジド誘導体を反応させる場合は、触媒を用いる必要がなく、溶媒中で加熱することにより目的物を得ることができる。
 反応に用いる原料、溶媒及び触媒の添加方法は、特に制限がなく、触媒を最後に添加しても良く、溶媒を最後に添加しても良い。また、ニトリル誘導体を溶媒に分散若しくは溶解させ、触媒を添加した後、ヒドラジド誘導体を添加する方法も好ましい。
 反応中の溶液温度は、反応が進行する温度であればいかなる温度でも構わないが、好ましくは、0~150℃の範囲内であり、更に好ましくは、20~140℃の範囲内である。また、生成する水を除去しながら、反応を行っても良い。
 反応溶液の処理方法は、いかなる手段を用いても良いが、塩基を触媒として用いた場合は、反応溶液に酸を加えて中和する方法が好ましい。中和に用いる酸としては、例えば、塩酸、硫酸、硝酸又は酢酸等が挙げられるが、特に好ましくは酢酸である。中和に使用する酸の量は、反応溶液のpHが4~9になる範囲であれば特に制限はないが、使用する塩基に対して、0.1~3倍モルが好ましく、特に好ましくは、0.2~1.5倍モルの範囲内である。
 反応溶液の処理方法として、適当な有機溶媒を用いて抽出する場合、抽出後に有機溶媒を水で洗浄した後、濃縮する方法が好ましい。ここでいう適当な有機溶媒とは、酢酸エチル、トルエン、ジクロロメタン、エーテル等非水溶性の溶媒、又は、前記非水溶性の溶媒とテトラヒドロフラン又はアルコール系溶媒との混合溶媒のことであり、好ましくは酢酸エチルである。
 一般式(1)で表される構造を有する化合物を晶析させる場合、特に制限はないが、中和した反応溶液に水を追加して晶析させる方法、若しくは、一般式(1)で表される構造を有する化合物が溶解した水溶液を中和して晶析させる方法が好ましい。
 例えば、例示化合物1は以下のスキームによって合成することができる。
 (例示化合物1の合成)
Figure JPOXMLDOC01-appb-C000085
 n-ブタノール350mlにベンゾニトリル77.3g(75.0mmol)、ベンゾイルヒドラジン34.0g(25.0mmol)、炭酸カリウム107.0g(77.4mmol)を加え、窒素雰囲気下、120℃で24時間撹拌した。反応液を室温まで冷却し、析出物を濾過後、濾液を減圧下で濃縮した。濃縮物にイソプロパノール20mlを加え、析出物を濾取した。濾取した析出物をメタノール80mlに溶解し、純水300mlを加え、溶液のpHが7になるまで酢酸を滴下した。析出した結晶を濾取後、純水で洗浄し、50℃で送風乾燥することにより、例示化合物1を38.6g得た。収率は、ベンゾイルヒドラジン基準で70%であった。
 得られた例示化合物1のH-NMRスペクトルは以下のとおりである。
 H-NMR(400MHz、溶媒:重DMSO、基準:テトラメチルシラン)δ(ppm):7.56-7.48(6H、m)、7.62-7.61(4H、m)
 (例示化合物6の合成)
 例示化合物6は以下のスキームによって合成することができる。
Figure JPOXMLDOC01-appb-C000086
 n-ブタノール40mlに1,3-ジシアノベンゼン2.5g(19.5mmol)、ベンゾイルヒドラジン7.9g(58.5mmol)、炭酸カリウム9.0g(68.3mmol)を加え、窒素雰囲気下、120℃で24時間撹拌した。反応液を冷却後、純水40mlを加え、室温で3時間撹拌した後、析出した固体を濾別し、純水で洗浄した。得られた固体に水及び酢酸エチルを加えて分液し、有機層を純水で洗浄した。有機層を硫酸マグネシウムで乾燥し、溶媒を減圧留去した。得られた粗結晶をシリカゲルクロマトグラフィー(酢酸エチル/ヘプタン)で精製し、例示化合物6を5.5g得た。収率は、1,3-ジシアノベンゼン基準で77%であった。
 得られた例示化合物6のH-NMRスペクトルは以下のとおりである。
 H-NMR(400MHz、溶媒:重DMSO、基準:テトラメチルシラン)δ(ppm):8.83(1H、s)、8.16~8.11(6H、m)、7.67-7.54(7H、m)
 (例示化合物176の合成)
 例示化合物176は以下のスキームによって合成することができる。
Figure JPOXMLDOC01-appb-C000087
 脱水テトラヒドロフラン520mlにアセトフェノン80g(0.67mol)、イソフタル酸ジメチル52g(0.27mol)を加え、窒素雰囲気下、氷水冷で撹拌しながら、ナトリウムアミド52.3g(1.34mol)を少しずつ滴下した。氷水冷下で3時間撹拌した後、水冷下で12時間撹拌した。反応液に濃硫酸を加えて中和した後、純水及び酢酸エチルを加えて分液し、有機層を純水で洗浄した。有機層を硫酸マグネシウムで乾燥し、溶媒を減圧留去した。得られた粗結晶にメタノールを加えて懸濁洗浄することにより、中間体Aを55.2g得た。
 テトラヒドロフラン300ml、エタノール200mlに中間体A55g(0.15mol)を加え、室温で撹拌しながら、ヒドラジン1水和物18.6g(0.37mol)を少しずつ滴下した。滴下終了後、12時間加熱還流した。反応液に純水及び酢酸エチルを加えて分液し、有機層を純水で洗浄した。有機層を硫酸マグネシウムで乾燥し、溶媒を減圧留去した。得られた粗結晶をシリカゲルクロマトグラフィー(酢酸エチル/ヘプタン)で精製することによって、例示化合物176を27g得た。
 得られた例示化合物176のH-NMRスペクトルは以下のとおりである。なお、互変異性体の存在により、ケミカルシフトが複雑化するのを避けるために、測定溶媒にトリフルオロ酢酸を数滴加えて測定を行った。
 H-NMR(400MHz、溶媒:重DMSO、基準:テトラメチルシラン)δ(ppm):8.34(1H、s)、7.87~7.81(6H、m)、7.55~7.51(1H、m)、7.48-7.44(4H、m)、7.36-7.33(2H、m)、7.29(1H、s)
 その他の化合物についても同様の方法によって合成が可能である。
 〈一般式(1)で表される構造を有する化合物の使用方法について〉
 本発明に係る前記一般式(1)で表される構造を有する化合物は、適宜量を調整してセルロースアシレートフィルムに含有することができるが、添加量としてはセルロースアシレートフィルム中に、0.5~10質量%含有することが好ましい。当該範囲内であれば、湿度変動に対する位相差変動を抑制する効果が高く、また飛散物が多すぎて連続生産適性が劣化するということがない。特に、0.5~5質量%含むことが好ましい。
 また、前記一般式(1)で表される構造を有する化合物の添加方法としては、セルロースアシレートフィルムを形成する樹脂に粉体で添加しても良く、溶媒に溶解した後、セルロースアシレートフィルムを形成する樹脂に添加しても良い。
 <有機エステル>
 本発明に係る有機エステルは、融点が-60~120℃の範囲内であり、かつ示差熱・熱重量測定による1%質量減少温度Td1が100~350℃の範囲内である有機エステルである。有機エステルとしては、特に限定されるものではないが、当該有機エステルが、糖エステル、重縮合エステル、及び多価アルコールエステルから選択される少なくとも1種であることが好ましく、前記重縮合エステルは、構造中に窒素原子を含まないエステルであることが好ましい。
 (有機エステルの融点の測定)
 融点の測定は、セイコーインスツル(株)製示差熱・熱重量同時測定装置、EXSTAR6220DSCを用いて測定した。アルミパンに試料化合物を10mg入れて、10℃/minで30℃から350℃、350℃から30℃に温度を変化させたときの吸熱・発熱ピークから融点を求めた。融点が0℃以下の化合物を測定するときは5℃/minで-50℃から30℃、30℃から-50℃までの温度の吸熱・発熱ピークから融点を求めた。
 本発明に係る有機エステルは、本発明の効果を呈するのに、融点が-60~120℃の範囲内であることが必要であり、好ましくは、-45℃~90℃の範囲内である。
 有機エステルの融点が-60~120℃の範囲内であると、製造ライン中で飛散し、かつ冷却された後液状化しやすいため、本発明の効果発現の観点からこの範囲内であることが好ましい。
 (有機エステルの1%質量減少温度の測定)
 有機エステルの1%質量減少温度Td1の測定は、例えば、セイコーインスツル製示差熱・熱重量同時測定装置、EXSTAR6200TG/DTAによって、アルミパンに試料化合物を10mg入れて、50℃/minで100℃まで昇温した後、40分間そのまま加熱し、その後、10℃/minで400℃まで昇温しながら質量変動をモニターし、質量が1質量%減少したときの温度を、1%質量減少温度とする。なお、測定は乾燥空気(露点-30℃)下で測定する。
 本発明に係る有機エステルは、本発明の効果を呈するのに、1%質量減少温度が、100~300℃の範囲内であることが必要であり、好ましくは、200~270℃の範囲内である。
 有機エステルの1%質量減少温度が100℃以上であると、飛散、冷却後液状化したときの粘度が適度であり、含窒素複素環化合物の飛散物の嵩高さを小さくすることができ、1%質量減少温度が350℃以下であると、当該有機エステルが、当該含窒素複素環化合物の飛散物の嵩高さを小さくするのに必要な量が飛散して、十分な効果を得ることができる。
 本発明の有機エステルの含有量は、本発明のセルロースアシレートフィルム中に0.5~20質量%の範囲で含有することが好ましい。この範囲内であれば、含窒素複素環化合物が飛散すると同時に、当該有機エステルも飛散して、その飛散物が製造ライン内で冷却されて液状化し粘性の高い付着物としてフィルターに付着するため、含窒素複素環化合物の綿状の飛散物を容易にフィルター上で捕獲するのと同時に、当該粘性によって当該飛散物の嵩高さを小さくできるため、フィルターの目詰まりを低減してフィルターライフを伸ばすことができる
 また、有機エステルは異なる2種類以上の化合物を併用することも好ましく、特に下記糖エステルと重縮合エステルを併用することが好ましい。併用する場合の各化合物の含有量に特に制限はないが、糖エステルの含有量を多くすることが、セルロースアシレートフィルムの光学特性の安定化からも好ましい。
 以下、本発明に好ましく用いられる有機エステルとして、糖エステル、重縮合エステル、及び多価アルコールエステルについて説明する。
 本発明では以下の好ましい有機エステルの中から、上記融点及び1%質量減少温度Td1が本発明の範囲内である化合物を、適宜選択して用いることができる。
 〈糖エステル〉
 本発明に係る糖エステルとしては、ピラノース環又はフラノース環の少なくとも1種を1個以上12個以下有しその構造のOH基の全て若しくは一部をエステル化した糖エステルであることが好ましい。
 本発明に係る糖エステルとは、フラノース環又はピラノース環の少なくともいずれかを含む化合物であり、単糖であっても、糖構造が2~12個連結した多糖であってもよい。そして、糖エステルは、糖構造が有するOH基の少なくとも一つがエステル化された化合物が好ましい。本発明に係る糖エステルにおいては、平均エステル置換度が、4.0~8.0の範囲内であることが好ましく、5.0~7.5の範囲内であることがより好ましい。
 本発明に係る糖エステルとしては、特に制限はないが、下記一般式(A)で表される糖エステルを挙げることができる。
 一般式(A)
   (HO)-G-(O-C(=O)-R
 上記一般式(A)において、Gは、単糖類又は二糖類の残基を表し、Rは、脂肪族基又は芳香族基を表し、mは、単糖類又は二糖類の残基に直接結合しているヒドロキシ基の数の合計であり、nは、単糖類又は二糖類の残基に直接結合している-(O-C(=O)-R)基の数の合計であり、3≦m+n≦8であり、n≠0である。
 一般式(A)で表される構造を有する糖エステルは、ヒドロキシ基の数(m)、-(O-C(=O)-R)基の数(n)が固定された単一種の化合物として単離することは困難であり、式中のm、nの異なる成分が数種類混合された化合物となることが知られている。したがって、ヒドロキシ基の数(m)、-(O-C(=O)-R)基の数(n)が各々変化した混合物としての性能が重要であり、本発明のセルロースアシレートフィルムの場合、平均エステル置換度が、5.0~7.5の範囲内である糖エステルが好ましい。
 上記一般式(A)において、Gは単糖類又は二糖類の残基を表す。単糖類の具体例としては、例えばアロース、アルトロース、グルコース、マンノース、グロース、イドース、ガラクトース、タロース、リボース、アラビノース、キシロース、リキソースなどが挙げられる。
 以下に、一般式(A)で表される糖エステルの単糖類残基を有する化合物の具体例を示すが、本発明はこれら例示する化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000088
 また、二糖類残基の具体例としては、例えば、トレハロース、スクロース、マルトース、セロビオース、ゲンチオビオース、ラクトース、イソトレハロース等が挙げられる。
 以下に、一般式(A)で表される糖エステルの二糖類残基を有する化合物の具体例を示すが、本発明はこれら例示する化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000089
 一般式(A)において、Rは、脂肪族基又は芳香族基を表す。ここで、脂肪族基及び芳香族基は、それぞれ独立に置換基を有していてもよい。
 また、一般式(A)において、mは、単糖類又は二糖類の残基に直接結合しているヒドロキシ基の数の合計であり、nは、単糖類又は二糖類の残基に直接結合している-(O-C(=O)-R)基の数の合計である。そして、3≦m+n≦8であることが必要であり、4≦m+n≦8であることが好ましい。また、n≠0である。なお、nが2以上である場合、-(O-C(=O)-R)基は互いに同じでもよいし異なっていてもよい。
 Rの定義における脂肪族基は、直鎖であっても、分岐であっても、環状であってもよく、炭素数1~25のものが好ましく、1~20のものがより好ましく、2~15のものが特に好ましい。脂肪族基の具体例としては、例えば、メチル、エチル、n-プロピル、iso-プロピル、シクロプロピル、n-ブチル、iso-ブチル、tert-ブチル、アミル、iso-アミル、tert-アミル、n-ヘキシル、シクロヘキシル、n-ヘプチル、n-オクチル、ビシクロオクチル、アダマンチル、n-デシル、tert-オクチル、ドデシル、ヘキサデシル、オクタデシル、ジデシル等の各基が挙げられる。
 また、Rの定義における芳香族基は、芳香族炭化水素基でもよいし、芳香族複素環基でもよく、より好ましくは芳香族炭化水素基である。芳香族炭化水素基としては、炭素数が6~24のものが好ましく、6~12のものがさらに好ましい。芳香族炭化水素基の具体例としては、例えば、ベンゼン、ナフタレン、アントラセン、ビフェニル、ターフェニル等の各環が挙げられる。芳香族炭化水素基としては、ベンゼン環、ナフタレン環、ビフェニル環が特に好ましい。芳香族複素環基としては、酸素原子、窒素原子又は硫黄原子のうち少なくとも一つを含む環が好ましい。複素環の具体例としては、例えば、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデン等の各環が挙げられる。芳香族複素環基としては、ピリジン環、トリアジン環、キノリン環が特に好ましい。
 次に、一般式(A)で表される糖エステルの好ましい例を下記に示すが、本発明はこれらの例示する化合物に限定されるものではない。下記例示化合物はいずれも融点及び1%質量減少温度Td1が、本発明の範囲内である。
 糖エステルは一つの分子中に二つ以上の異なった置換基を含有していても良く、芳香族置換基と脂肪族置換基を1分子内に含有、異なる二つ以上の芳香族置換基を1分子内に含有、異なる二つ以上の脂肪族置換基を1分子内に含有することができる。
 また、2種類以上の糖エステルを混合して含有することも好ましい。置換度の異なる糖エステルを複数種用いることも好ましく、芳香族置換基を含有する糖エステルと、脂肪族置換基を含有する糖エステルを同時に含有することも好ましい。
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
 〈合成例:一般式(A)で表される糖エステルの合成例〉
 以下に、本発明に好適に用いることのできる糖エステルの合成の一例を示す。
Figure JPOXMLDOC01-appb-C000092
 撹拌装置、還流冷却器、温度計及び窒素ガス導入管を備えた四頭コルベンに、ショ糖を34.2g(0.1モル)、無水安息香酸を180.8g(0.8モル)、ピリジンを379.7g(4.8モル)、それぞれ仕込み、撹拌下で窒素ガス導入管から窒素ガスをバブリングさせながら昇温し、70℃で5時間エステル化反応を行った。次に、コルベン内を4×10Pa以下に減圧し、60℃で過剰のピリジンを留去した後に、コルベン内を1.3×10Pa以下に減圧し、120℃まで昇温させ、無水安息香酸、生成した安息香酸の大部分を留去した。そして、次にトルエンを1L、0.5質量%の炭酸ナトリウム水溶液を300g添加し、50℃で30分間撹拌した後、静置して、トルエン層を分取した。最後に、分取したトルエン層に水を100g添加し、常温で30分間水洗した後、トルエン層を分取し、減圧下(4×10Pa以下)、60℃でトルエンを留去させ、化合物A-1、A-2、A-3、A-4及びA-5の混合物を得た。得られた混合物をHPLC及びLC-MASSで解析したところ、A-1が7質量%、A-2が58質量%、A-3が23質量%、A-4が9質量%、A-5が3質量%で、糖エステルの平均エステル置換度が、6.57であった。なお、得られた混合物の一部をシリカゲルカラムクロマトグラフィーにより精製することで、それぞれ純度100%のA-1、A-2、A-3、A-4及びA-5を得た。
 当該糖エステルの添加量は、本発明の効果以外に環境変動に対する光学的安定性を高める観点からも、セルロースアシレートフィルムに対して0.5~20質量%の範囲で添加することが好ましく、1~15質量%の範囲で添加することがより好ましい。
 〈重縮合エステル〉
 本発明のセルロースアシレートフィルムにおいては、有機エステルとして、下記一般式(4)で表される構造を有する重縮合エステルを用いることが好ましい。
 当該重縮合エステルは、本発明の効果以外にその可塑的な効果からも、セルロースアシレートフィルムに対して0.5~20質量%の範囲で含有することが好ましく、1~15質量%の範囲で含有することがより好ましく、1~10質量%の範囲で含有することが特に好ましい。
 一般式(4)
   B-(G-A)-G-B
 上記一般式(4)において、B及びBは、それぞれ独立に脂肪族又は芳香族モノカルボン酸残基、若しくはヒドロキシ基を表す。Gは、炭素数2~12のアルキレングリコール残基、炭素数6~12のアリールグリコール残基又は炭素数が4~12のオキシアルキレングリコール残基を表す。Aは、炭素数4~12のアルキレンジカルボン酸残基又は炭素数6~12のアリールジカルボン酸残基を表す。nは1以上の整数を表す。
 本発明において、重縮合エステルは、ジカルボン酸とジオールを反応させて得られる繰り返し単位を含む重縮合エステルであり、Aは重縮合エステル中のカルボン酸残基を表し、Gはアルコール残基を表す。
 重縮合エステルを構成するジカルボン酸は、芳香族ジカルボン酸、脂肪族ジカルボン酸又は脂環式ジカルボン酸であり、好ましくは芳香族ジカルボン酸である。ジカルボン酸は、1種類であっても、2種類以上の混合物であってもよい。特に芳香族、脂肪族を混合させることが好ましい。
 重縮合エステルを構成するジオールは、芳香族ジオール、脂肪族ジオール又は脂環式ジオールであり、好ましくは脂肪族ジオールであり、より好ましくは炭素数1~4のジオールである。ジオールは、1種類であっても、2種類以上の混合物であってもよい。
 なかでも、少なくとも芳香族ジカルボン酸を含むジカルボン酸と、炭素数1~8のジオールとを反応させて得られる繰り返し単位を含むことが好ましく、芳香族ジカルボン酸と脂肪族ジカルボン酸とを含むジカルボン酸と、炭素数1~8のジオールとを反応させて得られる繰り返し単位を含むことがより好ましい。
 重縮合エステルの分子の両末端は、封止されていても、封止されていなくてもよい。
 一般式(4)のAを構成するアルキレンジカルボン酸の具体例としては、1,2-エタンジカルボン酸(コハク酸)、1,3-プロパンジカルボン酸(グルタル酸)、1,4-ブタンジカルボン酸(アジピン酸)、1,5-ペンタンジカルボン酸(ピメリン酸)、1,8-オクタンジカルボン酸(セバシン酸)などから誘導される2価の基が含まれる。Aを構成するアルケニレンジカルボン酸の具体例としては、マレイン酸、フマル酸などが挙げられる。Aを構成するアリールジカルボン酸の具体例としては、1,2-ベンゼンジカルボン酸(フタル酸)、1,3-ベンゼンジカルボン酸、1,4-ベンゼンジカルボン酸、1,5-ナフタレンジカルボン酸などが挙げられる。
 Aは、1種類であっても、2種類以上が組み合わされてもよい。中でも、Aは、炭素原子数4~12のアルキレンジカルボン酸と炭素原子数8~12のアリールジカルボン酸との組み合わせが好ましい。
 一般式(4)中のGは、炭素原子数2~12のアルキレングリコールから誘導される2価の基、炭素原子数6~12のアリールグリコールから誘導される2価の基、又は炭素原子数4~12のオキシアルキレングリコールから誘導される2価の基を表す。
 Gにおける炭素原子数2~12のアルキレングリコールから誘導される2価の基の例には、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3-プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、及び1,12-オクタデカンジオール等から誘導される2価の基が含まれる。
 Gにおける炭素原子数6~12のアリールグリコールから誘導される2価の基の例には、1,2-ジヒドロキシベンゼン(カテコール)、1,3-ジヒドロキシベンゼン(レゾルシノール)、1,4-ジヒドロキシベンゼン(ヒドロキノン)などから誘導される2価の基が含まれる。Gにおける炭素原子数が4~12のオキシアルキレングリコールから誘導される2価の基の例には、ジエチレングルコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコールなどから誘導される2価の基が含まれる。
 Gは、1種類であっても、2種類以上が組み合わされてもよい。中でも、Gは、炭素原子数2~12のアルキレングリコールから誘導される2価の基が好ましく、2~5がさらに好ましく、2~4が最も好ましい。
 一般式(4)におけるB及びBは、各々芳香環含有モノカルボン酸又は脂肪族モノカルボン酸から誘導される1価の基、若しくはヒドロキシ基である。
 芳香環含有モノカルボン酸から誘導される1価の基における芳香環含有モノカルボン酸は、分子内に芳香環を含有するカルボン酸であり、芳香環がカルボキシ基と直接結合したものだけでなく、芳香環がアルキレン基などを介してカルボキシ基と結合したものも含む。芳香環含有モノカルボン酸から誘導される1価の基の例には、安息香酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸、フェニル酢酸、3-フェニルプロピオン酸などから誘導される1価の基が含まれる。中でも安息香酸、パラトルイル酸が好ましい。
 脂肪族モノカルボン酸から誘導される1価の基の例には、酢酸、プロピオン酸、ブタン酸、カプリル酸、カプロン酸、デカン酸、ドデカン酸、ステアリン酸、オレイン酸などから誘導される1価の基が含まれる。中でも、アルキル部分の炭素原子数が1~3であるアルキルモノカルボン酸から誘導される1価の基が好ましく、アセチル基(酢酸から誘導される1価の基)がより好ましい。
 本発明に係る重縮合エステルの重量平均分子量は、500~3000の範囲であることが好ましく、600~2000の範囲であることがより好ましい。重量平均分子量は前記ゲルパーミエーションクロマトグラフィー(GPC)によって測定することができる。
 以下、一般式(4)で表される構造を有する重縮合エステルの具体例を示すが、これに限定されるものではない。下記例示化合物はいずれも融点及び1%質量減少温度Td1が、本発明の範囲内である。
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
 以下、上記説明した重縮合エステルの具体的な合成例について記載する。
 〈重縮合エステルP1〉
 エチレングリコール180g、無水フタル酸278g、アジピン酸91g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応のエチレングリコールを減圧留去することにより、重縮合エステルP1を得た。酸価0.20、数平均分子量450であった。
 〈重縮合エステルP2〉
 1,2-プロピレングリコール251g、無水フタル酸103g、アジピン酸244g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、下記重縮合エステルP2を得た。酸価0.10、数平均分子量450であった。
Figure JPOXMLDOC01-appb-C000096
 〈重縮合エステルP3〉
 1,4-ブタンジオール330g、無水フタル酸244g、アジピン酸103g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,4-ブタンジオールを減圧留去することにより、重縮合エステルP3を得た。酸価0.50、数平均分子量2000であった。
 〈重縮合エステルP4〉
 1,2-プロピレングリコール251g、テレフタル酸354g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、重縮合エステルP4を得た。酸価0.10、数平均分子量400であった。
 〈重縮合エステルP5〉
 1,2-プロピレングリコール251g、テレフタル酸354g、p-トロイル酸680g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、下記重縮合エステルP5を得た。酸価0.30、数平均分子量400であった。
Figure JPOXMLDOC01-appb-C000097
 〈重縮合エステルP6〉
 180gの1,2-プロピレングリコール、292gのアジピン酸、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中200℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、重縮合エステルP6を得た。酸価0.10、数平均分子量400であった。
 〈重縮合エステルP7〉
 180gの1,2-プロピレングリコール、無水フタル酸244g、アジピン酸103g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中200℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、重縮合エステルP7を得た。酸価0.10、数平均分子量320であった。
 〈重縮合エステルP8〉
 エチレングリコール251g、無水フタル酸244g、コハク酸120g、酢酸150g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中200℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応のエチレングリコールを減圧留去することにより、重縮合エステルP8を得た。酸価0.50、数平均分子量1200であった。
 〈重縮合エステルP9〉
 上記重縮合エステルP2と同様の製造方法で、反応条件を変化させて、酸価0.10、数平均分子量315の重縮合エステルP9を得た。
 〈多価アルコールエステル〉
 本発明のセルロースアシレートフィルムにおいては、多価アルコールエステルを含有することも好ましい。
 多価アルコールエステルは2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなる化合物であり、分子内に芳香環又はシクロアルキル環を有することが好ましい。好ましくは2~20価の脂肪族多価アルコールエステルである。
 本発明に好ましく用いられる多価アルコールは次の一般式(5)で表される。
 一般式(5) R11-(OH)
 ただし、R11はn価の有機基、nは2以上の正の整数、OH基はアルコール性、及び/又はフェノール性水酸基を表す。
 好ましい多価アルコールの例としては、例えば以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。
 アドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ジブチレングリコール、1,2,4-ブタントリオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3-メチルペンタン-1,3,5-トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることができる。
 特に、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトールが好ましい。
 多価アルコールエステルに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。脂環族モノカルボン酸、芳香族モノカルボン酸を用いると透湿性、保留性を向上させる点で好ましい。
 好ましいモノカルボン酸の例としては以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。
 脂肪族モノカルボン酸としては、炭素数1~32の直鎖又は側鎖を有する脂肪酸を好ましく用いることができる。炭素数は1~20であることが更に好ましく、1~10であることが特に好ましい。酢酸を含有させるとセルロースアセテートとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。
 好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等を挙げることができる。
 好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることができる。
 好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基、メトキシ基あるいはエトキシ基などのアルコキシ基を1~3個を導入したもの、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、又はそれらの誘導体を挙げることができる。特に安息香酸が好ましい。
 多価アルコールエステルの分子量は特に制限はないが、300~1500の範囲であることが好ましく、350~750の範囲であることが更に好ましい。分子量が大きい方が揮発し難くなるため好ましく、透湿性、セルロースアシレートとの相溶性の点では小さい方が好ましい。
 多価アルコールエステルに用いられるカルボン酸は1種類でもよいし、2種以上の混合であってもよい。また、多価アルコール中のOH基は、全てエステル化してもよいし、一部をOH基のままで残してもよい。
 以下に、多価アルコールエステルの具体的化合物を例示する。下記例示化合物はいずれも融点及び1%質量減少温度Td1が、本発明の範囲内である。
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
 本発明に係る多価アルコールエステルは、本発明の効果及び可塑的効果を得る観点から、セルロースアシレートフィルムに対して0.5~20質量%の範囲で含有することが好ましく、1~15質量%の範囲で含有することがより好ましく、1~10質量%の範囲で含有することが特に好ましい。
 本発明に係る多価アルコールエステルは、従来公知の一般的な合成方法に従って合成することができる。
 <その他の添加剤>
 〈リン酸エステル〉
 本発明のセルロースアシレートフィルムは、リン酸エステルを用いることができる。リン酸エステルとしては、トリアリールリン酸エステル、ジアリールリン酸エステル、モノアリールリン酸エステル、アリールホスホン酸化合物、アリールホスフィンオキシド化合物、縮合アリールリン酸エステル、ハロゲン化アルキルリン酸エステル、含ハロゲン縮合リン酸エステル、含ハロゲン縮合ホスホン酸エステル、含ハロゲン亜リン酸エステル等が挙げることができる。
 具体的なリン酸エステルとしては、トリフェニルホスフェート、9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン-10-オキシド、フェニルホスホン酸、トリス(β-クロロエチル)ホスフェート、トリス(ジクロロプロピル)ホスフェート、トリス(トリブロモネオペンチル)ホスフェート等が挙げられる。
 〈グリコール酸のエステル類〉
 また、本発明においては、多価アルコールエステル類の1種として、グリコール酸のエステル類(グリコレート化合物)を用いることができる。
 本発明に適用可能なグリコレート化合物としては、特に限定されないが、アルキルフタリルアルキルグリコレート類が好ましく用いることができる。
 アルキルフタリルアルキルグリコレート類としては、例えば、メチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等が挙げられ、好ましくはエチルフタリルエチルグリコレートである。
 〈紫外線吸収剤〉
 本発明のセルロースアシレートフィルムは、紫外線吸収剤を含有することが耐光性を向上する観点から好ましい。紫外線吸収剤は400nm以下の紫外線を吸収することで、耐光性を向上させることを目的としており、特に波長370nmでの透過率が、2~30%の範囲であることが好ましく、より好ましくは4~20%の範囲、更に好ましくは5~10%の範囲である。
 本発明で好ましく用いられる紫外線吸収剤は、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤であり、特に好ましくはベンゾトリアゾール系紫外線吸収剤及びベンゾフェノン系紫外線吸収剤である。
 例えば、5-クロロ-2-(3,5-ジ-sec-ブチル-2-ヒドロキシルフェニル)-2H-ベンゾトリアゾール、(2-2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2,4-ベンジルオキシベンゾフェノン等があり、また、チヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン928等のチヌビン類があり、これらはいずれもBASFジャパン社製の市販品であり好ましく使用できる。この中ではハロゲンフリーのものが好ましい。
 このほか、1,3,5-トリアジン環を有する化合物等の円盤状化合物も紫外線吸収剤として好ましく用いられる。
 本発明のセルロースアシレートフィルムは、紫外線吸収剤を2種以上含有することが好ましい。
 また、紫外線吸収剤としては高分子紫外線吸収剤も好ましく用いることができ、特に特開平6-148430号記載のポリマータイプの紫外線吸収剤が好ましく用いられる。また、紫外線吸収剤は、ハロゲン基を有していないことが好ましい。
 紫外線吸収剤の添加方法は、メタノール、エタノール、ブタノール等のアルコールやメチレンクロライド、酢酸メチル、アセトン、ジオキソラン等の有機溶媒あるいはこれらの混合溶媒に紫外線吸収剤を溶解してからドープに添加するか、又は直接ドープ組成中に添加してもよい。
 無機粉体のように有機溶剤に溶解しないものは、有機溶剤とセルロースアシレート中にディゾルバーやサンドミルを使用し、分散してからドープに添加する。
 紫外線吸収剤の使用量は、紫外線吸収剤の種類、使用条件等により一様ではないが、セルロースアシレートフィルムの乾燥膜厚が15~50μmの場合は、セルロースアシレートフィルムに対して0.5~10質量%の範囲が好ましく、0.6~4質量%の範囲が更に好ましい。
 〈酸化防止剤〉
 酸化防止剤は劣化防止剤ともいわれる。高湿高温の状態に有機エレクトロルミネッセンス表示装置などが置かれた場合には、セルロースアシレートフィルムの劣化が起こる場合がある。
 酸化防止剤は、例えば、セルロースアシレートフィルム中の残留溶媒量のハロゲンやリン酸系可塑剤のリン酸等によりセルロースアシレートフィルムが分解するのを遅らせたり、防いだりする役割を有するので、本発明のセルロースアシレートフィルム中に含有させるのが好ましい。
 このような酸化防止剤としては、ヒンダードフェノール系の化合物が好ましく用いられ、例えば、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサンジオール-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、2,2-チオ-ジエチレンビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N′-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレート等を挙げることができる。
 特に、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕が好ましい。また、例えば、N,N′-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル〕ヒドラジン等のヒドラジン系の金属不活性剤やトリス(2,4-ジ-t-ブチルフェニル)ホスファイト等のリン系加工安定剤を併用してもよい。
 これらの化合物の添加量は、セルロースアシレートフィルムに対して質量割合で1ppm~1.0%の範囲が好ましく、10~1000ppmの範囲が更に好ましい。
 〈微粒子(マット剤)〉
 セルロースアシレートフィルムは、表面の滑り性を高めるため、必要に応じて微粒子(マット剤)をさらに含有してもよい。
 微粒子は、無機微粒子であっても有機微粒子であってもよい。無機微粒子の例には、二酸化ケイ素(シリカ)、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムなどが含まれる。中でも、二酸化ケイ素や酸化ジルコニウムが好ましく、得られるフィルムのヘイズの増大を少なくするためには、より好ましくは二酸化ケイ素である。
 二酸化ケイ素の微粒子の例には、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600、NAX50(以上日本アエロジル(株)製)、シーホスターKE-P10、KE-P30、KE-P50、KE-P100(以上日本触媒(株)製)などが含まれる。中でも、アエロジルR972V、NAX50、シーホスターKE-P30などが、得られるフィルムの濁度を低く保ちつつ、摩擦係数を低減させるため特に好ましい。
 微粒子の一次粒子径は、5~50nmの範囲であることが好ましく、7~20nmの範囲であることがより好ましい。一次粒子径が大きい方が、得られるフィルムの滑り性を高める効果は大きいが、透明性が低下しやすい。そのため、微粒子は、粒子径0.05~0.3μmの範囲の二次凝集体として含有されていてもよい。微粒子の一次粒子又はその二次凝集体の大きさは、透過型電子顕微鏡にて倍率50~200万倍で一次粒子又は二次凝集体を観察し、一次粒子又は二次凝集体100個の粒子径の平均値として求めることができる。
 微粒子の含有量は、セルロースアシレートフィルムを形成する樹脂に対して0.05~1.0質量%の範囲であることが好ましく、0.1~0.8質量%の範囲であることがより好ましい。
 〈位相差制御剤〉
 液晶表示装置等の画像表示装置の表示品質の向上のため、セルロースアシレートフィルム中に位相差制御剤を添加するか、配向膜を形成して液晶層を設け、偏光板保護フィルムと液晶層由来の位相差を複合化することにより、セルロースアシレートフィルムに光学補償能を付与することができる。
 位相差制御剤としては、欧州特許911,656A2号明細書に記載されているような、2以上の芳香族環を有する芳香族化合物、特開2006-2025号公報に記載の棒状化合物等が挙げられる。また、二種類以上の芳香族化合物を併用してもよい。この芳香族化合物の芳香族環には、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む芳香族性ヘテロ環であることが好ましい。芳香族性ヘテロ環は、一般に不飽和ヘテロ環である。なかでも、特開2006-2026号公報に記載の1,3,5-トリアジン環が好ましい。
 なお、一般式(1)で表される構造を有する化合物は、位相差制御剤としても機能する。このため、一般式(1)で表される構造を有する化合物は、一つの化合物で位相差制御と湿度変動に対する光学値変動抑制の両方の機能を付与することができる。
 これらの位相差制御剤の添加量は、フィルム基材として使用する樹脂100質量%に対して、0.5~20質量%の範囲内であることが好ましく、1~10質量%の範囲内であることがより好ましい。
 ≪セルロースアシレートフィルムの製造方法≫
 本発明のセルロースアシレートフィルムの製造方法としては、通常のインフレーション法、T-ダイ法、カレンダー法、切削法、流延法、エマルジョン法、ホットプレス法等の製造法が使用できるが、着色抑制、異物欠点の抑制、ダイラインなどの光学欠点の抑制などの観点から製膜方法は、溶液流延製膜法と溶融流延製膜法が選択でき、特に溶液流延製膜法であることが、均一で平滑な表面を得ることができる観点から好ましい。
 (A)溶液流延製膜法
 以下、本発明のセルロースアシレートフィルムを溶液流延法で製造する製造例について説明する。
 本発明のセルロースアシレートフィルムの製造は、少なくともセルロースアシレート、含窒素複素環化合物及び有機エステルなどの添加剤を溶剤に溶解させてドープを調製する工程、ドープをベルト状若しくはドラム状の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸する工程、更に乾燥する工程、及び冷却後巻き取る工程により行われる。本発明のセルロースアシレートフィルムは固形分中に好ましくはセルロースアシレートを60~95質量%の範囲で含有するものである。
 (1)溶解工程
 セルロースアシレートに対する良溶媒を主とする有機溶媒に、溶解釜中で当該セルロースアシレート、場合によって、本発明に係る含窒素複素環化合物、糖エステル、重縮合エステル、多価アルコールエステル、又はその他の化合物を撹拌しながら溶解しドープを形成する工程、あるいは当該セルロースアシレート溶液に、本発明に係る含窒素複素環化合物、糖エステル、重縮合エステル、多価アルコールエステル、又はその他の化合物溶液を混合して主溶解液であるドープを形成する工程である。
 本発明のセルロースアシレートフィルムを溶液流延法で製造する場合、ドープを形成するのに有用な有機溶媒は、セルロースアシレート及びその他の化合物を同時に溶解するものであれば制限なく用いることができる。
 例えば、塩素系有機溶媒としては、塩化メチレン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等を挙げることができ、塩化メチレン、酢酸メチル、酢酸エチル、アセトンを好ましく使用することができる。
 ドープには、上記有機溶媒の他に、1~40質量%の範囲の炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含有させることが好ましい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ないときは非塩素系有機溶媒系でのセルロースアシレート及びその他の化合物の溶解を促進する役割もある。本発明のセルロースアシレートフィルムの製膜においては、得られるセルロースアシレートフィルムの平面性を高める点から、アルコール濃度が0.5~15.0質量%の範囲内にあるドープを用いて製膜する方法を適用することができる。
 特に、メチレンクロライド、及び炭素数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含有する溶媒に、セルロースアシレート及びその他の化合物を、計15~45質量%の範囲で溶解させたドープ組成物であることが好ましい。
 炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらの内ドープの安定性、沸点も比較的低く、乾燥性もよいこと等からメタノール及びエタノールが好ましい。
 セルロースアシレート、含窒素複素環化合物、糖エステル、重縮合エステル、及び多価アルコールエステル、又はその他の化合物の溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、特開平9-95544号公報、特開平9-95557号公報、又は特開平9-95538号公報に記載の如き冷却溶解法で行う方法、特開平11-21379号公報に記載されている高圧で行う方法等種々の溶解方法を用いることができるが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。
 ドープ中のセルロースアシレートの濃度は、10~40質量%の範囲であることが好ましい。溶解中又は後のドープに化合物を加えて溶解及び分散した後、濾材で濾過し、脱泡して送液ポンプで次工程に送る。
 濾過は捕集粒子径0.5~5μmで、かつ濾水時間10~25sec/100mlの濾材を用いることが好ましい。
 この方法では、粒子分散時に残存する凝集物や主ドープ添加時発生する凝集物を、捕集粒子径0.5~5μmで、かつ濾水時間10~25sec/100mlの濾材を用いることで凝集物だけ除去できる。主ドープでは粒子の濃度も添加液に比べ十分に薄いため、濾過時に凝集物同士がくっついて急激な濾圧上昇することもない。
 図1は、本発明に好ましい溶液流延製膜方法のドープ調製工程、流延工程及び乾燥工程の一例を模式的に示した図である。
 仕込釜41より濾過器44で大きな凝集物を除去し、ストック釜42へ送液する。その後、ストック釜42より主ドープ溶解釜1へ各種添加液を添加する。
 その後、主ドープは主濾過器3にて濾過され、これに紫外線吸収剤添加液が16よりインライン添加される。
 多くの場合、主ドープには返材が10~50質量%程度含まれることがある。
 返材とは、セルロースアシレートフィルムを細かく粉砕した物で、セルロースアシレートフィルムを製膜するときに発生する、フィルムの両サイド部分を切り落とした物や、擦り傷などでフィルムの規定値を越えたセルロースアシレートフィルム原反が使用される。
 また、ドープ調製に用いられる樹脂の原料としては、あらかじめセルロースアシレート及びその他の化合物などをペレット化したものも、好ましく用いることができる。
 (2)流延工程
 (2-1)ドープの流延
 ドープを、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイ30に送液し、無限に移送する無端の金属支持体31、例えば、ステンレスベルト、あるいは回転する金属ドラム等の金属支持体上の流延位置に、加圧ダイスリットからドープを流延する工程である。
 流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルト若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。キャストの幅は1~4mの範囲、好ましくは1.5~3mの範囲、さらに好ましくは2~2.8mの範囲とすることができる。流延工程の金属支持体の表面温度は-50℃~溶剤が沸騰して発泡しない温度以下、さらに好ましくは-30~0℃の範囲に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高過ぎるとウェブが発泡したり、平面性が劣化する場合がある。好ましい支持体温度としては0~100℃で適宜決定され、5~30℃の範囲が更に好ましい。あるいは、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。金属支持体の温度を制御する方法は特に制限されないが、温風又は冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。特に、流延から剥離するまでの間で支持体の温度及び乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。
 ダイの口金部分のスリット形状を調整でき、膜厚を均一にしやすい加圧ダイが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。金属支持体の表面は鏡面となっている。製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して重層してもよい。
 (3)溶媒蒸発工程
 ウェブ(流延用支持体上にドープを流延し、形成されたドープ膜をウェブという。)を流延用支持体上で加熱し、溶媒を蒸発させる工程である。
 溶媒を蒸発させるには、ウェブ側から風を吹かせる方法又は支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱方法が、乾燥効率が良く好ましい。また、それらを組み合わせる方法も好ましく用いられる。流延後の支持体上のウェブを40~100℃の雰囲気下、支持体上で乾燥させることが好ましい。40~100℃の雰囲気下に維持するには、この温度の温風をウェブ上面に当てるか赤外線等の手段により加熱することが好ましい。
 面品質、透湿性、剥離性の観点から、30~120秒以内で当該ウェブを支持体から剥離することが好ましい。
 (4)剥離工程
 金属支持体上で溶媒が蒸発したウェブを、剥離位置で剥離する工程である。剥離されたウェブは次工程に送られる。
 金属支持体上の剥離位置における温度は好ましくは10~40℃の範囲であり、さらに好ましくは11~30℃の範囲である。
 なお、剥離する時点での金属支持体上でのウェブの剥離時残留溶媒量は、乾燥の条件の強弱、金属支持体の長さ等により50~120質量%の範囲で剥離することが好ましいが、残留溶媒量がより多い時点で剥離する場合、ウェブが柔らか過ぎると剥離時平面性を損ね、剥離張力によるツレや縦スジが発生しやすいため、経済速度と品質との兼ね合いで剥離時の残留溶媒量が決められる。
 ウェブの残留溶媒量は下記式(Z)で定義される。
 式(Z)
   残留溶媒量(%)=(ウェブの加熱処理前質量-ウェブの加熱処理後質量)/(ウェブの加熱処理後質量)×100
 なお、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
 金属支持体とフィルムを剥離する際の剥離張力は、通常、196~245N/mの範囲内であるが、剥離の際に皺が入りやすい場合、190N/m以下の張力で剥離することが好ましい。
 本発明においては、当該金属支持体上の剥離位置における温度を-50~40℃の範囲内とするのが好ましく、10~40℃の範囲内がより好ましく、15~30℃の範囲内とするのが最も好ましい。
 (5)乾燥及び延伸工程
 乾燥工程は予備乾燥工程、本乾燥工程に分けて行うこともできる。
 〈予備乾燥工程〉
 金属支持体から剥離して得られたウェブを乾燥させる。ウェブの乾燥は、ウェブを、上下に配置した多数のローラーにより搬送しながら乾燥させてもよいし、テンター乾燥機のようにウェブの両端部をクリップで固定して搬送しながら乾燥させてもよい。
 ウェブを乾燥させる手段は特に制限なく、一般的に熱風、赤外線、加熱ローラー、マイクロ波等で行うことができるが、簡便さの点で、熱風で行うことが好ましい。
 ウェブの乾燥工程における乾燥温度は好ましくはフィルムのガラス転移点-5℃以下、100℃以上で10分以上60分以下の熱処理を行うことが効果的である。乾燥温度は100~200℃の範囲内、更に好ましくは110~160℃の範囲内で乾燥が行われる。
 〈延伸工程〉
 本発明のセルロースアシレートフィルムは、MD方向及び/又はTD方向に延伸することが好ましく、少なくともテンター延伸装置によって、TD方向に延伸して製造することが好ましい。
 当該延伸は、一軸延伸又は二軸延伸とすることができ、二軸延伸には、一方向に延伸し、もう一方の方向の張力を緩和して収縮させる態様も含まれる。
 本発明のセルロースアセテートフィルムは、延伸後の膜厚が所望の範囲になるようにMD方向及び/又はTD方向に、好ましくはTD方向に、フィルムのガラス転移温度をTgとしたときに、(Tg+15)~(Tg+50)℃の温度範囲で延伸することが好ましい。上記温度範囲で延伸すると、リターデーションの調整がしやすく、また延伸応力を低下できるのでヘイズが低くなる。また、破断の発生を抑制し、平面性、フィルム自身の着色性に優れた偏光板セルロースアシレートフィルムが得られる。延伸温度は、(Tg+20)~(Tg+40)℃の範囲で行うことが好ましい。
 なお、ここでいうガラス転移温度Tgとは、市販の示差走査熱量測定器を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い求めた中間点ガラス転移温度(Tmg)である。
 具体的なセルロースアシレートフィルムのガラス転移温度Tgの測定方法は、JIS K7121(1987)に従って、セイコーインスツル(株)製の示差走査熱量計DSC220を用いて測定する。
 本発明のセルロースアシレートフィルムは、ウェブを少なくともTD方向に1.1倍以上延伸することが好ましい。延伸の範囲は、元幅に対して1.1~1.5倍であることが好ましく、1.05~1.3倍であることがより好ましい。上記範囲内であれば、フィルム中の分子の移動が大きく、所望のリターデーション値が得られるばかりではなく、フィルムの寸法変化の挙動を所望の範囲内に制御することができる。
 さらに、当該延伸は製膜した後残留溶剤量が40質量%以上であるときに該フィルムをMD方向に延伸を開始することが好ましく、残留溶剤量が40質量%未満であるときにTD方向に延伸することが好ましい。
 MD方向に延伸するために、剥離張力を130N/m以上で剥離することが好ましく、特に好ましくは150~170N/mである。剥離後のウェブは高残留溶剤状態であるため、剥離張力と同様の張力を維持することで、MD方向への延伸を行うことができる。ウェブが乾燥し、残留溶剤量が減少するに従って、MD方向への延伸率は低下する。
 なお、MD方向の延伸倍率は、ベルト支持体の回転速度とテンター運転速度から算出できる。
 TD方向に延伸するには、例えば、特開昭62-46625号公報に示されているような乾燥全工程あるいは一部の工程を幅方向にクリップ又はピンでウェブの幅両端を幅保持しつつ乾燥させる方法(テンター方式と呼ばれる)、中でも、クリップを用いるテンター方式、ピンを用いるピンテンター方式が好ましく用いられる。
 本発明のセルロースアシレートフィルムは延伸することにより必然的にリターデーションを有するが、面内リターデーション値Ro、及び厚さ方向のリターデーション値Rtは自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて、23℃・55%RHの環境下、590nmの波長において、三次元屈折率測定を行い、得られた屈折率nx、ny、nzから算出することができる。
 本発明のセルロースアシレートフィルムは、下記式(i)で定義される面内方向のリターデーション値Roが40~70nmの範囲内であり、下記式(ii)で定義される厚さ方向のリターデーション値Rtが100~300nmの範囲内であることが、VAモード型液晶表示装置に具備された場合に視認性を向上する観点から好ましい。セルロースアシレートフィルムは、少なくとも前記TD方向に延伸倍率を調整しながら延伸することで、上記リターデーション値の範囲内に調整することができる。
 式(i):Ro=(n-n)×d(nm)
 式(ii):Rt={(n+n)/2-n}×d(nm)
〔式(i)及び式(ii)において、nは、フィルムの面内方向において屈折率が最大になる方向xにおける屈折率を表す。nは、フィルムの面内方向において、前記方向xと直交する方向yにおける屈折率を表す。nは、フィルムの厚さ方向zにおける屈折率を表す。dは、フィルムの厚さ(nm)を表す。〕
 〈ナーリング加工〉
 所定の熱処理又は冷却処理の後、巻き取り前にスリッターを設けて端部を切り落とすことが良好な巻姿を得るため好ましい。更に、幅手両端部にはナーリング加工をすることが好ましい。
 ナーリング加工は、加熱されたエンボスローラーを押し当てることにより形成することができる。エンボスローラーには細かな凹凸が形成されており、これを押し当てることでフィルムに凹凸を形成し、端部を嵩高くすることができる。
 本発明の位相差フィルムの幅手両端部のナーリングの高さは4~20μm、幅5~20mmが好ましい。
 また、本発明においては、上記のナーリング加工は、フィルムの製膜工程において乾燥終了後、巻き取りの前に設けることが好ましい。
 (6)巻取り工程
 ウェブ中の残留溶媒量が2質量%以下となってからフィルムとして巻取る工程であり、残留溶媒量を0.4質量%以下にすることにより寸法安定性の良好なフィルムを得ることができる。
 巻取り方法は、一般に使用されているものを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを使いわければよい。
 (B)溶融流延法
 本発明のセルロースアシレートフィルムを溶融流延法で製造する方法は、B1)溶融ペレットを製造する工程(ペレット化工程)、B2)溶融ペレットを溶融混練した後、押し出す工程(溶融押出し工程)、B3)溶融樹脂を冷却固化してウェブを得る工程(冷却固化工程)、B4)ウェブを延伸する工程(延伸工程)、を含む。
 B1)ペレット化工程
 セルロースアシレートフィルムの主成分であるセルロースアシレートを含む組成物は、あらかじめ混練してペレット化しておくことが好ましい。ペレット化は、公知の方法で行うことができ、例えば前述のセルロースアシレートと、必要に応じて可塑剤等の添加剤とを含む樹脂組成物を、押出機にて溶融混錬した後、ダイからストランド状に押し出す。ストランド状に押し出された溶融樹脂を、水冷又は空冷した後、カッティングしてペレットを得ることができる。
 ペレットの原材料は、分解を防止するために、押出機に供給する前に乾燥しておくことが好ましい。
 酸化防止剤と熱可塑性樹脂の混合は、固体同士で混合してもよいし、溶剤に溶解させた酸化防止剤を熱可塑性樹脂に含浸させて混合してもよいし、酸化防止剤を熱可塑性樹脂に噴霧して混合してもよい。また、押出機のフィーダー部分やダイの出口部分の周辺の雰囲気は、ペレットの原材料の劣化を防止するため等から、除湿した空気又は窒素ガス等の雰囲気とすることが好ましい。
 押出機では、樹脂の劣化(分子量の低下、着色、ゲルの生成等)が生じないように、低いせん断力又は低い温度で混練することが好ましい。例えば、二軸押出機で混練する場合、深溝タイプのスクリューを用いて、二つのスクリューの回転方向を同方向にすることが好ましい。均一に混錬するためには、二つのスクリュー形状が互いに噛み合うようにすることが好ましい。
 B2)溶融押出し工程
 得られた溶融ペレットと、必要に応じて他の添加剤とを、ホッパーから押出機に供給する。ペレットの供給は、ペレットの酸化分解を防止するため等から、真空下、減圧下又は不活性ガス雰囲気下で行うことが好ましい。そして、押出機にて、フィルム材料である溶融ペレット、必要に応じて他の添加剤を溶融混練する。
 押出機内のフィルム材料の溶融温度は、フィルム材料の種類にもよるが、フィルムのガラス転移温度をTg(℃)としたときに、好ましくはTg~(Tg+100)℃の範囲内であり、より好ましくは(Tg+10)~(Tg+90)℃の範囲内である。
 さらに、可塑剤や微粒子等の添加剤を、押出機の途中で添加する場合、これらの成分を均一に混合するために、押出機の下流側に、スタチックミキサー等の混合装置をさらに配置してもよい。
 押出機から押し出された溶融樹脂を、必要に応じてリーフディスクフィルター等でろ過した後、スタチックミキサー等でさらに混合して、ダイからフィルム状に押し出す。
 押出し流量は、ギヤポンプを用いて安定化させることが好ましい。また、異物の除去に用いるリーフディスクフィルターは、ステンレス繊維焼結フィルターであることが好ましい。ステンレス繊維焼結フィルターは、ステンレス繊維体を複雑に絡み合わせたうえで圧縮し、接触箇所を焼結して一体化したもので、その繊維の太さと圧縮量により密度を変え、ろ過精度を調整できる。
 ダイの出口部分における樹脂の溶融温度は、200~300℃程度の範囲内とし得る。
 B3)冷却固化工程
 ダイから押し出された樹脂を、冷却ローラーと弾性タッチローラーとでニップして、フィルム状の溶融樹脂を所定の厚さにする。そして、フィルム状の溶融樹脂を、複数の冷却ローラーで段階的に冷却して固化させる。
 冷却ローラーの表面温度は、得られたフィルムのガラス転移温度をTg(℃)としたとき、Tg(℃)以下とし得る。複数の冷却ローラーの表面温度は異なっていてもよい。
 弾性タッチローラーは挟圧回転体ともいう。弾性タッチローラーは、市販のものを用いることもできる。弾性タッチローラー側のフィルム表面温度は、フィルムのTg~(Tg+110)℃の範囲とし得る。
 冷却ローラーから固化したフィルム状の溶融樹脂を剥離ローラー等で剥離してウェブを得る。フィルム状の溶融樹脂を剥離する際は、得られたウェブの変形を防止するために、張力を調整することが好ましい。
 B4)延伸工程
 得られたウェブを、延伸機にて延伸してフィルムを得る。延伸は、ウェブの幅方向、搬送方向又は斜め方向のいずれかに行う。
 ウェブの延伸方法、延伸倍率及び延伸温度は、前述と同様とし得る。
 <セルロースアシレートフィルムの物性>
 (ヘイズ)
 本発明のセルロースアシレートフィルムは、ヘイズが1%未満であることが好ましく、0.5%未満であることがより好ましい。ヘイズを1%未満とすることにより、フィルムの透明性がより高くなり、光学用途のフィルムとしてより用いやすくなるという利点がある。ヘイズは、JIS K7136に準じて、ヘイズメーター(NDH2000型、日本電色工業(株)製)を用いて測定することができる。
 (平衡含水率)
 本発明のセルロースアシレートフィルムは、25℃、相対湿度60%における平衡含水率が4%以下であることが好ましく、3%以下であることがより好ましい。平衡含水率を4%以下とすることにより、湿度変化に対応しやすく、光学特性や寸法がより変化しにくく好ましい。平衡含水率は、試料フィルムを23℃、相対湿度20%に調湿された部屋に4時間以上放置した後、23℃80%RHに調湿された部屋に24時間放置し、サンプルを微量水分計(例えば三菱化学(株)製、CA-20型)を用いて、温度150℃で水分を乾燥・気化させた後、カールフィッシャー法により定量する。
 (フィルム長、幅、膜厚)
 本発明のセルロースアシレートフィルムは、長尺であることが好ましく、具体的には、100~10000m程度の長さであることが好ましく、ロール状に巻き取られる。また、本発明のセルロースアシレートフィルムの幅は1m以上であることが好ましく、更に好ましくは1.4m以上であり、特に1.4~4mであることが好ましい。
 フィルムの膜厚は、表示装置の薄型化、生産性の観点から、10~100μmの範囲内であることが好ましい。膜厚が10μm以上であれば、一定以上のフィルム強度や位相差を発現させることができる。膜厚が100μm以下であれば、熱や湿度による位相差の変動を抑えることができる。好ましくは、20~70μmの範囲内である。
 フィルムの膜厚ムラは、厚さ方向又は幅方向のいずれも0~5μmの範囲内が好ましく、より好ましくは0~3μmの範囲内であり、さらに好ましくは0~2μmの範囲内である。
 <偏光板>
 本発明の偏光板は、本発明のセルロースアシレートフィルムが、水糊又は活性エネルギー線硬化性接着剤を用いて、少なくとも偏光子の一方の面に貼合されていることが好ましい。
 また、前記偏光子の前記セルロースアシレートフィルムが貼合されている面とは反対側の面に、ポリエステルフィルム又はアクリルフィルムが、水糊又は活性エネルギー線硬化性接着剤を用いて偏光子と貼合されていることが、湿度に対する位相差の変動をより小さくすることから、好ましい。
 本発明の偏光板が視認側の偏光板として用いられる場合は、偏光板の視認側のフィルムは、防眩層あるいはクリアハードコート層、反射防止層、帯電防止層、防汚層等を設けることが好ましい。
 〔偏光子〕
 本発明の偏光板の主たる構成要素である偏光子は、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光子は、ポリビニルアルコール系偏光フィルムである。ポリビニルアルコール系偏光フィルムには、ポリビニルアルコール系フィルムにヨウ素を染色させたものと、二色性染料を染色させたものとがある。
 偏光子としては、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行った偏光子が用いられ得る。偏光子の膜厚は2~30μmが好ましく、特に2~15μmであることが好ましい。
 また、特開2003-248123号公報、特開2003-342322号公報等に記載のエチレン単位の含有量1~4モル%、重合度2000~4000、ケン化度99.0~99.99モル%のエチレン変性ポリビニルアルコールも好ましく用いられる。中でも、熱水切断温度が66~73℃であるエチレン変性ポリビニルアルコールフィルムが好ましく用いられる。このエチレン変性ポリビニルアルコールフィルムを用いた偏光子は、偏光性能及び耐久性能に優れている上に、色むらが少なく、大型液晶表示装置に特に好ましく用いられる。
 〈積層フィルム型の偏光子〉
 また、本発明の偏光板は薄膜とすることが好ましく、偏光子の厚さは2~15μmの範囲内であることが、偏光板の強度と薄膜化を両立する観点から特に好ましい。
 このような薄膜の偏光子としては、特開2011-100161号公報、特許第4691205号公報、特許4751481号公報、特許第4804589号公報に記載の方法で、積層フィルム型の偏光子を作製することが好ましい。
 偏光性積層フィルムは、二色性色素が吸着配向されたポリビニルアルコール系樹脂層からなる偏光子層を備えるものであり、これ自体偏光板として用いることができる。本発明の好ましい実施態様としては、上記工程によって偏光性積層フィルムを形成した後、当該偏光性積層フィルムの前記ポリビニルアルコール層を基材フィルムから剥離することによって、当該ポリビニルアルコール層を本発明に係る偏光子として用いることである。上記方法によれば、偏光子層の厚さを15μm以下にすることが可能であるため、薄型の偏光子を得ることができる。
 〔偏光板の作製〕
 本発明の偏光板は一般的な方法で作製することができる。本発明のセルロースアシレートフィルムの偏光子側をアルカリケン化処理し、ヨウ素溶液中に浸漬延伸して作製した偏光子の少なくとも一方の面に、完全ケン化型ポリビニルアルコール水溶液(水糊)を用いて貼り合わせることが好ましい。もう一方の面には他の偏光板保護フィルムを貼合することができる。本発明のセルロースアシレートフィルムは液晶表示装置とされた際に、偏光子の液晶セル側に設けられることが好ましく、偏光子の外側のフィルムは従来の偏光板保護フィルムを用いることができる。
 例えば、従来の偏光板保護フィルムとしては、市販のセルロースエステルフィルム(例えば、コニカミノルタタック KC8UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC6UY、KC6UA、KC4UY、KC4UE、KC8UE、KC8UY-HA、KC8UX-RHA、KC8UXW-RHA-C、KC8UXW-RHA-NC、KC4UXW-RHA-NC、以上コニカミノルタ(株)製)が好ましく用いられる。
 [活性エネルギー線硬化性接着剤]
 また、本発明の偏光板においては、本発明のセルロースアシレートフィルムと偏光子とが、活性エネルギー線硬化性接着剤により貼合されていることも好ましい。
 活性エネルギー線硬化性接着剤は、下記紫外線硬化型接着剤を用いることが好ましい。
 本発明においては、セルロースアシレートフィルムと偏光子との貼合に紫外線硬化型接着剤を適用することにより、薄膜でも強度が高く、平面性に優れた偏光板を得ることができる。
 〈紫外線硬化型接着剤の組成〉
 偏光板用の紫外線硬化型接着剤組成物としては、光ラジカル重合を利用した光ラジカル重合型組成物、光カチオン重合を利用した光カチオン重合型組成物、並びに光ラジカル重合及び光カチオン重合を併用したハイブリッド型組成物が知られている。
 光ラジカル重合型組成物としては、特開2008-009329号公報に記載のヒドロキシ基やカルボキシ基等の極性基を含有するラジカル重合性化合物及び極性基を含有しないラジカル重合性化合物を特定割合で含む組成物)等が知られている。特に、ラジカル重合性化合物は、ラジカル重合可能なエチレン性不飽和結合を有する化合物であることが好ましい。ラジカル重合可能なエチレン性不飽和結合を有する化合物の好ましい例には、(メタ)アクリロイル基を有する化合物が含まれる。(メタ)アクリロイル基を有する化合物の例には、N置換(メタ)アクリルアミド系化合物、(メタ)アクリレート系化合物などが含まれる。(メタ)アクリルアミドは、アクリアミド又はメタクリアミドを意味する。
 また、光カチオン重合型組成物としては、特開2011-028234号公報に開示されているような、(α)カチオン重合性化合物、(β)光カチオン重合開始剤、(γ)380nmより長い波長の光に極大吸収を示す光増感剤、及び(δ)ナフタレン系光増感助剤の各成分を含有する紫外線硬化型接着剤組成物が挙げられる。ただし、これ以外の紫外線硬化型接着剤が用いられてもよい。
 (1)前処理工程
 前処理工程は、セルロースアシレートフィルムの偏光子との接着面に易接着処理を行う工程である。易接着処理としては、コロナ処理、プラズマ処理等が挙げられる。
 (紫外線硬化型接着剤の塗布工程)
 紫外線硬化型接着剤の塗布工程としては、偏光子とセルロースアシレートフィルムとの接着面のうち少なくとも一方に、上記紫外線硬化型接着剤を塗布する。偏光子又はセルロースアシレートフィルムの表面に直接、紫外線硬化型接着剤を塗布する場合、その塗布方法に特段の限定はない。例えば、ドクターブレード、ワイヤーバー、ダイコーター、カンマコーター、グラビアコーター等、種々の湿式塗布方式が利用できる。また、偏光子とセルロースアシレートフィルムの間に、紫外線硬化型接着剤を流延させたのち、ローラー等で加圧して均一に押し広げる方法も利用できる。
 (2)貼合工程
 上記の方法により紫外線硬化型接着剤を塗布した後は、貼合工程で処理される。この貼合工程では、例えば、先の塗布工程で偏光子の表面に紫外線硬化型接着剤を塗布した場合、そこにセルロースアシレートフィルムが重ね合わされる。また、はじめにセルロースアシレートフィルムの表面に紫外線硬化型接着剤を塗布する方式の場合には、そこに偏光子が重ね合わされる。また、偏光子とセルロースアシレートフィルムの間に紫外線硬化型接着剤を流延させた場合は、その状態で偏光子とセルロースアシレートフィルムとが重ね合わされる。そして、通常は、この状態で両面のセルロースアシレートフィルム側から加圧ローラー等で挟んで加圧することになる。加圧ローラーの材質は、金属やゴム等を用いることが可能である。両面に配置される加圧ローラーは、同じ材質であってもよいし、異なる材質であってもよい。
 (3)硬化工程
 硬化工程では、未硬化の紫外線硬化型接着剤に紫外線を照射して、カチオン重合性化合物(例えば、エポキシ化合物やオキセタン化合物)やラジカル重合性化合物(例えば、アクリレート系化合物、アクリルアミド系化合物等)を含む紫外線硬化型接着剤層を硬化させ、紫外線硬化型接着剤を介して重ね合わせた偏光子とセルロースアシレートフィルムを接着させる。偏光子の片面にセルロースアシレートフィルムを貼合する場合、活性エネルギー線は、偏光子側又はセルロースアシレートフィルム側のいずれから照射してもよい。また、偏光子の両面にセルロースアシレートフィルムを貼合する場合、偏光子の両面にそれぞれ紫外線硬化型接着剤を介してセルロースアシレートフィルムを重ね合わせた状態で、紫外線を照射し、両面の紫外線硬化型接着剤を同時に硬化させるのが有利である。
 紫外線の照射条件は、本発明に適用する紫外線硬化型接着剤を硬化しうる条件であれば、任意の適切な条件を採用できる。紫外線の照射量は積算光量で50~1500mJ/cmの範囲であることが好ましく、100~500mJ/cmの範囲であるのがさらに好ましい。
 偏光板の製造工程を連続ラインで行う場合、ライン速度は、接着剤の硬化時間によるが、好ましくは1~500m/minの範囲、より好ましくは5~300m/minの範囲、さらに好ましくは10~100m/minの範囲である。ライン速度が1m/min以上であれば、生産性を確保することができ、又はセルロースアシレートフィルムへのダメージを抑制することができ、耐久性に優れた偏光板を作製することができる。また、ライン速度が500m/min以下であれば、紫外線硬化型接着剤の硬化が十分となり、目的とする硬度を備え、接着性に優れた紫外線硬化型接着剤層を形成することができる。
 〔ポリエステルフィルム及びアクリルフィルム〕
 前記偏光子の前記セルロースアシレートフィルムが貼合されている面とは反対側の面に、ポリエステルフィルム又はアクリルフィルムが、水糊又は活性エネルギー線硬化性接着剤を用いて偏光子と貼合されていることが、湿度変動に対する耐久性の高い偏光板が得られる観点から、好ましい態様である。貼合は、前記水糊でも活性エネルギー線硬化性接着剤である紫外線硬化型接着剤のどちらでも使用することができるが、本発明の効果の観点からは紫外線硬化型接着剤を用いることが好ましい。
 本発明において、外側フィルム(偏光板保護フィルム)を透湿性が低いポリエステルフィルム又はアクリルフィルム、内側フィルム(位相差フィルム)を、本発明の湿度変動に対する位相差の変動が改善されたセルロースアシレートフィルムとする構成にすると、外部からの水分の影響を少なくすることができ、かつ内部の水分を放出しやすくなって、総合的に偏光板の湿度変動に対する耐久性が向上した、偏光板が得られるものと推定される。
 (1)ポリエステルフィルム
 ポリエステルフィルムを形成するポリエステル樹脂は特に限定されないが、例えば、テレフタル酸、イソフタル酸、オルトフタル酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、ジフェニルカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルスルホンカルボン酸、アントラセンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、マロン酸、ジメチルマロン酸、コハク酸、3,3-ジエチルコハク酸、グルタル酸、2,2-ジメチルグルタル酸、アジピン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、アゼライン酸、ダイマー酸、セバシン酸、スベリン酸、ドデカジカルボン酸等のジカルボン酸と、エチレングリコール、プロピレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、1,2-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、デカメチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサジオール、2,2-ビス(4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン等のジオールを、それぞれ1種を重縮合してなるホモポリマー、又はジカルボン酸1種以上とジオール2種以上を重縮合してなる共重合体、あるいはジカルボン酸2種以上とジオールを1種以上重縮合してなる共重合体、及びこれらのホモポリマーや共重合体を2種以上ブレンドしてなるブレンド樹脂のいずれかのポリエステル樹脂を挙げることができる。中でも、ポリエチレンテレフタレート樹脂が好ましく用いられる。また、上記の樹脂を混合して用いることもできる。
 ポリエステルフィルムは、例えば上記のポリエステル樹脂をフィルム状に溶融押出し、キャスティングドラムで冷却固化させてフィルムを形成させる方法等によって得られる。本発明の偏光板におけるポリエステルフィルムとしては、無延伸フィルム、延伸フィルムのいずれも用いることができる。例えば、複屈折が小さいものが要求される場合には無延伸フィルムを好適に用いることができる。また、複屈折を液晶表示装置の光学補償に用いる場合等においては、延伸フィルムを好適に用いることができる。また、延伸フィルム、特に二軸延伸フィルムは強度の点からも好適に用いられる。
 ポリエステルフィルムは、TACフィルムに比べ耐久性に優れるが、TACフィルムと異なり複屈折性を有しやすいため、これを偏光板保護フィルムとして用いた場合、斜め方向から観察すると虹状の色ムラが生じ、画質が低下する。
 このため、ポリエステルフィルムは、3000~30000nmの面内方向のリターデーション値を有するポリエステルフィルムであることが好ましい。このとき前記液晶セルに対して出射光側に配される偏光板の射出光側の偏光板保護フィルムが、3000~30000nmのリターデーション値を有するポリエステルフィルムであることが好ましい。また、前記ポリエステルフィルムの面内方向のリターデーション値Roと厚さ方向のリターデーション値Rtとの比の値(Ro/Rt)が0.200以上であることが好ましい。このような構成とすることで、いずれの観察角度においても透過光のスペクトルは光源に近似したスペクトルを得ることが可能となり、虹状の色ムラが無い良好な視認性を確保することができる。また、薄膜化に適した機械的強度を備えることができる。
 このようなポリエステルフィルムは、ポリエチレンテレフタレートやポリエチレンナフタレートを用いることができるが、他の共重合成分を含んでも構わない。これらの樹脂は透明性に優れるとともに、熱的、機械的特性にも優れており、延伸加工によって容易にリターデーション値を制御することができる。特に、ポリエチレンテレフタレートは固有複屈折が大きく、フィルムの厚さが薄くても比較的容易に大きなリターデーション値が得られるので、最も好適な素材である。
 なお、上記リターデーション値は、二軸方向の屈折率と厚さを測定して求めることがで、KOBRA-21ADH(王子計測機器株式会社)、Axometrics社製Axoscanといった市販の自動複屈折測定装置を用いて求めることもできる。
 ポリエステルフィルムは、一般的なポリエステルフィルムの製造方法に従って製造することができる。例えば、ポリエステル樹脂を溶融し、シート状に押出し成形された無配向ポリエステルをガラス転移温度以上の温度において、ロールの速度差を利用して縦方向に延伸した後、テンターにより横方向に延伸し、熱処理を施す方法が挙げられる。
 本発明に係るポリエステルフィルムは一軸延伸フィルムであっても、二軸延伸フィルムであっても構わないが、二軸延伸フィルムを偏光板保護フィルムとして用いた場合、フィルム面の真上から観察しても虹状の色ムラが見られないが、斜め方向から観察した時に虹状の色ムラが観察される場合があるので注意が必要である。
 この現象は、二軸延伸フィルムが、走行方向、幅方向、厚さ方向で異なる屈折率を有する屈折率楕円体からなり、フィルム内部での光の透過方向により面内方向のリターデーションがゼロになる(屈折率楕円体が真円に見える)方向が存在するためである。したがって、液晶表示画面を斜め方向の特定の方向から観察すると、面内方向のリターデーション値がゼロになる点を生じる場合があり、その点を中心として虹状の色ムラが同心円状に生じることとなる。そして、フィルム面の真上(法線方向)から虹状の色ムラが見える位置までの角度をθとすると、この角度θは、フィルム面内の複屈折が大きいほど大きくなり、虹状の色ムラは見え難くなる。二軸延伸フィルムでは角度θが小さくなる傾向があるため、一軸延伸フィルムのほうが虹状の色ムラは見え難くなり好ましい。
 しかしながら、完全な一軸性(一軸対称性)フィルムでは配向方向と直行する方向の機械的強度が著しく低下するので好ましくない。本発明に係るポリエステルフィルムは、実質的に虹状の色ムラを生じない範囲、又は液晶表示画面に求められる視野角範囲において虹状の色ムラを生じない範囲で、二軸性(二軸対称)を有していることが好ましい。
 偏光板保護フィルムの機械的強度を保持しつつ、色ムラの発生を抑制する手段として、偏光板保護フィルムのリターデーション(面内方向のリターデーション)値と厚さ方向のリターデーション(Rt)値との比の値が特定の範囲に収まるように制御することが好ましい。面内リターデーションと厚さ方向リターデーションの差が小さいほど、観察角度による複屈折の作用は等方性を増すため、観察角度によるリターデーションの変化が小さくなる。そのため、観察角度による虹状の色ムラが発生し難くなると考えられる。
 本発明に係るポリエステルフィルムの面内方向のリターデーション値Roと厚さ方向のリターデーション値Rtの比の値(Ro/Rt)は、好ましくは0.200以上、より好ましくは0.500以上、さらに好ましくは0.600以上である。上記面内方向のリターデーション値Roと厚さ方向のリターデーション値Rtの比(Ro/Rt)が大きいほど、複屈折の作用は等方性を増し、観察角度による虹状の色ムラの発生が生じ難くなる。そして、完全な一軸性(一軸対称)フィルムでは上記面内方向のリターデーション値Roと厚さ方向のリターデーション値Rtの比の値(Ro/Rt)は2.0となる。しかし、前述のように完全な一軸性(一軸対称)フィルムに近づくにつれ配向方向と直行する方向の機械的強度が著しく低下する。
 一方、本発明に係るポリエステルフィルムの面内方向のリターデーション値Roと厚さ方向のリターデーション値Rtの比の値(Ro/Rt)は、好ましくは1.2以下、より好ましくは1.0以下である。観察角度による虹状の色ムラ発生を完全に抑制するためには、上記面内方向のリターデーション値Roと厚さ方向リターデーション値Rtの比の値(Ro/Rt)が2.0である必要は無く、1.2以下で十分である。また、上記比率が1.0以下であっても、液晶表示装置に求められる視野角特性(左右180度、上下120度程度)を満足することは十分可能である。
 本発明に係るポリエステルフィルムの製膜条件を具体的に説明すると、縦延伸温度、横延伸温度は80~130℃が好ましく、特に好ましくは90~120℃の範囲内である。縦延伸倍率は1.0~3.5倍が好ましく、特に好ましくは1.0倍~3.0倍の範囲内である。また、横延伸倍率は2.5~6.0倍が好ましく、特に好ましくは3.0~5.5倍の範囲内である。リターデーションを上記範囲に制御するためには、縦延伸倍率と横延伸倍率の比率を制御することが好ましい。縦横の延伸倍率の差が小さすぎるとリターデーションを高くすることが難しくなり好ましくない。また、延伸温度を低く設定することもリターデーションを高くする上では好ましい対応である。続く熱処理においては、処理温度は100~250℃が好ましく、特に好ましくは180~245℃の範囲内である。 リターデーションの変動を抑制するためには、フィルムの厚さムラが小さいことが好ましい。延伸温度、延伸倍率はフィルムの厚さムラに大きな影響を与えることから、厚さムラの観点からも製膜条件の最適化を行う必要がある。特にリターデーションを高くするために縦延伸倍率を低くすると、縦厚さムラが悪くなることがある。縦厚さムラは延伸倍率のある特定の範囲で非常に悪くなる領域があることから、この範囲を外したところで製膜条件を設定することが望ましい。
 フィルムの厚さムラは5.0%以下であることが好ましく、4.5%以下であることがさらに好ましく、4.0%以下であることがよりさらに好ましく、3.0%以下であることが特に好ましい。
 前述のように、フィルムのリターデーション値を特定範囲に制御するためには、延伸倍率や延伸温度、フィルムの厚さを適宜設定することにより行うことができる。例えば、延伸倍率が高いほど、延伸温度が低いほど、フィルムの厚さが厚いほど高いリターデーション値を得やすくなる。逆に、延伸倍率が低いほど、延伸温度が高いほど、フィルムの厚さが薄いほど低いリターデーション値を得やすくなる。ただし、フィルムの厚さを厚くすると、厚さ方向のリターデーション値が大きくなりやすい。そのため、フィルム厚さは後述の範囲に適宜設定することが望ましい。また、リターデーション値の制御に加えて、加工に必要な物性等を勘案して最終的な製膜条件を設定する必要がある。
 本発明に係るポリエステルフィルムの厚さは任意であるが、15~300μmの範囲が好ましく、より好ましくは15~200μmの範囲である。15μmを下回る厚さのフィルムでも、原理的には3000nm以上のリターデーション値を得ることは可能である。しかし、その場合にはフィルムの力学特性の異方性が顕著となり、裂け、破れ等を生じやすくなり、工業材料としての実用性が著しく低下する。特に好ましい厚さの下限は25μmである。一方、ポリエステルフィルムの厚さの上限は、300μmを超えると偏光板の厚さが厚くなりすぎてしまい好ましくない。ポリエステルフィルムとしての実用性の観点からは厚さの上限は200μmが好ましい。特に好ましい厚さの上限は一般的なTACフィルムと同等程度の100μmである。上記厚さ範囲においてもリターデーション値を本発明の範囲に制御するために、フィルム基材として用いるポリエステルはポリエチレンタレフタレートが好適である。
 本発明に係るポリエステルフィルムには、種々の添加剤を用いてもよい。他の添加剤としては、例えば可塑剤、紫外線吸収剤、フッ素系界面活性剤、剥離剤、マット剤、劣化防止剤、光学異方性制御剤、赤外線吸収剤等が挙げられ、必要に応じ適宜使用することができる。
 (2)アクリルフィルム
 アクリルフィルム(以下、アクリル樹脂フィルムともいう。)に含有されるアクリル樹脂は、(メタ)アクリル樹脂を意味し、アクリル樹脂とメタクリル系樹脂の両方を含む概念である。以下、アクリル樹脂について説明する。
 アクリル樹脂は、上述したように(メタ)アクリル樹脂であり、アクリル酸エステルやメタクリル酸エステルの重合体を意味する。メタクリル酸エステルの重合体としては、例えば、メタクリル酸アルキルを主体とする重合体からなるものが好ましい。メタクリル酸アルキルの単量体組成は、全単量体の合計100質量%を基準として、メタクリル酸アルキルが、好ましくは70質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上であり、かつメタクリル酸アルキルが99質量%以下である。なお、アクリル樹脂としては、メタクリル酸アルキルの単独重合体であってもよいし、メタクリル酸アルキル50質量%以上とメタクリル酸アルキル以外の単量体50質量%以下との共重合体であってもよい。メタクリル酸アルキルとしては、通常、そのアルキル基の炭素数が1~4のものが用いられ、中でもメタクリル酸メチルが好ましく用いられる。
 また、メタクリル酸アルキル以外の単量体は、分子内に1個の重合性炭素-炭素二重結合を有する単官能単量体であってもよいし、分子内に2個以上の重合性炭素-炭素二重結合を有する多官能単量体であってもよい。特に、単官能単量体が好ましく用いられ、その例としては、アクリル酸メチルやアクリル酸エチルのようなアクリル酸アルキル、さらには本発明の効果を損なわない範囲で、スチレンやアルキルスチレンのようなスチレン系単量体、アクリロニトリルやメタクリロニトリルのような不飽和ニトリルが挙げられる。共重合成分としてアクリル酸アルキルを用いる場合、その炭素数は通常1~8である。
 また、アクリル樹脂としては、グルタルイミド誘導体、グルタル酸無水物誘導体、ラクトン環構造などを有しないことが好ましい。これらのアクリル樹脂は、アクリル樹脂フィルムとして十分な機械強度や耐湿熱性が得られない場合がある。
 本発明においては、ドープ中の有機溶媒の含有量を少なくでき、乾燥時間の短縮ができ、かつ形成するフィルムの面状に優れるという観点から、本発明に適用するアクリル樹脂の重量平均分子量(Mw)としては、80000以上であることが好ましく、更には、積層したときのフィルム面状を更に改良することができる観点から、アクリル樹脂の重量平均分子量としては、100000~4000000の範囲であることが好ましい。
 アクリル樹脂の重量平均分子量の上限は、粘度が過度に高くなることなく溶液流延適性を維持でき、また、ドープ調製時に有機溶媒や添加剤との相溶性を確保することができるという理由から、上限としては4000000とすることが好ましい。
 本発明に用いられるアクリル樹脂の重量平均分子量は、前記ゲルパーミエーションクロマトグラフィーにより測定することができる。
 アクリルフィルムの柔軟性を向上させてハンドリング性を高めるため、アクリル樹脂にはゴム弾性体粒子を配合していることが好ましい。ゴム弾性体粒子は、ゴム弾性体を含有する粒子であり、ゴム弾性体のみからなる粒子であってもよいし、ゴム弾性体の層を有する多層構造の粒子であってもよい。ゴム弾性体としては、例えば、オレフィン系弾性重合体、ジエン系弾性重合体、スチレン-ジエン系弾性共重合体、アクリル系弾性重合体が挙げられる。中でも、アクリル樹脂フィルムの表面硬度や耐光性、透明性の点からは、アクリル系弾性重合体が好ましい。
 アクリル系弾性重合体は、アクリル酸アルキルを主体とする重合体であるのが好ましく、アクリル酸アルキルの単独重合体であってもよいし、アクリル酸アルキル50質量%以上とアクリル酸アルキル以外の単量体50質量%以下との共重合体であってもよい。アクリル酸アルキルとしては、通常、そのアルキル基の炭素数が4~8のものが用いられる。また、アクリル酸アルキル以外の単量体の例としては、メタクリル酸メチルやメタクリル酸エチルのようなメタクリル酸アルキル、スチレンやアルキルスチレンのようなスチレン系単量体、アクリロニトリルやメタクリロニトリルのような不飽和ニトリル等の単官能単量体や、(メタ)アクリル酸アリルや(メタ)アクリル酸メタリルのような不飽和カルボン酸のアルケニルエステル、マレイン酸ジアリルのような二塩基酸のジアルケニルエステル、アルキレングリコールジ(メタ)アクリレートのようなグリコール類の不飽和カルボン酸ジエステル等の多官能単量体が挙げられる。
 アクリル系弾性重合体を含有するゴム弾性体粒子は、アクリル系弾性重合体の層を有する多層構造の粒子であることが好ましく、アクリル系弾性重合体の外側にメタクリル酸アルキルを主体とする重合体の層を有する2層構造のものであってもよいし、更にアクリル系弾性重合体の内側にメタクリル酸アルキルを主体とする重合体の層を有する3層構造のものであってもよい。なお、アクリル系弾性重合体の外側又は内側に形成される層を構成するメタクリル酸アルキルを主体とする重合体の単量体組成の例は、先にアクリル樹脂の例として挙げたメタクリル酸アルキルを主体とする重合体の単量体組成の例と同様である。このような多層構造のアクリル系ゴム弾性体粒子は、例えば特公昭55-27576号公報に記載の方法により、製造することができる。
 ゴム弾性体粒子としては、その中に含まれるゴム弾性体の数平均粒径が10~300nmのものを使用することができる。これにより、接着剤を用いてアクリル樹脂フィルムを偏光フィルムに積層したときに、アクリル樹脂フィルムを接着剤層から剥がれ難くすることができる。このゴム弾性体の数平均粒径は、好ましくは50nm以上、250nm以下である。
 最外層がメタクリル酸メチルを主体とする重合体であり、その中にアクリル系弾性重合体が包み込まれているゴム弾性体粒子においては、それを母体のアクリル樹脂に混合すると、ゴム弾性体粒子の最外層が母体のアクリル樹脂と混和する。このため、その断面において、酸化ルテニウムによるアクリル系弾性重合体への染色を施し、電子顕微鏡で観察した場合、そのゴム弾性体粒子が、最外層を除いた状態の粒子として観察することができる。具体的には、内層がアクリル系弾性重合体であり、外層がメタクリル酸メチルを主体とする重合体である2層構造のゴム弾性体粒子を用いた場合には、内層のアクリル系弾性重合体部分が染色されて単層構造の粒子として観察される。また、最内層がメタクリル酸メチルを主体とする重合体であり、中間層がアクリル系弾性重合体であり、最外層がメタクリル酸メチルを主体とする重合体である3層構造のゴム弾性体粒子を用いた場合には、最内層の粒子中心部分が染色されず、中間層のアクリル系弾性重合体部分のみが染色された2層構造の粒子として観察されることになる。
 なお、本明細書において、ゴム弾性体粒子の数平均粒径とは、このように、ゴム弾性体粒子を母体樹脂に混合して断面を酸化ルテニウムで染色したときに、染色されてほぼ円形状に観察される部分の径の数平均値である。
 アクリルフィルムにおいて、ゴム弾性体粒子の配合量は特には限定されないが、例えば、透明なアクリル系樹脂に、数平均粒子径が10~300nmのゴム弾性体粒子が25~45質量%配合されているものが好ましい。
 アクリル樹脂は、例えば、ゴム弾性体粒子を得た後、その存在下にアクリル樹脂の原料となる単量体を重合させて、母体のアクリル樹脂を生成させることにより製造してもよいし、ゴム弾性体粒子とアクリル系樹脂とを得た後、両者を溶融混練等により混合することにより製造してもよい。
 アクリル樹脂のガラス転移温度Tgは、80~120℃の範囲内が好ましい。さらに、アクリル樹脂は、フィルムに成形したときの表面の硬度が高いもの、具体的には、鉛筆硬度(荷重500gで、JIS K5600-5-4に準拠)でB以上のものが好ましい。
 また、アクリル樹脂フィルムは、アクリル樹脂の柔軟性の観点から、曲げ弾性率(JIS K7171)が1500MPa以下であるのが好ましい。この曲げ弾性率は、より好ましくは1300MPa以下であり、更に好ましくは1200MPa以下である。この曲げ弾性率は、アクリル樹脂フィルム中のアクリル樹脂やゴム弾性体粒子の種類や量などによって変動し、例えば、ゴム弾性体粒子の含有量が多いほど、一般に曲げ弾性率は小さくなる。また、アクリル樹脂として、メタクリル酸アルキルの単独重合体を用いるよりも、メタクリル酸アルキルとアクリル酸アルキル等との共重合体を用いる方が、一般に曲げ弾性率は小さくなる。
 また、ゴム弾性体粒子として、上記3層構造のアクリル系弾性重合体粒子を用いるよりも、上記2層構造のアクリル系弾性重合体粒子を用いる方が、一般に曲げ弾性率は小さくなり、更に単層構造のアクリル系弾性重合体粒子を用いる方が、一般に曲げ弾性率は小さくなる。また、ゴム弾性体粒子中、ゴム弾性体の平均粒径が小さいほど、又はゴム弾性体の量が多いほど、一般に曲げ弾性率は小さくなる。そこで、アクリル樹脂やゴム弾性体粒子の種類や量を上記所定の範囲で調整して、曲げ弾性率が1500MPa以下になるようにすることが好ましい。
 アクリルフィルムを多層構成とする場合、アクリル樹脂組成物の層以外に存在しうる層は、その組成に特に限定はなく、例えば、ゴム弾性体粒子を含有しないアクリル樹脂又はその組成物の層であってもよいし、ゴム弾性体粒子の含有量やゴム弾性体粒子中のゴム弾性体の平均粒径が上記の規定外であるアクリル樹脂からなる層であってもよい。
 典型的には2層又は3層構成であって、例えば、アクリル樹脂の層/ゴム弾性体粒子を含有しないアクリル樹脂又はその組成物の層からなる2層構成であってもよいし、アクリル樹脂組成物の層/ゴム弾性体粒子を含有しないアクリル樹脂又はその組成物の層/アクリル樹脂組成物の層からなる3層構成であってもよい。多層構成のアクリルフィルムは、アクリル樹脂組成物の層の面を、偏光子との貼合面とすればよい。
 また、アクリルフィルムを多層構成とする場合、ゴム弾性体粒子や上記配合剤の各層の含有量を互いに異ならせてもよい。例えば、紫外線吸収剤及び/又は赤外線吸収剤を含有する層と、この層を挟んで紫外線吸収剤及び/又は赤外線吸収剤を含有しない層とが積層されていてもよい。また、アクリル樹脂組成物の層の紫外線吸収剤の含有量が、ゴム弾性体粒子を含有しないアクリル樹脂又はその組成物の層の紫外線吸収剤の含有量よりも、高くなるようにしてもよく、具体的には、前者を好ましくは0.5~10質量%、より好ましくは1~5質量%とし、後者を好ましくは0~1質量%、より好ましくは0~0.5質量%としてもよく、これにより、偏光板の色調を悪化させることなく、紫外線を効率的に遮断することができ、長期使用時の偏光度の低下を防ぐことができる。
 アクリルフィルムは、延伸されていない無配向性のものでもよく、延伸されたものでもよい。延伸処理を行わない場合、膜厚が厚くなるため偏光板の総膜厚が厚くなりやすくなるが、一方で膜厚が厚いためアクリルフィルムのハンドリング性が良好になる。このようなアクリルフィルムは、アクリル樹脂組成物を製膜して得られた未延伸フィルム(原反フィルム)から得ることができる。反対に、延伸した場合には、位相差が発現しやすくなる一方で、延伸することでアクリルフィルムの膜厚が薄くなるとともに剛性も向上するという利点がある。延伸フィルムは、未延伸フィルムを任意の方法で延伸することで製造することができる。
 アクリル樹脂は、任意の方法で製膜して未延伸フィルムとすることができる。この未延伸フィルムは、透明で実質的に面内位相差がないものが好ましい。製膜方法としては、例えば、溶融樹脂を膜状に押し出して製膜する押出成形法、有機溶剤に溶解させた樹脂を平板上に流延した後で溶剤を除去して製膜する溶剤キャスト法などを採用することができる。
 押出成形法の具体例としては、例えば、アクリル樹脂組成物を2本のロールで挟み込んだ状態で製膜する方法が挙げられる。この際、ロール表面の剛性を異ならせることで、アクリル樹脂フィルムの一方の面を滑面、他方の面を粗面とすることが可能である。
 押出成形法の具体例としては、例えば、アクリル樹脂組成物を2本の金属製ロールで挟み込んだ状態で製膜する方法が挙げられる。この場合の金属製ロールは鏡面ロールであることが好ましい。これにより、表面平滑性に優れた未延伸フィルムを得ることができる。なお、アクリルフィルムとして多層構成のものを得る場合、上記アクリル樹脂組成物を、他のアクリル樹脂組成物とともに、多層押出後、製膜すればよい。このようにして得られる未延伸フィルムの厚さは、5~200μmの範囲内であることが好ましく、より好ましくは10μm~85μmの範囲内である。
 ≪液晶表示装置≫
 上記本発明のセルロースアシレートフィルムを貼合した偏光板を液晶表示装置に用いることによって、種々の視認性に優れた本発明の液晶表示装置を作製することができる。
 本発明の偏光板は、STN、TN、OCB、HAN、VA(MVA、PVA)、IPS、OCBなどの各種駆動方式の液晶表示装置に用いることができる。好ましくはVA(MVA,PVA)型液晶表示装置である。
 液晶表示装置には、通常視認側の偏光板とバックライト側の偏光板の2枚の偏光板が用いられるが、本発明の偏光板を両方の偏光板として用いることも好ましく、片側の偏光板として用いることも好ましい。特に本発明の偏光板は外部環境に直接触れる視認側の偏光板として用いることが好ましく、その際は、本発明のセルロースアシレートフィルムが、位相差フィルムとして液晶セル側に配置されることが好ましい。
 また、バックライト側の偏光板は本発明以外の偏光板を用いることもでき、その場合は偏光子の両面を、例えば市販のセルロースアシレートフィルム(例えば、コニカミノルタタックKC8UX、KC5UX、KC4UX、KC8UCR3、KC4SR、KC4BR、KC4CR、KC4DR、KC4FR、KC4KR、KC8UY、KC6UY、KC4UY、KC4UE、KC8UE、KC8UY-HA、KC2UA、KC4UA、KC6UA、KC2UAH、KC4UAH、KC6UAH、以上コニカミノルタ(株)製、フジタックT40UZ、フジタックT60UZ、フジタックT80UZ、フジタックTD80UL、フジタックTD60UL、フジタックTD40UL、フジタックR02、フジタックR06、以上富士フイルム(株)製等)を貼合した偏光板が好ましく用いられる。
 また、バックライト側の偏光板として、偏光子の液晶セル側に本発明のセルロースアシレートフィルムを用い、反対側の面に上記市販のセルロースアシレートフィルム、ポリエステルフィルム、アクリルフィルム、ポリカーボネートフィルム、又はシクロオレフィンポリマーフィルムを貼合した偏光板も好ましく用いることができる。
 本発明の偏光板を用いることで、特に画面が30型以上の大画面の液晶表示装置であっても、表示ムラ、正面コントラストなど視認性に優れた液晶表示装置を得ることができる。
 また、本発明の偏光板は液晶表示装置以外にも有機エレクトロルミネッセンス表示装置にも好ましく用いることができる。例えば、本発明のセルロースアシレートフィルムを搬送方向に対して斜方45°方向に延伸して、搬送方向に吸収軸を有する偏光子と、ロール・トゥ・ロールで貼合することによって円偏光板を作製し、当該円偏光板を有機エレクトロルミネッセンス表示装置に用いると、視認性の高い表示装置を得ることができる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
 <実施例で用いた化合物>
 〈セルロースアシレート〉
 表1に、実施例で用いたセルロースアシレートC1~C7を示した。
Figure JPOXMLDOC01-appb-T000102
 〈含窒素複素環化合物〉
 含窒素複素環化合物の例示化合物群の中から選択し、例示化合物のNo.で示した。
 〈有機エステル〉
 P2:重縮合エステル例示化合物P2
 P5:重縮合エステル例示化合物P5
 P9:重縮合エステル例示化合物P9
 P16:重縮合エステル例示化合物1-16
 S1:糖エステル:BzSc(ベンジルスクロース:前記糖残基がB-2で前記置換基が記載のa1~a4の混合物)、平均エステル置換度=5.5
 T1:多価アルコールエステル例示化合物2-16
 〈比較化合物〉
 H1:含窒素複素環化合物比較例 下記トリアゾ-ル系化合物 分子量846
 H2:含窒素複素環化合物比較例 下記トリアゾ-ル系化合物 分子量83
 H3:有機エステル比較例 後述するポリエステル(PET(A)):融点150℃、Td1 350℃
Figure JPOXMLDOC01-appb-C000103
 (有機エステルの融点の測定)
 融点の測定は、セイコーインスツル(株)製示差熱・熱重量同時測定装置、EXSTAR6220DSCを用いて測定した。アルミパンに試料化合物を10mg入れて、10℃/minで30℃から350℃、350℃から30℃に温度を変化させたときの吸熱・発熱ピークから融点を求めた。融点が0℃以下の化合物を測定するときは5℃/minで-50℃から30℃、30℃から-50℃までの温度の吸熱・発熱ピークから融点を求めた。
 (有機エステルの1%質量減少温度Td1の測定)
 有機エステルの1%質量減少温度Td1の測定は、セイコーインスツル(株)製示差熱・熱重量同時測定装置、EXSTAR6200TG/DTAによって、アルミパンに試料化合物を10mg入れて、50℃/minで100℃まで昇温した後、40分間そのまま加熱し、その後、10℃/minで400℃まで昇温しながら質量変動をモニターし、質量が1質量%減少したときの温度を、1%質量減少温度とした。なお、測定は乾燥空気(露点-30℃)下で測定した。
 実施例1
 <セルロースアシレートフィルム101の作製>
 〈微粒子分散液1〉
 微粒子(アエロジル R812 日本アエロジル(株)製)11質量部
 エタノール                      89質量部
 以上をディゾルバーで50分間撹拌混合した後、マントンゴーリンで分散を行った。
 〈微粒子添加液1〉
 メチレンクロライドを入れた溶解タンクに十分撹拌しながら、微粒子分散液1をゆっくりと添加した。更に、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液1を調製した。
 メチレンクロライド                  99質量部
 微粒子分散液1                     5質量部
 下記組成の主ドープを調製した。まず加圧溶解タンクにメチレンクロライドとエタノールを添加した。溶剤の入った加圧溶解タンクにアセチル基置換度2.41のセルロースアシレートC1を撹拌しながら投入した。これを加熱し、撹拌しながら、完全に溶解し。これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープを調製した。
 〈主ドープの組成〉
 メチレンクロライド                 365質量部
 エタノール                      50質量部
 セルロースアシレートC1              100質量部
 含窒素複素環化合物1                  3質量部
 有機エステルP2                    5質量部
 微粒子添加液1                     1質量部
 以上を密閉されている主溶解釜1に投入し、撹拌しながら溶解してドープを調製した。
 ステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が75%になるまで溶媒を蒸発させ、次いで剥離張力130N/mで、ステンレスベルト支持体上から剥離した。剥離したセルロースアシレートフィルムを、150℃の熱をかけながらテンターを用いて幅方向に30%延伸した。延伸開始時の残留溶媒は15%であった。
 次いで、乾燥ゾーンを多数のローラーで搬送させながら乾燥を終了させた。乾燥温度は130℃で、搬送張力は100N/mとした。以上のようにして、乾燥膜厚40μmのセルロースアシレートフィルム101を得た。
 <セルロースアシレートフィルム102~135の作製>
 セルロースアシレートフィルム101において、セルロースアシレートの種類(C2~C7、及び混合(質量比))、含窒素複素環化合物の種類、有機エステルの種類を表2及び表3のように変化させた以外は同様にして、セルロースアシレートフィルム102~135を作製した。
 ≪評価≫
 <リターデーション値の測定>
 セルロースアシレートフィルムのリターデーション値は、温度23℃、相対湿度55%の環境下で、波長590nmで、下記式(i)により定義される面内方向のリターデーション値(Ro)及び下記式(ii)により定義される厚さ方向のリターデーション値(Rt)を、Axometrics社製Axoscanを用いて測定した。
 具体的には、上記作製したセルロースアシレートフィルムを23℃、55%RHの環境下で、590nmの波長において10か所で3次元の屈折率測定を行い、屈折率n、n、nの平均値を求めた後、下記式に従って面内方向のリターデーション値Ro及び厚さ方向のリターデーション値Rtを算出した。
 その結果上記作製したセルロースアシレートフィルムは、いずれも面内方向のリターデーション値Roが50±5nmの範囲内であり、かつ厚さ方向のリターデーション値Rtが120±10nmの範囲内であった。
 式(i):Ro=(n-n)×d(nm)
 式(ii):Rt={(n+n)/2-n}×d(nm)
〔式(i)及び式(ii)において、nは、フィルムの面内方向において屈折率が最大になる方向xにおける屈折率を表す。nは、フィルムの面内方向において、前記方向xと直交する方向yにおける屈折率を表す。nは、フィルムの厚さ方向zにおける屈折率を表す。dは、フィルムの厚さ(nm)を表す。〕
 <内部ヘイズ>
 一方の表面ヘイズ値と内部ヘイズ値の合計の測定と同様に、試料フィルムを6cmピースに切り出し、両面にグリセリンを塗布し、厚さ1mmのガラス板(ミクロスライドガラス品番S9111、MATSUNAMI製)を2枚用いて表裏より挟んで、完全に2枚のガラス板とフィルムを光学的に密着させ、JIS K7136に準じてヘイズを測定し、別途測定したガラス板2枚の間にグリセリンのみを挟み込んで測定したヘイズを引いた値をフィルムの内部ヘイズ値として算出した。なお、ヘイズの測定はヘイズメーター(NDH2000型、日本電色工業(株)製)を用いて測定した。
 内部ヘイズは、フィルム作製過程及びフィルム作製後の、添加剤等のブリードアウトによるフィルム内部の濁りを評価するものであり、値が低い程優れている。
 <位相差変動> 
 試料フィルムについて、下記方法に従って湿度変動に対する位相差の変動を評価した。
 (位相差変動測定方法)
 測定環境:23℃・55%RHにて、Axometrics社製Axoscanを使用して、試料フィルムの面内リターデーションRo、厚さ方向のリターデーションRtを測定した(測定値I)。
 次に試料フィルムを24時間水に浸漬させたにのち、軽く水気を拭き取って30秒後に再びリターデーションRtを測定した(測定値II)
 測定値(I-II)の絶対値を△Rt(nm)とした。値が小さいほど湿度変動に対する位相差の安定性が高いことを示す。
 <フィルターライフ>
 図2のように評価装置50を組み、擬似的にフィルターの目詰まりを評価する系として用い、フィルターライフを評価した。
 フィルター51は1mmメッシュの網状フィルターを用いた。
 前記含窒素複素環化合物及び有機エステルを、セルロースアシレートフィルムを構成する質量比率でトータル量1g採取し、170℃に加熱する。図示したように、減圧ポンプ54により8000Paの圧力条件を圧力計53でモニターしながら、下部フラスコに空気が流入するようにして、揮発した窒素複素環化合物及び有機エステルの飛散物52を、シリンダーに2℃の冷却水を循環させた経路を通過させながら、上記フィルター51の目詰まり具合を目視で評価した。
 ○以上であれば、製造ラインで連続生産適性があると判断できる。
 ◎:全く詰まっていない
 ○:ほぼ詰まっていない
 △:目視でわかるくらいに詰まっている
 ×:かなり詰まっている
 セルロースアシレートフィルムの構成及び上記評価結果を表2及び表3に示す。
Figure JPOXMLDOC01-appb-T000104
Figure JPOXMLDOC01-appb-T000105
 表2及び表3から、本発明のセルロースアシレートフィルムは、内部ヘイズが少なく、湿度変動に対するリターデーション値変動が小さく、かつフィルターライフが長いことから、湿度変動に対して優れた耐久性を有し、かつ連続生産適性が高いことがわかる。
 実施例2
 <セルロースアシレートフィルム201の作製>
 実施例1のセルロースアシレート107の作製において、下記主ドープに変えた以外は同様にして、セルロースアシレートフィルム201を作製した。
 〈主ドープの組成〉
 メチレンクロライド                 365質量部
 エタノール                      50質量部
 セルロースアシレートC1              100質量部
 含窒素複素環化合物176                3質量部
 有機エステルS1                   10質量部
 有機エステルP2                    2質量部
 微粒子添加液1                     1質量部
 <セルロースアシレートフィルム202、203、204、及び205の作製>
 セルロースアシレートフィルム201の作製において、セルロースアシレート、含窒素複素環化合物、及び有機エステルの構成を表4に示すように変えた以外は同様にして、セルロースアシレートフィルム202、203、204、及び205を作製し、実施例1と同様に評価した。
 セルロースアシレートフィルムの構成及び上記評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000106
 表4から、含窒素複素環化合物に対して、有機エステルを2種併用することにより、フィルターライフがさらに長くなることがわかる。
 実施例3
 実施例1及び実施例2で作製したセルロースアシレートフィルム101、108、113、114、115、132、201、204、及び205を用いて、下記手順に従って偏光板及び液晶表示装置を作製した。
 (偏光子の調製)
 厚さ70μmのポリビニルアルコールフィルムを、35℃の水で膨潤させた。得られたフィルムを、ヨウ素0.075g、ヨウ化カリウム5g及び水100gからなる水溶液に60秒間浸漬し、さらにヨウ化カリウム3g、ホウ酸7.5g及び水100gからなる45℃の水溶液に浸漬した。得られたフィルムを、延伸温度55℃、延伸倍率5倍の条件で一軸延伸した。この一軸延伸フィルムを、水洗した後、乾燥させて、厚さ15μmの偏光子1得た。
 (偏光板の作製)
 偏光子の一方に貼合するセルロースアシレートフィルムとして、市販の偏光板保護フィルムである厚さ60μmのコニカミノルタ製KC6UAを用いた。
 工程1:それぞれ60℃の2モル/Lの水酸化ナトリウム溶液に90秒間浸漬し、次いで水洗し乾燥して、偏光子と貼合する側にケン化処理を施したセルロースアシレートフィルム101、108、113、114、115、132、201、204、205及びKC6UAとを得た。
 工程2:前記偏光子を固形分2質量%のポリビニルアルコール接着剤槽中に1~2秒浸漬した。
 工程3:工程2で偏光子に付着した過剰の接着剤を軽く拭き除き、この一方の面に工程1で処理したセルロースアシレートフィルム101、108、113、114、115、132、201、204、及び205を、反対側の面にKC6UAを載せて配置した(セルロースアシレートフィルム及びKC6UAの遅相軸が偏光板の吸収軸に対し、直交するように配置した。)。
 工程4:工程3で積層したセルロースアシレートフィルム、偏光子、及びKC6UAを圧力20~30N/cm、搬送スピードは約2m/分で貼合した。
 工程5:80℃の乾燥機中に工程4で作製した、セルロースアシレートフィルム、偏光子、及びKC6UAとを貼り合わせた試料を2分間乾燥し、偏光板301~309を作製した。
 (液晶表示装置301~309の作製)
 SONY製40型ディスプレイBRAVIA X1のあらかじめ貼合されていた両面の偏光板を剥がして、上記作製した偏光板301~309をそれぞれ液晶セルのガラス面の両面に、貼合した。
 その際、その偏光板の貼合の向きは、セルロースアシレートフィルム101、108、113、114、115、132、201、204、及び205の面が、液晶セル側となるように、かつ、あらかじめ貼合されていた偏光板と同一の方向に吸収軸が向くように行い、それぞれ、偏光板301~309に対応する液晶表示装置301~309を各々作製した。
 ≪液晶表示装置の評価≫
 上記作製した各液晶表示装置301~309について、コントラストと色ムラの各評価を行った。
 <コントラスト>
 作製した液晶表示装置をそれぞれ、23℃55%RHの環境で、液晶表示装置のバックライトを1時間連続点灯した後、正面コントラストを測定した。
 測定にはELDIM社製EZ-Contrast160Dを用いて、液晶表示装置で白表示と黒表示の表示画面の法線方向からの輝度を測定し、その比を正面コントラストとした。
 正面コントラスト=(表示装置の法線方向から測定した白表示の輝度)/(表示装置の法線方向から測定した黒表示の輝度)
 液晶表示装置の任意の10点の正面コントラストを測定し、以下の基準にて評価した。
 ◎:正面コントラストが5000以上
 ○:正面コントラストが4500以上5000未満
 △:正面コントラストが4000以上4500未満
 ×:正面コントラストが4000未満
 <色ムラの評価:含水変動による色ムラの評価>
 上記作製した液晶表示装置を寝かせて台の上などに置き、ベンコット(旭化成せんい社製)を評価用偏光板の一部に載せて水を含ませた。ベンコットが乾かないよう100μmPETで覆い、テレビにPCから黒表示の信号を入力、テレビの電源ONで24時間放置した(室温は23℃に設定、パネル温度は38℃)。24時間後、ベンコットを取り除き、θ=45°ψ=60°の方向からベンコットのあった部分となかった部分のL、a、bを測定し(コニカミノルタ製 CS2000)色差ΔEabを求め、下記の基準に従って色ムラの評価を行った。
 ◎:0以上1.0以下:色ムラの発生が全く認められない
 ○:1.0超1.50以下:ごく僅かに弱い色ムラの発生が認められるが
、実用上問題のない品質である
 △:1.50超2.4以下:色ムラの発生が僅かに認められるが、実用上
問題のないレベルである
 ×:2.4超:強い色ムラが発生し、耐湿性に問題のある品質である
 上記評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000107
 表5から、本発明のセルロースアシレートフィルムを用いた偏光板、及びそれを具備した液晶表示装置は、コントラストが高く、湿度に対する色ムラ発生への優れた変動耐性を有することがわかる。
 実施例4
 下記手順に従って、ポリエステルフィルム及びアクリルフィルムを作製した。
 <ポリエステルフィルム>
 (製造例1-ポリエステルA)
 エステル化反応缶を昇温し200℃に到達した時点で、テレフタル酸を86.4質量部及びエチレングリコール64.6質量部を仕込み、撹拌しながら触媒として三酸化アンチモンを0.017質量部、酢酸マグネシウム4水和物を0.064質量部、トリエチルアミン0.16質量部を仕込んだ。次いで、加圧昇温を行いゲージ圧0.34MPa、240℃の条件で加圧エステル化反応を行った後、エステル化反応缶を常圧に戻し、リン酸0.014質量部を添加した。さらに、15分かけて260℃に昇温し、リン酸トリメチル0.012質量部を添加した。次いで15分後に、高圧分散機で分散処理を行い、15分後、得られたエステル化反応生成物を重縮合反応缶に移送し、280℃で減圧下重縮合反応を行った。
 重縮合反応終了後、95%カット径が5μmのナスロン製フィルターで濾過処理を行い、ノズルからストランド状に押出し、あらかじめ濾過処理(孔径:1μm以下)を行った冷却水を用いて冷却、固化させ、ペレット状にカットした。得られたポリエチレンテレフタレート樹脂(A)の固有粘度は0.62dl/gであり、不活性粒子及び内部析出粒子は実質上含有していなかった。(以後、PET(A)と略す。)
 (製造例2-ポリエステルB)
 次に、乾燥させた紫外線吸収剤(2,2’-(1,4-フェニレン)ビス(4H-3,1-ベンズオキサジノン-4-オン)10質量部、粒子を含有しないPET(A)(固有粘度が0.62dl/g)90質量部を混合し、混練押出機を用い、紫外線吸収剤含有するポリエチレンテレフタレート樹脂(B)を得た(以後、PET(B)と略す。)。
 (製造例3-接着性改質塗布液の調製)
 常法によりエステル交換反応及び重縮合反応を行って、ジカルボン酸成分として(ジカルボン酸成分全体に対して)テレフタル酸46モル%、イソフタル酸46モル%及び5-スルホナトイソフタル酸ナトリウム8モル%、グリコール成分として(グリコール成分全体に対して)エチレングリコール50モル%及びネオペンチルグリコール50モル%の組成の水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂を調製した。次いで、水51.4質量部、イソプロピルアルコール38質量部、n-ブチルセルソルブ5質量部、ノニオン系界面活性剤0.06質量部を混合した後、加熱撹拌し、77℃に達したら、上記水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂5質量部を加え、樹脂の固まりが無くなるまで撹拌し続けた後、樹脂水分散液を常温まで冷却して、固形分濃度5.0質量%の均一な水分散性共重合ポリエステル樹脂液を得た。さらに、凝集体シリカ粒子(富士シリシア(株)製、サイリシア310)3質量部を水50質量部に分散させた後、上記水分散性共重合ポリエステル樹脂液99.46質量部にサイリシア310の水分散液0.54質量部を加えて、撹拌しながら水20質量部を加えて、接着性改質塗布液を得た。
 (PETフィルムの作製)
 基材フィルム中間層用原料として粒子を含有しないPET(A)樹脂ペレット90質量部と紫外線吸収剤を含有したPET(B)樹脂ペレット10質量部を135℃で6時間減圧乾燥(1Torr)した後、押出機2(中間層II層用)に供給し、また、PET(A)を常法により乾燥して押出機1(外層I層及び外層III用)にそれぞれ供給し、285℃
で溶解した。この2種のポリマーを、それぞれステンレス焼結体の濾材(公称濾過精度10μm粒子95%カット)で濾過し、2種3層合流ブロックにて、積層し、口金よりシート状にして押し出した後、静電印加キャスト法を用いて表面温度30℃のキャスティングドラムに巻きつけて冷却固化し、未延伸フィルムを作った。この時、I層、II層、III層
の厚さの比は10:80:10となるように各押出機の吐出量を調整した。
 次いで、リバースロール法によりこの未延伸PETフィルムの両面に乾燥後の塗布量が0.096g/mになるように、上記接着性改質塗布液を塗布した後、80℃で20秒間乾燥した。
 この塗布層を形成した未延伸フィルムをテンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度125℃の熱風ゾーンに導き、幅方向に4.0倍に延伸した。次に、幅方向に延伸された幅を保ったまま、温度225℃、30秒間で処理し、さらに幅方向に3%の緩和処理を行い、フィルム厚さ60μmの一軸配向ポリエステルフィルムを得た。
 <アクリルフィルムの作製>
 (アクリル樹脂とアクリル弾性重合体粒子)
 アクリル樹脂として、メタクリル酸メチル/アクリル酸メチルの質量比96/4の共重合体を使用した。また、ゴム弾性体粒子として、最内層、中間層、最外層からなる3層構造のアクリル系弾性重合体粒子を使用した。このアクリル系弾性重合体粒子は、最内層は、メタクリル酸メチルに少量のメタクリル酸アリルを用いて重合された硬質の重合体、中間層は、アクリル酸ブチルを主成分とし、さらにスチレン及び少量のメタクリル酸アリルを用いて重合された軟質の弾性体、最外層は、メタクリル酸メチルに少量のアクリル酸エチルを用いて重合された硬質の重合体からなり、中間層である弾性体までの平均粒径が240nmである。
 (アクリルフィルムの作製)
 上記のアクリル樹脂と上記のアクリル系弾性重合体粒子が前者/後者=70/30の質量比で配合されているペレットを二軸押出機で溶融混練しつつ、アクリル樹脂組成物のペレットとした。このペレットを65mmφの一軸押出機に投入し、設定温度275℃のT型ダイを介して押し出し、押し出されたフィルム状溶融樹脂の両面を、45℃に温度設定された鏡面を有するポリシングロール(冷却ロール)と、表面が金属材料で形成され内部に流体が充填された弾性率の高い金属弾性ロール(弾性ロール)とで挟み込んで冷却し、厚さ60μmのアクリルフィルムを作製した。
 <偏光板の作製>
 実施例1及び実施例2で作製したセルロースアシレートフィルム101、108、201、及び205を用いて、下記手順に従って偏光板及び液晶表示装置を作製した。
 (偏光子の調製)
 下記工程によって、薄膜の偏光子を形成するため偏光性積層フィルムを作製し、当該偏光性積層フィルムから、基材フィルムを剥離することによって、薄膜の偏光子を得た。
 (1)基材フィルムの作製
 リアクターブレンド法によって、同じ反応容器内で熱可塑性樹脂及びゴム成分を順次調製した。具体的には、チーグラー・ナッタ型触媒を用いて、第一工程としてプロピレンモノマーを気相中でフィードしていき、熱可塑性樹脂であるプロピレン単独重合体を製造した。プロピレンモノマーのフィードを止めて反応を停止させた後、その反応容器にそのまま、第二工程としてエチレンモノマーとプロピレンモノマーを気相中でフィードしていき、ゴム成分であるエチレン-プロピレン共重合体を製造し、ゴム成分であるエチレン-プロピレン共重合体が粒子状で分散されたプロピレン単独重合体を得た。共重合体に占めるエチレンユニットの含有量を重合時の物質収支から求めたところ、35質量%であった。また樹脂全体(熱可塑性樹脂及びゴム成分の合計)に占めるエチレンユニットの含有量を高分子ハンドブック(1995年、紀伊国屋書店発行)の第616頁に記載されている方法に従って求め、この値から樹脂全体に占めるエチレン-プロピレン共重合体の含有量を算出したところ、29質量%であった(すなわち、エチレン-プロピレン共重合体の含有量は熱可塑性樹脂の40.8質量%)。
 得られた混合樹脂を250℃で溶融混錬した後、Tダイにて280℃の温度で溶融押出を行い、厚さ100μmの基材フィルムを得た。
 (2)プライマー層の形成
 ポリビニルアルコール粉末(日本合成化学工業(株)製「Z-200」、平均重合度1100、平均ケン化度99.5モル%)を95℃の熱水に溶解し、濃度3質量%のポリビニルアルコール水溶液を調製した。得られた水溶液に架橋剤(住友化学(株)製「スミレーズレジン650」)をポリビニルアルコール粉末6質量部に対して5質量部混合した。得られた混合水溶液を、コロナ処理を施した上記基材フィルムのコロナ処理面上にマイクログラビアコーターを用いて塗工し、80℃で10分間乾燥させることにより、厚さ0.2μmのプライマー層を形成した。
 (3)ポリビニルアルコール系樹脂層の形成
 ポリビニルアルコール粉末(クラレ(株)製「PVA124」、平均重合度2400、平均ケン化度98.0~99.0モル%)を95℃の熱水に溶解し、濃度8質量%のポリビニルアルコール水溶液を調製した。得られた水溶液を、上記プライマー層上にリップコーターを用いて塗工し、80℃で2分間、70℃で2分間、次いで60℃で4分間の条件下で乾燥させることにより、基材フィルム上にプライマー層を介してポリビニルアルコール系樹脂層が積層された積層フィルムを作製した。ポリビニルアルコール系樹脂層の厚さは9.8μmであった。
 (4)延伸フィルムの作製
 上記積層フィルムを160℃の延伸温度で5.8倍に自由端縦一軸延伸し、延伸フィルムを得た。得られた延伸フィルムの厚さは28.5μmであり、ポリビニルアルコール系樹脂層の厚さは5.0μmであった。
 (5)偏光性積層フィルムの作製
 上記延伸フィルムを60℃の温浴に60秒間浸漬した後、ヨウ素とヨウ化カリウムとを含む水溶液である30℃の染色溶液に150秒間程度浸漬して、ポリビニルアルコール系樹脂層の染色を行い、次いで10℃の純水で余分なヨウ素液を洗い流した。次に、ホウ酸とヨウ化カリウムとを含む水溶液である76℃の架橋溶液に600秒間浸漬した。その後、10℃の純水で4秒間洗浄し、最後に50℃で300秒間乾燥させることにより、偏光性積層フィルムを得た。この偏光性積層フィルムのポリビニルアルコール系樹脂層を基材フィルムから剥離し、ポリビニルアルコール系樹脂層を偏光子2として用いた。
 (紫外線硬化型接着剤液1の調製)
 下記の各成分を混合した後、脱泡して、紫外線硬化型接着剤液1を調製した。なお、トリアリールスルホニウムヘキサフルオロホスフェートは、50%プロピレンカーボネート溶液として配合し、下記にはトリアリールスルホニウムヘキサフルオロホスフェートの固形分量を表示した。
 3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサ
ンカルボキシレート                   45質量部
 エポリードGT-301(ダイセル化学社製の脂環式エポキシ樹脂)
                            40質量部
 1,4-ブタンジオールジグリシジルエーテル      15質量部
 トリアリールスルホニウムヘキサフルオロホスフェート 2.3質量部
 9,10-ジブトキシアントラセン          0.1質量部
 1,4-ジエトキシナフタレン            2.0質量部
 (偏光板の作製)
 下記の方法に従って、偏光板401~406を作製した。
 まず、上記セルロースアシレートフィルムの表面にコロナ放電処理を施した。なお、コロナ放電処理の条件は、コロナ出力強度2.0kW、ライン速度18m/分とした。次いで、セルロースアシレートフィルムのコロナ放電処理面に、上記調製した紫外線硬化型接着剤液1を、硬化後の膜厚が約3μmとなるようにバーコーターで塗工して紫外線硬化型接着剤層を形成した。得られた紫外線硬化型接着剤層に、上記作製した偏光性積層フィルムの偏光子(厚さ5μm)側を貼合し、その後基材フィルムは剥離した。
 次いで、上記作製したポリエステルフィルム及びアクリルフィルムにそれぞれ、コロナ放電処理を施した。コロナ放電処理の条件は、コロナ出力強度2.0kW、速度18m/分とした。
 次いで、ポリエステルフィルム及びアクリルフィルムのコロナ放電処理面に、上記調製した紫外線硬化型接着剤液1を、硬化後の膜厚が約3μmとなるようにバーコーターで塗工して紫外線硬化型接着剤層を形成した。
 この紫外線硬化型接着剤層に、セルロースアシレートフィルムの片面に貼合された偏光子を貼合して、セルロースアシレートフィルム/紫外線硬化型接着剤層/偏光子/紫外線硬化型接着剤層/ポリエステルフィルム又はアクリルフィルムフィルムが積層された積層体を得た。その際に、セルロースアシレートフィルム、及びポリエステルフィルム又はアクリルフィルムの遅相軸と偏光子の吸収軸が互いに直交になるように貼合した。
 この積層体の両面側から、ベルトコンベヤー付き紫外線照射装置(ランプは、フュージョンUVシステムズ社製のDバルブを使用)を用いて、積算光量が750mJ/cmとなるように紫外線を照射し、それぞれの紫外線硬化型接着剤層を硬化させ、表6記載の総膜厚が91μmの偏光板401~408を作製した。
 (液晶表示装置401~408の作製)
 SONY製40型ディスプレイBRAVIA X1のあらかじめ貼合されていた両面の偏光板を剥がして、上記作製した偏光板401~408をそれぞれ液晶セルのガラス面の両面に、貼合した。
 その際、その偏光板の貼合の向きは、セルロースアシレートフィルム101、108、201、及び205の面が、液晶セル側となるように、かつ、あらかじめ貼合されていた偏光板と同一の方向に吸収軸が向くように行い、それぞれ、偏光板401~408に対応する液晶表示装置401~408を各々作製した。
 ≪液晶表示装置の評価≫
 上記作製した各液晶表示装置401~408について、実施例3と同様にしてコントラストと色ムラの各評価を行った。
 偏光板の構成及び上記評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000108
 表6から、偏光板保護フィルムとして、耐透湿性の高いポリエステルフィルムやアクリルフィルムを用いることで、セルロースアシレートフィルム(位相差フィルム)に水分が到達する速度を遅らせることが可能なため、コントラストや湿度変動に対する色ムラの発生において、さらに優れることがわかる。
 本発明のセルロースアシレートフィルムは、湿度に対する位相差の変動を抑制する化合物が揮発して製造ライン内で飛散し、綿状に嵩高く付着することで、壁面を汚染したり、フィルターの目詰まりが発生することを改善できたことにより、湿度変動に対する位相差の安定性と連続生産適性とを両立した光学フィルムとして、偏光板や液晶表示装置に好適に用いられる。
 1 溶解釜
 3、6、12、15 濾過器
 4、13 ストック釜
 5、14 送液ポンプ
 8、16 導管
 10 紫外線吸収剤仕込釜
 20 合流管
 21 混合機
 30 加圧ダイ
 31 金属ベルト
 32 ウェブ
 33 剥離位置
 34 テンター延伸装置
 35 乾燥装置
 41 仕込釜
 42 ストック釜
 43 ポンプ
 44 濾過器
 50 フィルターライフ評価装置
 51 フィルター
 52 飛散物
 53 圧力計
 54 減圧ポンプ

Claims (11)

  1.  セルロースアシレートと、分子量が100~800の範囲内である含窒素複素環化合物と、融点が-60~120℃の範囲内であり、かつ示差熱・熱重量測定による1%質量減少温度Td1が100~350℃の範囲内である有機エステルとを含有することを特徴とするセルロースアシレートフィルム。
  2.  前記含窒素複素環化合物が、ピラゾール環、トリアゾール環、及びイミダゾール環を有する化合物から選択される少なくともいずれか1種であることを特徴とする請求項1に記載のセルロースアシレートフィルム。
  3.  前記含窒素複素環化合物が、下記一般式(3)で表される構造を有する化合物であることを特徴とする請求項2に記載のセルロースアシレートフィルム。
    Figure JPOXMLDOC01-appb-C000001
    (式中Aはピラゾール環を表す。Ar及びArはそれぞれ芳香族炭化水素環又は芳香族複素環を表し、置換基を有してもよい。Rは水素原子、アルキル基、アシル基、スルホニル基、アルキルオキシカルボニル基、又はアリールオキシカルボニル基を表す。qは1~2の整数を表す。n及びmは1~3の整数を表す。)
  4.  前記有機エステルが、糖エステル、重縮合エステル、及び多価アルコールエステルから選択される少なくとも1種であることを特徴とする請求項1から請求項3までのいずれか一項に記載のセルロースアシレートフィルム。
  5.  前記セルロースアシレートフィルムが、前記含窒素複素環化合物を0.5~10質量%の範囲内で含有し、かつ前記有機エステルを0.5~20質量%の範囲内で含有することを特徴とする請求項1から請求項4までのいずれか一項に記載のセルロースアシレートフィルム。
  6.  前記セルロースアシレートの総アシル基置換度が、2.0~2.7の範囲内であるセルロースアセテート、又はセルロースアセテートプロピオネートであることを特徴とする請求項1から請求項5までのいずれか一項に記載のセルロースアシレートフィルム。
  7.  23℃、55%RHの環境下で、光波長590nmの測定での、下記式(i)で表される面内方向のリターデーション値Roが40~70nmの範囲内であり、かつ下記式(ii)で表される厚さ方向のリターデーション値Rtが100~300nmの範囲内であることを特徴とする請求項1から請求項6までのいずれか一項に記載のセルロースアシレートフィルム。
     式(i):Ro=(n-n)×d
     式(ii):Rt={(n+n)/2-n}×d
    〔式(i)及び式(ii)において、nは、フィルムの面内方向において屈折率が最大になる方向xにおける屈折率を表す。nは、フィルムの面内方向において、前記方向xと直交する方向yにおける屈折率を表す。nは、フィルムの厚さ方向zにおける屈折率を表す。dは、フィルムの厚さ(nm)を表す。〕
  8.  請求項1から請求項7までのいずれか一項に記載のセルロースアシレートフィルムが、水糊又は活性エネルギー線硬化性接着剤を用いて偏光子と貼合されていることを特徴とする偏光板。
  9.  前記偏光子の前記セルロースアシレートフィルムが貼合されている面とは反対側の面に、ポリエステルフィルム又はアクリルフィルムが、水糊又は活性エネルギー線硬化性接着剤を用いて偏光子と貼合されていることを特徴とする請求項8に記載の偏光板。
  10.  請求項1から請求項7までのいずれか一項に記載のセルロースアシレートフィルムが具備されていることを特徴とする液晶表示装置。
  11.  請求項8又は請求項9に記載の偏光板が具備されていることを特徴とする液晶表示装置。
PCT/JP2014/070305 2013-08-12 2014-08-01 セルロースアシレートフィルム、偏光板及び液晶表示装置 WO2015022867A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480044795.4A CN105473653B (zh) 2013-08-12 2014-08-01 酰化纤维素膜、偏振片和液晶显示装置
KR1020167002315A KR101841854B1 (ko) 2013-08-12 2014-08-01 셀룰로오스아실레이트 필름, 편광판 및 액정 표시 장치
JP2015531761A JP6428621B2 (ja) 2013-08-12 2014-08-01 セルロースアシレートフィルム、偏光板及び液晶表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013167461 2013-08-12
JP2013-167461 2013-08-12

Publications (1)

Publication Number Publication Date
WO2015022867A1 true WO2015022867A1 (ja) 2015-02-19

Family

ID=52468254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070305 WO2015022867A1 (ja) 2013-08-12 2014-08-01 セルロースアシレートフィルム、偏光板及び液晶表示装置

Country Status (5)

Country Link
JP (1) JP6428621B2 (ja)
KR (1) KR101841854B1 (ja)
CN (1) CN105473653B (ja)
TW (1) TWI537129B (ja)
WO (1) WO2015022867A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119213A1 (ja) * 2014-02-10 2015-08-13 コニカミノルタ株式会社 偏光子保護用フィルム、偏光板および液晶表示装置
JP2016153839A (ja) * 2015-02-20 2016-08-25 コニカミノルタ株式会社 光学フィルム、光学フィルムの製造方法、偏光板および液晶表示装置
CN111363332A (zh) * 2018-12-06 2020-07-03 柯尼卡美能达株式会社 树脂组合物和使用了该组合物的成型体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181865A (ja) * 2016-03-31 2017-10-05 コニカミノルタ株式会社 位相差フィルム、偏光板および液晶表示装置
JP2020134934A (ja) * 2019-02-12 2020-08-31 住友化学株式会社 円偏光板およびそれを用いる有機el表示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187958A (ja) * 2000-12-19 2002-07-05 Konica Corp セルロースエステルフィルムの製造方法、セルロースエステルフィルム及び偏光板
JP2004206038A (ja) * 2002-11-06 2004-07-22 Konica Minolta Holdings Inc 光学補償フィルム、視野角補償偏光板及び液晶表示装置
JP2005134608A (ja) * 2003-10-30 2005-05-26 Konica Minolta Opto Inc 光学補償フィルム、視野角補償偏光板及び液晶表示装置
JP2010031132A (ja) * 2008-07-28 2010-02-12 Fujifilm Corp セルロースエステルフィルム、それを用いた位相差フィルム、偏光板、及び液晶表示装置
JP2012042938A (ja) * 2010-07-20 2012-03-01 Fujifilm Corp 光学フィルム、位相差フィルム、偏光板及び画像表示装置
JP2012063748A (ja) * 2010-07-20 2012-03-29 Fujifilm Corp 光学フィルム、位相差フィルム、偏光板及び液晶表示装置
JP2012082235A (ja) * 2009-09-29 2012-04-26 Fujifilm Corp セルロースアシレートフィルム、位相差フィルム、偏光板および液晶表示装置
WO2014091921A1 (ja) * 2012-12-13 2014-06-19 コニカミノルタ株式会社 光学フィルムのロール体、その製造方法、偏光板及び表示装置
WO2014109350A1 (ja) * 2013-01-10 2014-07-17 コニカミノルタ株式会社 樹脂組成物、トリアゾール化合物、光学フィルム、偏光板、光学レンズ、円偏光板及び画像表示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023124A (ja) * 2005-07-14 2007-02-01 Fujifilm Holdings Corp セルロース化合物組成物、セルロース化合物フィルム
CN102262315B (zh) * 2010-05-25 2015-09-30 富士胶片株式会社 Ips模式及ffs模式液晶显示装置
JP5677778B2 (ja) 2010-07-20 2015-02-25 富士フイルム株式会社 光学フィルム、位相差フィルム、偏光板及び液晶表示装置
JP5579129B2 (ja) 2011-06-06 2014-08-27 富士フイルム株式会社 透明保護フィルム、光学補償フィルム、偏光板、及び液晶表示装置
US9042016B2 (en) * 2011-10-12 2015-05-26 Fujifilm Corporation Optical film, method of producing optical film, antireflective film, polarizing plate and image display device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187958A (ja) * 2000-12-19 2002-07-05 Konica Corp セルロースエステルフィルムの製造方法、セルロースエステルフィルム及び偏光板
JP2004206038A (ja) * 2002-11-06 2004-07-22 Konica Minolta Holdings Inc 光学補償フィルム、視野角補償偏光板及び液晶表示装置
JP2005134608A (ja) * 2003-10-30 2005-05-26 Konica Minolta Opto Inc 光学補償フィルム、視野角補償偏光板及び液晶表示装置
JP2010031132A (ja) * 2008-07-28 2010-02-12 Fujifilm Corp セルロースエステルフィルム、それを用いた位相差フィルム、偏光板、及び液晶表示装置
JP2012082235A (ja) * 2009-09-29 2012-04-26 Fujifilm Corp セルロースアシレートフィルム、位相差フィルム、偏光板および液晶表示装置
JP2012042938A (ja) * 2010-07-20 2012-03-01 Fujifilm Corp 光学フィルム、位相差フィルム、偏光板及び画像表示装置
JP2012063748A (ja) * 2010-07-20 2012-03-29 Fujifilm Corp 光学フィルム、位相差フィルム、偏光板及び液晶表示装置
WO2014091921A1 (ja) * 2012-12-13 2014-06-19 コニカミノルタ株式会社 光学フィルムのロール体、その製造方法、偏光板及び表示装置
WO2014109350A1 (ja) * 2013-01-10 2014-07-17 コニカミノルタ株式会社 樹脂組成物、トリアゾール化合物、光学フィルム、偏光板、光学レンズ、円偏光板及び画像表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119213A1 (ja) * 2014-02-10 2015-08-13 コニカミノルタ株式会社 偏光子保護用フィルム、偏光板および液晶表示装置
JP2016153839A (ja) * 2015-02-20 2016-08-25 コニカミノルタ株式会社 光学フィルム、光学フィルムの製造方法、偏光板および液晶表示装置
CN111363332A (zh) * 2018-12-06 2020-07-03 柯尼卡美能达株式会社 树脂组合物和使用了该组合物的成型体
US11746229B2 (en) 2018-12-06 2023-09-05 Konica Minolta, Inc. Resin composition and molded body using same

Also Published As

Publication number Publication date
TW201520039A (zh) 2015-06-01
TWI537129B (zh) 2016-06-11
CN105473653A (zh) 2016-04-06
CN105473653B (zh) 2018-07-17
KR20160027053A (ko) 2016-03-09
JPWO2015022867A1 (ja) 2017-03-02
KR101841854B1 (ko) 2018-03-23
JP6428621B2 (ja) 2018-11-28

Similar Documents

Publication Publication Date Title
WO2015076101A1 (ja) 偏光板およびこれを用いた液晶表示装置
WO2014175040A1 (ja) 偏光板、その製造方法及び液晶表示装置
JP6428621B2 (ja) セルロースアシレートフィルム、偏光板及び液晶表示装置
WO2017130585A1 (ja) 偏光板、偏光板の製造方法及び液晶表示装置
JP6493213B2 (ja) 位相差フィルム、偏光板及び液晶表示装置
WO2014136529A1 (ja) 光学フィルム、並びにこれを含む偏光板およびva型液晶表示装置
WO2015098491A1 (ja) セルロースエステルフィルム、その製造方法及び偏光板
KR101709419B1 (ko) 광학 필름 및 광학 필름의 제조 방법, 편광판 및 액정 표시 장치
JP2017121777A (ja) プロテクトフィルム積層体
WO2017168807A1 (ja) 位相差フィルム、偏光板および液晶表示装置
JP6264373B2 (ja) 光学フィルムの製造方法
WO2015119213A1 (ja) 偏光子保護用フィルム、偏光板および液晶表示装置
JPWO2012096088A1 (ja) 垂直配向型液晶表示装置とその製造方法
WO2018074102A1 (ja) 位相差フィルム、偏光板および液晶表示装置
WO2016111058A1 (ja) 垂直配向型液晶表示装置
JP5626133B2 (ja) Va型液晶表示装置
JP2017181865A (ja) 位相差フィルム、偏光板および液晶表示装置
JP2004117625A (ja) 位相差フィルム、偏光板、光学補償フィルム、液晶表示装置
JP2015169677A (ja) 偏光性積層フィルムの製造方法及び偏光板の製造方法
JP5626134B2 (ja) Va型液晶表示装置
JP2017191153A (ja) 偏光板および液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480044795.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836437

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015531761

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167002315

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14836437

Country of ref document: EP

Kind code of ref document: A1