WO2018074102A1 - 位相差フィルム、偏光板および液晶表示装置 - Google Patents
位相差フィルム、偏光板および液晶表示装置 Download PDFInfo
- Publication number
- WO2018074102A1 WO2018074102A1 PCT/JP2017/032678 JP2017032678W WO2018074102A1 WO 2018074102 A1 WO2018074102 A1 WO 2018074102A1 JP 2017032678 W JP2017032678 W JP 2017032678W WO 2018074102 A1 WO2018074102 A1 WO 2018074102A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- acid
- group
- retardation
- liquid crystal
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
Definitions
- the present invention relates to a retardation film, a polarizing plate provided with the retardation film, and a liquid crystal display device provided with the polarizing plate.
- the polarizing plate on the viewing side with respect to the liquid crystal cell is required to have a function of absorbing ultraviolet rays.
- Such an ultraviolet absorbing function can be imparted, for example, by adding an ultraviolet absorber to the T1 film.
- said T1 film points out the protective film located in the visual recognition side with respect to a polarizer in the polarizing plate located in the visual recognition side with respect to a liquid crystal cell.
- the above-described low moisture-permeable film film made of PET or acrylic
- an additive such as an ultraviolet absorber is dissolved by heat
- the productivity of the film decreases and the production cost also increases.
- the additive is forcibly added, bleeding out (exudation of the additive) occurs, and when the formed film is applied to the polarizing plate, the quality of the polarizing plate may be impaired.
- the ultraviolet absorber is applied to the protective film (hereinafter also referred to as T2 film) positioned on the liquid crystal cell side, that is, on the side opposite to the viewing side with respect to the polarizer.
- T2 film the protective film
- the inventor of the present application has studied to prevent the deterioration of the liquid crystal cell by adding the ultraviolet ray absorbing function to the T2 film by adding. Since the T2 film is located between the polarizer and the liquid crystal cell and is not exposed to the outside, the T2 film does not need to have low moisture permeability.
- the T2 film it is possible to use a highly moisture permeable film, that is, a cellulose ester film that can be formed by a solution casting film forming method.
- a solution casting film forming method for the film formation of the T2 film it is easy to add the UV absorber to the film, and it is considered that the film productivity reduction, the production cost increase, and the bleed out problem can be improved.
- the T2 film needs to have both the function of a retardation film and the function of a protective film.
- the above-described cellulose ester film is also a film generally used as a retardation film. Therefore, by using a cellulose ester film as the T2 film, it is possible to prevent the deterioration of the liquid crystal cell by adding an ultraviolet absorber without difficulty while exhibiting both the function of the retardation film and the function of the protective film.
- a polarizing plate can be realized.
- Patent Document 1 discloses a structure which adds a ultraviolet absorber to a cellulose-ester film.
- Patent Document 1 it is possible to obtain a film having good releasability during film formation and high moisture permeability by making the addition amount of the ultraviolet absorber different between one surface side and the other surface side of the cellulose ester film. I have to.
- Patent Document 2 discloses a configuration in which an ultraviolet absorber is added to a retardation film in order to prevent deterioration of the liquid crystal cell due to ultraviolet rays.
- JP 2001-131301 A (refer to claims 1, 2, 4, 6, paragraphs [0005], [0055], [0056], etc.)
- Japanese Patent Laid-Open No. 7-35923 (refer to claim 1, paragraphs [0011], [0012], FIG. 1, etc.)
- Patent Document 1 when the structure of Patent Document 1 is applied to the retardation film of Patent Document 2, that is, when a cellulose ester film having a different amount of added UV absorber in the film thickness direction is used as a T2 film of a liquid crystal display device, a liquid crystal display is provided. It has been found that the contrast of the device is lowered and bending of the liquid crystal cell occurs.
- the T1 film of the liquid crystal display device is, for example, a PET film and does not contain an ultraviolet absorber.
- the decrease in contrast of the liquid crystal display device is due to partial deterioration of internal haze in the T2 film. That is, in the T2 film, since the addition amount of the ultraviolet absorber is different in the film thickness direction, the ultraviolet absorber is biased and present in either one of the film thickness directions (on either surface side). Thus, it is considered that in the region where the UV absorber is present in an uneven manner, the internal haze deteriorates due to the large amount of the UV absorber, and as a result, the contrast is lowered.
- the bending of the liquid crystal cell is considered to be due to the influence of the bending of the T2 film. That is, even if the T1 film is a low moisture-permeable PET film, the moisture permeation through the T1 film cannot be completely eliminated, so that the moisture permeated through the T1 film penetrates into the T2 film. Then, T2 film causes a dimensional change. At this time, since the distribution of the ultraviolet absorber is different in the film thickness direction of the T2 film, a difference in dimensional change occurs between one surface side of the film and the other surface side (for example, one surface side is the other surface). It is considered that this causes the bending of the T2 film and the bending of the liquid crystal cell.
- the present invention has been made in order to solve the above-described problems.
- the purpose of the present invention is to obtain a polarizing plate even if the T2 film of the polarizing plate is a cellulose ester phase difference film containing an ultraviolet absorber. Is applied to a liquid crystal display device, the retardation of the liquid crystal display device and the bending of the liquid crystal cell are suppressed, and the retardation film capable of suppressing the deterioration of light resistance, and the polarizing plate provided with the retardation film,
- An object of the present invention is to provide a liquid crystal display device including the polarizing plate.
- the retardation film according to one aspect of the present invention is a cellulose ester retardation film having an in-plane retardation Ro of 20 nm or more
- S 1 (%) is the ratio of the content of the ultraviolet absorber to the reference value in a region 5 ⁇ m thick from one surface of the film
- S 2 (%) is the ratio of the content of the ultraviolet absorber with respect to the reference value in a region having a thickness of 5 ⁇ m from the other surface of the film.
- S 3 (%) Content of the ultraviolet absorber with respect to the reference value in a total area of 5 ⁇ m having a thickness of 2.5 ⁇ m on the one surface side and the other surface side from the center in the thickness direction of the film
- S 3 (%) A retardation film satisfying the following conditional expressions (1) and (2); (1)
- the polarizing plate according to another aspect of the present invention, The above retardation film; A polarizer, And an opposing film that sandwiches the polarizer with the retardation film.
- a liquid crystal display device It has the above polarizing plate and a liquid crystal cell, The polarizing plate is located on the viewing side with respect to the liquid crystal cell, The retardation film of the polarizing plate is located on the liquid crystal cell side with respect to the polarizer of the polarizing plate.
- the retardation film contains the ultraviolet absorber and the alignment inhibitor
- the content distribution in the film thickness direction of the ultraviolet absorber approaches uniformly in the film, and the above conditional expressions (1) and (2) are satisfied. It becomes possible to be satisfied.
- the retardation film it is possible to suppress the deterioration of internal haze caused by the deviation in the film thickness direction of the ultraviolet absorber, and it is possible to suppress the bending due to water content. Therefore, when the polarizing plate including the retardation film is applied to a liquid crystal display device, it is possible to suppress a decrease in contrast of the liquid crystal display device and bending of the liquid crystal cell.
- the retardation film of the present embodiment is a cellulose ester-based retardation film having an in-plane retardation Ro of 20 nm or more.
- This retardation film contains, as additives, an ultraviolet absorber and an alignment inhibitor for making the distribution in the film thickness direction of the ultraviolet absorber in the film uniform.
- the principle that the alignment inhibitor makes the distribution in the film thickness direction of the UV absorber uniform or close to uniform is as follows.
- a dope containing a resin and a solvent is cast on a support, and the cast film (web) formed by drying on the support is supported.
- An optical film is formed by peeling from the body and stretching, drying and the like.
- the ultraviolet absorber is normally distributed in the film toward the support side (also referred to as the B-side) in the film thickness direction.
- the solubility of the ultraviolet absorber in the solvent is generally high (easily soluble in the solvent) (for example, the solubility in methylene chloride is 15% or more).
- the solubility of the ultraviolet absorber when the solubility of the ultraviolet absorber is high, when the solvent is dried on the support, it remains without being evaporated as the solvent evaporates from the side opposite to the support (also referred to as the air side or the A side).
- the UV absorber is going to dissolve in the solvent. Due to such behavior, the ultraviolet absorber is likely to move to the B side in the web, and as a result, the UV absorber is unevenly distributed on the B side in the film thickness direction in the film.
- the orientation inhibitor usually has a distribution biased toward the A side in the film.
- the solubility of the alignment inhibitor in the solvent is generally low (hardly soluble in the solvent) (for example, the solubility in methylene chloride is less than 2%). That is, when the solubility of the alignment inhibitor is low, when the solvent is dried on the support, the alignment inhibitor rides on the flow of the solvent from the B surface side to the A surface side of the web, and the alignment inhibitor moves to the A surface side in the web. It becomes easy to move, and as a result, it is unevenly distributed on the A surface side in the film thickness direction in the film.
- the UV absorber Since the interaction between the alignment inhibitor and the UV absorber is strong, if both the alignment inhibitor and the UV absorber are present in the dope, the UV absorber is the alignment inhibitor A when the solvent is dried on the support. It becomes easy to move to the A surface side so as to be attracted by the movement to the surface side. As a result, it is possible to make the distribution of the UV absorber that is normally biased toward the B-side in the film uniform or close to uniform in the film thickness direction. Thereby, the retardation film of this embodiment turns into a retardation film which satisfies the following conditional expressions (1) and (2).
- the ratio of the content of the ultraviolet absorber to the reference value is S 1 (%).
- the ratio of the content of the ultraviolet absorber to the reference value is S 2 (%), and the phase difference of the film thickness D ⁇ m
- the retardation film RF of the present embodiment satisfies the following conditional expressions (1) and (2).
- the difference of the conditional expression (1) has a content of the ultraviolet absorber in the region R1, the difference between the content of the ultraviolet absorber in the region R2 is smaller, and more specifically, the ratio S 1 and the ratio of S 2 but it defines that is equal to or less than the average value of 15% of the M of the ratio S 1 and the ratio of S 2.
- the conditional expression (2) is the difference between the average value M and the content of the ultraviolet absorber in the region R3 is small, and more specifically, the difference between the ratio S 3 and the average value M, the ratio S 3 1% or more and 20% or less.
- the uneven distribution of the ultraviolet absorber in the film thickness direction is alleviated inside the retardation film RF, and the distribution of the UV absorber substantially uniform in the film thickness direction. Is realized.
- retardation film RF deterioration of the internal haze resulting from the bias
- a difference in dimensional change due to water content hardly occurs between one surface side and the other surface side of the phase difference film RF, and even if the phase difference film RF contains water, it is difficult to bend.
- the alignment inhibitor in the retardation film RF it is possible to suppress the decrease in contrast of the liquid crystal display device and the bending of the liquid crystal cell without reducing the addition amount of the ultraviolet absorber. . Therefore, it is possible to reliably absorb ultraviolet rays with the ultraviolet absorber and suppress deterioration of the liquid crystal cell due to ultraviolet rays, that is, deterioration of light resistance of the liquid crystal cell.
- the content of the ultraviolet absorber in the film can be measured using, for example, time-of-flight secondary ion mass spectrometry (TOF-SIMS).
- TOF-SIMS time-of-flight secondary ion mass spectrometry
- a solid sample is irradiated with an ion beam (primary ions), and ions (secondary ions) emitted from the surface are used by utilizing the difference in flight time (the flight time is proportional to the square root of the weight). This is a method of mass separation.
- the content of the UV absorber contained in the film and the intensity of secondary ions detected by TOF-SIMS measurement (secondary ion detection count per second) have a corresponding relationship.
- the ratio of the content of the ultraviolet absorber to (arbitrary content) and the ratio of the secondary ion intensity to the reference value (arbitrary intensity value) are in a correspondence relationship. Therefore, TOF-SIMS measurement is performed on the cross section of the film to detect the intensity of the secondary ions corresponding to the UV absorber, and the secondary value relative to the reference value (arbitrary intensity value) is detected for each region R1 to R3.
- the ratio S 1 to S 3 of the content of the ultraviolet absorber with respect to the reference value (arbitrary content) can be obtained for each region R1 to R3.
- FIG. 2 is obtained when TOF-SIMS measurement is performed on a film containing an ultraviolet absorber (for example, a pyrazole-based compound described later) and an alignment inhibitor (for example, a benzotriazole-based compound described later).
- the intensity distribution of the secondary ion corresponding to a ultraviolet absorber in the film thickness direction is shown.
- FIG. 3 shows the film thickness of secondary ions corresponding to the ultraviolet absorber obtained when the TOF-SIMS measurement is performed on the film containing the ultraviolet absorber but not containing the alignment inhibitor.
- the intensity distribution in the direction is shown.
- the direction in which the position of the horizontal axis increases refers to the direction from the A side (atmosphere side) to the B side (support side) in the film thickness direction.
- the ultraviolet absorber is unevenly distributed on the B surface side rather than the A surface side.
- the UV absorber is almost uniform from the A surface side (excluding the vicinity of the A surface) to the B surface side (excluding the vicinity of the B surface) from the intensity distribution of FIG. It can be said that it is distributed. From the above, the distribution in the film thickness direction of the UV absorber can be controlled by the presence or absence of the alignment inhibitor, and by adding the alignment inhibitor, the distribution in the film thickness direction of the UV absorber is almost uniform. I can say that.
- the retardation film of the present embodiment further satisfies the following conditional expressions (1a) and (2a). That is, (1a) 5% ⁇
- (1a) and (2a) the uneven distribution in the film thickness direction of the UV absorber is surely relieved inside the retardation film RF. The effect of suppressing the bending of the liquid crystal cell can be obtained with certainty.
- the above-mentioned alignment inhibitor is desirably a nitrogen-containing heterocyclic compound. Since the nitrogen-containing heterocyclic compound has a strong interaction with the ultraviolet absorber, it is very suitable as an alignment inhibitor that draws an ultraviolet absorber that tends to be unevenly distributed on the B-side to the A-side to make the distribution in the film thickness direction uniform. It is.
- a pyrazole compound which is a kind of nitrogen-containing heterocyclic compound, as an alignment inhibitor, the above-described function as an alignment inhibitor (function to uniformize the distribution of UV absorbers in the film thickness direction) is ensured. It is possible to demonstrate.
- the ultraviolet absorber is preferably a benzotriazole compound.
- the benzotriazole-based compound is a nitrogen-containing heterocyclic compound and has a strong interaction with the alignment inhibitor. For this reason, the above-described effect due to the addition of the alignment inhibitor, that is, the effect of uniforming the distribution in the film thickness direction of the ultraviolet absorber by the addition of the alignment inhibitor is more easily obtained.
- the polarizing plate of the present embodiment is configured to include the above-described retardation film of the present embodiment, a polarizer, and an opposing film that sandwiches the polarizer between the retardation film.
- the above-described conditional expressions (1) and (2) are satisfied by the addition of the alignment inhibitor, and the uneven distribution in the film thickness direction of the ultraviolet absorber is alleviated.
- the ultraviolet absorber by adding an alignment inhibitor to the retardation film, it is not necessary to reduce the content of the ultraviolet absorber (because the above-described effects can be obtained without reducing the content), the ultraviolet absorber. It is possible to reliably absorb ultraviolet rays and suppress deterioration of the liquid crystal cell due to ultraviolet rays (light resistance deterioration).
- the moisture permeability of the counter film is desirably 100 g / m 2 ⁇ day or less. Since the counter film has low moisture permeability, moisture permeation through the counter film can be suppressed as much as possible, and bending of the liquid crystal cell due to dimensional change due to moisture content of the polarizing plate can be suppressed.
- the liquid crystal display device of the present embodiment includes the polarizing plate of the present embodiment described above and a liquid crystal cell, the polarizing plate is positioned on the viewing side with respect to the liquid crystal cell, and the retardation film of the polarizing plate. However, it is the structure located in the said liquid crystal cell side with respect to the said polarizer of the said polarizing plate.
- the viewing-side polarizing plate of the liquid crystal display device is a polarizing plate having the retardation film of the present embodiment described above.
- the distribution in the film thickness direction of the ultraviolet absorber is made uniform by the alignment inhibitor. Therefore, it is possible to suppress the decrease in contrast and the bending of the liquid crystal cell due to the bias of the ultraviolet absorber. Further, by adding an alignment inhibitor to the retardation film, it is not necessary to reduce the content of the ultraviolet absorber, so that it is possible to suppress the light resistance deterioration of the liquid crystal cell.
- FIG. 4 is a cross-sectional view showing a schematic configuration of a vertical alignment (VA: Virtical Alignment) liquid crystal display device 1 according to the present embodiment.
- the liquid crystal display device 1 includes a liquid crystal display panel 2 and a backlight 3.
- the backlight 3 is a light source for illuminating the liquid crystal display panel 2.
- the liquid crystal display panel 2 is configured by disposing a polarizing plate 5 on the viewing side of the liquid crystal cell 4 driven by the VA method and disposing a polarizing plate 6 on the backlight 3 side.
- the liquid crystal cell 4 is formed by sandwiching a liquid crystal layer between a pair of transparent substrates (not shown).
- the liquid crystal cell 4 has a so-called color filter on array (COA) structure in which the color filter is disposed on a transparent substrate on the backlight 3 side with respect to the liquid crystal layer, that is, on the substrate on the TFT (Thin Film Transistor) formation side.
- COA color filter on array
- the liquid crystal cell may be a liquid crystal cell in which a color filter is disposed on a transparent substrate on the viewing side with respect to the liquid crystal layer.
- the polarizing plate 5 includes a polarizer 11 and optical films 12 and 13.
- the polarizer 11 transmits predetermined linearly polarized light.
- the optical film 12 is a protective film (also referred to as a T1 film) disposed on the viewing side of the polarizer 11.
- the optical film 13 is a protective film / retardation film (also referred to as a T2 film) disposed on the liquid crystal cell 4 side of the polarizer 11, that is, on the side opposite to the viewing side with respect to the polarizer 11. Since the optical film 12 is disposed to face the optical film 13 with the polarizer 11 interposed therebetween, the optical film 12 can also be referred to as a counter film.
- the polarizing plate 5 is attached to the viewing side of the liquid crystal cell 4 via an adhesive layer 7. That is, the polarizing plate 5 is bonded to the liquid crystal cell 4 such that the polarizing film 5 is positioned on the viewing side with respect to the liquid crystal cell 4 and the optical film 13 is on the liquid crystal cell 4 side
- the polarizing plate 6 includes a polarizer 14 and optical films 15 and 16.
- the polarizer 14 transmits predetermined linearly polarized light.
- the optical film 15 is a protective film (also referred to as a T3 film) disposed on the viewing side (the liquid crystal cell 4 side) of the polarizer 14, and can also function as a retardation film.
- the optical film 16 is a protective film (also referred to as a T4 film) disposed on the backlight 3 side of the polarizer 14 (the side opposite to the viewing side).
- Such a polarizing plate 6 is attached to the backlight 3 side of the liquid crystal cell 4 via an adhesive layer 8.
- the viewing-side optical film 15 may be omitted, and the polarizer 14 may be in direct contact with the adhesive layer 8.
- the polarizer 11 and the polarizer 14 are disposed so as to be in a crossed Nicols state.
- the retardation film of this embodiment can be used, for example, as the optical film 13 of the polarizing plate 5 or the optical film 15 of the polarizing plate 6.
- the retardation film of this embodiment is a light-transmitting film having a light transmittance of 10% or less at a wavelength of 380 nm by containing an ultraviolet absorber.
- An ultraviolet absorber can be comprised with the nitrogen-containing heterocyclic compound (2nd nitrogen-containing heterocyclic compound) mentioned later.
- the light transmittance at a wavelength of 380 nm of the retardation film can be determined by measuring using, for example, an ultraviolet-visible spectrophotometer (UV-visible near-infrared spectrophotometer, product name: V7100, manufactured by JASCO Corporation). .
- the retardation Ro in the in-plane direction and the retardation Rt in the thickness direction of the retardation film are represented by the following formulas (i) and (ii).
- Formula (i) Ro (nx ⁇ ny) ⁇ d
- Formula (ii) Rt ⁇ (nx + ny) / 2 ⁇ nz ⁇ ⁇ d (Where nx is the refractive index in the slow axis direction in the film plane, ny is the refractive index in the fast axis direction in the film plane, nz is the refractive index in the thickness direction of the film (refractive index is 23 ° C., 55%) (Measured at a wavelength of 590 nm in an RH environment), d represents the thickness (nm) of the film.)
- Retardation Ro ⁇ Rt can be measured according to a known method. Specifically, the retardation Ro ⁇ Rt is obtained by using an automatic birefringence meter Axoscan (Axo Scan Mueller Polarimeter: manufactured by Axometrics) at a wavelength of 590 nm in a 23 ° C./55% RH environment. It can be calculated from the refractive indexes nx, ny and nz obtained by measuring the original refractive index.
- Axoscan Alignitometer
- the retardation film is preferably composed of a cellulose ester retardation film having an in-plane retardation Ro of 20 nm or more.
- the retardation Ro in the in-plane direction is preferably 40 ⁇ Ro ⁇ 300, more preferably 50 ⁇ Ro ⁇ 200, and further preferably 60 ⁇ Ro ⁇ 150.
- the retardation Rt in the thickness direction is preferably 100 ⁇ Rt ⁇ 400, and more preferably 100 ⁇ Rt ⁇ 200.
- the retardation Ro ⁇ Rt of the retardation film is in the above range, so that when the polarizing plate is bonded to the liquid crystal cell so that the retardation film is on the liquid crystal cell side, the light at the time of black display in the obtained liquid crystal display device Leakage can be effectively prevented.
- the thickness of the retardation film can be reduced to further reduce the thickness and weight of the polarizing plate and the liquid crystal display device.
- the cellulose ester-based retardation film of the present embodiment is a retardation film containing a cellulose ester-based resin.
- Cellulose ester-based resins that can be used for the retardation film are cellulose (di, tri) acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose phthalate. It is preferably at least one selected.
- particularly preferred cellulose esters include cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate butyrate.
- cellulose acetate propionate or lower acetate of cellulose acetate butyrate as a mixed fatty acid ester has an acyl group having 2 to 4 carbon atoms as a substituent, the substitution degree of acetyl group is X, and a propionyl group Or when the substitution degree of a butyryl group is set to Y, it is preferable that it is a cellulose resin containing the cellulose ester which satisfy
- cellulose acetate propionate is particularly preferably used. Among them, 1.9 ⁇ X ⁇ 2.5 and 0.1 ⁇ Y ⁇ 0.9 are preferable.
- the portion not substituted with the acyl group usually exists as a hydroxyl group.
- the cellulose ester used in the present embodiment is preferably one having a ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of 1.5 to 5.5. More preferably, a cellulose ester of 2.0 to 5.0, more preferably 2.5 to 5.0, particularly preferably 3.0 to 5.0 is used.
- the raw material cellulose of the cellulose ester used in this embodiment may be wood pulp or cotton linter.
- the wood pulp may be a conifer or a hardwood, but a conifer is more preferable.
- a cotton linter is preferably used from the viewpoint of releasability during film formation.
- the cellulose ester made from these can be mixed suitably or can be used independently.
- the ratios of cellulose ester derived cellulose ester: wood pulp (coniferous) cellulose ester: wood pulp (hardwood) derived cellulose ester are 100: 0: 0, 90: 10: 0, 85: 15: 0, 50:50. : 0, 20: 80: 0, 10: 90: 0, 0: 100: 0, 0: 0: 100, 80:10:10, 85: 0: 15, 40:30:30 A cellulose ester can be mixed and used.
- 1 g of cellulose ester-based resin is added to 20 ml of pure water (electric conductivity of 0.1 ⁇ S / cm or less, pH 6.8), and the pH when stirred in a nitrogen atmosphere at 25 ° C. for 1 hr. Is preferably 6 to 7, and the electric conductivity is preferably 1 to 100 ⁇ S / cm.
- the retardation film of this embodiment contains an alignment inhibitor as an additive.
- the alignment inhibitor is an additive for making the distribution in the film thickness direction of the ultraviolet absorber in the retardation film uniform.
- This orientation inhibitor can be composed of, for example, the following retardation increasing agent.
- the retardation increasing agent refers to a compound having a function of increasing the retardation of the film (retardation Ro in the in-plane direction and retardation Rt in the thickness direction) at a measurement wavelength of 590 nm as compared with the retardation adding agent not added.
- retardation film contains a retardation increasing agent
- a retardation film in which retardation Ro in the in-plane direction and retardation Rt in the thickness direction of the retardation film are in the following ranges can be realized.
- a nitrogen-containing heterocyclic compound having a molecular weight in the range of 100 to 800 can be used.
- a compound having a structure represented by the following general formula (1) together with a resin as a nitrogen-containing heterocyclic compound, a retardation film having Ro and Rt in the above range can be realized, and retardation due to environmental humidity fluctuations. It is also possible to suppress fluctuations.
- a 1 , A 2 and B are each independently an alkyl group (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group, 2- An ethenyl group), a cycloalkyl group (cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), an aromatic hydrocarbon ring or an aromatic heterocycle.
- an aromatic hydrocarbon ring or an aromatic heterocycle is preferable, and a 5-membered or 6-membered aromatic hydrocarbon ring or an aromatic heterocycle is particularly preferable.
- the structure of the 5-membered or 6-membered aromatic hydrocarbon ring or aromatic heterocyclic ring is not limited, but for example, benzene ring, pyrrole ring, pyrazole ring, imidazole ring, 1,2,3-triazole ring, 1,2 , 4-triazole ring, tetrazole ring, furan ring, oxazole ring, isoxazole ring, oxadiazole ring, isoxadiazole ring, thiophene ring, thiazole ring, isothiazole ring, thiadiazole ring, isothiadiazole ring, carbazole ring, A quinoxaline ring, a benzoxazole ring, etc.
- the nitrogen-containing heterocyclic compound is desirably at least one selected from compounds having a carbazole ring, a quinoxaline ring, a benzoxazole ring, an oxadiazole ring, an oxazole ring, a triazole ring, and a pyrazole ring.
- the 5-membered or 6-membered aromatic hydrocarbon ring or aromatic heterocyclic ring represented by A 1 , A 2 and B may have a substituent.
- substituents include a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl group (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group).
- Aryloxy group phenoxy group, 2-methylphenoxy group, 4-tert-butylphenoxy group) , 3-nitrophenoxy group, 2-tetradecanoylaminophenoxy group, etc.
- acyloxy group formyloxy group, acetyloxy group, pivaloyloxy group, stearoyloxy group, benzoyloxy group, p-methoxyphenylcarbonyloxy group, etc.
- Amino group (amino group, methylamino group, dimethylamino group, anilino group, N-methyl-anilino group, diphenylamino group, etc.)
- acylamino group formylamino group, acetylamino group, pivaloylamino group, lauroylamino group, benzoylamino) Group
- alkyl and arylsulfonylamino groups methylsulfonylamino group, butylsulfonylamino
- a 1 , A 2 and B represent a benzene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, a 1,2,3-triazole ring or a 1,2,4-triazole ring. It is preferable because a cellulose acylate film having excellent optical property variation effects and excellent durability can be obtained.
- T 1 and T 2 preferably each independently represent a pyrrole ring, a pyrazole ring, an imidazole ring, a 1,2,3-triazole ring or a 1,2,4-triazole ring. .
- a pyrazole ring, a triazole ring, or an imidazole ring is preferable because a resin composition that is particularly excellent in retardation fluctuation suppression effect against humidity fluctuation and excellent in durability is obtained, and is a pyrazole ring. It is particularly preferred.
- the pyrazole ring, 1,2,3-triazole ring, 1,2,4-triazole ring and imidazole ring represented by T 1 and T 2 may be tautomers. Specific structures of the pyrrole ring, pyrazole ring, imidazole ring, 1,2,3-triazole ring or 1,2,4-triazole ring are shown below.
- an asterisk (*) represents a bonding position with L 1 , L 2 , L 3 or L 4 in the general formula (1).
- R 5 represents a hydrogen atom or a non-aromatic substituent. Examples of the non-aromatic substituent represented by R 5 include the same groups as the non-aromatic substituent among the substituents that A 1 in the general formula (1) may have.
- the substituent represented by R 5 is a substituent having an aromatic group, A 1 and T 1 or B and T 1 are easily twisted, and A 1 , B and T 1 interact with cellulose acylate. Since it cannot be formed, it is difficult to suppress fluctuations in optical characteristics.
- R 5 is preferably a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an acyl group having 1 to 5 carbon atoms, and particularly preferably a hydrogen atom.
- T 1 and T 2 may have a substituent, and examples of the substituent include a substituent that A 1 and A 2 in the general formula (1) may have Similar groups can be mentioned.
- L 1 , L 2 , L 3 and L 4 each independently represent a single bond or a divalent linking group, and are 5 or 6 via 2 or less atoms. Membered aromatic hydrocarbon rings or aromatic heterocycles are linked.
- the term “via two or less atoms” refers to the minimum number of atoms existing between the connected substituents among the atoms constituting the linking group.
- the divalent linking group having 2 or less linking atoms is not particularly limited, but includes an alkylene group, an alkenylene group, an alkynylene group, O, (C ⁇ O), NR, S, and (O ⁇ S ⁇ O). It is a divalent linking group selected from the group consisting of or a linking group in which two of them are combined.
- R represents a hydrogen atom or a substituent.
- substituent represented by R include an alkyl group (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl group ( Cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), aromatic hydrocarbon ring group (phenyl group, p-tolyl group, naphthyl group, etc.), aromatic heterocyclic group (2-furyl group, 2-thienyl group, etc.) Group, 2-pyrimidinyl group, 2-benzothiazolyl group, 2-pyridyl group, etc.), cyano group and the like.
- the divalent linking group represented by L 1 , L 2 , L 3 and L 4 may have a substituent, and the substituent is not
- L 1 , L 2 , L 3 and L 4 are a resin that adsorbs water by increasing the planarity of the compound having the structure represented by the general formula (1). And the fluctuation of optical properties is suppressed, so that a single bond or O, (C ⁇ O) —O, O— (C ⁇ O), (C ⁇ O) —NR or NR— (C ⁇ O) is preferable, and a single bond is more preferable.
- n represents an integer of 0 to 5.
- the plurality of A 2 , T 2 , L 3 , and L 4 in the general formula (1) may be the same or different.
- n is preferably an integer of 1 to 3, more preferably an integer of 1 to 2.
- the compound having a structure represented by the general formula (1) is preferably a compound having a structure represented by the general formula (2).
- a 1 , A 2 , T 1 , T 2 , L 1 , L 2 , L 3 and L 4 are respectively A 1 , A 2 , T 1 , T 2, L 1, is synonymous with L 2, L 3 and L 4.
- a 3 and T 3 represent the same groups as A 1 and T 1 in the general formula (1), respectively.
- L 5 and L 6 represent the same group as L 1 in the general formula (1).
- m represents an integer of 0 to 4.
- n is preferably an integer of 0 to 2, more preferably an integer of 0 to 1.
- the compound having a structure represented by the general formula (1) is preferably a triazole compound having a structure represented by the following general formula (1.1).
- a 1, B, L 1 and L 2 represents A 1, B, the same group as L 1 and L 2 in formula (1).
- k represents an integer of 1 to 4.
- T 1 represents a 1,2,4-triazole ring.
- the triazole compound having a structure represented by the general formula (1.1) is preferably a triazole compound having a structure represented by the following general formula (1.2).
- Z is a partial structure represented by the following general formula (1.2a).
- q represents an integer of 2 to 3. At least two Z are bonded to the ortho position or the meta position with respect to at least one Z substituted on the benzene ring.
- R 10 represents a hydrogen atom, an alkyl group, or an alkoxy group.
- p represents an integer of 1 to 5. * Represents a bonding position with a benzene ring.
- T 1 represents a 1,2,4-triazole ring.
- the compound having the structure represented by the general formula (1), (2), (1.1) or (1.2) may form a hydrate, a solvate or a salt.
- the hydrate may contain an organic solvent
- the solvate may contain water. That is, “hydrate” and “solvate” include mixed solvates containing both water and organic solvents.
- Salts include acid addition salts formed with inorganic or organic acids. Examples of inorganic acids include, but are not limited to, hydrohalic acids (hydrochloric acid, hydrobromic acid, etc.), sulfuric acid, phosphoric acid, and the like.
- organic acids examples include acetic acid, trifluoroacetic acid, propionic acid, butyric acid, oxalic acid, citric acid, benzoic acid, alkylsulfonic acid (methanesulfonic acid, etc.), allylsulfonic acid (benzenesulfonic acid, 4-toluene) Sulfonic acid, 1,5-naphthalenedisulfonic acid, and the like), but are not limited thereto.
- hydrochloride, acetate, propionate and butyrate are preferable.
- salts are those in which the acidic moiety present in the parent compound is a metal ion (eg, an alkali metal salt, such as sodium or potassium salt, an alkaline earth metal salt, such as calcium or magnesium salt, an ammonium salt, an alkali metal ion, alkaline earth And salts formed when substituted with organic bases (ethanolamine, diethanolamine, triethanolamine, morpholine, piperidine, etc.) It is not limited. Of these, sodium salts and potassium salts are preferred.
- a metal ion eg, an alkali metal salt, such as sodium or potassium salt, an alkaline earth metal salt, such as calcium or magnesium salt, an ammonium salt, an alkali metal ion, alkaline earth
- organic bases ethanolamine, diethanolamine, triethanolamine, morpholine, piperidine, etc.
- sodium salts and potassium salts are preferred.
- Examples of the solvent contained in the solvate include any common organic solvent. Specifically, alcohol (eg, methanol, ethanol, 2-propanol, 1-butanol, 1-methoxy-2-propanol, t-butanol), ester (eg, ethyl acetate), hydrocarbon (eg, toluene, hexane) , Heptane), ether (eg, tetrahydrofuran), nitrile (eg, acetonitrile), ketone (acetone) and the like.
- alcohol eg, methanol, ethanol, 2-propanol, 1-butanol, 1-methoxy-2-propanol, t-butanol
- ester eg, ethyl acetate
- hydrocarbon eg, toluene, hexane
- Heptane Heptane
- ether eg, tetrahydrofuran
- nitrile
- solvates of alcohols eg, methanol, ethanol, 2-propanol, 1-butanol, 1-methoxy-2-propanol, t-butanol.
- solvents may be a reaction solvent used at the time of synthesizing the compound, a solvent used at the time of crystallization purification after synthesis, or a mixture thereof.
- two or more kinds of solvents may be included at the same time, or a form containing water and a solvent (for example, water and alcohol (for example, methanol, ethanol, t-butanol, etc.)) may be used.
- a solvent for example, water and alcohol (for example, methanol, ethanol, t-butanol, etc.)
- optical film refers to a retardation film unless otherwise specified (the same applies hereinafter).
- the molecular weight of the compound having the structure represented by the general formula (1), (2), (1.1) or (1.2) is not particularly limited, but the smaller the compound, the better the compatibility with the resin and the greater Since the effect of suppressing fluctuations in the optical value with respect to changes in environmental humidity is higher, it is preferably 150 to 2000, more preferably 200 to 1500, and more preferably 300 to 1000.
- nitrogen-containing heterocyclic compound examples include compounds described in paragraphs [0140] to [0214] of International Publication No. WO2014 / 109350A1.
- the above specific examples may be tautomers, and may form hydrates, solvates or salts.
- the retardation increasing agent (nitrogen-containing heterocyclic compound) as an alignment inhibitor suitable for the retardation film of the present embodiment is desirably a compound having a structure represented by the following general formula (3).
- A represents a pyrazole ring
- Ar 1 and Ar 2 each represent an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and may have a substituent.
- R 1 represents a hydrogen atom, an alkyl group, an acyl group, a sulfonyl group, an alkyloxycarbonyl group, or an aryloxycarbonyl group
- q represents an integer of 1 to 2
- n and m each represents an integer of 1 to 3.
- the aromatic hydrocarbon ring or aromatic heterocyclic ring represented by Ar 1 and Ar 2 may be the 5-membered or 6-membered aromatic hydrocarbon ring or aromatic heterocyclic ring mentioned in the general formula (1), respectively. preferable.
- Examples of the substituent for Ar 1 and Ar 2 include the same substituents as those shown for the compound having the structure represented by the general formula (1).
- R 1 examples include halogen atoms (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl groups (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group).
- halogen atoms fluorine atom, chlorine atom, bromine atom, iodine atom, etc.
- alkyl groups methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group.
- Q represents an integer of 1 to 2
- n and m represent an integer of 1 to 3.
- examples of the retardation increasing agent (nitrogen-containing heterocyclic compound) suitable as an alignment inhibitor include pyrazole compounds shown by the following exemplary compound 1.
- the compound having the structure represented by the general formula (1) can be synthesized by a known method.
- any compound having a 1,2,4-triazole ring may be used, but a nitrile derivative or imino ether derivative and a hydrazide derivative may be used.
- a reaction method is preferred.
- the solvent used for the reaction may be any solvent as long as it does not react with the raw material, but may be any ester type (eg, ethyl acetate, methyl acetate), amide type (dimethylformamide, dimethylacetamide, etc.), ether type (Ethylene glycol dimethyl ether, etc.), alcohols (eg, methanol, ethanol, propanol, isopropanol, n-butanol, 2-butanol, ethylene glycol, ethylene glycol monomethyl ether, etc.), aromatic hydrocarbons (eg, toluene, xylene, etc.) ), Water can be mentioned.
- an alcohol solvent is preferable. These solvents may be used as a mixture.
- the amount of the solvent used is not particularly limited, but is preferably in the range of 0.5 to 30 times the amount of the hydrazide derivative used, more preferably 1.0 to 25 times the amount. Yes, particularly preferably in the range of 3.0 to 20 times the amount.
- a catalyst When reacting a nitrile derivative and a hydrazide derivative, it is not necessary to use a catalyst, but it is preferable to use a catalyst in order to accelerate the reaction.
- a catalyst to be used an acid may be used and a base may be used.
- the acid include hydrochloric acid, sulfuric acid, nitric acid, acetic acid and the like, preferably hydrochloric acid.
- the acid may be added after diluted in water, or may be added by a method of blowing a gas into the system.
- Bases include inorganic bases (potassium carbonate, sodium carbonate, potassium bicarbonate, sodium bicarbonate, potassium hydroxide, sodium hydroxide, etc.) and organic bases (sodium methylate, sodium ethylate, potassium methylate, potassium ethylate, Sodium butyrate, potassium butyrate, diisopropylethylamine, N, N′-dimethylaminopyridine, 1,4-diazabicyclo [2.2.2] octane, N-methylmorpholine, imidazole, N-methylimidazole, pyridine, etc.) Any of them may be used, and the inorganic base is preferably potassium carbonate, and the organic base is preferably sodium ethylate, sodium ethylate or sodium butyrate.
- the inorganic base may be added as a powder or may be added in a state dispersed in a solvent.
- the organic base may be added in a state dissolved in a solvent (for example, a
- the amount of the catalyst used is not particularly limited as long as the reaction proceeds, but it is preferably in the range of 1.0 to 5.0 moles relative to the formed triazole ring, and more preferably 1.05 to 3. A range of 0-fold mole is preferable.
- the target product can be obtained by heating in a solvent.
- the addition method of the raw material, solvent and catalyst used for the reaction is not particularly limited, and the catalyst may be added last, or the solvent may be added last. Also preferred is a method of dispersing or dissolving a nitrile derivative in a solvent, adding a catalyst, and then adding a hydrazide derivative.
- the solution temperature during the reaction may be any temperature as long as the reaction proceeds, but is preferably in the range of 0 to 150 ° C., more preferably in the range of 20 to 140 ° C. Moreover, you may react, removing the water to produce
- any method may be used for treating the reaction solution, but when a base is used as a catalyst, a method of neutralizing the reaction solution by adding an acid is preferable.
- the acid used for neutralization include hydrochloric acid, sulfuric acid, nitric acid, and acetic acid. Acetic acid is particularly preferable.
- the amount of the acid used for neutralization is not particularly limited as long as the pH of the reaction solution is in the range of 4 to 9, but is preferably 0.1 to 3 moles, particularly preferably, relative to the base used. , In the range of 0.2 to 1.5 moles.
- the appropriate organic solvent is a water-insoluble solvent such as ethyl acetate, toluene, dichloromethane, ether, or a mixed solvent of the water-insoluble solvent and tetrahydrofuran or an alcohol solvent, preferably Ethyl acetate.
- the compound having the structure represented by the general formula (1) can be appropriately adjusted and contained in the optical film, but the addition amount is 0.1% with respect to the resin constituting the optical film. It is preferably contained in an amount of from 10 to 10% by mass, particularly preferably from 0.5 to 5% by mass. Within this range, it is possible to reduce the variation of the phase difference depending on the change of the environmental humidity without impairing the mechanical strength of the optical film.
- the compound having the structure represented by the general formula (1) it may be added as a powder to a resin that forms an optical film, or a resin that forms an optical film after being dissolved in a solvent. You may add to.
- the optical film (retardation film) of this embodiment contains at least 1 sort (s) selected from sugar ester, polycondensation ester (polyester), and polyhydric alcohol ester as organic ester.
- sugar esters and polycondensation esters are preferable in that they can function as a water-resistant plasticizer and can suppress fluctuations in the retardation Rt due to water content.
- the polycondensed ester does not contain a nitrogen atom in its structure, and when cooled in the production line, it liquefies and adheres to the filter, reducing the bulk of the filter collection of nitrogen-containing heterocyclic compounds. ,preferable.
- the sugar ester is a compound containing at least one of a furanose ring and a pyranose ring, and may be a monosaccharide or a polysaccharide having 2 to 12 sugar structures linked together.
- the sugar ester is preferably a compound in which at least one of the OH groups of the sugar structure is esterified, and more than half of the OH groups are preferably esterified.
- the average ester substitution degree in the sugar ester is preferably within the range of 4.0 to 8.0, and within the range of 5.0 to 7.5. More preferably.
- the sugar ester is not particularly limited, and examples thereof include sugar esters represented by the following general formula (A).
- G represents a monosaccharide or disaccharide residue
- R 2 represents an aliphatic group or an aromatic group
- m is directly bonded to the monosaccharide or disaccharide residue
- N is the total number of — (O—C ( ⁇ O) —R 2 ) groups directly bonded to the monosaccharide or disaccharide residue, 3 ⁇ m + n ⁇ 8, and n ⁇ 0.
- the sugar ester having the structure represented by the general formula (A) is a single kind of hydroxy group (m) and-(O—C ( ⁇ O) —R 2 ) groups in which the number (n) is fixed. It is difficult to isolate as a compound, and it is known that a compound in which several components different in m and n in the formula are mixed is obtained. Accordingly, the performance as a mixture in which the number of hydroxy groups (m) and the number of — (OC ( ⁇ O) —R 2 ) groups (n) are changed is important. In the case of the optical film of this embodiment, A sugar ester having an average degree of ester substitution within the range of 5.0 to 7.5 is preferred.
- G represents a monosaccharide or disaccharide residue.
- monosaccharides include allose, altrose, glucose, mannose, gulose, idose, galactose, talose, ribose, arabinose, xylose, lyxose, and the like.
- disaccharide residue examples include trehalose, sucrose, maltose, cellobiose, gentiobiose, lactose, and isotrehalose.
- R 2 represents an aliphatic group or an aromatic group.
- the aliphatic group and the aromatic group may each independently have a substituent.
- m is the total number of hydroxy groups directly bonded to the monosaccharide or disaccharide residue, and n is directly bonded to the monosaccharide or disaccharide residue.
- the total number of — (O—C ( ⁇ O) —R 2 ) groups it is necessary that 3 ⁇ m + n ⁇ 8, and it is preferable that 4 ⁇ m + n ⁇ 8. Further, n ⁇ 0.
- the — (O—C ( ⁇ O) —R 2 ) groups may be the same as or different from each other.
- the aliphatic group in the definition of R 2 may be linear, branched or cyclic, and preferably has 1 to 25 carbon atoms, more preferably 1 to 20 carbon atoms. Those of ⁇ 15 are particularly preferred. Specific examples of the aliphatic group include, for example, methyl, ethyl, n-propyl, iso-propyl, cyclopropyl, n-butyl, iso-butyl, tert-butyl, amyl, iso-amyl, tert-amyl, n- Examples include hexyl, cyclohexyl, n-heptyl, n-octyl, bicyclooctyl, adamantyl, n-decyl, tert-octyl, dodecyl, hexadecyl, octadecyl, didecyl and the like.
- the aromatic group in the definition of R 2 may be an aromatic hydrocarbon group or an aromatic heterocyclic group, and more preferably an aromatic hydrocarbon group.
- the aromatic hydrocarbon group preferably has 6 to 24 carbon atoms, more preferably 6 to 12 carbon atoms. Specific examples of the aromatic hydrocarbon group include rings such as benzene, naphthalene, anthracene, biphenyl, and terphenyl.
- rings such as benzene, naphthalene, anthracene, biphenyl, and terphenyl.
- a benzene ring, a naphthalene ring, and a biphenyl ring are particularly preferable.
- As the aromatic heterocyclic group a ring containing at least one of an oxygen atom, a nitrogen atom or a sulfur atom is preferable.
- heterocyclic ring examples include, for example, furan, pyrrole, thiophene, imidazole, pyrazole, pyridine, pyrazine, pyridazine, triazole, triazine, indole, indazole, purine, thiazoline, thiadiazole, oxazoline, oxazole, oxadiazole, quinoline, Examples of each ring include isoquinoline, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, acridine, phenanthroline, phenazine, tetrazole, benzimidazole, benzoxazole, benzthiazole, benzotriazole, and tetrazaindene.
- aromatic heterocyclic group a pyridine ring, a triazine ring, and a quinoline ring are particularly preferable
- the sugar ester may contain two or more different substituents in one molecule, and contains an aromatic substituent and an aliphatic substituent in one molecule, and two or more different aromatic substituents. Can be contained in one molecule, and two or more different aliphatic substituents can be contained in one molecule.
- sugar ester represented by the general formula (A) is shown below, but the sugar ester is not limited to these exemplified compounds.
- the addition amount of the sugar ester is preferably in the range of 0.1 to 20% by mass, preferably in the range of 1 to 15% by mass, with respect to the resin constituting the optical film (for example, cellulose acylate). Is more preferable.
- the sugar ester preferably has a hue of 10 to 300, and preferably 10 to 40.
- polycondensed ester In the optical film (retardation film) of this embodiment, it is preferable to use a polycondensation ester having a structure represented by the following general formula (4) as the organic ester.
- the polycondensed ester is preferably contained in the range of 1 to 30% by mass, more preferably in the range of 5 to 20% by mass with respect to the resin constituting the optical film because of its plastic effect.
- B 3 and B 4 each independently represent an aliphatic or aromatic monocarboxylic acid residue or a hydroxy group.
- G 2 represents an alkylene glycol residue having 2 to 12 carbon atoms, an aryl glycol residue having 6 to 12 carbon atoms, or an oxyalkylene glycol residue having 4 to 12 carbon atoms.
- A represents an alkylene dicarboxylic acid residue having 4 to 12 carbon atoms or an aryl dicarboxylic acid residue having 6 to 12 carbon atoms.
- n represents an integer of 1 or more.
- the polycondensed ester is a polycondensed ester containing a repeating unit obtained by reacting a dicarboxylic acid and a diol, A represents a carboxylic acid residue in the polycondensed ester, and G 2 represents an alcohol residue.
- the dicarboxylic acid constituting the polycondensed ester is an aromatic dicarboxylic acid, an aliphatic dicarboxylic acid or an alicyclic dicarboxylic acid, preferably an aromatic dicarboxylic acid.
- the dicarboxylic acid may be one type or a mixture of two or more types. In particular, it is preferable to mix aromatic and aliphatic.
- the diol constituting the polycondensed ester is an aromatic diol, an aliphatic diol or an alicyclic diol, preferably an aliphatic diol, more preferably a diol having 1 to 4 carbon atoms.
- the diol may be one type or a mixture of two or more types.
- Both ends of the polycondensed ester molecule may or may not be sealed.
- alkylene dicarboxylic acid constituting A in the general formula (4) examples include 1,2-ethanedicarboxylic acid (succinic acid), 1,3-propanedicarboxylic acid (glutaric acid), 1,4-butanedicarboxylic acid. Divalent groups derived from (adipic acid), 1,5-pentanedicarboxylic acid (pimelic acid), 1,8-octanedicarboxylic acid (sebacic acid) and the like are included.
- alkenylene dicarboxylic acid constituting A include maleic acid and fumaric acid.
- aryl dicarboxylic acid constituting A examples include 1,2-benzenedicarboxylic acid (phthalic acid), 1,3-benzenedicarboxylic acid, 1,4-benzenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and the like. Can be mentioned.
- A may be one type or two or more types may be combined. Among them, A is preferably a combination of an alkylene dicarboxylic acid having 4 to 12 carbon atoms and an aryl dicarboxylic acid having 8 to 12 carbon atoms.
- G 2 in the general formula (4) is a divalent group derived from an alkylene glycol having 2 to 12 carbon atoms, a divalent group derived from an aryl glycol having 6 to 12 carbon atoms, or a carbon atom. It represents a divalent group derived from oxyalkylene glycol of 4 to 12.
- Examples of the divalent group derived from an alkylene glycol having 2 to 12 carbon atoms in G 2 include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, , 3-butanediol, 1,2-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (Neopentyl glycol), 2,2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-di-) Methylol heptane), 3-methyl-1,5-pentanediol, 1,6-hexanediol, 2,2,4-trimethyl-1,3-p
- divalent groups derived from aryl glycols having 6 to 12 carbon atoms in G 2 include 1,2-dihydroxybenzene (catechol), 1,3-dihydroxybenzene (resorcinol), 1,4-dihydroxy Divalent groups derived from benzene (hydroquinone) and the like are included.
- divalent group derived from oxyalkylene glycol having 4 to 12 carbon atoms in G are derived from diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol and the like. Divalent groups are included.
- G 2 may be a single type or a combination of two or more types.
- G 2 is preferably a divalent group derived from an alkylene glycol having 2 to 12 carbon atoms, more preferably 2 to 5, and most preferably 2 to 4.
- B 3 and B 4 in the general formula (4) are each a monovalent group derived from an aromatic ring-containing monocarboxylic acid or an aliphatic monocarboxylic acid, or a hydroxy group.
- the aromatic ring-containing monocarboxylic acid in the monovalent group derived from the aromatic ring-containing monocarboxylic acid is a carboxylic acid containing an aromatic ring in the molecule, and not only those in which the aromatic ring is directly bonded to a carboxy group, Also included are those in which an aromatic ring is bonded to a carboxy group via an alkylene group or the like.
- monovalent groups derived from aromatic ring-containing monocarboxylic acids include benzoic acid, para-tert-butyl benzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethyl benzoic acid, ethyl benzoic acid, and normal propyl benzoic acid.
- Examples of monovalent groups derived from aliphatic monocarboxylic acids include monovalent groups derived from acetic acid, propionic acid, butanoic acid, caprylic acid, caproic acid, decanoic acid, dodecanoic acid, stearic acid, oleic acid and the like. Is included. Among these, a monovalent group derived from an alkyl monocarboxylic acid having 1 to 3 carbon atoms in the alkyl portion is preferable, and an acetyl group (a monovalent group derived from acetic acid) is more preferable.
- the weight average molecular weight of the polycondensed ester is preferably in the range of 500 to 3000, and more preferably in the range of 600 to 2000.
- the weight average molecular weight can be measured by the gel permeation chromatography (GPC).
- the flask is charged and gradually heated with stirring until it reaches 230 ° C. in a nitrogen stream.
- the dehydration condensation reaction was carried out while observing the degree of polymerization.
- unreacted 1,2-propylene glycol was distilled off at 200 ° C. under reduced pressure to obtain the following polycondensed ester P2.
- the retardation film of the present embodiment preferably contains a polyhydric alcohol ester.
- the polyhydric alcohol ester is a compound comprising an ester of a divalent or higher aliphatic polyhydric alcohol and a monocarboxylic acid, and preferably has an aromatic ring or a cycloalkyl ring in the molecule.
- a divalent to 20-valent aliphatic polyhydric alcohol ester is preferred.
- the polyhydric alcohol preferably used in the present embodiment is represented by the following general formula (5).
- R 11 represents an n-valent organic group
- n represents a positive integer of 2 or more
- the OH group represents an alcoholic and / or phenolic hydroxyl group.
- Examples of preferable polyhydric alcohols include the following, but are not limited thereto.
- triethylene glycol triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, sorbitol, trimethylolpropane, and xylitol are preferable.
- monocarboxylic acid used for polyhydric alcohol ester there is no restriction
- Examples of preferable monocarboxylic acids include the following, but are not limited thereto.
- aliphatic monocarboxylic acid a fatty acid having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used.
- the number of carbon atoms is more preferably 1-20, and particularly preferably 1-10.
- the inclusion of acetic acid is preferred because the compatibility with cellulose acetate increases, and it is also preferred to use a mixture of acetic acid and other monocarboxylic acids.
- Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanoic acid, undecylic acid, lauric acid, tridecylic acid, Saturated fatty acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid, undecylenic acid, olein Examples thereof include unsaturated fatty acids such as acid, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid.
- Examples of preferable alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
- aromatic monocarboxylic acids examples include those in which 1 to 3 alkoxy groups such as alkyl group, methoxy group or ethoxy group are introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, biphenylcarboxylic acid, Examples thereof include aromatic monocarboxylic acids having two or more benzene rings such as naphthalenecarboxylic acid and tetralincarboxylic acid, or derivatives thereof. Benzoic acid is particularly preferable.
- the molecular weight of the polyhydric alcohol ester is not particularly limited, but is preferably in the range of 300 to 1500, and more preferably in the range of 350 to 750. A higher molecular weight is preferable because it is less likely to volatilize, and a lower molecular weight is preferable in terms of moisture permeability and compatibility with cellulose acylate.
- the carboxylic acid used in the polyhydric alcohol ester may be one kind or a mixture of two or more kinds. Moreover, all the OH groups in the polyhydric alcohol may be esterified, or a part of the OH groups may be left as they are.
- the polyhydric alcohol ester is preferably contained in the range of 0.5 to 5% by mass, more preferably in the range of 1 to 3% by mass with respect to the retardation film (cellulose ester resin). It is particularly preferred to contain in the range of ⁇ 2% by mass.
- the polyhydric alcohol ester can be synthesized according to a conventionally known general synthesis method.
- the retardation film of this embodiment can contain a plasticizer as needed.
- the plasticizer is not particularly limited, but is preferably selected from a polycarboxylic acid ester plasticizer, a glycolate plasticizer, a phthalate ester plasticizer, a fatty acid ester plasticizer, an acrylic plasticizer, and the like.
- the glycolate plasticizer is not particularly limited, but alkylphthalylalkyl glycolates can be preferably used.
- alkyl phthalyl alkyl glycolates include methyl phthalyl methyl glycolate, ethyl phthalyl ethyl glycolate, propyl phthalyl propyl glycolate, butyl phthalyl butyl glycolate, octyl phthalyl octyl glycolate, methyl phthalyl Ethyl glycolate, ethyl phthalyl methyl glycolate, ethyl phthalyl propyl glycolate, methyl phthalyl butyl glycolate, ethyl phthalyl butyl glycolate, butyl phthalyl methyl glycolate, butyl phthalyl ethyl glycolate, propyl phthalyl butyl Glycolate, butyl phthalyl propyl glycolate, methyl phthalyl octyl
- phthalate ester plasticizer examples include diethyl phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, and dicyclohexyl terephthalate.
- citrate ester plasticizer examples include acetyl trimethyl citrate, acetyl triethyl citrate, and acetyl tributyl citrate.
- fatty acid ester plasticizer examples include butyl oleate, methylacetyl ricinoleate, dibutyl sebacate and the like.
- phosphate ester plasticizer examples include triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, tributyl phosphate, and the like.
- the polyvalent carboxylic acid ester compound is composed of an ester of a divalent or higher, preferably a divalent to 20valent polyvalent carboxylic acid and an alcohol.
- the aliphatic polyvalent carboxylic acid is preferably divalent to 20-valent, and in the case of an aromatic polyvalent carboxylic acid or alicyclic polyvalent carboxylic acid, it is preferably trivalent to 20-valent.
- the polyvalent carboxylic acid is represented by the following general formula (C).
- R 2 (COOH) m (OH) n
- R 2 is an (m + n) -valent organic group
- m is a positive integer of 2 or more
- n is an integer of 0 or more
- a COOH group is a carboxy group
- an OH group is an alcoholic or phenolic hydroxy group Represents a group.
- Preferred examples of the polyvalent carboxylic acid include the following, but are not limited thereto.
- Trivalent or higher aromatic polyvalent carboxylic acids such as trimellitic acid, trimesic acid, pyromellitic acid or derivatives thereof, succinic acid, adipic acid, azelaic acid, sebacic acid, oxalic acid, fumaric acid, maleic acid, tetrahydrophthal
- An aliphatic polyvalent carboxylic acid such as an acid, an oxypolyvalent carboxylic acid such as tartaric acid, tartronic acid, malic acid and citric acid can be preferably used.
- alcohol used for polyhydric carboxylic acid ester there is no restriction
- an aliphatic saturated alcohol or aliphatic unsaturated alcohol having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. More preferably, it has 1 to 20 carbon atoms, and particularly preferably 1 to 10 carbon atoms.
- alicyclic alcohols such as cyclopentanol and cyclohexanol or derivatives thereof, aromatic alcohols such as benzyl alcohol and cinnamyl alcohol, or derivatives thereof can also be preferably used.
- the alcoholic or phenolic hydroxy group of the oxypolycarboxylic acid may be esterified with a monocarboxylic acid.
- monocarboxylic acids include, but are not limited to, the following.
- a fatty acid having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. More preferably, it has 1 to 20 carbon atoms, and particularly preferably 1 to 10 carbon atoms.
- Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid, tridecylic acid , Saturated fatty acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, laccelic acid, undecylenic acid, Examples thereof include unsaturated fatty acids such as oleic acid, sorbic acid, linoleic acid, linolenic acid and arachidonic acid.
- Examples of preferred alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
- aromatic monocarboxylic acids examples include those in which an alkyl group is introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, and two or more benzene rings such as biphenyl carboxylic acid, naphthalene carboxylic acid, and tetralin carboxylic acid.
- the molecular weight of the polycarboxylic acid ester is not particularly limited, but is preferably in the range of 300 to 1000, more preferably in the range of 350 to 750. A higher molecular weight is preferable in terms of improving retention, and a lower molecular weight is preferable in terms of moisture permeability and compatibility with cellulose ester.
- the alcohol used for the polycarboxylic acid ester may be one kind or a mixture of two or more kinds.
- the acid value of the polyvalent carboxylic acid ester is preferably 1 mgKOH / g or less, and more preferably 0.2 mgKOH / g or less. By setting the acid value within the above range, retardation fluctuations are also suppressed, which is preferable.
- the acid value means the number of milligrams of potassium hydroxide necessary for neutralizing the acid (carboxy group present in the sample) contained in 1 g of the sample.
- the acid value is measured according to JIS K0070.
- Examples of particularly preferred polyvalent carboxylic acid ester compounds are shown below, but are not limited thereto.
- Examples include tributyl trimellitic acid and tetrabutyl pyromellitic acid.
- containing an ultraviolet absorber is the most effective means for reducing the light transmittance at a wavelength of 380 nm to 10% or less.
- the ultraviolet absorber absorbs ultraviolet rays having a wavelength of 400 nm or less, so that deterioration of the liquid crystal cell due to ultraviolet rays can be suppressed in the liquid crystal display device, and its durability can be improved.
- the ultraviolet absorber to be used is not particularly limited, and examples thereof include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex compounds, inorganic powders, and the like. Can be mentioned.
- More preferably used ultraviolet absorbers are benzotriazole ultraviolet absorbers, benzophenone ultraviolet absorbers, and triazine ultraviolet absorbers, and particularly preferably benzotriazole ultraviolet absorbers and benzophenone ultraviolet absorbers.
- benzotriazole ultraviolet absorber a compound represented by the following general formula (b) can be used.
- R 1 , R 2 , R 3 , R 4 and R 5 may be the same or different, and are a hydrogen atom, a halogen atom, a nitro group, a hydroxy group, an alkyl group, an alkenyl group, an aryl group.
- the carbocyclic ring may be formed.
- these groups described above may have an arbitrary substituent.
- benzotriazole-based UV absorber Specific examples of the benzotriazole-based UV absorber are shown below, but are not limited thereto.
- UV-1 2- (2'-hydroxy-5'-methylphenyl) benzotriazole
- UV-2 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole
- UV-3 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole
- UV-4 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl)- 5-Chlorobenzotriazole
- UV-5 2- (2′-hydroxy-3 ′-(3 ′′, 4 ′′, 5 ′′, 6 ′′ -tetrahydrophthalimidomethyl) -5′-methylphenyl) benzotriazole
- UV-6 2,2-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol)
- UV-7 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-ch
- benzophenone ultraviolet absorber a compound represented by the following general formula (c) is preferably used.
- Y represents a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an alkoxy group, or a phenyl group, and these alkyl group, alkenyl group, and phenyl group may have a substituent.
- A represents a hydrogen atom, an alkyl group, an alkenyl group, a phenyl group, a cycloalkyl group, an alkylcarbonyl group, an alkylsulfonyl group or a CO (NH) n-1 -D group, and D represents an alkyl group, an alkenyl group or a substituent.
- the phenyl group which may have is represented. m and n represent 1 or 2.
- the alkyl group represents, for example, a linear or branched aliphatic group having up to 24 carbon atoms
- the alkoxy group represents, for example, an alkoxy group having up to 18 carbon atoms
- the alkenyl group has, for example, carbon number
- An alkenyl group up to 16 represents an allyl group, a 2-butenyl group, or the like.
- alkyl groups alkenyl groups, and phenyl groups
- halogen atoms such as chlorine atoms, bromine atoms, fluorine atoms, etc., hydroxy groups, phenyl groups (this phenyl group is substituted with alkyl groups or halogen atoms, etc.) May be used).
- benzophenone-based ultraviolet absorber represented by the general formula (c) are shown below, but are not limited thereto.
- UV-10 2,4-dihydroxybenzophenone
- UV-11 2,2'-dihydroxy-4-methoxybenzophenone
- UV-12 2-hydroxy-4-methoxy-5-sulfobenzophenone
- UV-13 Bis (2-methoxy -4-hydroxy-5-benzoylphenylmethane)
- UV absorber in particular, “2- (2H-benzotriazol-2-yl) -6- (1-methyl-1-phenylethyl) -4- (1,1,3,3-tetra) shown below is used.
- Methylbutyl) phenol (trade name: TINUVIN 928, manufactured by BASF Japan Ltd.) can be preferably used.
- a discotic compound such as a compound having a 1,3,5 triazine ring is also preferably used as an ultraviolet absorber.
- the structure of the triazine compound is represented by the general formula (1) described above.
- the retardation film of this embodiment can also contain two or more ultraviolet absorbers.
- a polymeric ultraviolet absorber can also be preferably used, and in particular, a polymer type ultraviolet absorber described in JP-A-6-148430 is preferably used.
- the method of adding the ultraviolet absorber is to add the dope after dissolving the ultraviolet absorber in an alcohol such as methanol, ethanol or butanol, a solvent such as methylene chloride, methyl acetate, acetone or dioxolane or a mixed solvent thereof, or You may add directly in dope composition.
- an alcohol such as methanol, ethanol or butanol
- a solvent such as methylene chloride, methyl acetate, acetone or dioxolane or a mixed solvent thereof
- a dissolver or a sand mill is used in the organic solvent and cellulose ester to disperse and then added to the dope.
- the amount of the UV absorber used is not uniform depending on the type of UV absorber, the operating conditions, etc., but when the retardation film has a dry film thickness of 10 to 100 ⁇ m, it is 0.5 to 10 with respect to the retardation film. % By mass is preferable, and 0.6 to 4% by mass is more preferable.
- the retardation film of the present embodiment can contain fine particles.
- examples of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate. And calcium phosphate. Fine particles containing silicon are preferable in terms of low turbidity, and silicon dioxide is particularly preferable.
- the average primary particle diameter of the fine particles is preferably 5 to 400 nm, more preferably 10 to 300 nm. These may be mainly contained as secondary aggregates having a particle size of 0.05 to 0.3 ⁇ m. If the particles have an average particle size of 100 to 400 nm, they should be contained as primary particles without agglomeration. Is also preferable.
- the content of these fine particles in the retardation film is preferably 0.01 to 1% by mass, particularly preferably 0.05 to 0.5% by mass. In the case of a retardation film having a multilayer structure by the co-casting method, it is preferable to contain the above-mentioned added amount of fine particles on the surface.
- Silicon dioxide fine particles are commercially available, for example, under the trade names Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (above, Nippon Aerosil Co., Ltd.). Can do.
- Zirconium oxide fine particles are commercially available, for example, under the trade names Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.), and can be used.
- Examples of the polymer include silicone resin, fluororesin and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. For example, Tospearl 103, 105, 108, 120, 145, 3120, and 240 (above, manufactured by Toshiba Silicone Co., Ltd.) It is commercially available under the trade name and can be used.
- Aerosil 200V and Aerosil R972V are particularly preferably used because they have a large effect of reducing the friction coefficient while keeping the turbidity of the retardation film low.
- the dynamic friction coefficient of at least one surface is 0.2 to 1.0.
- additives may be batch-added to a dope that is a cellulose ester-containing solution before film formation, or an additive solution may be separately prepared and added in-line.
- an additive solution may be separately prepared and added in-line.
- the additive solution When the additive solution is added in-line, it is preferable to dissolve a small amount of cellulose ester in order to improve mixing with the dope.
- the amount of the cellulose ester is preferably 1 to 10 parts by mass, more preferably 3 to 5 parts by mass with respect to 100 parts by mass of the solvent.
- in-line addition and mixing are preferably performed using, for example, an in-line mixer such as a static mixer (manufactured by Toray Engineering), SWJ (Toray static type in-tube mixer Hi-Mixer), or the like.
- an in-line mixer such as a static mixer (manufactured by Toray Engineering), SWJ (Toray static type in-tube mixer Hi-Mixer), or the like.
- the retardation film of the present embodiment is desirably produced by a solution casting film forming method that can be easily formed by adding the above-described ultraviolet absorber or the like.
- a solution casting film forming method that can be easily formed by adding the above-described ultraviolet absorber or the like.
- the example which manufactures the phase difference film of this embodiment with the solution casting film forming method is demonstrated.
- FIG. 5 schematically shows an example of an apparatus for producing a retardation film by a solution casting film forming method.
- a dope is prepared by dissolving at least an additive such as a cellulose ester-based resin, a nitrogen-containing heterocyclic compound (alignment inhibitor, ultraviolet absorber), an organic ester (eg, sugar ester) in a solvent.
- an additive such as a cellulose ester-based resin, a nitrogen-containing heterocyclic compound (alignment inhibitor, ultraviolet absorber), an organic ester (eg, sugar ester) in a solvent.
- Dope preparation step In this step, the cellulose ester resin, optionally a nitrogen-containing heterocyclic compound, a sugar ester, a polycondensation in an organic solvent mainly composed of a good solvent for the cellulose ester resin in the dissolution vessel 31.
- An ester, polyhydric alcohol ester, or other compound is dissolved with stirring to form a dope.
- the cellulose ester resin solution is mixed with a nitrogen-containing heterocyclic compound, sugar ester, polycondensed ester, polyhydric alcohol ester, or other compound solution to form a dope that is a main solution.
- the organic solvent useful for forming the dope can be used without limitation as long as it dissolves the cellulose ester resin and other compounds at the same time.
- methylene chloride as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc.
- Methylene chloride, methyl acetate, ethyl acetate, and acetone can be preferably used.
- the dope preferably contains a linear or branched aliphatic alcohol having 1 to 4 carbon atoms in the range of 1 to 40% by mass.
- a linear or branched aliphatic alcohol having 1 to 4 carbon atoms in the range of 1 to 40% by mass.
- the proportion of alcohol in the dope increases, the web gels, and peeling from the metal support becomes easy.
- the proportion of alcohol is small, cellulose ester resins and other compounds in a non-chlorine organic solvent system
- a method of forming a film using a dope having an alcohol concentration in the range of 0.5 to 15.0 mass% is applied in order to improve the flatness of the obtained retardation film. be able to.
- a dope in which cellulose acylate and other compounds are dissolved in a total amount of 15 to 45% by mass in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
- a composition is preferred.
- linear or branched aliphatic alcohol having 1 to 4 carbon atoms examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Methanol and ethanol are preferred because of the stability, boiling point of these inner dopes, and good drying properties.
- Cellulose ester-based resin, nitrogen-containing heterocyclic compound, sugar ester, polycondensation ester, polyhydric alcohol ester, or other compounds are dissolved at normal pressure, below the boiling point of the main solvent, main solvent A method of pressurizing at a boiling point or higher, a method of performing a cooling dissolution method as described in JP-A-9-95544, JP-A-9-95557, or JP-A-9-95538, JP-A-11-21379
- Various dissolution methods such as the method performed at a high pressure described in the publication can be used, but the method performed by pressurizing at a temperature equal to or higher than the boiling point of the main solvent is particularly preferable.
- the concentration of the cellulose ester resin in the dope is preferably in the range of 10 to 40% by mass.
- a filter medium having a collected particle diameter of 0.5 to 5 ⁇ m and a drainage time of 10 to 25 sec / 100 ml.
- agglomerates remaining when particles are dispersed or agglomerates generated when main dope is added are collected by using a filter medium having a collected particle diameter of 0.5 to 5 ⁇ m and a drainage time of 10 to 25 sec / 100 ml. Can only be removed.
- the concentration of particles is sufficiently thinner than that of the additive solution, so that aggregates do not stick together at the time of filtration and the filtration pressure does not increase suddenly.
- the dope in the melting pot 31 is fed to the pressurizing die 32 through a liquid feed pump (for example, a pressurization type metering gear pump) and transferred onto the endless metal support 33.
- the dope is cast from the pressure die 32 at the casting position.
- the pressure die 32 is preferable in that it can adjust the slit shape of the die portion of the die and can easily make the film thickness uniform.
- the pressure die 32 includes a coat hanger die and a T die, and any of them is preferably used. In order to increase the film forming speed, two or more pressure dies 32 may be provided on the metal support 33, and the dope amount may be divided and stacked.
- the metal support 33 is composed of a stainless steel belt stretched by two rollers 34 and 34.
- the metal support 33 preferably has a mirror-finished surface.
- a metal drum having a surface plated with a casting can be used.
- the width of casting (casting) can be in the range of 1 to 4 m, preferably in the range of 1.5 to 3 m, and more preferably in the range of 2 to 2.8 m.
- the surface temperature of the metal support 33 in the casting step is set in the range of ⁇ 50 ° C. to a temperature at which the solvent boils and does not foam, more preferably ⁇ 30 to 0 ° C.
- a higher temperature is preferable because the web can be dried faster, but if it is too high, the web may foam or the flatness may deteriorate.
- a preferable support temperature is appropriately determined at 0 to 100 ° C., and more preferably within a range of 5 to 30 ° C.
- it is also a preferable method that the web is gelled by cooling and peeled from the support in a state containing a large amount of residual solvent.
- the method for controlling the temperature of the metal support 33 is not particularly limited, there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support 33. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support 33 becomes constant is short.
- warm air considering the temperature drop of the web due to the latent heat of vaporization of the solvent, while using warm air above the boiling point of the solvent, there is a case where wind at a temperature higher than the target temperature is used while preventing foaming. is there.
- Solvent evaporation step In this step, the film (web) formed by the dope cast on the metal support 33 is heated to evaporate the solvent. In order to evaporate the solvent, a method of blowing air from the surface of the web (opposite side of the metal support 33), a method of transferring heat by liquid from the back side of the metal support 33 (opposite side of the web), Although there is a method of transferring heat from the front and back by radiant heat, the backside liquid heat transfer method is preferable because of good drying efficiency. A method of combining them is also preferably used.
- the web on the metal support 33 after casting is preferably dried on the metal support 33 in an atmosphere of 40 to 100 ° C. In order to maintain the atmosphere at 40 to 100 ° C., it is preferable to apply hot air at this temperature to the upper surface of the web or heat by means such as infrared rays.
- the web is preferably peeled from the metal support 33 within 30 to 120 seconds.
- the temperature at the peeling position on the metal support 33 is preferably in the range of 10 to 40 ° C., more preferably in the range of 11 to 30 ° C.
- the residual solvent amount of the web on the metal support 33 at the time of peeling is preferably peeled in the range of 50 to 120% by mass depending on the strength of drying conditions, the length of the metal support 33, and the like.
- the residual solvent amount of the web is defined by the following formula.
- Residual solvent amount (% by mass) (mass before web heat treatment ⁇ mass after web heat treatment) / (mass after web heat treatment) ⁇ 100
- the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
- the peeling tension at the time of peeling the web from the metal support 33 is usually in the range of 196 to 245 N / m. However, if wrinkles easily occur at the time of peeling, the web may be peeled with a tension of 190 N / m or less. preferable.
- the temperature at the peeling position on the metal support 33 is preferably in the range of ⁇ 50 to 40 ° C., more preferably in the range of 10 to 40 ° C., and in the range of 15 to 30 ° C. Is most preferable.
- the content of the ultraviolet absorber in the retardation film is controlled by adjusting the drying rate of the dope on the support (support temperature) and the amount of residual solvent when peeling the web from the support. Can do.
- the drying rate of the dope on the support support temperature
- the amount of residual solvent when peeling the web from the support Can do.
- Stretching and drying step In this step, a preliminary drying step, a stretching step, and a main drying step are sequentially performed. The preliminary drying may be performed as necessary.
- the web 36 obtained by peeling from the metal support 33 is dried.
- the web 36 may be dried while being transported by a large number of rollers arranged above and below, or may be dried while being transported while fixing both ends of the web 36 with clips like a tenter dryer. May be.
- the means for drying the web 36 is not particularly limited and can be generally performed with hot air, infrared rays, a heating roller, microwaves, or the like, but it is preferably performed with hot air in terms of simplicity.
- the drying temperature in the drying process of the web 36 is preferably a glass transition point of the film of ⁇ 5 ° C. or lower and 100 ° C. or higher, and it is effective to perform heat treatment for 10 minutes or longer and 60 minutes or shorter.
- the drying temperature is desirably in the range of 100 to 200 ° C, more preferably in the range of 110 to 160 ° C.
- Extension process> stretching in the MD direction and / or TD direction is performed on the web 36 peeled from the metal support 33 and preliminarily dried as necessary. At this time, it is preferable to stretch at least by the tenter stretching device 37 in the TD direction.
- the stretching in the stretching step can be uniaxial stretching or biaxial stretching.
- Biaxial stretching also includes a mode in which stretching is performed in one direction and the tension in the other direction is relaxed and contracted.
- the retardation film of the present embodiment has a temperature range of (Tg + 15) to (Tg + 50) ° C. in the MD direction and / or TD direction, preferably in the TD direction, so that the film thickness after stretching is in a desired range. It is preferable to stretch.
- Tg is the glass transition temperature (° C.) of the film.
- the stretching temperature is preferably in the range of (Tg + 20) to (Tg + 40) ° C.
- the glass transition temperature Tg referred to here is the midpoint glass transition temperature (Tmg) determined according to JIS K7121 (1987), measured at a rate of temperature increase of 20 ° C./min using a commercially available differential scanning calorimeter. is there.
- Tmg midpoint glass transition temperature
- a specific method for measuring the glass transition temperature Tg of the retardation film is measured using a differential scanning calorimeter DSC220 manufactured by Seiko Instruments Inc. according to JIS K7121 (1987).
- the retardation film of this embodiment preferably stretches the web 36 at least 1.1 times in the TD direction.
- the range of stretching is preferably 1.1 to 1.5 times the original width, more preferably 1.05 to 1.3 times.
- the movement of the molecules in the film is large and a desired retardation value can be obtained, and the dimensional change behavior of the film can be controlled within the desired range.
- the film in the MD direction when the residual solvent amount is 40% by mass or more after film formation, and in the TD direction when the residual solvent amount is less than 40% by mass. It is preferable to stretch.
- peeling is preferably performed at a peeling tension of 130 N / m or more, particularly preferably 150 to 170 N / m. Since the web after peeling is in a high residual solvent state, stretching in the MD direction can be performed by maintaining the same tension as the peeling tension. As the web dries and the residual solvent amount decreases, the draw ratio in the MD direction decreases.
- the draw ratio in the MD direction can be calculated from the rotation speed of the belt support and the tenter operation speed.
- the entire drying process or a part of the process as disclosed in Japanese Patent Application Laid-Open No. 62-46625 can be performed while holding the width ends of the web with clips or pins in the width direction.
- a drying method (referred to as a tenter method), among them, a tenter method using clips and a pin tenter method using pins are preferably used.
- the retardation film of this embodiment inevitably has retardation by stretching.
- Each value of retardation Ro in the in-plane direction and retardation Rt in the thickness direction of the retardation film is measured by three-dimensional refractive index using the above-described automatic birefringence meter axoscan, and the obtained refractive index nx, It can be calculated from ny and nz.
- the stretched web 36 is conveyed as a film F to a drying device 38, where drying is performed in the same manner as the preliminary drying described above.
- the drying conditions in the main drying step may be different from those in the preliminary drying step.
- the orientation is not lower than the stretching temperature after stretching from the viewpoint of suppressing the variation of the retardation Rt due to moisture content and subsequent drying and wet heat variation, making it difficult to cause misalignment between the cellulose ester resin and the additive.
- drying is performed at 100 ° C. or more for 5 minutes or more, and more desirably, drying is performed at 110 to 150 ° C. for 10 to 20 minutes.
- the knurling process can be formed by pressing a heated embossing roller. Fine embossing is formed on the embossing roller, and by pressing the embossing roller, unevenness can be formed on the film and the end can be made bulky.
- the height of the knurling at both widthwise ends of the film F is preferably 4 to 20 ⁇ m and the width is 5 to 20 mm.
- Winding step This step is a step of winding the film F by the winding device 39 after the residual solvent amount becomes 2 mass% or less. By setting the residual solvent amount to 0.4% by mass or less, a film having good dimensional stability can be obtained.
- a commonly used method may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, and the like. .
- the counter film can be composed of a film containing a resin such as polyester or acrylic.
- the opposing film may be a polyester film having in-plane superbirefringence and a light transmittance of 50% or more at a wavelength of 380 nm.
- having in-plane super birefringence means that the retardation Ro in the in-plane direction is 8000 nm or more.
- the light transmittance at a wavelength of 380 nm in the counter film is desirably 60 to 95%, more desirably 70 to 95%, and even more desirably 80 to 95%.
- the polyester film of the present embodiment is a stretched polyester film, and the lower limit value of the retardation Ro is preferably 8000 nm and more preferably 10,000 nm from the viewpoint of developing super birefringence.
- the upper limit value of the retardation Ro of the stretched polyester film is such that even if a film having a retardation Ro higher than that is used, a further improvement effect of visibility cannot be substantially obtained, and depending on the size of the retardation Ro. Since the thickness of the film also tends to increase, the thickness is preferably set to 30000 nm from the viewpoint that it may be contrary to the demand for thinning and the handling property as an industrial material is lowered.
- the stretched polyester film has a ratio (Ro / Rt) of the retardation Ro in the in-plane direction to the retardation value Rt in the thickness direction, preferably 0.2 or more, more preferably 0.5 or more, still more preferably. It is 0.6 or more.
- the maximum value of Ro / Rt is 2.0 (that is, a perfect uniaxial symmetry film), but the mechanical strength in the direction perpendicular to the orientation direction tends to decrease as the perfect uniaxial symmetry film is approached. . Therefore, the upper limit of Ro / Rt of the polyester film is preferably 1.2 or less, more preferably 1.0 or less.
- Polyester which is a raw material resin for a stretched polyester film, has excellent transparency and thermal and mechanical properties, and can easily control retardation by stretching.
- polyethylene terephthalate or polyethylene naphthalate is preferable.
- Polyesters typified by polyethylene terephthalate and polyethylene naphthalate are preferable because they have a large intrinsic birefringence and relatively large retardation can be obtained relatively easily even when the film is thin.
- polyethylene naphthalate has a large intrinsic birefringence among polyesters, and therefore is suitable for a case where it is desired to make the retardation particularly high or a case where it is desired to reduce the film thickness while keeping the retardation high.
- the polyester film can be obtained by condensing an arbitrary dicarboxylic acid and a diol.
- dicarboxylic acid examples include terephthalic acid, isophthalic acid, orthophthalic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and diphenylcarboxylic acid.
- Acid diphenoxyethanedicarboxylic acid, diphenylsulfonecarboxylic acid, anthracenedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, hexahydroterephthalic acid, hexahydroisophthalic acid Acid, malonic acid, dimethylmalonic acid, succinic acid, 3,3-diethylsuccinic acid, glutaric acid, 2,2-dimethylglutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, azelaic acid, Dimer , It may be mentioned sebacic acid, suberic acid, dodecamethylene dicarboxylic acid.
- diol examples include ethylene glycol, propylene glycol, hexamethylene glycol, neopentyl glycol, 1,2-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, decamethylene glycol, 1,3-propanediol, 1,4 -Butanediol, 1,5-pentanediol, 1,6-hexadiol, 2,2-bis (4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) sulfone and the like.
- polyester resins constituting the polyester film include, for example, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc., preferably polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), More preferred is polyethylene terephthalate (PET).
- PET polyethylene terephthalate
- PEN polyethylene naphthalate
- PET polyethylene terephthalate
- the polyester resin may contain other copolymerization components as required. From the viewpoint of mechanical strength, the proportion of the copolymerization component is preferably 3 mol% or less, preferably 2 mol% or less, more preferably 1.5 mol%. It is less than mol%. These resins are excellent in transparency and excellent in thermal and mechanical properties. Moreover, retardation of these resins can be easily controlled by stretching.
- the polyester film can be obtained according to a general production method. Specifically, the polyester resin is melted and the non-oriented polyester extruded and formed into a sheet shape is stretched in the longitudinal direction by utilizing the speed difference of the roll at a temperature equal to or higher than the glass transition temperature, and then in the transverse direction by a tenter. Examples thereof include a melt casting method for producing a stretched polyester film by stretching and heat treatment and, if necessary, relaxation treatment.
- the stretched polyester film may be a uniaxially stretched film or a biaxially stretched film.
- the production conditions for obtaining the polyester film can be appropriately set according to a known method.
- the longitudinal stretching temperature and the transverse stretching temperature are usually 80 to 130 ° C., preferably 90 to 120 ° C.
- the longitudinal draw ratio is usually 1.0 to 3.5 times, preferably 1.0 to 3.0 times.
- the transverse draw ratio is usually 2.5 to 6.0 times, preferably 3.0 to 5.5 times.
- the retardation can be controlled within a specific range by appropriately setting the stretching ratio, stretching temperature, and film thickness. For example, it becomes easier to obtain high retardation as the difference in draw ratio between longitudinal stretching and transverse stretching is higher, the stretching temperature is lower, and the film thickness is thicker. Conversely, the lower the difference in the draw ratio between the longitudinal and transverse stretching, the higher the stretching temperature, and the thinner the film, the lower the retardation. Moreover, the higher the stretching temperature and the lower the total stretching ratio, the easier it is to obtain a film having a lower ratio of retardation value to thickness direction retardation value (Ro / Rt).
- the heat treatment temperature is usually preferably in the range of 140 to 240 ° C, more preferably in the range of 170 to 240 ° C.
- the relaxation treatment temperature is usually in the range of 100 to 230 ° C., more preferably in the range of 110 to 210 ° C., and still more preferably in the range of 120 to 180 ° C.
- the relaxation amount is usually in the range of 0.1 to 20%, preferably in the range of 1 to 10%, and more preferably in the range of 2 to 5%.
- the relaxation treatment temperature and relaxation amount are preferably set so that the thermal shrinkage rate of the polyester film after relaxation treatment at 150 ° C. is 2% or less.
- the orientation main axis means a molecular orientation direction at an arbitrary point on the stretched polyester film.
- stretching direction of an orientation main axis means the angle difference of an orientation main axis
- the maximum value is the maximum value in the direction perpendicular to the long direction.
- the orientation main axis can be measured using, for example, a retardation film / optical material inspection apparatus RETS (manufactured by Otsuka Electronics Co., Ltd.) or a molecular orientation meter MOA (manufactured by Oji Scientific Instruments Co., Ltd.).
- the thickness unevenness of the film is small. If the longitudinal stretching ratio is lowered to give a retardation difference, the value of longitudinal thickness unevenness (hereinafter also referred to as “thickness unevenness”) may be increased. Since there is a region where the value of the vertical thickness unevenness becomes very high in a specific range of the draw ratio, it is desirable to set the film forming conditions so as to exclude such a range.
- the thickness unevenness of the stretched polyester film is preferably 5.0% or less, more preferably 4.5% or less, further preferably 4.0% or less, and 3.0% or less. It is particularly preferred.
- the thickness of the stretched polyester film is arbitrary, and can be appropriately set, for example, within a range of 15 to 300 ⁇ m, preferably within a range of 30 to 200 ⁇ m. In particular, when it is within a range of 60 to 80 ⁇ m, thinning and good visual recognition are possible. It is preferable from the viewpoint that compatibility can be achieved.
- At least one surface of the stretched polyester film may have various functional layers.
- a functional layer include a hard coat layer (also referred to as an ultraviolet curable resin layer), an antiglare layer, an antireflection layer, a low reflection layer, a low reflection antiglare layer, an antireflection antiglare layer, and an antistatic layer.
- a hard coat layer also referred to as an ultraviolet curable resin layer
- an antiglare layer an antireflection layer
- a low reflection layer a low reflection antiglare layer
- an antireflection antiglare layer and an antistatic layer.
- One or more selected from the group consisting of a silicone layer, an adhesive layer, an antifouling layer, an anti-fingerprint layer, a water repellent layer, a blue cut layer, and the like can be used.
- an antiglare layer an antireflection layer, a low reflection layer, a low reflection antiglare layer, and an antireflection antiglare layer
- an effect of improving color unevenness when observed from an oblique direction can be expected.
- the refractive index of the easy-adhesion layer can be adjusted by a known method.
- the refractive index of the easy-adhesion layer can be easily adjusted by adding titanium, zirconium, or other metal species to the binder resin.
- the coating solution used for forming the easy-adhesion layer is preferably an aqueous coating solution containing at least one of a water-soluble or water-dispersible copolymerized polyester resin, an acrylic resin, and a polyurethane resin.
- these coating solutions include Japanese Patent Publication No. 6-81714, Japanese Patent No. 3300909, Japanese Patent No. 3632044, Japanese Patent No. 4547644, Japanese Patent No. 4770971, Japanese Patent No. 3567927, and Japanese Patent No. 3589232.
- Examples thereof include water-soluble or water-dispersible copolymerized polyester resin solutions, acrylic resin solutions, polyurethane resin solutions and the like disclosed in Japanese Patent No. 3589233, Japanese Patent No. 3589233, Japanese Patent No. 3900191, and Japanese Patent No. 4150982.
- the counter film preferably has a configuration having an ultraviolet curable resin layer (hereinafter also referred to as a hard coat layer).
- the hard coat layer is a layer for imparting hard coat properties to the surface of the counter film.
- a hard coat layer forming composition containing an ultraviolet curable resin and a photopolymerization initiator is used to form a hard coat layer. It is a layer formed by curing an ultraviolet curable resin by irradiation with ultraviolet rays.
- the ultraviolet curable resin applicable to the present embodiment is not particularly limited as long as it is a resin component having the property of being cured by ultraviolet rays, but as a typical resin material, there is a compound such as a compound having an acrylate functional group. Or the compound which has a 2 or more unsaturated bond can be mentioned. Examples of the compound having one unsaturated bond include ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone and the like.
- Examples of the compound having two or more unsaturated bonds include polymethylolpropane tri (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol.
- a polyfunctional compound modified with (EO) or the like, or a reaction product of the polyfunctional compound and (meth) acrylate for example, poly (meth) acrylate ester of polyhydric alcohol
- It can gel.
- (Meth) acrylate” refers to methacrylate and acrylate.
- polyester resins In addition to the above compounds, polyester resins, polyether resins, acrylic resins, epoxy resins, urethane resins, alkyds having a relatively low molecular weight (number average molecular weight of 300 to 80,000, preferably 400 to 5000) having an unsaturated double bond.
- Resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, and the like can also be used as the ultraviolet curable resin.
- the resin in this case includes all dimers, oligomers, and polymers other than monomers.
- Preferred compounds in the present embodiment include compounds having 3 or more unsaturated bonds. When such a compound is used, the crosslink density of the hard coat layer to be formed can be increased, and the coating film hardness can be increased.
- pentaerythritol triacrylate pentaerythritol tetraacrylate
- polyester polyfunctional acrylate oligomer 3 to 15 functional
- urethane polyfunctional acrylate oligomer 3 to 15 functional
- UV curable resins are used in combination with solvent-drying resins (such as thermoplastic resins that can form a film by simply drying the solvent added to adjust the solid content during coating). You can also By using the solvent-drying resin in combination, film defects on the coated surface can be effectively prevented.
- solvent-drying resin that can be used in combination with the ultraviolet curable resin is not particularly limited, and a general thermoplastic resin can be used.
- the photopolymerization initiator is not particularly limited and known ones can be used.
- the photopolymerization initiator acetophenones, benzophenones, Michler benzoylbenzoate, ⁇ -amyloxime ester, thioxanthones
- examples include propiophenones, benzyls, benzoins, and acylphosphine oxides.
- it is preferable to use a mixture of photosensitizers and specific examples thereof include n-butylamine, triethylamine, poly-n-butylphosphine and the like.
- the photopolymerization initiator it is preferable to use acetophenones, benzophenones, thioxanthones, benzoin, benzoin methyl ether, etc. alone or in combination when the ultraviolet curable resin is a resin system having a radical polymerizable unsaturated group. .
- the ultraviolet curable resin is a resin system having a cationic polymerizable functional group
- photopolymerization initiator in the case of an ultraviolet curable resin having a radical polymerizable unsaturated group, 1-hydroxy-cyclohexyl-phenyl-ketone (trade name: IRGACURE 184, manufactured by BASF Japan Ltd.) It is preferable for reasons of compatibility and little yellowing.
- the content of the photopolymerization initiator in the hard coat layer forming composition is preferably in the range of 1.0 to 10 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin. If the addition amount is 1.0 part by mass or more, the hardness of the hard coat layer can be set to a desired condition, and if it is 10 parts by mass or less, the ionizing radiation reaches the deep part of the coated film and is internally cured. Is preferable in that the desired pencil hardness of the surface of the hard coat layer can be obtained.
- the more preferable lower limit of the content of the photopolymerization initiator is 2.0 parts by mass, and the more preferable upper limit is 8.0 parts by mass.
- the content of the photopolymerization initiator is in this range, a hardness distribution does not occur in the film thickness direction, and the hard coat layer tends to have a uniform hardness.
- the composition for forming a hard coat layer may contain a solvent.
- a solvent it can select suitably and can be used according to the kind and solubility of the ultraviolet curable resin component to be used.
- a solvent for example, ketones (for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diacetone alcohol, etc.), ethers (for example, dioxane, tetrahydrofuran, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, etc.), aliphatic Hydrocarbons (eg, hexane, etc.), alicyclic hydrocarbons (eg, cyclohexane, etc.), aromatic hydrocarbons (eg, toluene, xylene, etc.), halogenated carbons (eg, dichloromethane, dichloroethane, etc.), Esters (eg, methyl acetate
- methyl ethyl ketone methyl isobutyl ketone, cyclohexanone, or a mixture thereof is contained in the ketone solvent because of excellent compatibility with an ultraviolet curable resin and coating properties.
- the hard coat layer-forming composition increases the hardness of the hard coat layer, suppresses curing shrinkage, prevents blocking, controls the refractive index, imparts antiglare properties, the surface of particles and hard coat layer
- conventionally known organic fine particles, inorganic fine particles, dispersants, surfactants, antistatic agents, silane coupling agents, thickeners, anti-coloring agents, colorants (pigments, Dyes), antifoaming agents, leveling agents, flame retardants, adhesion promoters, polymerization inhibitors, antioxidants, surface modifiers, and the like may be added.
- the composition for forming a hard coat layer may contain a photosensitizer, and specific examples thereof include n-butylamine, triethylamine, poly-n-butylphosphine and the like.
- the method for preparing the composition for forming a hard coat layer is not particularly limited as long as each component can be uniformly mixed.
- each component is used using a known apparatus such as a paint shaker, a bead mill, a kneader, or a mixer.
- a paint shaker such as a paint shaker, a bead mill, a kneader, or a mixer.
- the method for applying the hard coat layer forming composition on the counter film is not particularly limited, and examples thereof include a spin coating method, a dip method, a spray method, a die coating method, a bar coating method, a roll coater method, Examples of the wet coating method include a meniscus coater method, a flexographic printing method, a screen printing method, and a speed coater method.
- the counter film of the present embodiment may be a film (acrylic film) containing an acrylic resin.
- Acrylic resins also include methacrylic resins.
- the acrylic film can be produced, for example, by a solution casting film forming method, similarly to the polyester film.
- Tg glass transition temperature
- Tg glass transition temperature
- the upper limit of Tg of the (meth) acrylic resin is not particularly limited, it is preferably 170 ° C. or less from the viewpoint of moldability.
- any appropriate (meth) acrylic resin can be adopted as long as the effects of the present embodiment are not impaired.
- poly (meth) acrylic acid ester such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (meth) acrylic acid ester copolymer, methyl methacrylate-acrylic acid ester- (Meth) acrylic acid copolymer, (meth) methyl acrylate-styrene copolymer (MS resin, etc.), a polymer having an alicyclic hydrocarbon group (for example, methyl methacrylate-cyclohexyl methacrylate copolymer, Methyl methacrylate- (meth) acrylate norbornyl copolymer, etc.).
- Preferable examples include C1-6 alkyl poly (meth) acrylates such as poly (meth) acrylate methyl. More preferred is a methyl methacrylate-based resin containing methyl methacrylate as a main component (in the range of 50 to 100% by mass, preferably 70 to 100% by mass).
- the (meth) acrylic resin examples include, for example, Acrypet VH and Acrypet VRL20A, Dianal BR52, BR80, BR83, BR85, BR88 (manufactured by Mitsubishi Rayon Co., Ltd.), KT75 (manufactured by Electrochemical Industry Co., Ltd.) ), Delpet 60N, 80N (manufactured by Asahi Kasei Chemicals Corporation), (meth) acrylic resin having a ring structure in the molecule described in JP-A-2004-70296, by intramolecular crosslinking or intramolecular cyclization reaction. Examples include the obtained high Tg (meth) acrylic resin system.
- the (meth) acrylic resin it is also preferable to use a (meth) acrylic resin having a lactone ring structure.
- examples of the (meth) acrylic resin having a lactone ring structure include JP 2000-230016, JP 2001-151814, JP 2002-120326, JP 2002-254544, and JP 2005. No. 146084 and the like.
- an acrylic resin having an unsaturated carboxylic acid alkyl ester structural unit and a glutaric anhydride structural unit can be used as the (meth) acrylic resin.
- the acrylic resin include JP-A-2004-70290, JP-A-2004-70296, JP-A-2004-163924, JP-A-2004-292812, JP-A-2005-314534, JP-A-2006-. Examples described in JP-A-131898, JP-A-2006-206881, JP-A-2006-265532, JP-A-2006-283013, JP-A-2006-299905, JP-A-2006-335902, and the like. It is done.
- thermoplastic resin having a glutarimide unit, a (meth) acrylic acid ester unit, and an aromatic vinyl unit
- thermoplastic resin examples include JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328329, JP-A-2006-328334, JP-A-2006-337491, and JP-A-2006. -337374, JP-A-2006-337493, JP-A-2006-337569, and the like.
- the retardation Ro in the in-plane direction of the counter film may be 350 nm or less. Moreover, 350 nm or less may be sufficient as retardation Rt of the thickness direction of a counter film.
- a film containing an acrylic resin including an acrylic-styrene polymer
- the counter film can be used as the counter film.
- the in-plane retardation Ro of the opposing film may be 8000 nm or more. Further, the retardation Ro in the thickness direction of the counter film may be 8000 nm or more. In this case, for example, a film containing a polyethylene terephthalate resin can be used as the counter film.
- the counter film desirably contains polyethylene terephthalate resin or acrylic resin.
- a counter film having a moisture permeability of 200 g / m 2 ⁇ day or less can be reliably realized.
- the moisture permeability of acrylic is, for example, 200 g / m 2 ⁇ day when the thickness is 40 ⁇ m
- the moisture permeability of polyethylene terephthalate resin is, for example, 20 g / m 2 ⁇ day when the thickness is 80 ⁇ m.
- the moisture permeability of the counter film is preferably 20 to 200 g / m 2 ⁇ day, more preferably 20 to 150 g / m 2 ⁇ day, and further preferably 20 to 100 g / m 2 ⁇ day.
- the measurement conditions of moisture permeability are 40 degreeC90% RH.
- the thickness of the facing film is desirably 10 ⁇ m or more and 40 ⁇ m or less.
- Use of a thin counter film can contribute to the realization of a thin polarizing plate.
- Fine particle addition liquid 1 The fine particle dispersion 1 was slowly added to the dissolution tank containing methylene chloride with sufficient stirring. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution 1. 99 parts by mass of methylene chloride 5 parts by mass of fine particle dispersion 1
- a dope having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Next, cellulose acetate was added to the pressurized dissolution tank containing the solvent while stirring. This was completely dissolved with heating and stirring. This was designated as Azumi Filter Paper No. The dope was prepared by filtration using 244.
- the prepared dope was uniformly cast on a stainless steel belt support at a temperature of 33 ° C. and a width of 1500 mm.
- the temperature of the stainless steel belt was controlled at 30 ° C.
- the solvent was evaporated until the amount of residual solvent in the cast (cast) film reached 100% by mass, and then peeled off from the stainless steel belt support with a peeling tension of 130 N / m.
- the peeled cellulose ester film was stretched 30% in the width direction using a tenter while applying heat at 160 ° C.
- the residual solvent amount at the start of stretching was 15% by mass.
- drying was terminated while the drying zone was conveyed by a number of rolls.
- the drying temperature was 130 ° C. and the transport tension was 100 N / m.
- the film is slit to a width of 1.5 m, a knurling process with a width of 10 mm and a height of 10 ⁇ m is applied to both ends of the film, wound into a roll, and a retardation film A1 which is a cellulose ester film having a dry film thickness of 35 ⁇ m is obtained. It was.
- the winding length was 5200 m.
- a ratio S 1 is in one of the surface region of the (A surface) from 5 ⁇ m thickness R1 of the film, the ratio of the content of the ultraviolet absorber with respect to the reference value (%).
- the ratio S 2 is in the area R2 of the other surface (B surface) from 5 ⁇ m thickness of the film, the ratio of the content of the ultraviolet absorber with respect to the reference value (%).
- the ratio S 3 the content in the thickness direction of the total 5 ⁇ m having a thickness of one surface side and respectively 2.5 ⁇ m on the other surface side from the center in the thickness of the region R3, an ultraviolet absorber with respect to the reference value of the film The ratio of the amount (%).
- the esterification reaction vessel was returned to normal pressure, and 0.014 parts by mass of phosphoric acid was added. Furthermore, it heated up to 260 degreeC in 15 minutes, and 0.012 mass part of trimethyl phosphate was added. Then, after 15 minutes, dispersion treatment was performed with a high-pressure disperser, and further 15 minutes later, the obtained esterification reaction product was transferred to a polycondensation reaction can and subjected to polycondensation reaction at 280 ° C. under reduced pressure.
- polyester resin A polyethylene terephthalate resin A
- the obtained polyester resin A had an intrinsic viscosity of 0.62 cm 3 / g and contained substantially no inert particles and internally precipitated particles.
- a transesterification reaction and a polycondensation reaction are carried out by a conventional method.
- a dicarboxylic acid component (based on the whole dicarboxylic acid component), 46 mol% of terephthalic acid, 46 mol% of isophthalic acid, and 8 mol% of sodium 5-sulfonatoisophthalate was used to prepare a water-dispersible sulfonic acid metal base-containing copolymer polyester resin having a composition of 50 mol% ethylene glycol and 50 mol% neopentyl glycol as the glycol component (relative to the entire glycol component).
- polyester film (Production of polyester film)
- the prepared polyester resin A is dried by a conventional method, supplied to an extruder, melted at 285 ° C., and this polymer is filtered with a filter material of stainless sintered body (nominal filtration accuracy of 10 ⁇ m particles 95% cut). After extruding in a sheet form, it was wound around a casting drum having a surface temperature of 30 ° C. using an electrostatic application casting method and cooled and solidified to produce an unstretched polyester film (PET film).
- PET film unstretched polyester film
- the unstretched film on which this adhesion improving layer was formed was guided to a tenter stretching machine, and was stretched four times in the width direction in a heating zone at a temperature of 125 ° C. while holding the end of the film with a clip.
- the film was treated at a temperature of 225 ° C. for 30 seconds and further subjected to a relaxation treatment of 3% in the width direction to obtain a uniaxially oriented polyethylene terephthalate having a film thickness of 60 ⁇ m.
- a counter film B1 as a film was produced.
- a counter film B2 was manufactured in the same manner as the counter film B1 except that the film thickness was changed to 30 ⁇ m.
- aqueous adhesive A 100 parts by mass of pure water Carboxy group-modified polyvinyl alcohol (Kuraray Poval KL318, manufactured by Kuraray Co., Ltd.) 3.0 parts by mass Water-soluble polyamide epoxy resin (30% solids concentration, Sumire's Resin 650, manufactured by Sumika Chemtex Co., Ltd.) 1.5 parts by mass
- the retardation film A1 was immersed in a saponification solution (60 ° C. sodium hydroxide aqueous solution, concentration 10% by mass) for 30 seconds. Next, the substrate was immersed twice in a water bath for 5 seconds, then washed for 5 seconds with a water shower, and then dried. The drying conditions were 70 ° C. and 2 minutes.
- a saponification solution 60 ° C. sodium hydroxide aqueous solution, concentration 10% by mass
- the film was immersed in water at 30 ° C. for 10 seconds for swelling treatment, and then dried at 40 ° C. for 53 seconds, and then the following bonding was performed.
- the polarizing plate 1 was produced by immediately drying for 5 minutes with a hot-air circulating dryer set to 80 ° C.
- Polarizing plates 2 to 9 were produced in the same manner as the polarizing plate 1 except that the retardation film A1 was replaced with retardation films A2 to A9.
- a polarizing plate 10 was produced in the same manner as the production of the polarizing plate 1 except that the retardation film A1 was replaced with the retardation film A10 and the counter film B1 was replaced with the counter film B1.
- Liquid crystal display devices 102 to 110 were fabricated in the same manner as the liquid crystal display device 101 except that the viewing side polarizing plate was changed from the polarizing plate 1 to the polarizing plates 2 to 10.
- the front contrast was measured after the backlight of each liquid crystal display device was lit continuously for one week in an environment at a temperature of 23 ° C. and a relative humidity of 55% RH.
- EZ-Contrast 160D manufactured by ELDIM was used, and the luminance from the normal direction of the display screen was measured in white display and black display of the liquid crystal display device, and the ratio was defined as the front contrast. That is, the front contrast is expressed by the following equation.
- Front contrast (Luminance of white display measured from the normal direction of the display screen) / (Luminance of black display measured from the normal direction of the display screen)
- Table 1 summarizes the characteristics of the retardation films A1 to A10 and the results of the evaluations in the liquid crystal display devices 101 to 110. Table 1 also shows the correspondence between the retardation films A1 to A10 and the examples or comparative examples.
- the curvature of the panel has generate
- Comparative Example 3 the contrast evaluation is poor.
- E2 exceeds 20% and the ultraviolet absorber is unevenly distributed on one surface side in the film thickness direction, internal haze partially deteriorates in the film thickness direction. As a result, it is considered that the contrast is lowered.
- Comparative Example 5 the light resistance is poor. Since the ultraviolet absorber is not added to the retardation film A9 of Comparative Example 5, it is considered that the liquid crystal cell is deteriorated by ultraviolet rays, and as a result, the contrast is greatly reduced.
- Examples 1 to 5 good results were obtained for all of contrast, panel warpage, and light resistance.
- the distribution of the UV absorber is the film thickness. It becomes almost uniform in the direction. For this reason, it is considered that the deterioration of internal haze due to the bias of the ultraviolet absorber is suppressed, and the contrast is hardly lowered.
- the ultraviolet absorber can surely absorb the ultraviolet rays to suppress the deterioration of the liquid crystal cell due to the ultraviolet rays, thereby suppressing the deterioration of the light resistance of the liquid crystal cell.
- Example 5 the panel warps slightly, but since the moisture permeability of the counter film exceeds 100 g / m 2 ⁇ day, the retardation film is caused by moisture transmitted through the counter film. Dimensional changes are likely to occur, which is considered to cause some panel warpage. Therefore, it can be said that the moisture permeability of the counter film is desirably 100 g / m 2 ⁇ day or less.
- Ro of the retardation film is 50 nm, but Ro is a retardation film of 20 nm or more, and if the retardation film is a cellulose ester-based retardation film, the above-described conditions for E1 and E2 are satisfied. As a result, it was confirmed from various experiments that the same effects as those of the respective examples were obtained.
- the retardation film, polarizing plate and liquid crystal display device of the present embodiment described above can be expressed as follows.
- a retardation film of cellulose ester type having an in-plane retardation Ro of 20 nm or more As an additive, including an ultraviolet absorber and an orientation inhibitor for making the distribution in the film thickness direction of the ultraviolet absorber in the film, S 1 (%) is the ratio of the content of the ultraviolet absorber to the reference value in a region 5 ⁇ m thick from one surface of the film, The ratio of the content of the ultraviolet absorber with respect to the reference value in a region having a thickness of 5 ⁇ m from the other surface of the film is S 2 (%), Content of the ultraviolet absorber with respect to the reference value in a total area of 5 ⁇ m having a thickness of 2.5 ⁇ m on the one surface side and the other surface side from the center in the thickness direction of the film When the ratio of S 3 (%) A retardation film satisfying the following conditional expressions (1) and (2); (1)
- / S 3 ⁇ 20% However, M (S 1 + S 2 ⁇
- the retardation film according to any one of 1 to 5, A polarizer, A polarizing plate comprising: a counter film that sandwiches the polarizer between the retardation film.
- the polarizing plate according to 6 or 7, and a liquid crystal cell The polarizing plate is located on the viewing side with respect to the liquid crystal cell, The liquid crystal display device, wherein the retardation film of the polarizing plate is positioned on the liquid crystal cell side with respect to the polarizer of the polarizing plate.
- the present invention can be used for a cellulose ester phase difference film having an in-plane retardation Ro of 20 nm or more.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Polarising Elements (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
位相差フィルム(RF)は、面内方向のリタデーションRoが20nm以上であるセルロースエステル系の位相差フィルムであって、添加剤として、紫外線吸収剤と、該フィルムにおける前記紫外線吸収剤の膜厚方向の分布を均一にするための配向抑制剤とを含む。位相差フィルム(RF)は、該フィルムの一方の表面から5μmの厚さの領域R1、該フィルムの他方の表面から5μmの厚さの領域R2、該フィルムの厚さ方向の中央の5μmの厚さの領域R3における各紫外線吸収剤の含有量の比率S1~S3に関して、所定の条件式を満足する。
Description
本発明は、位相差フィルムと、その位相差フィルムを備えた偏光板と、その偏光板を備えた液晶表示装置とに関するものである。
近年では、大型テレビとして用いられる液晶表示装置の薄型化に伴い、液晶セルのガラス基板が薄くなりつつある。上記ガラス基板が薄くなると、液晶セルに対して視認側に位置する偏光板が吸水によって寸法変化を起こしたときに、液晶セルのベンディング(パネルの反り)や、そのベンディングに伴ってムラ(色ムラ、輝度ムラ)が生じることが懸念される。このため、上記偏光板において、偏光子に対して視認側に位置する保護フィルムとしては、従来のセルロースエステル系のフィルム(例えばトリアセチルセルロースフィルム)よりも透湿性の低いフィルムを用いることが検討されている。このような低透湿のフィルムとしては、例えばPET(ポリエチレンテレフタレート)やアクリルからなるフィルムがある。これらのフィルムは、例えば溶融流延製膜法によって製膜される。
一方、太陽光(特に紫外線)による液晶セルの劣化を防止するため、液晶セルに対して視認側の偏光板には、紫外線を吸収する機能が必要とされている。このような紫外線吸収機能は、例えば、T1フィルムに紫外線吸収剤を添加することで付与することができる。なお、上記のT1フィルムとは、液晶セルに対して視認側に位置する偏光板において、偏光子に対して視認側に位置する保護フィルムを指す。
ここで、T1フィルムとして、上記した低透湿のフィルム(PETやアクリルからなるフィルム)を用いる場合、溶融流延製膜法では、紫外線吸収剤等の添加剤を熱で溶かすために、溶融に適した条件を精査してその条件下で製膜する必要があることから、添加剤の添加が一般的に容易ではなく、そのため、フィルムの生産性が低下するとともに生産コストも増大する。また、添加剤を無理に添加すると、ブリードアウト(添加剤の浸み出し)が生じ、製膜したフィルムを偏光板に適用したときに、偏光板の品質を損なうおそれがある。
そこで、液晶セルに対して視認側の偏光板において、偏光子に対して液晶セル側、つまり、視認側とは反対側に位置する保護フィルム(以下、T2フィルムとも記載する)に紫外線吸収剤を添加することで、T2フィルムに紫外線吸収機能を持たせて液晶セルの劣化防止を図ることを、本願発明者は検討した。T2フィルムは、偏光子と液晶セルとの間に位置し、外部に露出しないため、T2フィルムに低透湿性を要求する必要はない。それゆえ、T2フィルムとして、透湿性の高いフィルム、すなわち、溶液流延製膜法によって製膜可能なセルロースエステル系のフィルムを用いることが可能となる。T2フィルムの製膜に溶液流延製膜法を用いることにより、紫外線吸収剤のフィルムへの添加が容易となり、フィルムの生産性低下、生産コストの増大およびブリードアウトの問題を改善できると考えられる。
また、液晶表示装置(特に垂直配向型の液晶表示装置)においては、T2フィルムは、位相差フィルムの機能と保護フィルムの機能とを兼ね備えることが必要である。この点、上記したセルロースエステル系のフィルムは、位相差フィルムとして一般的に使用されるフィルムでもある。したがって、T2フィルムとして、セルロースエステル系のフィルムを用いることにより、位相差フィルムの機能および保護フィルムの機能を両方とも発揮させながら、紫外線吸収剤を無理なく添加して液晶セルの劣化を防止し得る偏光板を実現することができる。
ここで、セルロースエステルフィルムに紫外線吸収剤を添加する構成は、例えば特許文献1に開示されている。特許文献1では、セルロースエステルフィルムの一方の表面側と他方の表面側とで紫外線吸収剤の添加量を異ならせることにより、製膜時の剥離性が良好で、透湿性の高いフィルムを得るようにしている。また、上述したように、紫外線による液晶セルの劣化を防止すべく、位相差フィルムに紫外線吸収剤を添加する構成は、例えば特許文献2に開示されている。
ところが、特許文献1の構成を特許文献2の位相差フィルムに適用すると、つまり、液晶表示装置のT2フィルムとして、紫外線吸収剤の添加量が膜厚方向において異なるセルロースエステルフィルムを用いると、液晶表示装置のコントラストが低下するとともに、液晶セルのベンディングが発生することが判明した。なお、上記液晶表示装置のT1フィルムは例えばPETフィルムであり、紫外線吸収剤を含有していないものとする。
液晶表示装置のコントラストの低下については、T2フィルムで部分的に内部ヘイズが劣化したことによるものと考えられる。すなわち、T2フィルムでは、紫外線吸収剤の添加量が膜厚方向において異なっているため、膜厚方向のどちらか一方に(どちらかの表面側に)紫外線吸収剤が偏って存在している。このように紫外線吸収剤が偏って存在する領域では、紫外線吸収剤が多いことによって内部ヘイズが劣化し、その結果、コントラストの低下が生じたものと考えられる。
また、液晶セルのベンディングについては、T2フィルムのベンディングの影響によるものと考えられる。つまり、T1フィルムが低透湿のPETフィルムであっても、T1フィルムにおける水分の透過を完全に無くすことはできないため、T1フィルムを透過した水分がT2フィルムに浸透する。すると、T2フィルムが寸法変化を起こす。このとき、T2フィルムの膜厚方向において紫外線吸収剤の分布が異なっているため、フィルムの一方の表面側と他方の表面側とで寸法変化に違いが生じ(例えば一方の表面側では他方の表面側よりも含水によって膨張しやすい)、これがT2フィルムのベンディングを引き起こして、液晶セルのベンディングを生じさせているものと考えられる。
なお、例えば、T2フィルムに添加する紫外線吸収剤の添加量を減少させ、紫外線吸収剤の分布による影響を低減することで、液晶表示装置のコントラストの低下および液晶セルのベンディングを抑えることができるとも考えられる。しかし、紫外線吸収剤の添加量を減少させると、紫外線による液晶セルの劣化を効率よく抑えることができなくなり、耐光性が劣化することが懸念される。
本発明は、上記の問題を解決するためになされたものであって、その目的は、偏光板のT2フィルムが紫外線吸収剤を含有するセルロースエステル系の位相差フィルムであっても、その偏光板を液晶表示装置に適用したときに、液晶表示装置のコントラストの低下および液晶セルのベンディングを抑えるとともに、耐光性の劣化を抑えることができる位相差フィルムと、その位相差フィルムを備えた偏光板と、その偏光板を備えた液晶表示装置とを提供することにある。
本発明の上記目的は、以下の製造方法によって達成される。
すなわち、本発明の一側面に係る位相差フィルムは、面内方向のリタデーションRoが20nm以上であるセルロースエステル系の位相差フィルムであって、
添加剤として、紫外線吸収剤と、該フィルムにおける前記紫外線吸収剤の膜厚方向の分布を均一にするための配向抑制剤とを含み、
該フィルムの一方の表面から5μmの厚さの領域における、基準値に対する前記紫外線吸収剤の含有量の比率をS1(%)とし、
該フィルムの他方の表面から5μmの厚さの領域における、前記基準値に対する前記紫外線吸収剤の含有量の比率をS2(%)とし、
該フィルムの厚さ方向の中央から前記一方の表面側および前記他方の表面側にそれぞれ2.5μmの厚さを有する計5μmの厚さの領域における、前記基準値に対する前記紫外線吸収剤の含有量の比率をS3(%)としたとき、
以下の条件式(1)および(2)を満足することを特徴とする位相差フィルム;
(1)|S1-S2|/M≦15%
(2)1%≦|S3-M|/S3≦20%
ただし、
M=(S1+S2)/2
である。
添加剤として、紫外線吸収剤と、該フィルムにおける前記紫外線吸収剤の膜厚方向の分布を均一にするための配向抑制剤とを含み、
該フィルムの一方の表面から5μmの厚さの領域における、基準値に対する前記紫外線吸収剤の含有量の比率をS1(%)とし、
該フィルムの他方の表面から5μmの厚さの領域における、前記基準値に対する前記紫外線吸収剤の含有量の比率をS2(%)とし、
該フィルムの厚さ方向の中央から前記一方の表面側および前記他方の表面側にそれぞれ2.5μmの厚さを有する計5μmの厚さの領域における、前記基準値に対する前記紫外線吸収剤の含有量の比率をS3(%)としたとき、
以下の条件式(1)および(2)を満足することを特徴とする位相差フィルム;
(1)|S1-S2|/M≦15%
(2)1%≦|S3-M|/S3≦20%
ただし、
M=(S1+S2)/2
である。
また、本発明の他の側面に係る偏光板は、
上記の位相差フィルムと、
偏光子と、
前記位相差フィルムとの間で前記偏光子を挟み込む対向フィルムとを有している。
上記の位相差フィルムと、
偏光子と、
前記位相差フィルムとの間で前記偏光子を挟み込む対向フィルムとを有している。
また、本発明のさらに他の側面に係る液晶表示装置は、
上記の偏光板と、液晶セルとを有し、
前記偏光板が前記液晶セルに対して視認側に位置し、
前記偏光板の前記位相差フィルムが、前記偏光板の前記偏光子に対して前記液晶セル側に位置している。
上記の偏光板と、液晶セルとを有し、
前記偏光板が前記液晶セルに対して視認側に位置し、
前記偏光板の前記位相差フィルムが、前記偏光板の前記偏光子に対して前記液晶セル側に位置している。
位相差フィルムが紫外線吸収剤および配向抑制剤を含有することにより、フィルム内部において、紫外線吸収剤の膜厚方向における含有量の分布が均一に近づき、上述した条件式(1)および(2)を満足することが可能となる。これにより、位相差フィルムにおいて、紫外線吸収剤の膜厚方向の偏りに起因する内部ヘイズの劣化を抑えるとともに、含水によるベンディングを抑えることができる。したがって、上記位相差フィルムを含む偏光板を液晶表示装置に適用したときに、液晶表示装置のコントラストの低下および液晶セルのベンディングを抑えることができる。また、液晶表示装置のコントラストの低下および液晶セルのベンディングを抑えるにあたって、位相差フィルムにおける紫外線吸収剤の添加量を減らさなくて済むため、液晶セルの耐光性の劣化を抑えることもできる。
本発明の実施の一形態について、図面に基づいて説明すれば以下の通りである。なお、本明細書において、数値範囲をA~Bと表記した場合、その数値範囲に下限Aおよび上限Bの値は含まれるものとする。なお、本発明は、以下の内容に限定されるものではない。
本実施形態の位相差フィルムは、面内方向のリタデーションRoが20nm以上であるセルロースエステル系の位相差フィルムである。この位相差フィルムは、添加剤として、紫外線吸収剤と、該フィルムにおける前記紫外線吸収剤の膜厚方向の分布を均一にするための配向抑制剤とを含む。
ここで、配向抑制剤が紫外線吸収剤の膜厚方向の分布を均一にする、または均一に近づける原理は、以下の通りである。例えば溶液流延製膜法を用いた光学フィルムの製膜では、樹脂および溶媒を含むドープを支持体上に流延し、支持体上での乾燥によって形成される流延膜(ウェブ)を支持体から剥離して延伸、乾燥等させることにより、光学フィルムが製膜される。上記ドープに紫外線吸収剤を含有させて光学フィルムを製膜すると、紫外線吸収剤は、通常、フィルム内で膜厚方向の支持体側(B面側とも称する)に偏った分布となる。これは、紫外線吸収剤の溶媒に対する溶解度が一般的に高い(溶媒に溶けやすい)ことによる(例えばメチレンクロライドに対する溶解度が15%以上である)。つまり、紫外線吸収剤の溶解度が高いと、支持体上での溶媒の乾燥時に、溶媒が支持体とは反対側(大気側またはA面側とも称する)から蒸発するにつれて、蒸発せずに残っている溶媒に紫外線吸収剤が溶けこもうとする。このような挙動により、紫外線吸収剤は、ウェブ内でB面側に移動しやすくなり、結果として、フィルム内で膜厚方向のB面側に偏在する。
一方、配向抑制剤は、通常、フィルム内でA面側に偏った分布となる。これは、配向抑制剤の溶媒に対する溶解度が一般的に低い(溶媒に溶けにくい)ことによる(例えばメチレンクロライドに対する溶解度が2%未満である)。つまり、配向抑制剤の溶解度が低いと、支持体上での溶媒の乾燥時に、ウェブのB面側からA面側に向かう溶媒の流れに乗って、配向抑制剤がウェブ内でA面側に移動しやすくなり、結果として、フィルム内で膜厚方向のA面側に偏在する。
配向抑制剤と紫外線吸収剤とは相互作用が強いため、ドープ中に配向抑制剤と紫外線吸収剤とが両方存在すると、支持体上での溶媒の乾燥時に、紫外線吸収剤は配向抑制剤のA面側への移動に引き寄せられるようにしてA面側に移動しやすくなる。その結果、フィルムの内部において、通常はB面側に偏る紫外線吸収剤の分布を膜厚方向において均一にする、または均一に近づけることが可能となる。これにより、本実施形態の位相差フィルムは、以下の条件式(1)および(2)を満足する位相差フィルムとなる。
すなわち、図1に示すように、位相差フィルムRFの一方の表面(A面)から5μmの厚さの領域R1における、基準値に対する前記紫外線吸収剤の含有量の比率をS1(%)とし、位相差フィルムRFの他方の表面(B面)から5μmの厚さの領域R2における、前記基準値に対する前記紫外線吸収剤の含有量の比率をS2(%)とし、膜厚Dμmの位相差フィルムRFの厚さ方向の中央(膜厚D/2μmの位置)から前記一方の表面側および前記他方の表面側にそれぞれ2.5μmの厚さを有する計5μmの厚さの領域R3における、前記基準値に対する前記紫外線吸収剤の含有量の比率をS3(%)としたとき、本実施形態の位相差フィルムRFは、以下の条件式(1)および(2)を満足する。
(1)|S1-S2|/M≦15%
(2)1%≦|S3-M|/S3≦20%
ただし、
M=(S1+S2)/2
である。
(1)|S1-S2|/M≦15%
(2)1%≦|S3-M|/S3≦20%
ただし、
M=(S1+S2)/2
である。
条件式(1)は、領域R1における紫外線吸収剤の含有量と、領域R2における紫外線吸収剤の含有量との差が小さいこと、より具体的には、比率S1と比率S2との差が、比率S1と比率S2との平均値Mの15%以下であることを規定している。また、条件式(2)は、領域R3における紫外線吸収剤の含有量と平均値Mとの差が小さいこと、より具体的には、比率S3と平均値Mとの差が、比率S3の1%以上20%以下であることを規定している。
条件式(1)および(2)を満足することにより、位相差フィルムRFの内部において、紫外線吸収剤の膜厚方向における分布の偏りが緩和され、膜厚方向にほぼ均一な紫外線吸収剤の分布が実現される。これにより、位相差フィルムRFにおいて、紫外線吸収剤の膜厚方向の分布の偏りに起因する内部ヘイズの劣化を抑えることができる。また、位相差フィルムRFの一方の表面側と他方の表面側とで含水による寸法変化に違いが生じにくくなり、位相差フィルムRFが含水してもベンディングしにくくなる。したがって、位相差フィルムRFを有する偏光板を液晶表示装置の視認側偏光板に適用した場合でも、液晶表示装置においてコントラストの低下を抑えることができるとともに、位相差フィルムRFのベンディングに起因する液晶セルのベンディングを抑え、画像ムラを抑えることができる。
また、上記のように、配向抑制剤を位相差フィルムRFに含有させることにより、紫外線吸収剤の添加量を減らさなくても、液晶表示装置のコントラストの低下および液晶セルのベンディングを抑えることができる。したがって、紫外線吸収剤にて紫外線を確実に吸収して、紫外線による液晶セルの劣化、つまり、液晶セルの耐光性の劣化を抑えることも可能となる。
ここで、フィルム中の紫外線吸収剤の含有量は、例えば飛行時間型二次イオン質量分析法(TOF-SIMS;Time-of-Flight Secondary Ion Mass Spectrometry )を用いて測定することができる。TOF-SIMSとは、固体試料にイオンビーム(一次イオン)を照射し、表面から放出されるイオン(二次イオン)を、その飛行時間差(飛行時間は重さの平方根に比例)を利用して質量分離する手法である。フィルムに含まれる紫外線吸収剤の含有量と、TOF-SIMS測定で検出される二次イオンの強度(1秒あたりの二次イオンの検出カウント数)とは対応関係にあり、それゆえ、基準値(任意の含有量)に対する紫外線吸収剤の含有量の比率と、基準値(任意の強度値)に対する二次イオン強度の比率とは対応関係にある。したがって、フィルムの断面に対してTOF-SIMS測定を行って、紫外線吸収剤に対応する二次イオンの強度を検出し、各領域R1~R3ごとに、基準値(任意の強度値)に対する二次イオン強度の比率を求めることにより、各領域R1~R3ごとに、基準値(任意の含有量)に対する紫外線吸収剤の含有量の比率S1~S3を得ることができる。
図2は、紫外線吸収剤(例えば後述するピラゾール系化合物)と、配向抑制剤(例えば後述するベンゾトリアゾール系化合物)とを含有するフィルムに対して、TOF-SIMS測定を行ったときに得られる、紫外線吸収剤に対応する二次イオンの膜厚方向の強度分布を示している。また、図3は、上記紫外線吸収剤を含有する一方、配向抑制剤を含有しないフィルムに対して、TOF-SIMS測定を行ったときに得られる、紫外線吸収剤に対応する二次イオンの膜厚方向の強度分布を示している。なお、これらの図において、横軸の位置が増大する方向は、膜厚方向のA面側(大気側)からB面側(支持体側)に向かう方向を指すものとする。配向抑制剤を含有しないフィルムでは、図3の強度分布より、紫外線吸収剤がA面側よりもB面側に偏在していると言える。これに対して、配向抑制剤を含有するフィルムでは、図2の強度分布より、A面側(A面近傍を除く)からB面側(B面近傍を除く)にかけて、紫外線吸収剤がほぼ均一に分布していると言える。以上のことから、配向抑制剤の有無により、紫外線吸収剤の膜厚方向の分布を制御することができ、配向抑制剤を添加することによって、紫外線吸収剤の膜厚方向の分布をほぼ均一にすることができると言える。
本実施形態の位相差フィルムは、以下の条件式(1a)および(2a)をさらに満足することが望ましい。すなわち、
(1a)5%≦|S1-S2|/M≦13%
(2a)3%≦|S3-M|/S3≦20%
である。これらの条件式(1a)および(2a)を満足することで、位相差フィルムRFの内部で、紫外線吸収剤の膜厚方向における分布の偏りが確実に緩和されるため、上述したコントラストの低下および液晶セルのベンディングを抑える効果を確実に得ることができる。
(1a)5%≦|S1-S2|/M≦13%
(2a)3%≦|S3-M|/S3≦20%
である。これらの条件式(1a)および(2a)を満足することで、位相差フィルムRFの内部で、紫外線吸収剤の膜厚方向における分布の偏りが確実に緩和されるため、上述したコントラストの低下および液晶セルのベンディングを抑える効果を確実に得ることができる。
上記した配向抑制剤は、含窒素複素環化合物であることが望ましい。含窒素複素環化合物は、紫外線吸収剤と相互作用が強いため、B面側に偏在しやすい紫外線吸収剤をA面側に引き寄せて膜厚方向の分布を均一化する配向抑制剤として非常に好適である。例えば、含窒素複素環化合物の一種であるピラゾール系化合物を配向抑制剤として用いることにより、上記した配向抑制剤としての機能(紫外線吸収剤の分布を膜厚方向に均一化する機能)を確実に発揮させることが可能である。
また、前記紫外線吸収剤は、ベンゾトリアゾール系化合物であることが望ましい。ベンゾトリアゾール系化合物は、含窒素複素環化合物であり、配向抑制剤との相互作用が強い。このため、配向抑制剤の添加による上述の効果、つまり、配向抑制剤の添加によって紫外線吸収剤の膜厚方向の分布を均一化する効果がより得られやすくなる。
本実施形態の偏光板は、上述した本実施形態の位相差フィルムと、偏光子と、前記位相差フィルムとの間で前記偏光子を挟み込む対向フィルムとを有している構成である。上記位相差フィルムでは、配向抑制剤の添加により、上述した条件式(1)および(2)が満足され、紫外線吸収剤の膜厚方向の分布の偏りが緩和される。これにより、上記偏光板を液晶表示装置の視認側偏光板に適用した場合でも、上記偏りに起因するコントラストの低下および液晶セルのベンディングを抑えることができる。また、位相差フィルムに配向抑制剤を添加することにより、紫外線吸収剤の含有量を減少させなくても済むため(含有量を減少させなくても上述の効果が得られるため)、紫外線吸収剤にて紫外線を確実に吸収して、紫外線による液晶セルの劣化(耐光性劣化)を抑えることができる。
前記対向フィルムの透湿度が、100g/m2・day以下であることが望ましい。対向フィルムが低透湿であるため、対向フィルムにおける水分の透過を極力抑えて、偏光板の含水による寸法変化に起因する液晶セルのベンディングを抑えることができる。
本実施形態の液晶表示装置は、上述した本実施形態の偏光板と、液晶セルとを有し、前記偏光板が前記液晶セルに対して視認側に位置し、前記偏光板の前記位相差フィルムが、前記偏光板の前記偏光子に対して前記液晶セル側に位置している構成である。
液晶表示装置の視認側偏光板が、上述した本実施形態の位相差フィルムを有する偏光板であり、上記位相差フィルムにおいて、配向抑制剤により、紫外線吸収剤の膜厚方向の分布が均一化されているため、紫外線吸収剤の偏りに起因するコントラストの低下および液晶セルのベンディングを抑えることができる。また、位相差フィルムに配向抑制剤を添加することにより、紫外線吸収剤の含有量を減少させなくても済むため、液晶セルの耐光性劣化を抑えることができる。
〔垂直配向型液晶表示装置〕
以下、本実施形態の液晶表示装置の具体的な構成について説明する。図4は、本実施形態に係る垂直配向型(VA型: Virtical Alignment)の液晶表示装置1の概略の構成を示す断面図である。液晶表示装置1は、液晶表示パネル2およびバックライト3を備えている。バックライト3は、液晶表示パネル2を照明するための光源である。
以下、本実施形態の液晶表示装置の具体的な構成について説明する。図4は、本実施形態に係る垂直配向型(VA型: Virtical Alignment)の液晶表示装置1の概略の構成を示す断面図である。液晶表示装置1は、液晶表示パネル2およびバックライト3を備えている。バックライト3は、液晶表示パネル2を照明するための光源である。
液晶表示パネル2は、VA方式で駆動される液晶セル4の視認側に偏光板5を配置し、バックライト3側に偏光板6を配置して構成されている。液晶セル4は、液晶層を一対の透明基板(不図示)で挟持して形成される。液晶セル4としては、カラーフィルタが液晶層に対してバックライト3側の透明基板、つまり、TFT(Thin Film Transistor)形成側の基板に配置された、いわゆるカラーフィルタ・オン・アレイ(COA)構造の液晶セルを用いることができるが、カラーフィルタが液晶層に対して視認側の透明基板に配置された液晶セルであってもよい。
偏光板5は、偏光子11と、光学フィルム12・13とを備えている。偏光子11は、所定の直線偏光を透過する。光学フィルム12は、偏光子11の視認側に配置される保護フィルム(T1フィルムとも称する)である。光学フィルム13は、偏光子11の液晶セル4側、つまり、偏光子11に対して視認側とは反対側に配置される保護フィルム兼位相差フィルム(T2フィルムとも称する)である。光学フィルム12は、偏光子11を介して光学フィルム13と対向して配置されることから、対向フィルムと呼ぶこともできる。偏光板5は、液晶セル4の視認側に粘着層7を介して貼り付けられている。つまり、偏光板5は、液晶セル4に対して視認側に位置し、かつ、光学フィルム13が偏光子11に対して液晶セル4側となるように、液晶セル4に貼り合わされている。
偏光板6は、偏光子14と、光学フィルム15・16を備える。偏光子14は、所定の直線偏光を透過する。光学フィルム15は、偏光子14の視認側(液晶セル4側)に配置される保護フィルム(T3フィルムとも称する)であり、位相差フィルムとして機能することもできる。光学フィルム16は、偏光子14のバックライト3側(視認側とは反対側)に配置される保護フィルム(T4フィルムとも称する)である。このような偏光板6は、液晶セル4のバックライト3側に粘着層8を介して貼り付けられている。なお、視認側の光学フィルム15を省略し、偏光子14を粘着層8に直接接触させてもよい。偏光子11と偏光子14とは、クロスニコル状態となるように配置される。
本実施形態の位相差フィルムは、例えば偏光板5の光学フィルム13や、偏光板6の光学フィルム15として用いることができる。
〔位相差フィルム〕
本実施形態の位相差フィルムは、紫外線吸収剤を含有することによって、波長380nmでの光透過率が10%以下である光透過性フィルムである。紫外線吸収剤は、後述する含窒素複素環化合物(第2含窒素複素環化合物)で構成することができる。また、位相差フィルムの波長380nmにおける光透過率は、例えば、紫外可視分光光度計(日本分光社製 紫外可視近赤外分光光度計、製品名:V7100)を用いて測定して求めることができる。
本実施形態の位相差フィルムは、紫外線吸収剤を含有することによって、波長380nmでの光透過率が10%以下である光透過性フィルムである。紫外線吸収剤は、後述する含窒素複素環化合物(第2含窒素複素環化合物)で構成することができる。また、位相差フィルムの波長380nmにおける光透過率は、例えば、紫外可視分光光度計(日本分光社製 紫外可視近赤外分光光度計、製品名:V7100)を用いて測定して求めることができる。
位相差フィルムの面内方向のリタデーションRoおよび厚み方向のリタデーションRtは、下記式(i)(ii)で表される。
式(i) Ro=(nx-ny)×d
式(ii) Rt={(nx+ny)/2-nz}×d
(式中、nxはフィルム面内の遅相軸方向の屈折率、nyはフィルム面内の進相軸方向の屈折率、nzはフィルムの厚み方向の屈折率(屈折率は23℃、55%RHの環境下、波長590nmで測定)、dはフィルムの厚さ(nm)を表す。)
式(i) Ro=(nx-ny)×d
式(ii) Rt={(nx+ny)/2-nz}×d
(式中、nxはフィルム面内の遅相軸方向の屈折率、nyはフィルム面内の進相軸方向の屈折率、nzはフィルムの厚み方向の屈折率(屈折率は23℃、55%RHの環境下、波長590nmで測定)、dはフィルムの厚さ(nm)を表す。)
リタデーションRo・Rtは、公知の手法に従って測定することができる。具体的には、リタデーションRo・Rtは、自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて、23℃・55%RHの環境下、590nmの波長において、三次元屈折率測定を行い、得られた屈折率nx、ny、nzから算出することができる。
位相差フィルムは、面内方向のリタデーションRoが20nm以上であるセルロースエステル系の位相差フィルムで構成されることが好ましい。面内方向のリタデーションRoは、40≦Ro≦300であることが好ましく、50≦Ro≦200であることがより好ましく、60≦Ro≦150であることがさらに好ましい。また、厚み方向のリタデーションRtは、100≦Rt≦400であることが好ましく、100≦Rt≦200であることがより好ましい。
位相差フィルムのリタデーションRo・Rtが上記範囲であることにより、位相差フィルムが液晶セル側となるように、偏光板を液晶セルに貼合したとき、得られる液晶表示装置における黒表示時の光漏れを効果的に防止することができる。また、位相差フィルムの厚さを低減して、偏光板および液晶表示装置のさらなる薄型軽量化を図ることも可能となる。
(セルロースエステル系樹脂)
本実施形態のセルロースエステル系の位相差フィルムは、セルロースエステル系樹脂を含む位相差フィルムである。位相差フィルムに用いることができるセルロースエステル系樹脂は、セルロース(ジ、トリ)アセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート、及びセルロースフタレートから選ばれる少なくとも1種であることが好ましい。
本実施形態のセルロースエステル系の位相差フィルムは、セルロースエステル系樹脂を含む位相差フィルムである。位相差フィルムに用いることができるセルロースエステル系樹脂は、セルロース(ジ、トリ)アセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート、及びセルロースフタレートから選ばれる少なくとも1種であることが好ましい。
これらの中で特に好ましいセルロースエステルとしては、セルローストリアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネートやセルロースアセテートブチレートが挙げられる。
混合脂肪酸エステルとして、更に好ましいセルロースアセテートプロピオネートやセルロースアセテートブチレートの低級脂肪酸エステルは、炭素原子数2~4のアシル基を置換基として有し、アセチル基の置換度をXとし、プロピオニル基又はブチリル基の置換度をYとしたとき、下記式(I)及び(II)を同時に満たすセルロースエステルを含むセルロース樹脂であることが好ましい。
式(I) 2.6≦X+Y≦3.0
式(II) 1.0≦X≦2.5
式(I) 2.6≦X+Y≦3.0
式(II) 1.0≦X≦2.5
このうち、特にセルロースアセテートプロピオネートが好ましく用いられ、中でも1.9≦X≦2.5であり、0.1≦Y≦0.9であることが好ましい。上記アシル基で置換されていない部分は、通常水酸基として存在している。これらは公知の方法で合成することができる。
更に、本実施形態で用いられるセルロースエステルは、重量平均分子量Mwと数平均分子量Mnとの比Mw/Mnが1.5~5.5のものが好ましく用いられる。より好ましくは2.0~5.0、更に好ましくは2.5~5.0、特に好ましくは3.0~5.0のセルロースエステルが用いられる。
本実施形態で用いられるセルロースエステルの原料セルロースは、木材パルプでも綿花リンターでもよい。また、木材パルプは針葉樹でも広葉樹でもよいが、針葉樹の方がより好ましい。製膜の際の剥離性の点からは、綿花リンターが好ましく用いられる。これらから作られたセルロースエステルは、適宜混合して、或いは単独で使用することができる。
例えば、綿花リンター由来セルロースエステル:木材パルプ(針葉樹)由来セルロースエステル:木材パルプ(広葉樹)由来セルロースエステルの比率が、100:0:0、90:10:0、85:15:0、50:50:0、20:80:0、10:90:0、0:100:0、0:0:100、80:10:10、85:0:15、40:30:30となるように、各セルロースエステルを混合して用いることができる。
本実施形態において、セルロースエステル系樹脂は、20mlの純水(電気伝導度0.1μS/cm以下、pH6.8)に1g投入し、25℃、1hr、窒素雰囲気下にて攪拌したときのpHが6~7、電気伝導度が1~100μS/cmであることが好ましい。
(配向抑制剤)
本実施形態の位相差フィルムは、添加剤として、配向抑制剤を含んでいる。配向抑制剤は、位相差フィルムにおける紫外線吸収剤の膜厚方向の分布を均一にするための添加剤である。この配向抑制剤は、例えば以下に示すリタデーション上昇剤で構成することができる。
本実施形態の位相差フィルムは、添加剤として、配向抑制剤を含んでいる。配向抑制剤は、位相差フィルムにおける紫外線吸収剤の膜厚方向の分布を均一にするための添加剤である。この配向抑制剤は、例えば以下に示すリタデーション上昇剤で構成することができる。
〈リタデーション上昇剤〉
リタデーション上昇剤とは、測定波長590nmにおけるフィルムのリタデーション(面内方向のリタデーションRoおよび厚み方向のリタデーションRt)を、リタデーション上昇剤が未添加のものに比べて増大させる機能を有する化合物をいう。
リタデーション上昇剤とは、測定波長590nmにおけるフィルムのリタデーション(面内方向のリタデーションRoおよび厚み方向のリタデーションRt)を、リタデーション上昇剤が未添加のものに比べて増大させる機能を有する化合物をいう。
位相差フィルムがリタデーション上昇剤を含むことにより、位相差フィルムの面内方向のリタデーションRoおよび厚み方向のリタデーションRtが以下の範囲となる位相差フィルムを実現することができる。
Ro≧20nm
100nm≦|Rt|≦400nm
Ro≧20nm
100nm≦|Rt|≦400nm
〈一般的なリタデーション上昇剤〉
リタデーション上昇剤としては、分子量が100~800の範囲内である含窒素複素環化合物を使用することができる。中でも、含窒素複素環化合物として、下記一般式(1)で表される構造の化合物を樹脂とともに用いることにより、RoおよびRtが上記範囲の位相差フィルムを実現できるほか、環境の湿度変動によるリタデーションの変動を抑えることもできる。
リタデーション上昇剤としては、分子量が100~800の範囲内である含窒素複素環化合物を使用することができる。中でも、含窒素複素環化合物として、下記一般式(1)で表される構造の化合物を樹脂とともに用いることにより、RoおよびRtが上記範囲の位相差フィルムを実現できるほか、環境の湿度変動によるリタデーションの変動を抑えることもできる。
〈一般式(1)で表される構造を有する化合物〉
前記一般式(1)において、A1、A2及びBは、それぞれ独立に、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等)、芳香族炭化水素環又は芳香族複素環を表す。この中で、芳香族炭化水素環又は芳香族複素環が好ましく、特に、5員若しくは6員の芳香族炭化水素環又は芳香族複素環であることが好ましい。
5員若しくは6員の芳香族炭化水素環又は芳香族複素環の構造に制限はないが、例えば、ベンゼン環、ピロール環、ピラゾール環、イミダゾール環、1,2,3-トリアゾール環、1,2,4-トリアゾール環、テトラゾール環、フラン環、オキサゾール環、イソオキサゾール環、オキサジアゾール環、イソオキサジアゾール環、チオフェン環、チアゾール環、イソチアゾール環、チアジアゾール環、イソチアジアゾール環、カルバゾール環、キノキサリン環、ベンゾオキサゾール環、等が挙げられる。中でも、含窒素複素環化合物は、カルバゾール環、キノキサリン環、ベンゾオキサゾール環、オキサジアゾール環、オキサゾール環、トリアゾール環およびピラゾール環を有する化合物から選ばれる少なくともいずれか一種であることが望ましい。
A1、A2及びBで表される5員若しくは6員の芳香族炭化水素環又は芳香族複素環は、置換基を有していてもよい。当該置換基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等)、アルケニル基(ビニル基、アリル基等)、シクロアルケニル基(2-シクロペンテン-1-イル、2-シクロヘキセン-1-イル基等)、アルキニル基(エチニル基、プロパルギル基等)、芳香族炭化水素環基(フェニル基、p-トリル基、ナフチル基等)、芳香族複素環基(2-ピロール基、2-フリル基、2-チエニル基、ピロール基、イミダゾリル基、オキサゾリル基、チアゾリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、2-ベンゾチアゾリル基、ピラゾリノン基、ピリジル基、ピリジノン基、2-ピリミジニル基、トリアジン基、ピラゾール基、1,2,3-トリアゾール基、1,2,4-トリアゾール基、オキサゾール基、イソオキサゾール基、1,2,4-オキサジアゾール基、1,3,4-オキサジアゾール基、チアゾール基、イソチアゾール基、1,2,4-チオジアゾール基、1,3,4-チアジアゾール基等)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基(メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、n-オクチルオキシ基、2-メトキシエトキシ基等)、アリールオキシ基(フェノキシ基、2-メチルフェノキシ基、4-tert-ブチルフェノキシ基、3-ニトロフェノキシ基、2-テトラデカノイルアミノフェノキシ基等)、アシルオキシ基(ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p-メトキシフェニルカルボニルオキシ基等)、アミノ基(アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N-メチル-アニリノ基、ジフェニルアミノ基等)、アシルアミノ基(ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基等)、アルキル及びアリールスルホニルアミノ基(メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5-トリクロロフェニルスルホニルアミノ基、p-メチルフェニルスルホニルアミノ基等)、メルカプト基、アルキルチオ基(メチルチオ基、エチルチオ基、n-ヘキサデシルチオ基等)、アリールチオ基(フェニルチオ基、p-クロロフェニルチオ基、m-メトキシフェニルチオ基等)、スルファモイル基(N-エチルスルファモイル基、N-(3-ドデシルオキシプロピル)スルファモイル基、N,N-ジメチルスルファモイル基、N-アセチルスルファモイル基、N-ベンゾイルスルファモイル基、N-(N’-フェニルカルバモイル)スルファモイル基等)、スルホ基、アシル基(アセチル基、ピバロイルベンゾイル基等)、カルバモイル基(カルバモイル基、N-メチルカルバモイル基、N,N-ジメチルカルバモイル基、N,N-ジ-n-オクチルカルバモイル基、N-(メチルスルホニル)カルバモイル基等)等の各基が挙げられる。
前記一般式(1)において、A1、A2及びBは、ベンゼン環、ピロール環、ピラゾール環、イミダゾール環、1,2,3-トリアゾール環又は1,2,4-トリアゾール環を表すことが、光学特性の変動効果に優れ、かつ耐久性に優れたセルロースアシレートフィルムが得られるために好ましい。
前記一般式(1)において、T1及びT2は、それぞれ独立に、ピロール環、ピラゾール環、イミダゾール環、1,2,3-トリアゾール環又は1,2,4-トリアゾール環を表すことが好ましい。これらの中で、ピラゾール環、トリアゾール環又はイミダゾール環であることが、湿度変動に対するリタデーションの変動抑制効果に特に優れ、かつ耐久性に優れた樹脂組成物が得られるために好ましく、ピラゾール環であることが特に好ましい。T1及びT2で表されるピラゾール環、1,2,3-トリアゾール環又は1,2,4-トリアゾール環、イミダゾール環は、互変異性体であってもよい。ピロール環、ピラゾール環、イミダゾール環、1,2,3-トリアゾール環又は1,2,4-トリアゾール環の具体的な構造を下記に示す。
式中、※印は、一般式(1)におけるL1、L2、L3又はL4との結合位置を表す。R5は水素原子又は非芳香族置換基を表す。R5で表される非芳香族置換基としては、前記一般式(1)におけるA1が有してもよい置換基のうちの非芳香族置換基と同様の基を挙げることができる。R5で表される置換基が芳香族基を有する置換基の場合、A1とT1又はBとT1がねじれやすくなり、A1、B及びT1がセルロースアシレートとの相互作用を形成できなくなるため、光学的特性の変動を抑制することが難しい。光学的特性の変動抑制効果を高めるためには、R5は水素原子、炭素数1~5のアルキル基又は炭素数1~5のアシル基であることが好ましく、水素原子であることが特に好ましい。
前記一般式(1)において、T1及びT2は置換基を有してもよく、当該置換基としては、前記一般式(1)におけるA1及びA2が有してもよい置換基と同様の基を挙げることができる。
前記一般式(1)において、L1、L2、L3及びL4は、それぞれ独立に、単結合又は、2価の連結基を表し、2個以下の原子を介して、5員若しくは6員の芳香族炭化水素環又は芳香族複素環が連結されている。2個以下の原子を介してとは、連結基を構成する原子のうち連結される置換基間に存在する最小の原子数を表す。連結原子数2個以下の2価の連結基としては、特に制限はないが、アルキレン基、アルケニレン基、アルキニレン基、O、(C=O)、NR、S、(O=S=O)からなる群より選ばれる2価の連結基であるか、それらを2個組み合わせた連結基を表す。Rは、水素原子又は置換基を表す。Rで表される置換基の例には、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等)、芳香族炭化水素環基(フェニル基、p-トリル基、ナフチル基等)、芳香族複素環基(2-フリル基、2-チエニル基、2-ピリミジニル基、2-ベンゾチアゾリル基、2-ピリジル基等)、シアノ基等が含まれる。L1、L2、L3及びL4で表される2価の連結基は置換基を有してもよく、置換基としては特に制限はないが、例えば、前記一般式(1)におけるA1及びA2が有してもよい置換基と同様の基を挙げることができる。
前記一般式(1)において、L1、L2、L3及びL4は、前記一般式(1)で表される構造を有する化合物の平面性が高くなることで、水を吸着する樹脂との相互作用が強くなり、光学的特性の変動が抑制されるため、単結合又は、O、(C=O)-O、O-(C=O)、(C=O)-NR又はNR-(C=O)であることが好ましく、単結合であることがより好ましい。
前記一般式(1)において、nは0~5の整数を表す。nが2以上の整数を表すとき、前記一般式(1)における複数のA2、T2、L3、L4は同じであってもよく、異なっていてもよい。nが大きい程、前記一般式(1)で表される構造を有する化合物と水を吸着する樹脂との相互作用が強くなることで光学的特性の変動抑制効果が優れ、nが小さいほど、水を吸着する樹脂との相溶性が優れる。このため、nは1~3の整数であることが好ましく、1~2の整数であることがより好ましい。
〈一般式(2)で表される構造を有する化合物〉
一般式(1)で表される構造を有する化合物は、一般式(2)で表される構造を有する化合物であることが好ましい。
一般式(1)で表される構造を有する化合物は、一般式(2)で表される構造を有する化合物であることが好ましい。
上記一般式(2)において、A1、A2、T1、T2、L1、L2、L3及びL4は、それぞれ前記一般式(1)におけるA1、A2、T1、T2、L1、L2、L3及びL4と同義である。A3及びT3は、それぞれ一般式(1)におけるA1及びT1と同様の基を表す。L5及びL6は、前記一般式(1)におけるL1と同様の基を表す。mは0~4の整数を表す。
mが小さい方が、セルロースアシレートとの相溶性に優れるため、mは0~2の整数であることが好ましく、0~1の整数であることがより好ましい。
〈一般式(1.1)で表される構造を有する化合物〉
一般式(1)で表される構造を有する化合物は、下記一般式(1.1)で表される構造を有するトリアゾール化合物であることが好ましい。
一般式(1)で表される構造を有する化合物は、下記一般式(1.1)で表される構造を有するトリアゾール化合物であることが好ましい。
上記一般式(1.1)において、A1、B、L1及びL2は、上記一般式(1)におけるA1、B、L1及びL2と同様の基を表す。kは、1~4の整数を表す。T1は、1,2,4-トリアゾール環を表す。
さらに、上記一般式(1.1)で表される構造を有するトリアゾール化合物は、下記一般式(1.2)で表される構造を有するトリアゾール化合物であることが好ましい。
上記一般式(1.2)において、Zは、下記一般式(1.2a)で表される部分構造である。qは、2~3の整数を表す。少なくとも二つのZは、ベンゼン環に置換された少なくとも一つのZに対してオルト位又はメタ位に結合する。
上記一般式(1.2a)において、R10は水素原子、アルキル基又はアルコキシ基を表す。pは1~5の整数を表す。*はベンゼン環との結合位置を表す。T1は1,2,4-トリアゾール環を表す。
前記一般式(1)、(2)、(1.1)又は(1.2)で表される構造を有する化合物は、水和物、溶媒和物若しくは塩を形成してもよい。なお、本実施形態において、水和物は有機溶媒を含んでいてもよく、また溶媒和物は水を含んでいてもよい。即ち、「水和物」及び「溶媒和物」には、水と有機溶媒のいずれも含む混合溶媒和物が含まれる。塩としては、無機又は有機酸で形成された酸付加塩が含まれる。無機酸の例として、ハロゲン化水素酸(塩酸、臭化水素酸など)、硫酸、リン酸などが含まれ、またこれらに限定されない。また、有機酸の例には、酢酸、トリフルオロ酢酸、プロピオン酸、酪酸、シュウ酸、クエン酸、安息香酸、アルキルスルホン酸(メタンスルホン酸など)、アリルスルホン酸(ベンゼンスルホン酸、4-トルエンスルホン酸、1,5-ナフタレンジスルホン酸など)などが挙げられ、またこれらに限定されない。これらのうち好ましくは、塩酸塩、酢酸塩、プロピオン酸塩、酪酸塩である。
塩の例としては、親化合物に存在する酸性部分が、金属イオン(例えばアルカリ金属塩、例えばナトリウム又はカリウム塩、アルカリ土類金属塩、例えばカルシウム又はマグネシウム塩、アンモニウム塩アルカリ金属イオン、アルカリ土類金属イオン、又はアルミニウムイオンなど)により置換されるか、あるいは有機塩基(エタノールアミン、ジエタノールアミン、トリエタノールアミン、モルホリン、ピペリジン、など)と調整されたときに形成される塩が挙げられ、またこれらに限定されない。これらのうち好ましくはナトリウム塩、カリウム塩である。
溶媒和物が含む溶媒の例には、一般的な有機溶剤のいずれも含まれる。具体的には、アルコール(例、メタノール、エタノール、2-プロパノール、1-ブタノール、1-メトキシ-2-プロパノール、t-ブタノール)、エステル(例、酢酸エチル)、炭化水素(例、トルエン、ヘキサン、ヘプタン)、エーテル(例、テトラヒドロフラン)、ニトリル(例、アセトニトリル)、ケトン(アセトン)などが挙げられる。好ましくは、アルコール(例、メタノール、エタノール、2-プロパノール、1-ブタノール、1-メトキシ-2-プロパノール、t-ブタノール)の溶媒和物である。これらの溶媒は、前記化合物の合成時に用いられる反応溶媒であっても、合成後の晶析精製の際に用いられる溶媒であってもよく、又はこれらの混合であってもよい。
また、2種類以上の溶媒を同時に含んでもよいし、水と溶媒を含む形(例えば、水とアルコール(例えば、メタノール、エタノール、t-ブタノールなど)など)であってもよい。
なお、前記一般式(1)、(2)、(1.1)又は(1.2)で表される構造を有する化合物を、水や溶媒、塩を含まない形態で添加しても、本実施形態における光学フィルム中において、水和物、溶媒和物又は塩を形成してもよい。なお、「光学フィルム」は、特に断らない限り、位相差フィルムを指すものとする(以下でも同様とする)。
前記一般式(1)、(2)、(1.1)又は(1.2)で表される構造を有する化合物の分子量は特に制限はないが、小さいほど樹脂との相溶性に優れ、大きいほど環境湿度の変化に対する光学値の変動抑制効果が高いため、150~2000であることが好ましく、200~1500であることがより好ましく、300~1000であることがより好ましい。
含窒素複素環化合物の具体例としては、例えば、国際公開番号WO2014/109350A1の段落〔0140〕~〔0214〕に記載の化合物を挙げることができる。なお、上記の具体例は、互変異性体であってもよく、水和物、溶媒和物又は塩を形成していてもよい。
〈一般式(3)で表される構造を有する化合物〉
本実施形態の位相差フィルムに好適な配向抑制剤としてのリタデーション上昇剤(含窒素複素環化合物)は、下記一般式(3)で表される構造を有する化合物であることが望ましい。
本実施形態の位相差フィルムに好適な配向抑制剤としてのリタデーション上昇剤(含窒素複素環化合物)は、下記一般式(3)で表される構造を有する化合物であることが望ましい。
上記一般式(3)において、Aはピラゾール環を表し、Ar1及びAr2はそれぞれ芳香族炭化水素環又は芳香族複素環を表し、置換基を有してもよい。R1は水素原子、アルキル基、アシル基、スルホニル基、アルキルオキシカルボニル基、又はアリールオキシカルボニル基を表し、qは1~2の整数を表し、n及びmはそれぞれ1~3の整数を表す。
Ar1及びAr2で表される芳香族炭化水素環又は芳香族複素環は、それぞれ一般式(1)で挙げた5員若しくは6員の芳香族炭化水素環又は芳香族複素環であることが好ましい。また、Ar1及びAr2の置換基としては、前記一般式(1)で表される構造を有する化合物で示したのと同様な置換基が挙げられる。
R1の具体例としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等)、アシル基(アセチル基、ピバロイルベンゾイル基等)、スルホニル基(例えば、メチルスルホニル基、エチルスルホニル基等)、アルキルオキシカルボニル基(例えば、メトキシカルボニル基)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基等)等が挙げられる。
qは1~2の整数を表し、n及びmは1~3の整数を表す。
本実施形態において、配向抑制剤として好適なリタデーション上昇剤(含窒素複素環化合物)としては、例えば以下の例示化合物1で示すピラゾール系化合物を挙げることができる。
〈一般式(1)で表される構造を有する化合物の合成方法〉
次に、前記一般式(1)で表される構造を有する化合物の合成方法について説明する。
次に、前記一般式(1)で表される構造を有する化合物の合成方法について説明する。
前記一般式(1)で表される構造を有する化合物は、公知の方法で合成することができる。前記一般式(1)で表される構造を有する化合物において、1,2,4-トリアゾール環を有する化合物は、いかなる原料を用いても構わないが、ニトリル誘導体又はイミノエーテル誘導体と、ヒドラジド誘導体を反応させる方法が好ましい。反応に用いる溶媒としては、原料と反応しないと溶媒であれば、いかなる溶媒でも構わないが、エステル系(例えば、酢酸エチル、酢酸メチル等)、アミド系(ジメチルホルムアミド、ジメチルアセトアミド等)、エーテル系(エチレングリコールジメチルエーテル等)、アルコール系(例えば、メタノール、エタノール、プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、エチレングリコール、エチレングリコールモノメチルエーテル等)、芳香族炭化水素系(例えば、トルエン、キシレン等)、水を挙げられることができる。使用する溶媒として、好ましくは、アルコール系溶媒である。また、これらの溶媒は、混合して用いても良い。
溶媒の使用量は、特に制限はないが、使用するヒドラジド誘導体の質量に対して、0.5~30倍量の範囲内であることが好ましく、更に好ましくは、1.0~25倍量であり、特に好ましくは、3.0~20倍量の範囲内である。
ニトリル誘導体とヒドラジド誘導体を反応させる場合、触媒を使用しなくても構わないが、反応を加速させるために触媒を使用する方が好ましい。使用する触媒としては、酸を用いても良く、塩基を用いても良い。酸としては、塩酸、硫酸、硝酸、酢酸等が挙げられ、好ましくは塩酸である。酸は、水に希釈して添加しても良く、ガスを系中に吹き込む方法で添加しても良い。塩基としては、無機塩基(炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム、水酸化カリウム、水酸化ナトリウム等)及び有機塩基(ナトリウムメチラート、ナトリウムエチラート、カリウムメチラート、カリウムエチラート、ナトリウムブチラート、カリウムブチラート、ジイソプロピルエチルアミン、N,N′-ジメチルアミノピリジン、1,4-ジアザビシクロ[2.2.2]オクタン、N-メチルモルホリン、イミダゾール、N-メチルイミダゾール、ピリジン等)のいずれを用いて良く、無機塩基としては、炭酸カリウムが好ましく、有機塩基としては、ナトリウムエチラート、ナトリウムエチラート、ナトリウムブチラートが好ましい。無機塩基は、粉体のまま添加しても良く、溶媒に分散させた状態で添加しても良い。また、有機塩基は、溶媒に溶解した状態(例えば、ナトリウムメチラートの28%メタノール溶液等)で添加しても良い。
触媒の使用量は、反応が進行する量であれば特に制限はないが、形成されるトリアゾール環に対して1.0~5.0倍モルの範囲内が好ましく、更に1.05~3.0倍モルの範囲内が好ましい。
イミノエーテル誘導体とヒドラジド誘導体を反応させる場合は、触媒を用いる必要がなく、溶媒中で加熱することにより目的物を得ることができる。
反応に用いる原料、溶媒及び触媒の添加方法は、特に制限がなく、触媒を最後に添加しても良く、溶媒を最後に添加しても良い。また、ニトリル誘導体を溶媒に分散若しくは溶解させ、触媒を添加した後、ヒドラジド誘導体を添加する方法も好ましい。
反応中の溶液温度は、反応が進行する温度であればいかなる温度でも構わないが、好ましくは、0~150℃の範囲内であり、更に好ましくは、20~140℃の範囲内である。また、生成する水を除去しながら、反応を行っても良い。
反応溶液の処理方法は、いかなる手段を用いても良いが、塩基を触媒として用いた場合は、反応溶液に酸を加えて中和する方法が好ましい。中和に用いる酸としては、例えば、塩酸、硫酸、硝酸又は酢酸等が挙げられるが、特に好ましくは酢酸である。中和に使用する酸の量は、反応溶液のpHが4~9になる範囲であれば特に制限はないが、使用する塩基に対して、0.1~3倍モルが好ましく、特に好ましくは、0.2~1.5倍モルの範囲内である。
反応溶液の処理方法として、適当な有機溶媒を用いて抽出する場合、抽出後に有機溶媒を水で洗浄した後、濃縮する方法が好ましい。ここでいう適当な有機溶媒とは、酢酸エチル、トルエン、ジクロロメタン、エーテル等非水溶性の溶媒、又は、前記非水溶性の溶媒とテトラヒドロフラン又はアルコール系溶媒との混合溶媒のことであり、好ましくは酢酸エチルである。
一般式(1)で表される構造を有する化合物を晶析させる場合、特に制限はないが、中和した反応溶液に水を追加して晶析させる方法、若しくは、一般式(1)で表される構造を有する化合物が溶解した水溶液を中和して晶析させる方法が好ましい。
〈例示化合物1の合成〉
上記した例示化合物1は以下のスキームによって合成することができる。
上記した例示化合物1は以下のスキームによって合成することができる。
脱水テトラヒドロフラン520mlに、アセトフェノン80g(0.67mol)、イソフタル酸ジメチル52g(0.27mol)を加え、窒素雰囲気下、氷水冷で撹拌しながら、ナトリウムアミド52.3g(1.34mol)を少しずつ滴下した。氷水冷下で3時間撹拌した後、水冷下で12時間撹拌した。反応液に濃硫酸を加えて中和した後、純水及び酢酸エチルを加えて分液し、有機層を純水で洗浄した。有機層を硫酸マグネシウムで乾燥し、溶媒を減圧留去した。得られた粗結晶にメタノールを加えて懸濁洗浄することにより、中間体Aを55.2g得た。
テトラヒドロフラン300ml、エタノール200mlに中間体A55g(0.15mol)を加え、室温で撹拌しながら、ヒドラジン1水和物18.6g(0.37mol)を少しずつ滴下した。滴下終了後、12時間加熱還流した。反応液に純水及び酢酸エチルを加えて分液し、有機層を純水で洗浄した。有機層を硫酸マグネシウムで乾燥し、溶媒を減圧留去した。得られた粗結晶をシリカゲルクロマトグラフィー(酢酸エチル/ヘプタン)で精製することによって、例示化合物1を27g得た。
得られた例示化合物1の1H-NMRスペクトルは以下のとおりである。なお、互変異性体の存在により、ケミカルシフトが複雑化するのを避けるために、測定溶媒にトリフルオロ酢酸を数滴加えて測定を行った。
1H-NMR(400MHz、溶媒:重DMSO、基準:テトラメチルシラン)δ(ppm):8.34(1H、s)、7.87~7.81(6H、m)、7.55~7.51(1H、m)、7.48-7.44(4H、m)、7.36-7.33(2H、m)、7.29(1H、s)
その他の化合物についても、上記と同様の方法によって合成することが可能である。
〈一般式(1)で表される構造を有する化合物の使用方法について〉
前記一般式(1)で表される構造を有する化合物は、適宜量を調整して光学フィルムに含有することができるが、添加量としては、光学フィルムを構成する樹脂に対して、0.1~10質量%含むことが好ましく、特に、0.5~5質量%含むことが好ましい。この範囲内であれば、光学フィルムの機械強度を損なうことなく、環境湿度の変化に依存した位相差の変動を低減することができる。
前記一般式(1)で表される構造を有する化合物は、適宜量を調整して光学フィルムに含有することができるが、添加量としては、光学フィルムを構成する樹脂に対して、0.1~10質量%含むことが好ましく、特に、0.5~5質量%含むことが好ましい。この範囲内であれば、光学フィルムの機械強度を損なうことなく、環境湿度の変化に依存した位相差の変動を低減することができる。
また、前記一般式(1)で表される構造を有する化合物の添加方法としては、光学フィルムを形成する樹脂に粉体で添加しても良く、溶媒に溶解した後、光学フィルムを形成する樹脂に添加しても良い。
〔有機エステル〕
本実施形態の光学フィルム(位相差フィルム)は、有機エステルとして、糖エステル、重縮合エステル(ポリエステル)、多価アルコールエステルから選択される少なくとも1種を含むことが好ましい。
本実施形態の光学フィルム(位相差フィルム)は、有機エステルとして、糖エステル、重縮合エステル(ポリエステル)、多価アルコールエステルから選択される少なくとも1種を含むことが好ましい。
中でも、糖エステルおよび重縮合エステルは、耐水系の可塑剤として機能するため、含水によるリタデーションRtの変動を抑えることができる点で好ましい。重縮合エステルは、構造中に窒素原子を含まないことが、製造ライン内で冷却されたときに液状化してフィルターに付着し、含窒素複素環化合物のフィルター捕集物の嵩高さを小さくできるため、好ましい。
(糖エステル)
糖エステルとは、フラノース環又はピラノース環の少なくともいずれかを含む化合物であり、単糖であっても、糖構造が2~12個連結した多糖であってもよい。そして、糖エステルは、糖構造が有するOH基の少なくとも一つがエステル化された化合物であることが好ましく、OH基の半分以上がエステル化されていることが好ましい。例えば、糖構造のOH基が8個であれば、糖エステルにおける平均エステル置換度が、4.0~8.0の範囲内であることが好ましく、5.0~7.5の範囲内であることがより好ましい。
糖エステルとは、フラノース環又はピラノース環の少なくともいずれかを含む化合物であり、単糖であっても、糖構造が2~12個連結した多糖であってもよい。そして、糖エステルは、糖構造が有するOH基の少なくとも一つがエステル化された化合物であることが好ましく、OH基の半分以上がエステル化されていることが好ましい。例えば、糖構造のOH基が8個であれば、糖エステルにおける平均エステル置換度が、4.0~8.0の範囲内であることが好ましく、5.0~7.5の範囲内であることがより好ましい。
糖エステルとしては、特に制限はないが、下記一般式(A)で表される糖エステルを挙げることができる。
一般式(A)
(HO)m-G-(O-C(=O)-R2)n
上記一般式(A)において、Gは、単糖類又は二糖類の残基を表し、R2は、脂肪族基又は芳香族基を表し、mは、単糖類又は二糖類の残基に直接結合しているヒドロキシ基の数の合計であり、nは、単糖類又は二糖類の残基に直接結合している-(O-C(=O)-R2)基の数の合計であり、3≦m+n≦8であり、n≠0である。
(HO)m-G-(O-C(=O)-R2)n
上記一般式(A)において、Gは、単糖類又は二糖類の残基を表し、R2は、脂肪族基又は芳香族基を表し、mは、単糖類又は二糖類の残基に直接結合しているヒドロキシ基の数の合計であり、nは、単糖類又は二糖類の残基に直接結合している-(O-C(=O)-R2)基の数の合計であり、3≦m+n≦8であり、n≠0である。
一般式(A)で表される構造を有する糖エステルは、ヒドロキシ基の数(m)、-(O-C(=O)-R2)基の数(n)が固定された単一種の化合物として単離することは困難であり、式中のm、nの異なる成分が数種類混合された化合物となることが知られている。したがって、ヒドロキシ基の数(m)、-(O-C(=O)-R2)基の数(n)が各々変化した混合物としての性能が重要であり、本実施形態の光学フィルムの場合、平均エステル置換度が、5.0~7.5の範囲内である糖エステルが好ましい。
上記一般式(A)において、Gは単糖類又は二糖類の残基を表す。単糖類の具体例としては、例えばアロース、アルトロース、グルコース、マンノース、グロース、イドース、ガラクトース、タロース、リボース、アラビノース、キシロース、リキソースなどが挙げられる。
以下に、一般式(A)で表される糖エステルの単糖類残基を有する化合物の具体例を示すが、これら例示する化合物には限定されない。
また、二糖類残基の具体例としては、例えば、トレハロース、スクロース、マルトース、セロビオース、ゲンチオビオース、ラクトース、イソトレハロース等が挙げられる。
以下に、一般式(A)で表される糖エステルの二糖類残基を有する化合物の具体例を示すが、これら例示する化合物には限定されない。
一般式(A)において、R2は、脂肪族基又は芳香族基を表す。ここで、脂肪族基及び芳香族基は、それぞれ独立に置換基を有していてもよい。
また、一般式(A)において、mは、単糖類又は二糖類の残基に直接結合しているヒドロキシ基の数の合計であり、nは、単糖類又は二糖類の残基に直接結合している-(O-C(=O)-R2)基の数の合計である。そして、3≦m+n≦8であることが必要であり、4≦m+n≦8であることが好ましい。また、n≠0である。なお、nが2以上である場合、-(O-C(=O)-R2)基は互いに同じでもよいし、異なっていてもよい。
R2の定義における脂肪族基は、直鎖であっても、分岐であっても、環状であってもよく、炭素数1~25のものが好ましく、1~20のものがより好ましく、2~15のものが特に好ましい。脂肪族基の具体例としては、例えば、メチル、エチル、n-プロピル、iso-プロピル、シクロプロピル、n-ブチル、iso-ブチル、tert-ブチル、アミル、iso-アミル、tert-アミル、n-ヘキシル、シクロヘキシル、n-ヘプチル、n-オクチル、ビシクロオクチル、アダマンチル、n-デシル、tert-オクチル、ドデシル、ヘキサデシル、オクタデシル、ジデシル等の各基が挙げられる。
また、R2の定義における芳香族基は、芳香族炭化水素基でもよいし、芳香族複素環基でもよく、より好ましくは芳香族炭化水素基である。芳香族炭化水素基としては、炭素数が6~24のものが好ましく、6~12のものがさらに好ましい。芳香族炭化水素基の具体例としては、例えば、ベンゼン、ナフタレン、アントラセン、ビフェニル、ターフェニル等の各環が挙げられる。芳香族炭化水素基としては、ベンゼン環、ナフタレン環、ビフェニル環が特に好ましい。芳香族複素環基としては、酸素原子、窒素原子又は硫黄原子のうち少なくとも一つを含む環が好ましい。複素環の具体例としては、例えば、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデン等の各環が挙げられる。芳香族複素環基としては、ピリジン環、トリアジン環、キノリン環が特に好ましい。
糖エステルは、一つの分子中に二つ以上の異なった置換基を含有していても良く、芳香族置換基と脂肪族置換基を1分子内に含有、異なる二つ以上の芳香族置換基を1分子内に含有、異なる二つ以上の脂肪族置換基を1分子内に含有することができる。
また、2種類以上の糖エステルを混合して含有することも好ましい。芳香族置換基を含有する糖エステルと、脂肪族置換基を含有する糖エステルを同時に含有することも好ましい。
以下、一般式(A)で表される糖エステルの好ましい例を下記に示すが、これらの例示する化合物には限定されない。
〈合成例:一般式(A)で表される糖エステルの合成例〉
以下に、糖エステルの合成例を示す。
以下に、糖エステルの合成例を示す。
撹拌装置、還流冷却器、温度計及び窒素ガス導入管を備えた四頭コルベンに、ショ糖を34.2g(0.1モル)、無水安息香酸を180.8g(0.8モル)、ピリジンを379.7g(4.8モル)、それぞれ仕込み、撹拌下で窒素ガス導入管から窒素ガスをバブリングさせながら昇温し、70℃で5時間エステル化反応を行った。次に、コルベン内を4×102Pa以下に減圧し、60℃で過剰のピリジンを留去した後に、コルベン内を1.3×10Pa以下に減圧し、120℃まで昇温させ、無水安息香酸、生成した安息香酸の大部分を留去した。そして、次にトルエンを1L、0.5質量%の炭酸ナトリウム水溶液を300g添加し、50℃で30分間撹拌した後、静置して、トルエン層を分取した。最後に、分取したトルエン層に水を100g添加し、常温で30分間水洗した後、トルエン層を分取し、減圧下(4×102Pa以下)、60℃でトルエンを留去させ、化合物A-1、A-2、A-3、A-4及びA-5の混合物を得た。得られた混合物をHPLC及びLC-MASSで解析したところ、A-1が7質量%、A-2が58質量%、A-3が23質量%、A-4が9質量%、A-5が3質量%で、糖エステルの平均エステル置換度が、6.57であった。なお、得られた混合物の一部をシリカゲルカラムクロマトグラフィーにより精製することで、それぞれ純度100%のA-1、A-2、A-3、A-4及びA-5を得た。
当該糖エステルの添加量は、光学フィルムを構成する樹脂(例えばセルロースアシレート)に対して0.1~20質量%の範囲で添加することが好ましく、1~15質量%の範囲で添加することがより好ましい。
糖エステルとしては、色相が10~300であるものが好ましく、10~40のものが好ましい。
(重縮合エステル)
本実施形態の光学フィルム(位相差フィルム)においては、有機エステルとして、下記一般式(4)で表される構造を有する重縮合エステルを用いることが好ましい。当該重縮合エステルはその可塑的な効果から、光学フィルムを構成する樹脂に対して1~30質量%の範囲で含有することが好ましく、5~20質量%の範囲で含有することがより好ましい。
本実施形態の光学フィルム(位相差フィルム)においては、有機エステルとして、下記一般式(4)で表される構造を有する重縮合エステルを用いることが好ましい。当該重縮合エステルはその可塑的な効果から、光学フィルムを構成する樹脂に対して1~30質量%の範囲で含有することが好ましく、5~20質量%の範囲で含有することがより好ましい。
一般式(4)
B3-(G2-A)n-G2-B4
上記一般式(4)において、B3及びB4は、それぞれ独立に脂肪族又は芳香族モノカルボン酸残基、若しくはヒドロキシ基を表す。G2は、炭素数2~12のアルキレングリコール残基、炭素数6~12のアリールグリコール残基又は炭素数が4~12のオキシアルキレングリコール残基を表す。Aは、炭素数4~12のアルキレンジカルボン酸残基又は炭素数6~12のアリールジカルボン酸残基を表す。nは1以上の整数を表す。
B3-(G2-A)n-G2-B4
上記一般式(4)において、B3及びB4は、それぞれ独立に脂肪族又は芳香族モノカルボン酸残基、若しくはヒドロキシ基を表す。G2は、炭素数2~12のアルキレングリコール残基、炭素数6~12のアリールグリコール残基又は炭素数が4~12のオキシアルキレングリコール残基を表す。Aは、炭素数4~12のアルキレンジカルボン酸残基又は炭素数6~12のアリールジカルボン酸残基を表す。nは1以上の整数を表す。
重縮合エステルは、ジカルボン酸とジオールを反応させて得られる繰り返し単位を含む重縮合エステルであり、Aは重縮合エステル中のカルボン酸残基を表し、G2はアルコール残基を表す。
重縮合エステルを構成するジカルボン酸は、芳香族ジカルボン酸、脂肪族ジカルボン酸又は脂環式ジカルボン酸であり、好ましくは芳香族ジカルボン酸である。ジカルボン酸は、1種類であっても、2種類以上の混合物であってもよい。特に芳香族、脂肪族を混合させることが好ましい。
重縮合エステルを構成するジオールは、芳香族ジオール、脂肪族ジオール又は脂環式ジオールであり、好ましくは脂肪族ジオールであり、より好ましくは炭素数1~4のジオールである。ジオールは、1種類であっても、2種類以上の混合物であってもよい。
中でも、少なくとも芳香族ジカルボン酸を含むジカルボン酸と、炭素数1~8のジオールとを反応させて得られる繰り返し単位を含むことが好ましく、芳香族ジカルボン酸と脂肪族ジカルボン酸とを含むジカルボン酸と、炭素数1~8のジオールとを反応させて得られる繰り返し単位を含むことがより好ましい。
重縮合エステルの分子の両末端は、封止されていても、封止されていなくてもよい。
一般式(4)のAを構成するアルキレンジカルボン酸の具体例としては、1,2-エタンジカルボン酸(コハク酸)、1,3-プロパンジカルボン酸(グルタル酸)、1,4-ブタンジカルボン酸(アジピン酸)、1,5-ペンタンジカルボン酸(ピメリン酸)、1,8-オクタンジカルボン酸(セバシン酸)などから誘導される2価の基が含まれる。Aを構成するアルケニレンジカルボン酸の具体例としては、マレイン酸、フマル酸などが挙げられる。Aを構成するアリールジカルボン酸の具体例としては、1,2-ベンゼンジカルボン酸(フタル酸)、1,3-ベンゼンジカルボン酸、1,4-ベンゼンジカルボン酸、1,5-ナフタレンジカルボン酸などが挙げられる。
Aは、1種類であっても、2種類以上が組み合わされてもよい。中でも、Aは、炭素原子数4~12のアルキレンジカルボン酸と炭素原子数8~12のアリールジカルボン酸との組み合わせが好ましい。
一般式(4)中のG2は、炭素原子数2~12のアルキレングリコールから誘導される2価の基、炭素原子数6~12のアリールグリコールから誘導される2価の基、又は炭素原子数4~12のオキシアルキレングリコールから誘導される2価の基を表す。
G2における炭素原子数2~12のアルキレングリコールから誘導される2価の基の例には、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3-プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、及び1,12-オクタデカンジオール等から誘導される2価の基が含まれる。
G2における炭素原子数6~12のアリールグリコールから誘導される2価の基の例には、1,2-ジヒドロキシベンゼン(カテコール)、1,3-ジヒドロキシベンゼン(レゾルシノール)、1,4-ジヒドロキシベンゼン(ヒドロキノン)などから誘導される2価の基が含まれる。Gにおける炭素原子数が4~12のオキシアルキレングリコールから誘導される2価の基の例には、ジエチレングルコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコールなどから誘導される2価の基が含まれる。
G2は、1種類であっても、2種類以上が組み合わされてもよい。中でも、G2は、炭素原子数2~12のアルキレングリコールから誘導される2価の基が好ましく、2~5がさらに好ましく、2~4が最も好ましい。
一般式(4)におけるB3及びB4は、各々芳香環含有モノカルボン酸又は脂肪族モノカルボン酸から誘導される1価の基、若しくはヒドロキシ基である。
芳香環含有モノカルボン酸から誘導される1価の基における芳香環含有モノカルボン酸は、分子内に芳香環を含有するカルボン酸であり、芳香環がカルボキシ基と直接結合したものだけでなく、芳香環がアルキレン基などを介してカルボキシ基と結合したものも含む。芳香環含有モノカルボン酸から誘導される1価の基の例には、安息香酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸、フェニル酢酸、3-フェニルプロピオン酸などから誘導される1価の基が含まれる。中でも安息香酸、パラトルイル酸が好ましい。
脂肪族モノカルボン酸から誘導される1価の基の例には、酢酸、プロピオン酸、ブタン酸、カプリル酸、カプロン酸、デカン酸、ドデカン酸、ステアリン酸、オレイン酸などから誘導される1価の基が含まれる。中でも、アルキル部分の炭素原子数が1~3であるアルキルモノカルボン酸から誘導される1価の基が好ましく、アセチル基(酢酸から誘導される1価の基)がより好ましい。
本実施形態において、重縮合エステルの重量平均分子量は、500~3000の範囲であることが好ましく、600~2000の範囲であることがより好ましい。重量平均分子量は前記ゲルパーミエーションクロマトグラフィー(GPC)によって測定することができる。
以下、一般式(4)で表される構造を有する重縮合エステルの具体例を示すが、これに限定されるものではない。
以下、上記説明した重縮合エステルの具体的な合成例について記載する。
〈重縮合エステルP1〉
エチレングリコール180g、無水フタル酸278g、アジピン酸91g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応のエチレングリコールを減圧留去することにより、重縮合エステルP1を得た。酸価0.20、数平均分子量450であった。
エチレングリコール180g、無水フタル酸278g、アジピン酸91g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応のエチレングリコールを減圧留去することにより、重縮合エステルP1を得た。酸価0.20、数平均分子量450であった。
〈重縮合エステルP2〉
1,2-プロピレングリコール251g、無水フタル酸103g、アジピン酸244g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、下記重縮合エステルP2を得た。酸価0.10、数平均分子量450であった。
1,2-プロピレングリコール251g、無水フタル酸103g、アジピン酸244g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、下記重縮合エステルP2を得た。酸価0.10、数平均分子量450であった。
〈重縮合エステルP3〉
1,4-ブタンジオール330g、無水フタル酸244g、アジピン酸103g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,4-ブタンジオールを減圧留去することにより、重縮合エステルP3を得た。酸価0.50、数平均分子量2000であった。
1,4-ブタンジオール330g、無水フタル酸244g、アジピン酸103g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,4-ブタンジオールを減圧留去することにより、重縮合エステルP3を得た。酸価0.50、数平均分子量2000であった。
〈重縮合エステルP4〉
1,2-プロピレングリコール251g、テレフタル酸354g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、重縮合エステルP4を得た。酸価0.10、数平均分子量400であった。
1,2-プロピレングリコール251g、テレフタル酸354g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、重縮合エステルP4を得た。酸価0.10、数平均分子量400であった。
〈重縮合エステルP5〉
1,2-プロピレングリコール251g、テレフタル酸354g、p-トロイル酸680g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、下記重縮合エステルP5を得た。酸価0.30、数平均分子量400であった。
1,2-プロピレングリコール251g、テレフタル酸354g、p-トロイル酸680g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、下記重縮合エステルP5を得た。酸価0.30、数平均分子量400であった。
〈重縮合エステルP6〉
180gの1,2-プロピレングリコール、292gのアジピン酸、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中200℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、重縮合エステルP6を得た。酸価0.10、数平均分子量400であった。
180gの1,2-プロピレングリコール、292gのアジピン酸、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中200℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、重縮合エステルP6を得た。酸価0.10、数平均分子量400であった。
〈重縮合エステルP7〉
180gの1,2-プロピレングリコール、無水フタル酸244g、アジピン酸103g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中200℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、重縮合エステルP7を得た。酸価0.10、数平均分子量320であった。
180gの1,2-プロピレングリコール、無水フタル酸244g、アジピン酸103g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中200℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、重縮合エステルP7を得た。酸価0.10、数平均分子量320であった。
〈重縮合エステルP8〉
エチレングリコール251g、無水フタル酸244g、コハク酸120g、酢酸150g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中200℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応のエチレングリコールを減圧留去することにより、重縮合エステルP8を得た。酸価0.50、数平均分子量1200であった。
エチレングリコール251g、無水フタル酸244g、コハク酸120g、酢酸150g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中200℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応のエチレングリコールを減圧留去することにより、重縮合エステルP8を得た。酸価0.50、数平均分子量1200であった。
〈重縮合エステルP9〉
上記重縮合エステルP2と同様の製造方法で、反応条件を変化させて、酸価0.10、数平均分子量315の重縮合エステルP9を得た。
上記重縮合エステルP2と同様の製造方法で、反応条件を変化させて、酸価0.10、数平均分子量315の重縮合エステルP9を得た。
〈多価アルコールエステル〉
本実施形態の位相差フィルムは、多価アルコールエステルを含有することも好ましい。多価アルコールエステルは、2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなる化合物であり、分子内に芳香環又はシクロアルキル環を有することが好ましい。好ましくは2~20価の脂肪族多価アルコールエステルである。
本実施形態の位相差フィルムは、多価アルコールエステルを含有することも好ましい。多価アルコールエステルは、2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなる化合物であり、分子内に芳香環又はシクロアルキル環を有することが好ましい。好ましくは2~20価の脂肪族多価アルコールエステルである。
本実施形態で好ましく用いられる多価アルコールは、次の一般式(5)で表される。
一般式(5) R11-(OH)n
ただし、R11はn価の有機基、nは2以上の正の整数、OH基はアルコール性、及び/又はフェノール性水酸基を表す。
ただし、R11はn価の有機基、nは2以上の正の整数、OH基はアルコール性、及び/又はフェノール性水酸基を表す。
好ましい多価アルコールの例としては、例えば以下のようなものを挙げることができるが、これらに限定されるものではない。
アドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ジブチレングリコール、1,2,4-ブタントリオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3-メチルペンタン-1,3,5-トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることができる。
特に、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトールが好ましい。
多価アルコールエステルに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。脂環族モノカルボン酸、芳香族モノカルボン酸を用いると透湿性、保留性を向上させる点で好ましい。
好ましいモノカルボン酸の例としては以下のようなものを挙げることができるが、これに限定されるものではない。
脂肪族モノカルボン酸としては、炭素数1~32の直鎖又は側鎖を有する脂肪酸を好ましく用いることができる。炭素数は1~20であることが更に好ましく、1~10であることが特に好ましい。酢酸を含有させるとセルロースアセテートとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。
好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等を挙げることができる。
好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることができる。
好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基、メトキシ基あるいはエトキシ基などのアルコキシ基を1~3個を導入したもの、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、又はそれらの誘導体を挙げることができる。特に安息香酸が好ましい。
多価アルコールエステルの分子量は特に制限はないが、300~1500の範囲であることが好ましく、350~750の範囲であることが更に好ましい。分子量が大きい方が揮発し難くなるため好ましく、透湿性、セルロースアシレートとの相溶性の点では小さい方が好ましい。
多価アルコールエステルに用いられるカルボン酸は1種類でもよいし、2種以上の混合であってもよい。また、多価アルコール中のOH基は、全てエステル化してもよいし、一部をOH基のままで残してもよい。
以下に、多価アルコールエステルの具体的化合物を例示する。
多価アルコールエステルは、位相差フィルム(セルロースエステル系樹脂)に対して0.5~5質量%の範囲で含有することが好ましく、1~3質量%の範囲で含有することがより好ましく、1~2質量%の範囲で含有することが特に好ましい。
多価アルコールエステルは、従来公知の一般的な合成方法に従って合成することができる。
〔その他の添加剤〕
〈可塑剤〉
本実施形態の位相差フィルムは、必要に応じて可塑剤を含有することができる。可塑剤は特に限定されないが、好ましくは、多価カルボン酸エステル系可塑剤、グリコレート系可塑剤、フタル酸エステル系可塑剤、脂肪酸エステル系可塑剤、アクリル系可塑剤等から選択される。
〈可塑剤〉
本実施形態の位相差フィルムは、必要に応じて可塑剤を含有することができる。可塑剤は特に限定されないが、好ましくは、多価カルボン酸エステル系可塑剤、グリコレート系可塑剤、フタル酸エステル系可塑剤、脂肪酸エステル系可塑剤、アクリル系可塑剤等から選択される。
グリコレート系可塑剤は特に限定されないが、アルキルフタリルアルキルグリコレート類が好ましく用いることができる。アルキルフタリルアルキルグリコレート類としては、例えば、メチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等が挙げられる。
フタル酸エステル系可塑剤としては、例えば、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ-2-エチルヘキシルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジシクロヘキシルテレフタレート等が挙げられる。
クエン酸エステル系可塑剤としては、例えば、クエン酸アセチルトリメチル、クエン酸アセチルトリエチル、クエン酸アセチルトリブチル等が挙げられる。
脂肪酸エステル系可塑剤として、例えば、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル等が挙げられる。
リン酸エステル系可塑剤としては、例えば、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等が挙げられる。
多価カルボン酸エステル化合物としては、2価以上、好ましくは2価~20価の多価カルボン酸とアルコールのエステルよりなる。また、脂肪族多価カルボン酸は2~20価であることが好ましく、芳香族多価カルボン酸、脂環式多価カルボン酸の場合は3価~20価であることが好ましい。
多価カルボン酸は、下記一般式(C)で表される。
一般式(C)
R2(COOH)m(OH)n
上記一般式(C)において、R2は(m+n)価の有機基、mは2以上の正の整数、nは0以上の整数、COOH基はカルボキシ基、OH基はアルコール性又はフェノール性ヒドロキシ基を表す。
R2(COOH)m(OH)n
上記一般式(C)において、R2は(m+n)価の有機基、mは2以上の正の整数、nは0以上の整数、COOH基はカルボキシ基、OH基はアルコール性又はフェノール性ヒドロキシ基を表す。
好ましい多価カルボン酸の例としては、以下のようなものを挙げることができるが、これらに限定されるものではない。トリメリット酸、トリメシン酸、ピロメリット酸のような3価以上の芳香族多価カルボン酸又はその誘導体、コハク酸、アジピン酸、アゼライン酸、セバシン酸、シュウ酸、フマル酸、マレイン酸、テトラヒドロフタル酸のような脂肪族多価カルボン酸、酒石酸、タルトロン酸、リンゴ酸、クエン酸のようなオキシ多価カルボン酸などを好ましく用いることができる。特にオキシ多価カルボン酸を用いることが、保留性向上などの点で好ましい。
多価カルボン酸エステルに用いられるアルコールとしては、特に制限はなく、公知のアルコール、フェノール類を用いることができる。例えば、炭素数1~32の直鎖又は側鎖を持った脂肪族飽和アルコール又は脂肪族不飽和アルコールを好ましく用いることができる。炭素数1~20であることが更に好ましく、炭素数1~10であることが特に好ましい。また、シクロペンタノール、シクロヘキサノールなどの脂環式アルコール又はその誘導体、ベンジルアルコール、シンナミルアルコールなどの芳香族アルコール又はその誘導体なども好ましく用いることができる。
多価カルボン酸としてオキシ多価カルボン酸を用いる場合は、オキシ多価カルボン酸のアルコール性又はフェノール性のヒドロキシ基を、モノカルボン酸を用いてエステル化しても良い。好ましいモノカルボン酸の例としては、以下のようなものを挙げることができるが、これらに限定されるものではない。
脂肪族モノカルボン酸としては、炭素数1~32の直鎖又は側鎖を持った脂肪酸を好ましく用いることができる。炭素数1~20であることが更に好ましく、炭素数1~10であることが特に好ましい。
好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸などの飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸などの不飽和脂肪酸などを挙げることができる。
好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、又はそれらの誘導体を挙げることができる。
好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸などの安息香酸のベンゼン環にアルキル基を導入したもの、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸などのベンゼン環を2個以上もつ芳香族モノカルボン酸、又はそれらの誘導体を挙げることができる。特に酢酸、プロピオン酸、安息香酸であることが好ましい。
多価カルボン酸エステルの分子量は、特に制限はないが、300~1000の範囲であることが好ましく、350~750の範囲であることが更に好ましい。保留性向上の点では、分子量が大きい方が好ましく、透湿性、セルロースエステルとの相溶性の点では、分子量が小さいほうが好ましい。
多価カルボン酸エステルに用いられるアルコール類は、1種類でも良いし、2種以上の混合であっても良い。
多価カルボン酸エステルの酸価は、1mgKOH/g以下であることが好ましく、0.2mgKOH/g以下であることが更に好ましい。酸価を上記範囲にすることによって、リタデーションの環境変動も抑制されるため好ましい。
酸価とは、試料1g中に含まれる酸(試料中に存在するカルボキシ基)を中和するために必要な水酸化カリウムのミリグラム数をいう。酸価はJIS K0070に準拠して測定したものである。
特に好ましい多価カルボン酸エステル化合物の例を以下に示すが、これらに限定されるものではない。例えば、トリエチルシトレート、トリブチルシトレート、アセチルトリエチルシトレート(ATEC)、アセチルトリブチルシトレート(ATBC)、ベンゾイルトリブチルシトレート、アセチルトリフェニルシトレート、アセチルトリベンジルシトレート、酒石酸ジブチル、酒石酸ジアセチルジブチル、トリメリット酸トリブチル、ピロメリット酸テトラブチル等が挙げられる。
〈紫外線吸収剤〉
本実施形態の位相差フィルムは、紫外線吸収剤を含有することが、波長380nmでの光透過率を10%以下とするための最も有効な手段である。紫外線吸収剤は、波長400nm以下の紫外線を吸収することで、液晶表示装置において、液晶セルの紫外線による劣化を抑えることができ、その耐久性を向上させることができる。
本実施形態の位相差フィルムは、紫外線吸収剤を含有することが、波長380nmでの光透過率を10%以下とするための最も有効な手段である。紫外線吸収剤は、波長400nm以下の紫外線を吸収することで、液晶表示装置において、液晶セルの紫外線による劣化を抑えることができ、その耐久性を向上させることができる。
用いる紫外線吸収剤は特に限定されないが、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物、無機粉体等が挙げられる。
例えば、5-クロロ-2-(3,5-ジ-sec-ブチル-2-ヒドロキシルフェニル)-2H-ベンゾトリアゾール、(2-2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2,4-ベンジルオキシベンゾフェノン等があり、また、チヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン928等のチヌビン類があり、これらはいずれもBASFジャパン社製の市販品であり、好ましく使用できる。
より好ましく用いられる紫外線吸収剤は、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤であり、特に好ましくはベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤である。
例えば、ベンゾトリアゾール系紫外線吸収剤としては、下記一般式(b)で示される化合物を用いることができる。
上記一般式(b)において、R1、R2、R3、R4及びR5は同一でも異なってもよく、水素原子、ハロゲン原子、ニトロ基、ヒドロキシ基、アルキル基、アルケニル基、アリール基、アルコキシ基、アシルオキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、モノもしくはジアルキルアミノ基、アシルアミノ基又は5~6員の複素環基を表し、R4とR5は閉環して5~6員の炭素環を形成してもよい。また、上記記載のこれらの基は、任意の置換基を有していてよい。
以下に、ベンゾトリアゾール系紫外線吸収剤の具体例を示すが、これらに限定されるわけではない。
UV-1:2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール
UV-2:2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)ベンゾトリアゾール
UV-3:2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)ベンゾトリアゾール
UV-4:2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール
UV-5:2-(2′-ヒドロキシ-3′-(3″,4″,5″,6″-テトラヒドロフタルイミドメチル)-5′-メチルフェニル)ベンゾトリアゾール
UV-6:2,2-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール)
UV-7:2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)-5-クロロベンゾトリアゾール
UV-8:2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール(TINUVIN171)
UV-9:オクチル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートと2-エチルヘキシル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートの混合物(TINUVIN109)
UV-2:2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)ベンゾトリアゾール
UV-3:2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)ベンゾトリアゾール
UV-4:2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール
UV-5:2-(2′-ヒドロキシ-3′-(3″,4″,5″,6″-テトラヒドロフタルイミドメチル)-5′-メチルフェニル)ベンゾトリアゾール
UV-6:2,2-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール)
UV-7:2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)-5-クロロベンゾトリアゾール
UV-8:2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール(TINUVIN171)
UV-9:オクチル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートと2-エチルヘキシル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートの混合物(TINUVIN109)
更に、ベンゾフェノン系紫外線吸収剤としては、下記一般式(c)で表される化合物が好ましく用いられる。
上記一般式(c)において、Yは水素原子、ハロゲン原子、アルキル基、アルケニル基、アルコキシ基、又はフェニル基を表し、これらのアルキル基、アルケニル基及びフェニル基は置換基を有していてもよい。Aは水素原子、アルキル基、アルケニル基、フェニル基、シクロアルキル基、アルキルカルボニル基、アルキルスルホニル基又はCO(NH)n-1-D基を表し、Dはアルキル基、アルケニル基又は置換基を有していてもよいフェニル基を表す。m及びnは1又は2を表す。
上記において、アルキル基としては、例えば、炭素数24までの直鎖又は分岐の脂肪族基を表し、アルコキシ基としては例えば、炭素数18までのアルコキシ基を表し、アルケニル基としては例えば、炭素数16までのアルケニル基でアリル基、2-ブテニル基等を表す。また、アルキル基、アルケニル基、フェニル基への置換基としてはハロゲン原子、例えば、塩素原子、臭素原子、フッ素原子等、ヒドロキシ基、フェニル基(このフェニル基にはアルキル基又はハロゲン原子等を置換していてもよい)等が挙げられる。
以下に一般式(c)で表されるベンゾフェノン系紫外線吸収剤の具体例を示すが、これらに限定されるわけではない。
UV-10:2,4-ジヒドロキシベンゾフェノン
UV-11:2,2′-ジヒドロキシ-4-メトキシベンゾフェノン
UV-12:2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン
UV-13:ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニルメタン)
UV-11:2,2′-ジヒドロキシ-4-メトキシベンゾフェノン
UV-12:2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン
UV-13:ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニルメタン)
紫外線吸収剤としては、特に、下記で示す「2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノール)」(商品名:TINUVIN928、BASFジャパン社製)を、好ましく用いることができる。
この他、1,3,5トリアジン環を有する化合物等の円盤状化合物(トリアジン系化合物)も紫外線吸収剤として好ましく用いられる。トリアジン系化合物の構造は、上述した一般式(1)等で表される。
本実施形態の位相差フィルムは、紫外線吸収剤を2種以上含有することもできる。
また、紫外線吸収剤としては、高分子紫外線吸収剤も好ましく用いることができ、特に特開平6-148430号公報に記載のポリマータイプの紫外線吸収剤が好ましく用いられる。
紫外線吸収剤の添加方法は、メタノール、エタノール、ブタノール等のアルコールやメチレンクロライド、酢酸メチル、アセトン、ジオキソラン等の溶媒或いはこれらの混合溶媒に紫外線吸収剤を溶解してからドープに添加するか、又は直接ドープ組成中に添加してもよい。無機粉体のように有機溶媒に溶解しないものは、有機溶媒とセルロースエステル中にディゾルバーやサンドミルを使用し、分散してからドープに添加する。
紫外線吸収剤の使用量は、紫外線吸収剤の種類、使用条件等により一様ではないが、位相差フィルムの乾燥膜厚が10~100μmの場合は、位相差フィルムに対して0.5~10質量%が好ましく、0.6~4質量%が更に好ましい。
〈微粒子〉
本実施形態の位相差フィルムは、微粒子を含有することができる。微粒子としては、無機化合物の例として、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。微粒子はケイ素を含むものが、濁度が低くなる点で好ましく、特に二酸化ケイ素が好ましい。
本実施形態の位相差フィルムは、微粒子を含有することができる。微粒子としては、無機化合物の例として、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。微粒子はケイ素を含むものが、濁度が低くなる点で好ましく、特に二酸化ケイ素が好ましい。
微粒子の一次粒子の平均粒径は、5~400nmが好ましく、更に好ましいのは10~300nmである。これらは主に粒径0.05~0.3μmの二次凝集体として含有されていてもよく、平均粒径100~400nmの粒子であれば、凝集せずに一次粒子として含まれていることも好ましい。位相差フィルムにおけるこれらの微粒子の含有量は、0.01~1質量%であることが好ましく、特に0.05~0.5質量%が好ましい。共流延法による多層構成の位相差フィルムの場合は、表面に上記添加量の微粒子を含有することが好ましい。
二酸化ケイ素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上、日本アエロジル(株)製)の商品名で市販されており、使用することができる。
酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上、日本アエロジル(株)製)の商品名で市販されており、使用することができる。
ポリマーの例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上、東芝シリコーン(株)製)の商品名で市販されており、使用することができる。
これらの中でも、アエロジル200V、アエロジルR972Vが位相差フィルムの濁度を低く保ちながら、摩擦係数を下げる効果が大きいため特に好ましく用いられる。本実施形態の位相差フィルムにおいては、少なくとも一方の面の動摩擦係数が0.2~1.0であることが好ましい。
各種添加剤は、製膜前のセルロースエステル含有溶液であるドープにバッチ添加してもよいし、添加剤溶解液を別途用意してインライン添加してもよい。特に、微粒子は濾過材への負荷を減らすために、一部又は全量をインライン添加することが好ましい。
添加剤溶解液をインライン添加する場合は、ドープとの混合性をよくするため、少量のセルロースエステルを溶解するのが好ましい。好ましいセルロースエステルの量は、溶媒100質量部に対して1~10質量部で、より好ましくは、3~5質量部である。
本実施形態において、インライン添加、混合を行うためには、例えば、スタチックミキサー(東レエンジニアリング製)、SWJ(東レ静止型管内混合器 Hi-Mixer)等のインラインミキサー等が好ましく用いられる。
〔位相差フィルムの製造方法〕
本実施形態の位相差フィルムは、上述した紫外線吸収剤等を添加して製膜することが容易な溶液流延製膜法で製造することが望ましい。以下、本実施形態の位相差フィルムを溶液流延製膜法で製造する例について説明する。
本実施形態の位相差フィルムは、上述した紫外線吸収剤等を添加して製膜することが容易な溶液流延製膜法で製造することが望ましい。以下、本実施形態の位相差フィルムを溶液流延製膜法で製造する例について説明する。
(溶液流延製膜法)
図5は、溶液流延製膜法によって位相差フィルムを製造する装置の一例を模式的に示している。溶液流延製膜法では、(1)少なくともセルロースエステル系樹脂、含窒素複素環化合物(配向抑制剤、紫外線吸収剤)、有機エステル(例えば糖エステル)などの添加剤を溶剤に溶解させてドープを調製する工程、(2)ドープをベルト状若しくはドラム状の金属支持体上に流延する工程、(3)金属支持体上で流延したドープの溶媒を蒸発させてウェブを得る工程、(4)ウェブを金属支持体から剥離する工程、(5)剥離したウェブ(フィルム)を延伸し、乾燥させる工程、(6)フィルムを冷却した後に巻き取る工程、が順に行われる。
図5は、溶液流延製膜法によって位相差フィルムを製造する装置の一例を模式的に示している。溶液流延製膜法では、(1)少なくともセルロースエステル系樹脂、含窒素複素環化合物(配向抑制剤、紫外線吸収剤)、有機エステル(例えば糖エステル)などの添加剤を溶剤に溶解させてドープを調製する工程、(2)ドープをベルト状若しくはドラム状の金属支持体上に流延する工程、(3)金属支持体上で流延したドープの溶媒を蒸発させてウェブを得る工程、(4)ウェブを金属支持体から剥離する工程、(5)剥離したウェブ(フィルム)を延伸し、乾燥させる工程、(6)フィルムを冷却した後に巻き取る工程、が順に行われる。
(1)ドープ調製工程
この工程では、セルロースエステル系樹脂に対する良溶媒を主とする有機溶媒に、溶解釜31中で当該セルロースエステル系樹脂、場合によって、含窒素複素環化合物、糖エステル、重縮合エステル、多価アルコールエステル、又はその他の化合物を撹拌しながら溶解し、ドープを形成する。あるいは、当該セルロースエステル系樹脂溶液に、含窒素複素環化合物、糖エステル、重縮合エステル、多価アルコールエステル、又はその他の化合物溶液を混合して主溶解液であるドープを形成する。
この工程では、セルロースエステル系樹脂に対する良溶媒を主とする有機溶媒に、溶解釜31中で当該セルロースエステル系樹脂、場合によって、含窒素複素環化合物、糖エステル、重縮合エステル、多価アルコールエステル、又はその他の化合物を撹拌しながら溶解し、ドープを形成する。あるいは、当該セルロースエステル系樹脂溶液に、含窒素複素環化合物、糖エステル、重縮合エステル、多価アルコールエステル、又はその他の化合物溶液を混合して主溶解液であるドープを形成する。
位相差フィルムを溶液流延製膜法で製造する場合、ドープを形成するのに有用な有機溶媒は、セルロースエステル系樹脂及びその他の化合物を同時に溶解するものであれば制限なく用いることができる。
例えば、塩素系有機溶媒としては、塩化メチレン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等を挙げることができ、塩化メチレン、酢酸メチル、酢酸エチル、アセトンを好ましく使用することができる。
ドープには、上記有機溶媒の他に、1~40質量%の範囲の炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含有させることが好ましい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ないときは非塩素系有機溶媒系でのセルロースエステル系樹脂及びその他の化合物の溶解を促進する役割もある。位相差フィルムの製膜においては、得られる位相差フィルムの平面性を高める点から、アルコール濃度が0.5~15.0質量%の範囲内にあるドープを用いて製膜する方法を適用することができる。
特に、メチレンクロライド、及び炭素数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含有する溶媒に、セルロースアシレート及びその他の化合物を、計15~45質量%の範囲で溶解させたドープ組成物であることが好ましい。
炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらの内ドープの安定性、沸点も比較的低く、乾燥性もよいこと等からメタノール及びエタノールが好ましい。
セルロースエステル系樹脂、含窒素複素環化合物、糖エステル、重縮合エステル、及び多価アルコールエステル、又はその他の化合物の溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、特開平9-95544号公報、特開平9-95557号公報、又は特開平9-95538号公報に記載の如き冷却溶解法で行う方法、特開平11-21379号公報に記載されている高圧で行う方法等種々の溶解方法を用いることができるが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。
ドープ中のセルロースエステル系樹脂の濃度は、10~40質量%の範囲であることが好ましい。溶解中又は後のドープに化合物を加えて溶解及び分散した後、濾材で濾過し、脱泡して送液ポンプで次工程に送る。
濾過は捕集粒子径0.5~5μmで、かつ濾水時間10~25sec/100mlの濾材を用いることが好ましい。
この方法では、粒子分散時に残存する凝集物や主ドープ添加時に発生する凝集物を、捕集粒子径0.5~5μmで、かつ濾水時間10~25sec/100mlの濾材を用いることで凝集物だけ除去できる。主ドープでは粒子の濃度も添加液に比べ十分に薄いため、濾過時に凝集物同士がくっついて急激な濾圧上昇することもない。
(2)流延工程
この工程では、溶解釜31中のドープを、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイ32に送液し、無限に移送する無端の金属支持体33上の流延位置に、加圧ダイ32からドープを流延する。加圧ダイ32は、ダイの口金部分のスリット形状を調整でき、膜厚を均一にしやすい点で好ましい。加圧ダイ32には、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。製膜速度を上げるために、加圧ダイ32を金属支持体33上に2基以上設け、ドープ量を分割して重層してもよい。
この工程では、溶解釜31中のドープを、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイ32に送液し、無限に移送する無端の金属支持体33上の流延位置に、加圧ダイ32からドープを流延する。加圧ダイ32は、ダイの口金部分のスリット形状を調整でき、膜厚を均一にしやすい点で好ましい。加圧ダイ32には、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。製膜速度を上げるために、加圧ダイ32を金属支持体33上に2基以上設け、ドープ量を分割して重層してもよい。
金属支持体33は、2個のローラ34・34によって張架されるステンレススティールベルトで構成されている。金属支持体33としては、表面を鏡面仕上げしたものが好ましく、上記のステンレススティールベルト以外に、鋳物で表面をメッキ仕上げした金属ドラム等を用いることもできる。
流延(キャスト)の幅は、1~4mの範囲、好ましくは1.5~3mの範囲、さらに好ましくは2~2.8mの範囲とすることができる。流延工程での金属支持体33の表面温度は、-50℃~溶剤が沸騰して発泡しない温度、さらに好ましくは、-30~0℃の範囲に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高過ぎるとウェブが発泡したり、平面性が劣化する場合がある。好ましい支持体温度としては0~100℃で適宜決定され、5~30℃の範囲が更に好ましい。あるいは、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態で支持体から剥離することも好ましい方法である。
金属支持体33の温度を制御する方法は特に制限されないが、温風又は冷風を吹きかける方法や、温水を金属支持体33の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体33の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は、溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。特に、流延から剥離するまでの間で支持体の温度及び乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。
(3)溶媒蒸発工程
この工程では、金属支持体33上に流延されたドープによって形成された膜(ウェブ)を加熱し、溶媒を蒸発させる。溶媒を蒸発させるには、ウェブの表面(金属支持体33とは反対側)から風を吹かせる方法、金属支持体33の裏面(ウェブとは反対側の面)から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱方法が、乾燥効率が良く好ましい。また、それらを組み合わせる方法も好ましく用いられる。流延後の金属支持体33上のウェブを、40~100℃の雰囲気下で、金属支持体33上で乾燥させることが好ましい。40~100℃の雰囲気下に維持するには、この温度の温風をウェブ上面に当てるか、赤外線等の手段により加熱することが好ましい。
この工程では、金属支持体33上に流延されたドープによって形成された膜(ウェブ)を加熱し、溶媒を蒸発させる。溶媒を蒸発させるには、ウェブの表面(金属支持体33とは反対側)から風を吹かせる方法、金属支持体33の裏面(ウェブとは反対側の面)から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱方法が、乾燥効率が良く好ましい。また、それらを組み合わせる方法も好ましく用いられる。流延後の金属支持体33上のウェブを、40~100℃の雰囲気下で、金属支持体33上で乾燥させることが好ましい。40~100℃の雰囲気下に維持するには、この温度の温風をウェブ上面に当てるか、赤外線等の手段により加熱することが好ましい。
面品質、透湿性、剥離性の観点から、30~120秒以内で当該ウェブを金属支持体33から剥離することが好ましい。
(4)剥離工程
この工程では、金属支持体33上で溶媒が蒸発したウェブを、剥離ローラ35によって所定の剥離位置で剥離する。以降、剥離後のウェブを、ウェブ36とする。ウェブ36は、次工程に送られる。
この工程では、金属支持体33上で溶媒が蒸発したウェブを、剥離ローラ35によって所定の剥離位置で剥離する。以降、剥離後のウェブを、ウェブ36とする。ウェブ36は、次工程に送られる。
金属支持体33上の剥離位置における温度は、好ましくは10~40℃の範囲であり、さらに好ましくは、11~30℃の範囲である。
なお、剥離時点での金属支持体33上でのウェブの残留溶媒量は、乾燥の条件の強弱、金属支持体33の長さ等により、50~120質量%の範囲で剥離することが好ましい。残留溶媒量がより多い時点で剥離する場合、ウェブが柔らか過ぎると剥離時平面性を損ね、剥離張力によるツレや縦スジが発生しやすいため、経済速度と品質との兼ね合いで剥離時の残留溶媒量が決められる。なお、ウェブの残留溶媒量は、下記式で定義される。
残留溶媒量(質量%)=(ウェブの加熱処理前質量-ウェブの加熱処理後質量)/(ウェブの加熱処理後質量)×100
ここで、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
ここで、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
金属支持体33からウェブを剥離する際の剥離張力は、通常、196~245N/mの範囲内であるが、剥離の際に皺が入りやすい場合、190N/m以下の張力で剥離することが好ましい。
本実施形態においては、金属支持体33上の剥離位置における温度を、-50~40℃の範囲内とするのが好ましく、10~40℃の範囲内がより好ましく、15~30℃の範囲内とするのが最も好ましい。
なお、位相差フィルムにおける紫外線吸収剤の含有量は、支持体上でのドープの乾燥速度(支持体温度)や、支持体からウェブを剥離する際の残留溶媒量を調整することによって制御することができる。本実施形態のように、位相差フィルムに上述した配向抑制剤を添加する場合、支持体上での乾燥速度が速いほうが(支持体温度が高いほうが)、膜厚方向における紫外線吸収剤の偏りが小さくなり、剥離時の残留溶媒量が大きいほうが、膜厚方向における紫外線吸収剤の偏りが小さくなる。
(5)延伸、乾燥工程
この工程では、予備乾燥工程、延伸工程、本乾燥工程が順に行われる。予備乾燥は、必要に応じて行われればよい。
この工程では、予備乾燥工程、延伸工程、本乾燥工程が順に行われる。予備乾燥は、必要に応じて行われればよい。
〈予備乾燥工程〉
金属支持体33から剥離して得られたウェブ36を乾燥させる。ウェブ36の乾燥は、ウェブ36を、上下に配置した多数のローラにより搬送しながら乾燥させてもよいし、テンター乾燥機のようにウェブ36の両端部をクリップで固定して搬送しながら乾燥させてもよい。
金属支持体33から剥離して得られたウェブ36を乾燥させる。ウェブ36の乾燥は、ウェブ36を、上下に配置した多数のローラにより搬送しながら乾燥させてもよいし、テンター乾燥機のようにウェブ36の両端部をクリップで固定して搬送しながら乾燥させてもよい。
ウェブ36を乾燥させる手段は特に制限なく、一般的に熱風、赤外線、加熱ローラ、マイクロ波等で行うことができるが、簡便さの点で、熱風で行うことが好ましい。
ウェブ36の乾燥工程における乾燥温度は、好ましくはフィルムのガラス転移点-5℃以下、100℃以上で、10分以上60分以下の熱処理を行うことが効果的である。乾燥温度は100~200℃の範囲内、更に好ましくは110~160℃の範囲内であることが望ましい。
〈延伸工程〉
この工程では、金属支持体33から剥離され、必要に応じて予備乾燥されたウェブ36に対して、MD方向及び/又はTD方向への延伸が行われる。このとき、少なくともテンター延伸装置37によって、TD方向に延伸することが好ましい。
この工程では、金属支持体33から剥離され、必要に応じて予備乾燥されたウェブ36に対して、MD方向及び/又はTD方向への延伸が行われる。このとき、少なくともテンター延伸装置37によって、TD方向に延伸することが好ましい。
延伸工程での延伸は、一軸延伸又は二軸延伸とすることができる。二軸延伸には、一方向に延伸し、もう一方の方向の張力を緩和して収縮させる態様も含まれる。
本実施形態の位相差フィルムは、延伸後の膜厚が所望の範囲になるように、MD方向及び/又はTD方向に、好ましくはTD方向に、(Tg+15)~(Tg+50)℃の温度範囲で延伸することが好ましい。なお、Tgは、フィルムのガラス転移温度(℃)である。上記温度範囲で延伸を行うと、リタデーションの調整がしやすく、また延伸応力を低下できるのでヘイズが低くなる。また、破断の発生を抑制し、平面性、フィルム自身の着色性に優れた偏光板用の位相差フィルムが得られる。延伸温度は、(Tg+20)~(Tg+40)℃の範囲であることが好ましい。
なお、ここでいうガラス転移温度Tgは、市販の示差走査熱量測定器を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い求めた中間点ガラス転移温度(Tmg)である。具体的な位相差フィルムのガラス転移温度Tgの測定方法は、JIS K7121(1987)に従って、セイコーインスツル(株)製の示差走査熱量計DSC220を用いて測定する。
本実施形態の位相差フィルムは、ウェブ36を少なくともTD方向に1.1倍以上延伸することが好ましい。延伸の範囲は、元幅に対して1.1~1.5倍であることが好ましく、1.05~1.3倍であることがより好ましい。上記範囲内であれば、フィルム中の分子の移動が大きく、所望のリタデーション値が得られるばかりではなく、フィルムの寸法変化の挙動を所望の範囲内に制御することができる。
さらに、当該延伸は製膜した後残留溶剤量が40質量%以上であるときに該フィルムをMD方向に延伸を開始することが好ましく、残留溶剤量が40質量%未満であるときにTD方向に延伸することが好ましい。
MD方向に延伸するために、剥離張力を130N/m以上で剥離することが好ましく、特に好ましくは150~170N/mである。剥離後のウェブは高残留溶剤状態であるため、剥離張力と同様の張力を維持することで、MD方向への延伸を行うことができる。ウェブが乾燥し、残留溶剤量が減少するに従って、MD方向への延伸率は低下する。
なお、MD方向の延伸倍率は、ベルト支持体の回転速度とテンター運転速度から算出できる。
TD方向に延伸するには、例えば、特開昭62-46625号公報に示されているような乾燥全工程あるいは一部の工程を幅方向にクリップ又はピンでウェブの幅両端を幅保持しつつ乾燥させる方法(テンター方式と呼ばれる)、中でも、クリップを用いるテンター方式、ピンを用いるピンテンター方式が好ましく用いられる。
本実施形態の位相差フィルムは、延伸することにより必然的にリタデーションを有する。位相差フィルムの面内方向のリタデーションRo、及び厚さ方向のリタデーションRtの各値は、前述した自動複屈折率計アクソスキャンを用いて三次元屈折率測定を行い、得られた屈折率nx、ny、nzから算出することができる。
〈本乾燥工程〉
延伸後のウェブ36は、フィルムFとして乾燥装置38に搬送され、そこで上述した予備乾燥と同様の手法で乾燥が行われる。なお、本乾燥工程での乾燥条件は、予備乾燥工程と異なっていてもよい。本乾燥工程では、セルロースエステル系樹脂と添加剤の配向ずれを生じにくくして、含水およびその後の乾燥および湿熱変動によるリタデーションRtの変動を抑える観点から、延伸後に、延伸温度よりも低い温度である100℃以上で、5分以上乾燥が行われることが望ましく、110~150℃で10~20分間の乾燥が行われることがより望ましい。
延伸後のウェブ36は、フィルムFとして乾燥装置38に搬送され、そこで上述した予備乾燥と同様の手法で乾燥が行われる。なお、本乾燥工程での乾燥条件は、予備乾燥工程と異なっていてもよい。本乾燥工程では、セルロースエステル系樹脂と添加剤の配向ずれを生じにくくして、含水およびその後の乾燥および湿熱変動によるリタデーションRtの変動を抑える観点から、延伸後に、延伸温度よりも低い温度である100℃以上で、5分以上乾燥が行われることが望ましく、110~150℃で10~20分間の乾燥が行われることがより望ましい。
〈ナーリング加工〉
上記の本乾燥の終了後、フィルムFの巻取前に、スリッターを設けてフィルムFの端部を切り落とすことが、良好な巻姿を得るため好ましい。更に、フィルム幅手両端部には、ナーリング加工を施すことが好ましい。
上記の本乾燥の終了後、フィルムFの巻取前に、スリッターを設けてフィルムFの端部を切り落とすことが、良好な巻姿を得るため好ましい。更に、フィルム幅手両端部には、ナーリング加工を施すことが好ましい。
ナーリング加工は、加熱されたエンボスローラーを押し当てることにより形成することができる。エンボスローラーには細かな凹凸が形成されており、これを押し当てることでフィルムに凹凸を形成し、端部を嵩高くすることができる。フィルムFの幅手両端部のナーリングの高さは、4~20μm、幅5~20mmが好ましい。
(6)巻取工程
この工程では、残留溶媒量が2質量%以下となってから、巻取装置39にてフィルムFを巻き取る工程である。残留溶媒量を0.4質量%以下にすることにより、寸法安定性の良好なフィルムを得ることができる。
この工程では、残留溶媒量が2質量%以下となってから、巻取装置39にてフィルムFを巻き取る工程である。残留溶媒量を0.4質量%以下にすることにより、寸法安定性の良好なフィルムを得ることができる。
フィルムFの巻き取り方法は、一般に使用されているものを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを使いわければよい。
〔対向フィルム〕
次に、偏光板の対向フィルム(位相差フィルムと偏光子を介して対向するフィルム)について説明する。対向フィルムは、ポリエステルやアクリルなどの樹脂を含むフィルムで構成することができる。
次に、偏光板の対向フィルム(位相差フィルムと偏光子を介して対向するフィルム)について説明する。対向フィルムは、ポリエステルやアクリルなどの樹脂を含むフィルムで構成することができる。
(ポリエステルフィルム)
対向フィルムは、面内に超複屈折性を有し、波長380nmでの光透過率が50%以上であるポリエステルフィルムであってもよい。ここで、面内に超複屈折性を有するとは、面内方向のリタデーションRoが、8000nm以上であることを言う。対向フィルムにおける波長380nmでの光透過率は、60~95%であることが望ましく、70~95%であることがより望ましく、80~95%であることがより一層望ましい。
対向フィルムは、面内に超複屈折性を有し、波長380nmでの光透過率が50%以上であるポリエステルフィルムであってもよい。ここで、面内に超複屈折性を有するとは、面内方向のリタデーションRoが、8000nm以上であることを言う。対向フィルムにおける波長380nmでの光透過率は、60~95%であることが望ましく、70~95%であることがより望ましく、80~95%であることがより一層望ましい。
対向フィルムにおいて、波長380nmにおける光透過率を50%以上とする方法としては、対向フィルムに、波長380nm付近の光を吸収する添加剤を添加しないことが有効であり、特に、紫外線を吸収する紫外線吸収剤を添加しないことが好ましい。
本実施形態のポリエステルフィルムは、延伸ポリエステルフィルムであり、そのリタデーションRoの下限値は、超複屈折性を発現させる観点から、8000nmであることが好ましく、10000nmであることがより好ましい。一方、延伸ポリエステルフィルムのリタデーションRoの上限値は、それ以上のリタデーションRoを有するフィルムを用いたとしても更なる視認性の改善効果は実質的に得られず、また、リタデーションRoの大きさに応じてフィルムの厚さも上昇する傾向があるため、薄型化への要請に反し兼ねないという観点、及び工業材料として取り扱い性が低下する観点から、30000nmに設定することが好ましい。
なお、ポリエステルフィルム中に紫外線吸収剤を含有させると、複屈折性が低下してしまう。超複屈折性を保つためには、ポリエステルフィルムを製造する際の延伸倍率をあげることや、延伸温度を調整するなどが必要になる。しかし、これらの手段を適用すると、ヘイズの増大を招き、表示装置のコントラストを低下させる。また、ポリエステルフィルムの膜厚を厚くして、複屈折値を増大させる手段もあるが、表示装置の大型化に伴って軽量化、薄膜化が求められている中で、質量と厚さが増加してしまうことになる。また、ポリエステルフィルムが厚くなることによって、偏光板や表示装置を製造する際の取り扱い性の低下に起因する製造トラブルや故障等の原因となることもある。本実施形態では、対向フィルム(ポリエステルフィルム)に紫外線吸収剤を添加しないため、上記の問題が発生することはない。
延伸ポリエステルフィルムは、面内方向のリタデーションRoと厚さ方向のリタデーション値Rtの比(Ro/Rt)の値が、好ましくは0.2以上であり、より好ましくは0.5以上、更に好ましくは0.6以上である。
Ro/Rtの最大値は、2.0(即ち、完全な一軸対称性フィルム)であるが、完全な一軸対称性フィルムに近づくにつれて配向方向と直交する方向の機械的強度が低下する傾向がある。よって、ポリエステルフィルムのRo/Rtの上限は、好ましくは1.2以下、より好ましくは1.0以下である。
延伸ポリエステルフィルムの原料樹脂であるポリエステルは、透明性に優れるとともに、熱的、機械的特性にも優れており、延伸加工によって容易にリタデーションを制御することができる。ポリエステルの中でも、ポリエチレンテレフタレート又はポリエチレンナフタレートが好ましい。ポリエチレンテレフタレート及びポリエチレンナフタレートに代表されるポリエステルは、固有複屈折が大きく、フィルムの厚さが薄くても比較的容易に大きなリタデーションが得られるので好ましい。特に、ポリエチレンナフタレートは、ポリエステルの中でも固有複屈折率が大きいことから、リタデーションを特に高くしたい場合や、リタデーションを高く保ちながらフィルム厚さを薄くしたい場合に好適である。
(延伸ポリエステルフィルムの製造方法)
以下に、延伸ポリエステルフィルムの製造方法の概要を説明する。
以下に、延伸ポリエステルフィルムの製造方法の概要を説明する。
ポリエステルフィルムは、任意のジカルボン酸とジオールとを縮合させて得ることができる。ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、オルトフタル酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、ジフェニルカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルスルホンカルボン酸、アントラセンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、マロン酸、ジメチルマロン酸、コハク酸、3,3-ジエチルコハク酸、グルタル酸、2,2-ジメチルグルタル酸、アジピン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、アゼライン酸、ダイマー酸、セバシン酸、スベリン酸、ドデカジカルボン酸等を挙げることができる。
ジオールとしては、例えば、エチレングリコール、プロピレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、1,2-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、デカメチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサジオール、2,2-ビス(4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン等を挙げることができる。
ポリエステルフィルムを構成するジカルボン酸成分とジオール成分としては、それぞれ1種又は2種以上を用いても良い。ポリエステルフィルムを構成する具体的なポリエステル樹脂としては、例えば、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等が挙げられ、好ましくはポリエチレンテレフタレート(PET)及びポリエチレンナフタレート(PEN)であり、より好ましくはポリエチレンテレフタレート(PET)である。ポリエステル樹脂は、必要に応じて他の共重合成分を含んでも良く、機械強度の点からは共重合成分の割合は3モル%以下が好ましく、好ましくは2モル%以下、更に好ましくは1.5モル%以下である。これらの樹脂は透明性に優れるとともに、熱的、機械的特性にも優れる。また、これらの樹脂は、延伸加工によって容易にリタデーションを制御することができる。
ポリエステルフィルムは、一般的な製造方法に従って得ることができる。具体的には、ポリエステル樹脂を溶融し、シート状に押出し成形された無配向ポリエステルをガラス転移温度以上の温度において、ロールの速度差を利用して縦方向に延伸した後、テンターにより横方向に延伸し、熱処理及び必要に応じて弛緩処理を施すことにより延伸ポリエステルフィルムを製造する溶融流延法等が挙げられる。延伸ポリエステルフィルムは、一軸延伸フィルムであっても、二軸延伸フィルムであっても良い。
ポリエステルフィルムを得るための製造条件は、公知の手法に従って適宜設定することができる。例えば、縦延伸温度及び横延伸温度は、通常80~130℃であり、好ましくは90~120℃である。縦延伸倍率は、通常1.0~3.5倍であり、好ましくは1.0倍~3.0倍である。また、横延伸倍率は、通常2.5~6.0倍であり、好ましくは3.0~5.5倍である。
リタデーションを特定範囲に制御することは、延伸倍率や延伸温度、フィルムの厚さを適宜設定することにより行うことができる。例えば、縦延伸と横延伸の延伸倍率差が高いほど、延伸温度が低いほど、フィルムの厚さが厚いほど、高いリタデーションを得やすくなる。逆に、縦延伸と横延伸の延伸倍率差が低いほど、延伸温度が高いほど、フィルムの厚さが薄いほど、低いリタデーションを得やすくなる。また、延伸温度が高いほど、トータル延伸倍率が低いほど、リタデーション値と厚さ方向リタデーション値の比(Ro/Rt)が低いフィルムが得やすくなる。逆に、延伸温度が低いほど、トータル延伸倍率が高いほど、リタデーション値と厚さ方向リタデーション値の比(Ro/Rt)が高いフィルムが得られる。更に、熱処理温度は、通常140~240℃の範囲内が好ましく、より好ましくは170~240℃の範囲内である。
弛緩処理の温度は、通常、100~230℃の範囲内であり、110~210℃の範囲内であることがより好ましく、120~180℃の範囲内が更に好ましい。また、弛緩量は、通常、0.1~20%の範囲内であり、1~10%の範囲内であることが好ましく、2~5%の範囲内であることがより好ましい。この弛緩処理の温度及び弛緩量は、弛緩処理後のポリエステルフィルムの150℃における熱収縮率が2%以下になるように設定されることが好ましい。
また、一軸延伸及び二軸延伸処理においては、横延伸の後、ボーイングに代表されるような配向主軸の歪みを緩和させるために、再度、熱処理を行ったり、延伸処理を行ったりすることができる。ボーイングによる配向主軸の延伸方向に対する歪みの最大値は、好ましくは30°以内、より好ましくは15°以内、さらにより好ましくは8°以内である。配向主軸の歪みの最大値が30゜を超えると、後の工程で偏光板を構成し、枚葉化したときに、この枚葉間で光学特性の不均一が生じる場合がある。ここで配向主軸とは、延伸ポリエステルフィルム上の任意の点における分子配向方向をいう。また、配向主軸の延伸方向に対する歪みとは、配向主軸と延伸方向との角度差をいう。さらに、その最大値とは、長尺方向に対して垂直方向上における値の最大値をいう。前記配向主軸は、例えば、位相差フィルム・光学材料検査装置RETS(大塚電子株式会社製)又は分子配向計MOA(王子計測機器株式会社製)を用いて測定できる。
ポリエステルフィルムにおけるリタデーションの変動を抑制するためには、フィルムの厚さムラが小さいことが好ましい。リタデーション差をつけるために縦延伸倍率を低くすると、縦厚さムラ(以下、「厚さムラ」ともいう。)の値が高くなる場合がある。縦厚さムラの値は、延伸倍率のある特定の範囲で非常に高くなる領域があるため、そのような範囲を外すように製膜条件を設定することが望ましい。
延伸ポリエステルフィルムの厚さムラは、5.0%以下であることが好ましく、4.5%以下であることがより好ましく、4.0%以下であることがさらに好ましく、3.0%以下であることが特に好ましい。フィルムの厚さムラは、任意の手段で測定することができる。例えば、フィルムの搬送方向に連続したテープ状サンプル(長さ3m)を採取し、市販の測定機、例えば、(株)セイコー・イーエム製の「電子マイクロメータ ミリトロン1240」を用いて、1cmピッチで100点の厚さを測定し、厚さの最大値(dmax)、最小値(dmin)、平均値(d)を求め、下記式にて厚さムラ(%)を算出することができる。
厚さムラ(%)=((dmax-dmin)/d)×100
厚さムラ(%)=((dmax-dmin)/d)×100
延伸ポリエステルフィルムの厚さは任意であり、例えば、15~300μmの範囲内、好ましくは30~200μmの範囲内で適宜設定でき、特に、60~80μmの範囲であると、薄膜化と良好な視認性が両立することができる観点から好ましい。
延伸ポリエステルフィルムにおける少なくとも一方の面には、種々の機能層を有していても良い。そのような機能層としては、例えば、ハードコート層(紫外線硬化樹脂層ともいう。)、防眩層、反射防止層、低反射層、低反射防眩層、反射防止防眩層、帯電防止層、シリコーン層、粘着層、防汚層、耐指紋層、撥水層、及びブルーカット層等からなる群より選択される1種以上を用いることができる。本実施形態では、対向フィルムである延伸ポリエステルフィルムの視認面側に、紫外線硬化樹脂層を有する構成とすることが好ましい。また、防眩層、反射防止層、低反射層、低反射防眩層、反射防止防眩層を設けることにより、斜め方向から観察したときの色ムラがより改善されるという効果も期待できる。
種々の機能層を設けるに際して、延伸ポリエステルフィルムの表面に易接着層を設けることが好ましい。その際、反射光による干渉を抑える観点から、易接着層の屈折率を、機能層の屈折率と配向フィルムの屈折率の相乗平均近傍になるように調整することが好ましい。易接着層の屈折率の調整は、公知の方法を採用することができ、例えば、バインダー樹脂に、チタンやジルコニウム、その他の金属種を含有させることで容易に調整することができる。易接着層の形成に用いる塗布液は、水溶性又は水分散性の共重合ポリエステル樹脂、アクリル樹脂及びポリウレタン樹脂のうち、少なくとも1種を含む水性塗布液が好ましい。これらの塗布液としては、例えば、特公平6-81714号公報、特許第3200929号公報、特許第3632044号公報、特許第4547644号公報、特許第4770971号公報、特許第3567927号公報、特許第3589232号公報、特許第3589233号公報、特許第3900191号公報、特許第4150982号公報等に開示された水溶性又は水分散性共重合ポリエステル樹脂溶液、アクリル樹脂溶液、ポリウレタン樹脂溶液等が挙げられる。
(紫外線硬化樹脂層)
本実施形態においては、上述したように、対向フィルムが、紫外線硬化樹脂層(以下、ハードコート層とも称する)を有する構成であることが好ましい。
本実施形態においては、上述したように、対向フィルムが、紫外線硬化樹脂層(以下、ハードコート層とも称する)を有する構成であることが好ましい。
ハードコート層は、対向フィルムの表面にハードコート性を付与するための層であり、例えば、紫外線硬化樹脂と光重合開始剤とを含有するハードコート層形成用組成物を用い、塗膜形成後、紫外線の照射により紫外線硬化樹脂を硬化して形成される層である。
本実施形態に適用可能な紫外線硬化樹脂は、紫外線により硬化する特性を備えた樹脂成分であれば特に制限はないが、代表的な樹脂材料としては、アクリレート系の官能基を有する化合物等の1又は2以上の不飽和結合を有する化合物を挙げることができる。1つの不飽和結合を有する化合物としては、例えば、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等を挙げることができる。2つ以上の不飽和結合を有する化合物としては、例えば、ポリメチロールプロパントリ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等及びこれらをエチレンオキサイド(EО)等で変性した多官能化合物、又は、上記多官能化合物と(メタ)アクリレート等の反応生成物(例えば、多価アルコールのポリ(メタ)アクリレートエステル)等を挙げることができる。なお、「(メタ)アクリレート」とは、メタクリレート及びアクリレートを指すものである。
上記化合物のほかに、不飽和二重結合を有する比較的低分子量(数平均分子量300~8万、好ましくは400~5000)のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等も上記紫外線硬化樹脂として使用することができる。なお、この場合の樹脂とは、モノマー以外のダイマー、オリゴマー、ポリマー全てを含む。
本実施形態における好ましい化合物としては、3つ以上の不飽和結合を有する化合物が挙げられる。このような化合物を用いると、形成するハードコート層の架橋密度を高めることができ、塗膜硬度を高めることができる。
具体的には、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ポリエステル多官能アクリレートオリゴマー(3~15官能)、ウレタン多官能アクリレートオリゴマー(3~15官能)等を適宜組み合わせて用いることが好ましい。
紫外線硬化樹脂は、溶媒乾燥型樹脂(熱可塑性樹脂等、塗工時に固形分を調整するために添加した溶媒を乾燥させるだけで、皮膜を形成することが可能な樹脂)と併用して使用することもできる。溶媒乾燥型樹脂を併用することによって、塗布面の皮膜欠陥を有効に防止することができる。紫外線硬化樹脂と併用して使用することができる溶媒乾燥型樹脂は特に限定されず、一般的な熱可塑性樹脂を使用することができる。
光重合開始剤としては、特に限定されず、公知のものを用いることができ、例えば、光重合開始剤としては、アセトフェノン類、ベンゾフェノン類、ミヒラーベンゾイルベンゾエート、α-アミロキシムエステル、チオキサントン類、プロピオフェノン類、ベンジル類、ベンゾイン類、アシルホスフィンオキシド類が挙げられる。また、光増感剤を混合して用いることが好ましく、その具体例としては、例えば、n-ブチルアミン、トリエチルアミン、ポリ-n-ブチルホスフィン等が挙げられる。
光重合開始剤としては、紫外線硬化樹脂がラジカル重合性不飽和基を有する樹脂系の場合は、アセトフェノン類、ベンゾフェノン類、チオキサントン類、ベンゾイン、ベンゾインメチルエーテル等を単独又は混合して用いることが好ましい。また、紫外線硬化樹脂がカチオン重合性官能基を有する樹脂系の場合は、光重合開始剤としては、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、メタロセン化合物、ベンゾインスルホン酸エステル等を単独又は混合物として用いることが好ましい。
光重合開始剤としては、ラジカル重合性不飽和基を有する紫外線硬化樹脂の場合は、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(商品名:IRGACURE 184、BASFジャパン社製)が、紫外線硬化樹脂との相溶性、及び、黄変も少ないという理由から好ましい。
ハードコート層形成用組成物にける光重合開始剤の含有量は、紫外線硬化樹脂100質量部に対して、1.0~10質量部の範囲内であることが好ましい。添加量が1.0質量部以上であれば、ハードコート層の硬度を所望の条件とすることができ、10質量部以下であれば、塗設した膜の深部まで電離放射線が届き、内部硬化が促進され、目標であるハードコート層表面の所望の鉛筆硬度を得ることができる点で好ましい。
光重合開始剤の含有量のより好ましい下限は、2.0質量部であり、より好ましい上限は、8.0質量部である。上記光重合開始剤の含有量がこの範囲にあることで、膜厚方向に硬度分布が発生せず、ハードコート層として均一な硬度になりやすくなる。
上記ハードコート層形成用組成物は、溶媒を含有していてもよい。溶媒としては、使用する紫外線硬化樹脂成分の種類及び溶解性に応じて、適宜選択して使用することができる。例えば、溶媒として、ケトン類(例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジアセトンアルコール等)、エーテル類(例えば、ジオキサン、テトラヒドロフラン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等)、脂肪族炭化水素類(例えば、ヘキサン等)、脂環式炭化水素類(例えば、シクロヘキサン等)、芳香族炭化水素類(例えば、トルエン、キシレン等)、ハロゲン化炭素類(例えば、ジクロロメタン、ジクロロエタン等)、エステル類(例えば、酢酸メチル、酢酸エチル、酢酸ブチル等)、水、アルコール類(例えば、エタノール、イソプロパノール、ブタノール、シクロヘキサノール等)、セロソルブ類(例えば、メチルセロソルブ、エチルセロソルブ等)、セロソルブアセテート類、スルホキシド類(例えば、ジメチルスルホキシド等)、アミド類(例えば、ジメチルホルムアミド、ジメチルアセトアミド等)等を例示でき、これらの混合溶媒を用いることもできる。特に、ケトン類の溶媒でメチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンのいずれか、又は、これらの混合物を少なくとも含むことが、紫外線硬化樹脂との相溶性、塗布性に優れるという理由から好ましい。
また、ハードコート層形成用組成物には、ハードコート層の硬度を高くする、硬化収縮を抑える、ブロッキングを防止する、屈折率を制御する、防眩性を付与する、粒子やハードコート層表面の性質を制御する等の目的に応じて、従来公知の有機微粒子、無機微粒子、分散剤、界面活性剤、帯電防止剤、シランカップリング剤、増粘剤、着色防止剤、着色剤(顔料、染料)、消泡剤、レベリング剤、難燃剤、接着付与剤、重合禁止剤、酸化防止剤、表面改質剤等を添加していてもよい。また、上記ハードコート層形成用組成物は、光増感剤を含んでもよく、その具体例としては、n-ブチルアミン、トリエチルアミン、ポリ-n-ブチルホソフィン等が挙げられる。
上記ハードコート層形成用組成物の調製方法としては、各構成成分を均一に混合できれば、特に限定されず、例えば、各構成成分を、ペイントシェーカー、ビーズミル、ニーダー、ミキサー等の公知の装置を用いて混合あるいは溶解して、調製することができる。
また、上記ハードコート層形成用組成物を、対向フィルム上に塗布する方法としては、特に限定されず、例えば、スピンコート法、ディップ法、スプレー法、ダイコート法、バーコート法、ロールコーター法、メニスカスコーター法、フレキソ印刷法、スクリーン印刷法、ピードコーター法等の公知の湿式塗布方法を挙げることができる。
(アクリルフィルム)
本実施形態の対向フィルムは、アクリル系樹脂を含むフィルム(アクリルフィルム)であってもよい。アクリル系樹脂には、メタクリル樹脂も含まれる。アクリルフィルムは、ポリエステルフィルムと同様に、例えば溶液流延製膜法によって製造することができる。
本実施形態の対向フィルムは、アクリル系樹脂を含むフィルム(アクリルフィルム)であってもよい。アクリル系樹脂には、メタクリル樹脂も含まれる。アクリルフィルムは、ポリエステルフィルムと同様に、例えば溶液流延製膜法によって製造することができる。
(メタ)アクリル系樹脂としては、Tg(ガラス転移温度)が好ましくは115℃以上、より好ましくは120℃以上、さらに好ましくは125℃以上、特に好ましくは130℃以上である。Tgが115℃以上であることにより、光学フィルムの耐久性が向上する。上記(メタ)アクリル系樹脂のTgの上限値は特に限定きれないが、成形性当の観点から、好ましくは170℃以下である。
(メタ)アクリル系樹脂としては、本実施形態の効果を損なわない範囲内で、任意の適切な(メタ)アクリル系樹脂を採用し得る。例えば、ポリメタクリル酸メチルなどのポリ(メタ)アクリル酸エステル、メタクリル酸メチル-(メタ)アクリル酸共重合、メタクリル酸メチル-(メタ)アクリル酸エステル共重合体、メタクリル酸メチル-アクリル酸エステル-(メタ)アクリル酸共重合体、(メタ)アクリル酸メチル-スチレン共重合体(MS樹脂など)、脂環族炭化水素基を有する重合体(例えば、メタクリル酸メチル-メタクリル酸シクロヘキシル共重合体、メタクリル酸メチル-(メタ)アクリル酸ノルボルニル共重合体など)が挙げられる。好ましくは、ポリ(メタ)アクリル酸メチルなどのポリ(メタ)アクリル酸C1-6アルキルが挙げられる。より好ましくはメタクリル酸メチルを主成分(50~100質量%、好ましくは70~100質量%の範囲)とするメタクリル酸メチル系樹脂が挙げられる。
(メタ)アクリル系樹脂の具体例として、例えば、アクリペットVHやアクリペットVRL20A、ダイヤナールBR52、BR80、BR83、BR85、BR88(三菱レイヨン(株)製)、KT75(電気化学工業(株)製)、デルペット60N、80N(旭化成ケミカルズ(株)製)、特開2004-70296号公報に記載の分子内に環構造を有する(メタ)アクリル系樹脂、分子内架橋や分子内環化反応により得られる高Tg(メタ)アクリル樹脂系が挙げられる。
(メタ)アクリル系樹脂としては、ラクトン環構造を有する(メタ)アクリル系樹脂を用いることも好ましい。ラクトン環構造を有する(メタ)アクリル系樹脂としては、特開2000-230016号公報、特開2001-151814号公報、特開2002-120326号公報、特開2002-254544号公報、特開2005-146084号公報などに記載のものが挙げられる。
また、(メタ)アクリル系樹脂としては、不飽和カルボン酸アルキルエステルの構造単位及びグルタル酸無水物の構造単位を有するアクリル樹脂を用いることができる。前記アクリル樹脂としては、特開2004-70290号公報、特開2004-70296号公報、特開2004-163924号公報、特開2004-292812号公報、特開2005-314534号公報、特開2006-131898号公報、特開2006-206881号公報、特開2006-265532号公報、特開2006-283013号公報、特開2006-299005号公報、特開2006-335902号公報などに記載のものが挙げられる。
また、(メタ)アクリル系樹脂としては、グルタルイミド単位、(メタ)アクリル酸エステル単位、及び芳香族ビニル単位を有する熱可塑性樹脂を用いることができる。当該熱可塑性樹脂としては、特開2006-309033号公報、特開2006-317560号公報、特開2006-328329号公報、特開2006-328334号公報、特開2006-337491号公報、特開2006-337492号公報、特開2006-337493号公報、特開2006-337569号公報などに記載のものが挙げられる。
〔対向フィルムの物性〕
対向フィルムの面内方向のリタデーションRoは、350nm以下であってもよい。また、対向フィルムの厚み方向のリタデーションRtは、350nm以下であってもよい。この場合、例えばアクリル樹脂(アクリル-スチレンポリマーを含む)を含有するフィルムを対向フィルムとして用いることができる。
対向フィルムの面内方向のリタデーションRoは、350nm以下であってもよい。また、対向フィルムの厚み方向のリタデーションRtは、350nm以下であってもよい。この場合、例えばアクリル樹脂(アクリル-スチレンポリマーを含む)を含有するフィルムを対向フィルムとして用いることができる。
対向フィルムの面内方向のリタデーションRoは、8000nm以上であってもよい。また、対向フィルムの厚み方向のリタデーションRoは、8000nm以上であってもよい。この場合、例えばポリエチレンテレフタレート樹脂を含有するフィルムを対向フィルムとして用いることができる。
対向フィルムは、ポリエチレンテレフタレート樹脂またはアクリル樹脂を含有していることが望ましい。この場合、透湿度が200g/m2・day以下の対向フィルムを確実に実現することができる。ちなみに、アクリルの透湿度は、例えば厚み40μmの場合で200g/m2・dayであり、ポリエチレンテレフタレート樹脂の透湿度は、例えば厚み80μmの場合で20g/m2・dayである。対向フィルムの透湿度は、20~200g/m2・dayであることが望ましく、20~150g/m2・dayであることがより望ましく、20~100g/m2・dayであることがさらに望ましい。なお、透湿度の測定条件は、40℃90%RHである。
対向フィルムの厚さは、10μm以上40μm以下であることが望ましい。薄型の対向フィルムを用いることで、薄型の偏光板の実現に寄与することができる。
〔実施例〕
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
<位相差フィルムの作製>
[位相差フィルムA1の作製]
〈微粒子分散液1〉
シリカ微粒子(アエロジル R972V 日本アエロジル(株)製)
11質量部
エタノール 89質量部
以上をディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散を行った。
[位相差フィルムA1の作製]
〈微粒子分散液1〉
シリカ微粒子(アエロジル R972V 日本アエロジル(株)製)
11質量部
エタノール 89質量部
以上をディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散を行った。
〈微粒子添加液1〉
メチレンクロライドを入れた溶解タンクに十分攪拌しながら、微粒子分散液1をゆっくりと添加した。更に、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液1を調製した。
メチレンクロライド 99質量部
微粒子分散液1 5質量部
メチレンクロライドを入れた溶解タンクに十分攪拌しながら、微粒子分散液1をゆっくりと添加した。更に、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液1を調製した。
メチレンクロライド 99質量部
微粒子分散液1 5質量部
〈ドープの調製〉
下記組成のドープを調製した。まず、加圧溶解タンクにメチレンクロライドとエタノールを添加した。次に、溶剤の入った加圧溶解タンクにセルロースアセテートを攪拌しながら投入した。これを加熱し、攪拌しながら、完全に溶解した。これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、ドープを調製した。
メチレンクロライド 340質量部
エタノール 64質量部
セルロースアセテートプロピオネート(アセチル基置換度:1.5、プロピオニル基置換度:0.9、総アシル基置換度:2.4、数平均分子量(Mn)6.4万)
100質量部
紫外線吸収剤(化26で示すTINUVIN928、BASFジャパン社製)
2.5質量部
糖エステル化合物S 10質量部
配向抑制剤(化8で示す例示化合物1(ピラゾール系化合物))
2.5質量部
下記組成のドープを調製した。まず、加圧溶解タンクにメチレンクロライドとエタノールを添加した。次に、溶剤の入った加圧溶解タンクにセルロースアセテートを攪拌しながら投入した。これを加熱し、攪拌しながら、完全に溶解した。これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、ドープを調製した。
メチレンクロライド 340質量部
エタノール 64質量部
セルロースアセテートプロピオネート(アセチル基置換度:1.5、プロピオニル基置換度:0.9、総アシル基置換度:2.4、数平均分子量(Mn)6.4万)
100質量部
紫外線吸収剤(化26で示すTINUVIN928、BASFジャパン社製)
2.5質量部
糖エステル化合物S 10質量部
配向抑制剤(化8で示す例示化合物1(ピラゾール系化合物))
2.5質量部
なお、上記の糖エステル化合物Sとしては、BzSc(ベンゾイルサッカロース:糖残基がB-2で、置換基が化12に記載のa1~a4の混合物、平均エステル置換度=5.5)を用いた。
次いで、無端ベルト流延装置を用い、調製したドープを、温度33℃、1500mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は30℃に制御した。
ステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が100質量%になるまで溶媒を蒸発させ、次いで剥離張力130N/mで、ステンレスベルト支持体上から剥離した。
剥離したセルロースエステルフィルムを、160℃の熱をかけながらテンターを用いて幅手方向に30%延伸した。延伸開始時の残留溶媒量は15質量%であった。次いで、乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させた。乾燥温度は130℃で、搬送張力は100N/mとした。乾燥後、1.5m幅にフィルムをスリットし、フィルム両端に幅10mm、高さ10μmのナーリング加工を施し、ロール状に巻き取り、乾燥膜厚35μmのセルロースエステルフィルムである位相差フィルムA1を得た。巻長は5200mであった。作製した位相差フィルムA1の面内リタデーションRoおよび厚み方向のリタデーションRtを、前述した自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて測定したところ、測定波長590nmにおいて、Ro=50nmであり、Rt=130nmであった。
[紫外線吸収剤の含有量の比率S1~S3の測定]
TOF-SIMS装置(PhysicalElectronics製 2100TRIFT2)を用い、位相差フィルムA1の断面に対してTOF-SIMS測定を行って、紫外線吸収剤に対応する二次イオンの強度を検出した。そして、位相差フィルムA1の厚み方向の各領域R1~R3ごとに、基準値(任意の強度値)に対する二次イオン強度の比率を求めることにより、各領域R1~R3ごとに、基準値(任意の含有量)に対する紫外線吸収剤の含有量の比率S1~S3を求めるとともに、M=(S1+S2)/2として、E1=|S1-S2|/M、および、E2=|S3-M|/S3の各値を求めた。
TOF-SIMS装置(PhysicalElectronics製 2100TRIFT2)を用い、位相差フィルムA1の断面に対してTOF-SIMS測定を行って、紫外線吸収剤に対応する二次イオンの強度を検出した。そして、位相差フィルムA1の厚み方向の各領域R1~R3ごとに、基準値(任意の強度値)に対する二次イオン強度の比率を求めることにより、各領域R1~R3ごとに、基準値(任意の含有量)に対する紫外線吸収剤の含有量の比率S1~S3を求めるとともに、M=(S1+S2)/2として、E1=|S1-S2|/M、および、E2=|S3-M|/S3の各値を求めた。
ここで、比率S1は、フィルムの一方の表面(A面)から5μmの厚さの領域R1における、基準値に対する紫外線吸収剤の含有量の比率(%)とする。比率S2は、フィルムの他方の表面(B面)から5μmの厚さの領域R2における、基準値に対する紫外線吸収剤の含有量の比率(%)とする。比率S3は、フィルムの厚さ方向の中央から一方の表面側および他方の表面側にそれぞれ2.5μmの厚さを有する計5μmの厚さの領域R3における、基準値に対する紫外線吸収剤の含有量の比率(%)とする。
[位相差フィルムA2~A10の作製]
紫外線吸収剤および配向抑制剤の添加量を必要に応じて表1のように変更した。また、TOF-SIMS測定によって得られる比率S1~S3から算出されるE1およびE2の各値が表1の値となるように、支持体上での乾燥温度(支持体温度)および剥離時の残留溶媒量を調整して、膜厚方向における紫外線吸収剤の含有量を調整した。それ以外は、上記した位相差フィルムA1の作製と同様にして、位相差フィルムA2~A10を作製した。なお、作製した位相差フィルムA2~A10の面内リタデーションRoおよび厚み方向のリタデーションRtを上記と同様にして測定したところ、測定波長590nmにおいて、Ro=50nmであり、Rt=130nmであった。
紫外線吸収剤および配向抑制剤の添加量を必要に応じて表1のように変更した。また、TOF-SIMS測定によって得られる比率S1~S3から算出されるE1およびE2の各値が表1の値となるように、支持体上での乾燥温度(支持体温度)および剥離時の残留溶媒量を調整して、膜厚方向における紫外線吸収剤の含有量を調整した。それ以外は、上記した位相差フィルムA1の作製と同様にして、位相差フィルムA2~A10を作製した。なお、作製した位相差フィルムA2~A10の面内リタデーションRoおよび厚み方向のリタデーションRtを上記と同様にして測定したところ、測定波長590nmにおいて、Ro=50nmであり、Rt=130nmであった。
<対向フィルムの作製>
[対向フィルムB1の作製]
(ポリエステル樹脂Aの調製)
エステル化反応容器を昇温して、200℃で、テレフタル酸を86.4質量部及びエチレングリコールを64.6質量部投入し、加熱撹拌しながら、触媒として三酸化アンチモンを0.017質量部、酢酸マグネシウム4水和物を0.064質量部、トリエチルアミン0.16質量部を投入した。ゲージ圧が0.34MPa、温度が240℃の条件下で加圧エステル化反応を行った。
[対向フィルムB1の作製]
(ポリエステル樹脂Aの調製)
エステル化反応容器を昇温して、200℃で、テレフタル酸を86.4質量部及びエチレングリコールを64.6質量部投入し、加熱撹拌しながら、触媒として三酸化アンチモンを0.017質量部、酢酸マグネシウム4水和物を0.064質量部、トリエチルアミン0.16質量部を投入した。ゲージ圧が0.34MPa、温度が240℃の条件下で加圧エステル化反応を行った。
次いで、エステル化反応容器を常圧に戻して、リン酸を0.014質量部添加した。更に、15分で260℃まで昇温し、リン酸トリメチルを0.012質量部添加した。次いで15分後に、高圧分散機で分散処理を行い、更に15分後、得られたエステル化反応生成物を重縮合反応缶に移送して、280℃で減圧下重縮合反応を行った。
重縮合反応終了後、日本精線社製のナスロンフィルターNF-05Sで濾過処理を行い、ノズルからストランド状に押出し、予め濾過処理(孔径:1μm以下)を行った後、冷却水を用いて冷却、固化させて、樹脂をペレット状にカットした。得られたポリエステル樹脂A(ポリエチレンテレフタレート樹脂A)の固有粘度は0.62cm3/gであり、不活性粒子及び内部析出粒子は実質上含有していなかった。
(接着性改質層形成用塗布液の調製)
常法によりエステル交換反応及び重縮合反応を行い、ジカルボン酸成分として(ジカルボン酸成分全体に対して)テレフタル酸を46モル%、イソフタル酸を46モル%及び5-スルホナトイソフタル酸ナトリウム8モル%を用い、グリコール成分として(グリコール成分全体に対して)エチレングリコールを50モル%及びネオペンチルグリコールを50モル%の組成の水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂を調製した。
常法によりエステル交換反応及び重縮合反応を行い、ジカルボン酸成分として(ジカルボン酸成分全体に対して)テレフタル酸を46モル%、イソフタル酸を46モル%及び5-スルホナトイソフタル酸ナトリウム8モル%を用い、グリコール成分として(グリコール成分全体に対して)エチレングリコールを50モル%及びネオペンチルグリコールを50モル%の組成の水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂を調製した。
次いで、水51.4質量部、イソプロピルアルコール38質量部、n-ブチルセルソルブ5質量部、ノニオン系界面活性剤0.06質量部を混合した後、加熱撹拌し、77℃に到達した後、上記水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂を5質量部加えて、樹脂の固まりが無くなるまで加熱撹拌し続けた後、樹脂水分散液を常温まで冷却して、固形分濃度が5.0質量%の均一な水分散性共重合ポリエステル樹脂液を得た。
更に、凝集体シリカ粒子(富士シリシア(株)社製、サイリシア310)3質量部を水50質量部に分散させた。上記水分散性共重合ポリエステル樹脂液99.5質量部にサイリシア310の水分散液0.54質量部を加えて、撹拌しながら水20質量部を加えて、接着性改質層形成用塗布液を調製した。
(ポリエステルフィルムの作製)
上記調製したポリエステル樹脂Aを常法により乾燥して押出機に供給し、285℃で溶融し、このポリマーをステンレス焼結体の濾材(公称濾過精度10μm粒子95%カット)で濾過して、口金よりシート状にして押し出した後、静電印加キャスト法を用いて表面温度30℃のキャスティングドラムに巻きつけて冷却固化して、未延伸のポリエステルフィルム(PETフィルム)を作製した。
上記調製したポリエステル樹脂Aを常法により乾燥して押出機に供給し、285℃で溶融し、このポリマーをステンレス焼結体の濾材(公称濾過精度10μm粒子95%カット)で濾過して、口金よりシート状にして押し出した後、静電印加キャスト法を用いて表面温度30℃のキャスティングドラムに巻きつけて冷却固化して、未延伸のポリエステルフィルム(PETフィルム)を作製した。
次いで、リバースロール法によりこの未延伸のPETフィルムの両面に乾燥後の塗布量が0.08g/m2になるように、上記調製した接着性改質層形成用塗布液を塗布した後、80℃で20秒間乾燥した。
この接着性改良層を形成した未延伸フィルムをテンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度125℃の加熱ゾーンで、幅方向に4倍に延伸した。
次に、幅方向に延伸された幅を維持した保ったまま、温度225℃、30秒間で処理し、さらに幅方向に3%の緩和処理をして、フィルム厚さが60μmの一軸配向ポリエチレンテレフタレートフィルムである対向フィルムB1を作製した。
[対向フィルムB2の作製]
膜厚を30μmに変更した以外は、対向フィルムB1の作製と同様にして、対向フィルムB2を作製した。
膜厚を30μmに変更した以外は、対向フィルムB1の作製と同様にして、対向フィルムB2を作製した。
[透湿度の測定]
JIS Z 0208に記載の方法に従い、対向フィルムB1およびB2の透湿度を測定した。なお、透湿度の測定時の温湿度条件は、40℃90%RHである。
JIS Z 0208に記載の方法に従い、対向フィルムB1およびB2の透湿度を測定した。なお、透湿度の測定時の温湿度条件は、40℃90%RHである。
<偏光板の作製>
[偏光板1の作製]
上記で作製した位相差フィルムA1および対向フィルムB1を用い、下記の記載の方法に従って、偏光板1を作製した。
[偏光板1の作製]
上記で作製した位相差フィルムA1および対向フィルムB1を用い、下記の記載の方法に従って、偏光板1を作製した。
(偏光子の作製)
厚さ60μmの長尺ポリビニルアルコールフィルムを、ガイドロールを介して連続搬送しながら、ヨウ素とヨウ化カリウム配合の染色浴(30℃)に浸漬して染色処理と2.5倍の延伸処理を施した。次いで、ホウ酸とヨウ化カリウムを添加した酸性浴(60℃)中で、トータルとして5.0倍となる延伸処理と架橋処理を施し、得られた厚さ12μmのヨウ素-PVA系フィルムを、乾燥機中で50℃、30分間乾燥させ、水分率4.9%の偏光子を得た。
厚さ60μmの長尺ポリビニルアルコールフィルムを、ガイドロールを介して連続搬送しながら、ヨウ素とヨウ化カリウム配合の染色浴(30℃)に浸漬して染色処理と2.5倍の延伸処理を施した。次いで、ホウ酸とヨウ化カリウムを添加した酸性浴(60℃)中で、トータルとして5.0倍となる延伸処理と架橋処理を施し、得られた厚さ12μmのヨウ素-PVA系フィルムを、乾燥機中で50℃、30分間乾燥させ、水分率4.9%の偏光子を得た。
(水系接着剤Aの調製)
下記に記載の各成分を混合し、水系接着剤Aを調製した。
純水 100質量部
カルボキシ基変性ポリビニルアルコール(クラレポバールKL318、株式会社クラレ製)
3.0質量部
水溶性ポリアミドエポキシ樹脂(固形分濃度30%の水溶液、スミレーズレジン650住化ケムテックス社製)
1.5質量部
下記に記載の各成分を混合し、水系接着剤Aを調製した。
純水 100質量部
カルボキシ基変性ポリビニルアルコール(クラレポバールKL318、株式会社クラレ製)
3.0質量部
水溶性ポリアミドエポキシ樹脂(固形分濃度30%の水溶液、スミレーズレジン650住化ケムテックス社製)
1.5質量部
(位相差フィルムの前処理)
位相差フィルムA1を、ケン化処理液(60℃の水酸化ナトリウム水溶液、濃度10質量%)に30秒間浸漬させた。次いで、水浴に5秒間の浸漬を2回行い、その後、水のシャワーで5秒間の洗浄を行った後、乾燥させた。乾燥条件は70℃、2分間とした。
位相差フィルムA1を、ケン化処理液(60℃の水酸化ナトリウム水溶液、濃度10質量%)に30秒間浸漬させた。次いで、水浴に5秒間の浸漬を2回行い、その後、水のシャワーで5秒間の洗浄を行った後、乾燥させた。乾燥条件は70℃、2分間とした。
次いで、30℃の水中に10秒間浸漬して膨潤処理を行い、その後、40℃で、53秒間の乾燥を施してから、以下の貼合を行った。
(貼合処理)
位相差フィルムA1及び対向フィルムの各貼合面側にコロナ処理を施した後、上記水系接着剤Aをそれぞれ塗工し、偏光子の両面にそれぞれ貼合した。その後、直ちに80℃に設定した熱風循環式乾燥機で5分間乾燥して偏光板1を作製した。
位相差フィルムA1及び対向フィルムの各貼合面側にコロナ処理を施した後、上記水系接着剤Aをそれぞれ塗工し、偏光子の両面にそれぞれ貼合した。その後、直ちに80℃に設定した熱風循環式乾燥機で5分間乾燥して偏光板1を作製した。
[偏光板2~9の作製]
位相差フィルムA1を位相差フィルムA2~A9に置き換えた以外は、偏光板1の作製と同様にして、偏光板2~9を作製した。
位相差フィルムA1を位相差フィルムA2~A9に置き換えた以外は、偏光板1の作製と同様にして、偏光板2~9を作製した。
[偏光板10の作製]
位相差フィルムA1を位相差フィルムA10に置き換え、対向フィルムB1を対向フィルムB1に置き換えた以外は、偏光板1の作製と同様にして、偏光板10を作製した。
位相差フィルムA1を位相差フィルムA10に置き換え、対向フィルムB1を対向フィルムB1に置き換えた以外は、偏光板1の作製と同様にして、偏光板10を作製した。
<液晶表示装置の作製>
[液晶表示装置101の作製]
21.5インチの液晶表示装置(IPS226V-PN、LGエレクトロニクスジャパン(株)製)に液晶層を挟んで設置されている2対の偏光板のうち、観察者側(視認側、バックライトとは反対側)の偏光板を剥がし、上記で作製した偏光板1を、位相差フィルム側が液晶セル側となるようにして、光学粘着剤で液晶セルのガラスとを貼合し、液晶表示装置101を作製した。このとき、視認側偏光板の透過軸と、バックライト側の偏光板の透過軸とが直交するように、視認側偏光板を配置した。
[液晶表示装置101の作製]
21.5インチの液晶表示装置(IPS226V-PN、LGエレクトロニクスジャパン(株)製)に液晶層を挟んで設置されている2対の偏光板のうち、観察者側(視認側、バックライトとは反対側)の偏光板を剥がし、上記で作製した偏光板1を、位相差フィルム側が液晶セル側となるようにして、光学粘着剤で液晶セルのガラスとを貼合し、液晶表示装置101を作製した。このとき、視認側偏光板の透過軸と、バックライト側の偏光板の透過軸とが直交するように、視認側偏光板を配置した。
[液晶表示装置102~110の作製]
視認側の偏光板を、偏光板1から偏光板2~10にそれぞれ変更した以外は、液晶表示装置101の作製と同様にして液晶表示装置102~110を作製した。
視認側の偏光板を、偏光板1から偏光板2~10にそれぞれ変更した以外は、液晶表示装置101の作製と同様にして液晶表示装置102~110を作製した。
<評価>
[コントラストの評価]
23℃の温度で相対湿度55%RHの環境で、各々の液晶表示装置のバックライトを1週間連続点灯した後、正面コントラストの測定を行った。測定には、ELDIM社製EZ-Contrast160Dを用い、液晶表示装置の白表示と黒表示において、表示画面の法線方向からの輝度を測定し、その比を正面コントラストとした。すなわち、正面コントラストは、以下の式で表される。
正面コントラスト=(表示画面の法線方向から測定した白表示の輝度)/(表示画面の法線方向から測定した黒表示の輝度)
23℃の温度で相対湿度55%RHの環境で、各々の液晶表示装置のバックライトを1週間連続点灯した後、正面コントラストの測定を行った。測定には、ELDIM社製EZ-Contrast160Dを用い、液晶表示装置の白表示と黒表示において、表示画面の法線方向からの輝度を測定し、その比を正面コントラストとした。すなわち、正面コントラストは、以下の式で表される。
正面コントラスト=(表示画面の法線方向から測定した白表示の輝度)/(表示画面の法線方向から測定した黒表示の輝度)
次に、液晶表示装置の任意の5点の正面コントラストを測定し、その測定値のうちの最大値と最小値を除く3点の平均値を算出した。そして、以下の評価基準に基づいて、コントラストを評価した。
《評価基準》
○:コントラストの平均値が3000以上であり、コントラストが良好である。
△:コントラストの平均値が2400以上3000未満であり、コントラストの劣化が少し発生しているが、実用上問題のない範囲である。
×:コントラストの平均値が2400未満であり、コントラストの劣化が大きく発生しており、実用上問題である。
《評価基準》
○:コントラストの平均値が3000以上であり、コントラストが良好である。
△:コントラストの平均値が2400以上3000未満であり、コントラストの劣化が少し発生しているが、実用上問題のない範囲である。
×:コントラストの平均値が2400未満であり、コントラストの劣化が大きく発生しており、実用上問題である。
[パネルの反り(液晶セルのベンディング)の評価]
作製した液晶表示装置を40℃90%RHの環境下で24時間放置し、次いで23℃55%の環境下で液晶表示装置を点灯し、点灯してから2時間後のコーナームラ(コーナー部分の光漏れ)を観察した。パネルに反りがあると、コーナー部分に光漏れが生ずるため、この光漏れを観察することにより、以下の評価基準に基づいて、パネルの反りを評価した。
《評価基準》
○:コーナー部分に光漏れが観察されず、パネルの反りが発生していないと考えられる。
△:コーナー部分に弱い光漏れが観察され、パネルの反りが若干発生していると考えられるが、実用上問題のない範囲である。
×:コーナー部分に光漏れが明確に観察され、パネルの大きな反りが発生していると考えられ、実用上問題となる。
作製した液晶表示装置を40℃90%RHの環境下で24時間放置し、次いで23℃55%の環境下で液晶表示装置を点灯し、点灯してから2時間後のコーナームラ(コーナー部分の光漏れ)を観察した。パネルに反りがあると、コーナー部分に光漏れが生ずるため、この光漏れを観察することにより、以下の評価基準に基づいて、パネルの反りを評価した。
《評価基準》
○:コーナー部分に光漏れが観察されず、パネルの反りが発生していないと考えられる。
△:コーナー部分に弱い光漏れが観察され、パネルの反りが若干発生していると考えられるが、実用上問題のない範囲である。
×:コーナー部分に光漏れが明確に観察され、パネルの大きな反りが発生していると考えられ、実用上問題となる。
[耐光性の評価]
上記で作製した液晶表示装置に、紫外線を放射する水銀ランプ(500W/距離30cm/30℃)を1000時間照射した後、上記と同様の装置(ELDIM社製EZ-Contrast160D)を用いて正面コントラストを5か所測定してその平均値を求め、以下の式で表されるコントラスト変化率を測定した。
コントラスト変化率(%)={(初期のコントラスト(平均値)-水銀ランプ照射後のコントラスト(平均値))/初期のコントラスト(平均値)}×100
上記で作製した液晶表示装置に、紫外線を放射する水銀ランプ(500W/距離30cm/30℃)を1000時間照射した後、上記と同様の装置(ELDIM社製EZ-Contrast160D)を用いて正面コントラストを5か所測定してその平均値を求め、以下の式で表されるコントラスト変化率を測定した。
コントラスト変化率(%)={(初期のコントラスト(平均値)-水銀ランプ照射後のコントラスト(平均値))/初期のコントラスト(平均値)}×100
そして、以下の評価基準に基づいて、液晶セルの耐光性を評価した。
《評価基準》
○:コントラスト変化率が20%以下であり、実用上問題ない。
×:コントラスト変化率が20%を超えており、実用上問題がある。
《評価基準》
○:コントラスト変化率が20%以下であり、実用上問題ない。
×:コントラスト変化率が20%を超えており、実用上問題がある。
位相差フィルムA1~A10の特性と液晶表示装置101~110における各評価の結果とをまとめて表1に示す。また、位相差フィルムA1~A10と実施例または比較例との対応関係についても表1に併せて示す。
表1より、比較例1および4では、コントラストの評価が不良となっている。比較例1および4の位相差フィルムA3・A8では、E1の値が15%を超えており、膜厚方向の一方の表面側に紫外線吸収剤が偏在している。このため、内部ヘイズが膜厚方向において部分的に劣化し、その結果、液晶表示装置においてコントラストが低下したものと考えられる。特に、比較例4では、位相差フィルムA8に配向抑制剤が添加されていないため、膜厚方向における紫外線吸収剤の偏在が緩和されず、内部ヘイズの劣化によってコントラストの低下が生じているものと考えられる。
また、比較例2では、パネルの反りが発生している。比較例2の位相差フィルムA4では、E2が0%である、つまり、S3=Mであるため、膜厚方向において紫外線吸収剤の含有量の分布に直線的な勾配が生じている。例えばS3とMとの差が大きいと、その差がフィルムの表裏での含水率差を緩和する方向に働き、その結果、パネルの反りが低減される。比較例2のように、S3=Mでは、S3とMとの差が0であるため、フィルムの表裏での含水率差を緩和する効果が得られず、結果的に、パネルの反りが発生しているものと考えられる。
また、比較例3では、コントラストの評価が不良である。比較例3の位相差フィルムA7では、E2が20%を超えており、膜厚方向の一方の表面側に紫外線吸収剤が偏在していることから、内部ヘイズが膜厚方向において部分的に劣化し、その結果、コントラストが低下したものと考えられる。
また、比較例5では、耐光性が不良となっている。比較例5の位相差フィルムA9には紫外線吸収剤が添加されていないため、紫外線によって液晶セルの劣化が生じ、結果として、コントラストが大きく低下したものと考えられる。
これに対して、実施例1~5では、コントラスト、パネルの反り、耐光性のいずれについても、良好な結果が得られている。実施例1~5のセルロースエステル系の位相差フィルムA1~A2、A5~A6、A10では、E1≦15%、かつ、1%≦E2≦20%であるため、紫外線吸収剤の分布が膜厚方向にほぼ均一となる。このため、紫外線吸収剤の偏りに起因する内部ヘイズの劣化が抑えられ、コントラストの低下が生じにくくなったものと考えられる。また、紫外線吸収剤の偏りが低減されることによって、フィルムの一方の表面側と他方の表面側とで含水による寸法変化に違いが生じにくくなり、パネルの反りが生じにくくなったものと考えられる。さらに、実施例1~5では、位相差フィルムに配向抑制剤が添加されていることで、紫外線吸収剤の含有量を減らさなくてもコントラストの低下およびパネルの反りを低減できるという上述の効果が得られるため、紫外線吸収剤によって確実に紫外線を吸収して紫外線による液晶セルの劣化を抑えることができ、これによって、液晶セルの耐光性の劣化を抑えることができているものと考えられる。
特に、実施例1~5では、5%≦E1≦13%、かつ、3%≦E2≦20%を満足しており、これによって、上述の効果を得ることができると言える。
また、実施例5では、パネルの反りが若干発生しているが、これは、対向フィルムの透湿度が100g/m2・dayを超えているため、対向フィルムを透過した水分によって位相差フィルムに寸法変化が生じやすくなり、これによってパネルの反りが若干発生したものと考えられる。したがって、対向フィルムの透湿度は100g/m2・day以下であることが望ましいと言える。
なお、各実施例では、位相差フィルムのRoは50nmであるが、Roが20nm以上の位相差フィルムであって、セルロースエステル系の位相差フィルムであれば、E1およびE2に関する上述の条件を満足することにより、各実施例と同様の効果が得られることが種々の実験から確認された。
〔補足〕
以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。
以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。
以上で説明した本実施形態の位相差フィルム、偏光板および液晶表示装置は、以下のように表現することができる。
1.面内方向のリタデーションRoが20nm以上であるセルロースエステル系の位相差フィルムであって、
添加剤として、紫外線吸収剤と、該フィルムにおける前記紫外線吸収剤の膜厚方向の分布を均一にするための配向抑制剤とを含み、
該フィルムの一方の表面から5μmの厚さの領域における、基準値に対する前記紫外線吸収剤の含有量の比率をS1(%)とし、
該フィルムの他方の表面から5μmの厚さの領域における、前記基準値に対する前記紫外線吸収剤の含有量の比率をS2(%)とし、
該フィルムの厚さ方向の中央から前記一方の表面側および前記他方の表面側にそれぞれ2.5μmの厚さを有する計5μmの厚さの領域における、前記基準値に対する前記紫外線吸収剤の含有量の比率をS3(%)としたとき、
以下の条件式(1)および(2)を満足することを特徴とする位相差フィルム;
(1)|S1-S2|/M≦15%
(2)1%≦|S3-M|/S3≦20%
ただし、
M=(S1+S2)/2
である。
添加剤として、紫外線吸収剤と、該フィルムにおける前記紫外線吸収剤の膜厚方向の分布を均一にするための配向抑制剤とを含み、
該フィルムの一方の表面から5μmの厚さの領域における、基準値に対する前記紫外線吸収剤の含有量の比率をS1(%)とし、
該フィルムの他方の表面から5μmの厚さの領域における、前記基準値に対する前記紫外線吸収剤の含有量の比率をS2(%)とし、
該フィルムの厚さ方向の中央から前記一方の表面側および前記他方の表面側にそれぞれ2.5μmの厚さを有する計5μmの厚さの領域における、前記基準値に対する前記紫外線吸収剤の含有量の比率をS3(%)としたとき、
以下の条件式(1)および(2)を満足することを特徴とする位相差フィルム;
(1)|S1-S2|/M≦15%
(2)1%≦|S3-M|/S3≦20%
ただし、
M=(S1+S2)/2
である。
2.以下の条件式(1a)および(2a)をさらに満足することを特徴とする前記1に記載の位相差フィルム;
(1a)5%≦|S1-S2|/M≦13%
(2a)3%≦|S3-M|/S3≦20%
である。
(1a)5%≦|S1-S2|/M≦13%
(2a)3%≦|S3-M|/S3≦20%
である。
3.前記配向抑制剤は、含窒素複素環化合物であることを特徴とする前記1または2に記載の位相差フィルム。
4.前記配向抑制剤は、ピラゾール系化合物であることを特徴とする前記1から3のいずれかに記載の位相差フィルム。
5.前記紫外線吸収剤は、ベンゾトリアゾール系化合物であることを特徴とする前記1から4のいずれかに記載の位相差フィルム。
6.前記1から5のいずれかに記載の位相差フィルムと、
偏光子と、
前記位相差フィルムとの間で前記偏光子を挟み込む対向フィルムとを有していることを特徴とする偏光板。
偏光子と、
前記位相差フィルムとの間で前記偏光子を挟み込む対向フィルムとを有していることを特徴とする偏光板。
7.前記対向フィルムの透湿度が、100g/m2・day以下であることを特徴とする前記6に記載の偏光板。
8.前記6または7に記載の偏光板と、液晶セルとを有し、
前記偏光板が前記液晶セルに対して視認側に位置し、
前記偏光板の前記位相差フィルムが、前記偏光板の前記偏光子に対して前記液晶セル側に位置していることを特徴とする液晶表示装置。
前記偏光板が前記液晶セルに対して視認側に位置し、
前記偏光板の前記位相差フィルムが、前記偏光板の前記偏光子に対して前記液晶セル側に位置していることを特徴とする液晶表示装置。
本発明は、面内方向のリタデーションRoが20nm以上であるセルロースエステル系の位相差フィルムに利用可能である。
1 液晶表示装置
4 液晶セル
5 偏光板
11 偏光子
12 光学フィルム(対向フィルム)
13 光学フィルム(位相差フィルム)
RF 位相差フィルム
4 液晶セル
5 偏光板
11 偏光子
12 光学フィルム(対向フィルム)
13 光学フィルム(位相差フィルム)
RF 位相差フィルム
Claims (8)
- 面内方向のリタデーションRoが20nm以上であるセルロースエステル系の位相差フィルムであって、
添加剤として、紫外線吸収剤と、該フィルムにおける前記紫外線吸収剤の膜厚方向の分布を均一にするための配向抑制剤とを含み、
該フィルムの一方の表面から5μmの厚さの領域における、基準値に対する前記紫外線吸収剤の含有量の比率をS1(%)とし、
該フィルムの他方の表面から5μmの厚さの領域における、前記基準値に対する前記紫外線吸収剤の含有量の比率をS2(%)とし、
該フィルムの厚さ方向の中央から前記一方の表面側および前記他方の表面側にそれぞれ2.5μmの厚さを有する計5μmの厚さの領域における、前記基準値に対する前記紫外線吸収剤の含有量の比率をS3(%)としたとき、
以下の条件式(1)および(2)を満足する、位相差フィルム;
(1)|S1-S2|/M≦15%
(2)1%≦|S3-M|/S3≦20%
ただし、
M=(S1+S2)/2
である。 - 以下の条件式(1a)および(2a)をさらに満足する、請求項1に記載の位相差フィルム;
(1a)5%≦|S1-S2|/M≦13%
(2a)3%≦|S3-M|/S3≦20%
である。 - 前記配向抑制剤は、含窒素複素環化合物である、請求項1または2に記載の位相差フィルム。
- 前記配向抑制剤は、ピラゾール系化合物である、請求項1から3のいずれかに記載の位相差フィルム。
- 前記紫外線吸収剤は、ベンゾトリアゾール系化合物である、請求項1から4のいずれかに記載の位相差フィルム。
- 請求項1から5のいずれかに記載の位相差フィルムと、
偏光子と、
前記位相差フィルムとの間で前記偏光子を挟み込む対向フィルムとを有している、偏光板。 - 前記対向フィルムの透湿度が、100g/m2・day以下である、請求項6に記載の偏光板。
- 請求項6または7に記載の偏光板と、液晶セルとを有し、
前記偏光板が前記液晶セルに対して視認側に位置し、
前記偏光板の前記位相差フィルムが、前記偏光板の前記偏光子に対して前記液晶セル側に位置している、液晶表示装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016204520 | 2016-10-18 | ||
JP2016-204520 | 2016-10-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018074102A1 true WO2018074102A1 (ja) | 2018-04-26 |
Family
ID=62019031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/032678 WO2018074102A1 (ja) | 2016-10-18 | 2017-09-11 | 位相差フィルム、偏光板および液晶表示装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018074102A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020138502A1 (ja) * | 2018-12-28 | 2020-07-02 | 大日本印刷株式会社 | 光学フィルム、偏光子保護フィルム、偏光子保護フィルム用転写体、偏光板、画像表示装置、および偏光子保護フィルムの製造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002120244A (ja) * | 2000-10-18 | 2002-04-23 | Konica Corp | 光学用セルロースエステルフィルム、その製造方法及び偏光板 |
JP2005224754A (ja) * | 2004-02-16 | 2005-08-25 | Konica Minolta Opto Inc | ハードコート層を有する光学フィルムの製造方法、ハードコートフィルム、偏光板及び表示装置 |
JP2008050550A (ja) * | 2005-10-07 | 2008-03-06 | Asahi Kasei Chemicals Corp | 光学補償フィルム |
WO2015060167A1 (ja) * | 2013-10-24 | 2015-04-30 | コニカミノルタ株式会社 | 位相差フィルム、偏光板及び液晶表示装置 |
WO2015076101A1 (ja) * | 2013-11-19 | 2015-05-28 | コニカミノルタ株式会社 | 偏光板およびこれを用いた液晶表示装置 |
WO2015111435A1 (ja) * | 2014-01-24 | 2015-07-30 | コニカミノルタ株式会社 | 位相差フィルム、偏光板及びva型液晶表示装置 |
-
2017
- 2017-09-11 WO PCT/JP2017/032678 patent/WO2018074102A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002120244A (ja) * | 2000-10-18 | 2002-04-23 | Konica Corp | 光学用セルロースエステルフィルム、その製造方法及び偏光板 |
JP2005224754A (ja) * | 2004-02-16 | 2005-08-25 | Konica Minolta Opto Inc | ハードコート層を有する光学フィルムの製造方法、ハードコートフィルム、偏光板及び表示装置 |
JP2008050550A (ja) * | 2005-10-07 | 2008-03-06 | Asahi Kasei Chemicals Corp | 光学補償フィルム |
WO2015060167A1 (ja) * | 2013-10-24 | 2015-04-30 | コニカミノルタ株式会社 | 位相差フィルム、偏光板及び液晶表示装置 |
WO2015076101A1 (ja) * | 2013-11-19 | 2015-05-28 | コニカミノルタ株式会社 | 偏光板およびこれを用いた液晶表示装置 |
WO2015111435A1 (ja) * | 2014-01-24 | 2015-07-30 | コニカミノルタ株式会社 | 位相差フィルム、偏光板及びva型液晶表示装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020138502A1 (ja) * | 2018-12-28 | 2020-07-02 | 大日本印刷株式会社 | 光学フィルム、偏光子保護フィルム、偏光子保護フィルム用転写体、偏光板、画像表示装置、および偏光子保護フィルムの製造方法 |
JP2020129107A (ja) * | 2018-12-28 | 2020-08-27 | 大日本印刷株式会社 | 光学フィルム、偏光板、および画像表示装置 |
CN113227856A (zh) * | 2018-12-28 | 2021-08-06 | 大日本印刷株式会社 | 光学膜、偏振元件保护膜、偏振元件保护膜用转印体、偏振片、图像显示装置和偏振元件保护膜的制造方法 |
CN113227856B (zh) * | 2018-12-28 | 2024-01-30 | 大日本印刷株式会社 | 光学膜、偏振元件保护膜、偏振元件保护膜用转印体、偏振片、图像显示装置和偏振元件保护膜的制造方法 |
TWI830848B (zh) * | 2018-12-28 | 2024-02-01 | 日商大日本印刷股份有限公司 | 光學膜、偏光板、影像顯示裝置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI569967B (zh) | A polarizing plate and a liquid crystal display device using the same | |
CN108603961B (zh) | 偏振片、偏振片的制造方法和液晶显示装置 | |
KR102226092B1 (ko) | 편광판 및 액정 표시 장치 | |
JP7088279B2 (ja) | 偏光板、偏光板の製造方法及び液晶表示装置 | |
WO2015098491A1 (ja) | セルロースエステルフィルム、その製造方法及び偏光板 | |
JP6428621B2 (ja) | セルロースアシレートフィルム、偏光板及び液晶表示装置 | |
JP6493213B2 (ja) | 位相差フィルム、偏光板及び液晶表示装置 | |
WO2017168807A1 (ja) | 位相差フィルム、偏光板および液晶表示装置 | |
WO2018074102A1 (ja) | 位相差フィルム、偏光板および液晶表示装置 | |
JP2017194620A (ja) | 偏光板および液晶表示装置 | |
CN109844580B (zh) | 偏振片和液晶显示装置 | |
JP2017120276A (ja) | 偏光板及び液晶表示装置 | |
JP2017181865A (ja) | 位相差フィルム、偏光板および液晶表示装置 | |
JP2017191153A (ja) | 偏光板および液晶表示装置 | |
WO2016111058A1 (ja) | 垂直配向型液晶表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17861825 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17861825 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |