WO2015018198A1 - 一种通过同源重组敲除ura5基因的高山被孢霉尿嘧啶营养缺陷型及其构建方法 - Google Patents

一种通过同源重组敲除ura5基因的高山被孢霉尿嘧啶营养缺陷型及其构建方法 Download PDF

Info

Publication number
WO2015018198A1
WO2015018198A1 PCT/CN2014/072350 CN2014072350W WO2015018198A1 WO 2015018198 A1 WO2015018198 A1 WO 2015018198A1 CN 2014072350 W CN2014072350 W CN 2014072350W WO 2015018198 A1 WO2015018198 A1 WO 2015018198A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
mortierella alpina
plasmid
agrobacterium tumefaciens
knockout
Prior art date
Application number
PCT/CN2014/072350
Other languages
English (en)
French (fr)
Inventor
陈卫
陈海琴
陈永泉
郝光飞
顾震南
赵建新
张灏
黄小云
杜凯
赵山山
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Priority to US14/910,675 priority Critical patent/US9982269B2/en
Publication of WO2015018198A1 publication Critical patent/WO2015018198A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1077Pentosyltransferases (2.4.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/02Pentosyltransferases (2.4.2)
    • C12Y204/0201Orotate phosphoribosyltransferase (2.4.2.10)

Definitions

  • the invention relates to a strain of Mortierella alpina auxotrophy and a construction method thereof, and belongs to the technical field of bioengineering.
  • Mortierella alpina is an important arachidonic acid (ARA) producing strain. It has the characteristics of high ARA content, safe and reasonable composition of polyunsaturated fatty acids (PUFAs), and has been applied to industrial production of ARA.
  • ARA arachidonic acid
  • PUFAs polyunsaturated fatty acids
  • the research on Mortierella alpina is mainly focused on the selection of strains and the optimization of fermentation conditions.
  • the genetic operating system of Mortierella alpina has not yet been well established. This has created a great obstacle to the basic theoretical research and genetic engineering of the fatty acid synthesis pathway of Mortierella alpina.
  • auxotrophic strain After the auxotrophic strain is genetically engineered, no exogenous resistance marker gene remains and can be used for industrial production. Therefore, obtaining auxotrophic strains with good traits plays a very important role in industrial microbial breeding, genetics, medicine, food biotechnology and other fields.
  • filamentous fungal auxotrophic strains rely primarily on methods of mutagenesis screening. This method is extremely inefficient and is often accompanied by unknown mutations in DNA sequences elsewhere in the genome. This genetically cumbersome strain with no phenotypic characteristics that has been induced may cause unpredictable troubles for future genetic engineering and industrial production.
  • a gene knockout method using homologous recombination can destroy a target gene without affecting other genes in the genome, and the protein encoded by the target gene loses function, and Compared with random mutagenesis, homologous recombination is relatively efficient, and the reproducibility of the target strain is obtained by homologous recombination. It can be seen that the use of homologous recombination to disrupt the target gene is the best way to obtain an excellent auxotrophic strain. However, for filamentous fungi, the efficiency of homologous recombination is affected by many factors: length, similarity, G/C content of the homologous sequence, transcriptional status of the target gene, non-homologous end joining, chromatin structure and Conversion method.
  • homologous recombination can be achieved by homologous sequences of only 50-100 bp; filamentous fungi usually require high-quality homologous sequences of lkb or more and even a few kb. And the knockout of different strains and different genes needs to meet different conditions, and some sequence differences may lead to the failure of homologous recombination.
  • Oral ribose ribose transferase OPRTase
  • OPRTase is a key enzyme in the synthesis of uracil anabolic pathway by Mortierella alpina. By inactivating the picture 5 gene encoding OPRTase, a strain of M. alpina uracil auxotrophy can be obtained.
  • genes have an extremely important position in the life of cells, they are very sensitive to the self-defense and repair mechanisms of eukaryotic cells. Targeting inactivated genes by gene knockout The construction of uracil auxotrophic strains of filamentous fungi has not been successfully reported internationally.
  • Difficult to be transformed is one of the important reasons why filamentous fungal gene operating systems lag far behind other species.
  • Agrobacterium tumefaciens-mediated transformation methods have been increasingly applied to filamentous fungi, and have four advantages over other transformation methods: 1.
  • the recipient cells can be spores or hyphae, without the need to prepare protoplasts. body.
  • the method utilizes a natural transformation vector system, which has high transformation efficiency and high success rate, and the vector can accommodate a large fragment of heterologous DNA, and is basically a single copy insertion. 4.
  • This method can improve the efficiency of homologous recombination. Therefore, the transformation of Agrobacterium tumefaciens provides an effective means of targeting the inactivation of the M. alpina wra5 gene.
  • the M. alpina uracil auxotrophic strain provides a prerequisite for the genetic manipulation of this important PUFAs producing strain.
  • This auxotrophic strain can be used to produce oil
  • Theoretical studies on the synthesis and accumulation of fatty acids in fungi can also be used for genetic engineering, with the potential to become a super-industrial strain of PUFAs.
  • the technical problem to be solved by the present invention is to provide a strain of Mortierella alpina uracil auxotrophy.
  • the auxotrophic strain is achieved by homologous recombination targeting a sequence of 213 bp to 230 bp total 18b in the Mortierella alpina ATCC 32222 wra5 gene (654 bp).
  • the homologous recombination homologous arm DNA sequence is derived from the Mortierella alpina ATCC 32222 genome (DDBJ/EMBL/GenBank accession ADAG00000000, first version ADAGO 1000000 ), and the upstream of the 5 gene is 1393 bp ( -1180 to +212 ) and downstream 1362 bp ( Fragments from +231 to +1592).
  • the present invention also provides a method for constructing the above-mentioned M. alpina uracil auxotrophic strain, which comprises obtaining a wra_ knockout gene fragment, and further constructing the knockout plasmid pBIG4KOura5 using the wra_ knockout gene fragment. Then, the recombinant plasmid pBIG4KOura5 was used to transform Agrobacterium tumefaciens. Finally, the transformed Agrobacterium tumefaciens containing the plasmid pBIG4KOura5 was transformed into Mortierella alpina, and the transformed M. alpina was screened and identified to obtain uracil auxotrophs. Strain.
  • the specific steps are shown in Figure 1.
  • the MCS gene fragment of plasmid pBluescript II SK+ was obtained by PCR.
  • the MCS gene fragment and plasmid pBIG2RHPH2 were digested with restriction endonucleases Nhel and Muni, EcoR I and Xba I, respectively, and the MCS gene fragment was inserted into the plasmid BIG2RHPH2 between EcoR I and Xba I sites by ligation.
  • pBIG4 The upstream and downstream sequences of the ura5 gene were obtained and ligated by fusion PCR to obtain a knockout gene fragment.
  • the knock-out gene fragment and plasmid pBIG4 were digested with restriction enzymes EcoR I and Kpn I, and the knock-out gene fragment was inserted into plasmid pBIG4 by ligation reaction to obtain recombinant plasmid pBIG4KOura5.
  • the recombinant plasmid pBIG4KOura5 was transformed into Agrobacterium tumefaciens C58C1.
  • the gene was disrupted by Agrobacterium tumefaciens C58C1-mediated homologous recombination, and the uridine auxotrophy was obtained by screening and identification. Strain.
  • the present invention provides a strain of Mortierella alpina auxotrophy
  • Mortierella alpina MAUI the Mortierella alpina auxotrophic strain is Mortierella alpina MAUI, deposited on November 01, 2013 at the General Microbiology Center of the China Microbial Culture Collection Management Committee, Address 1 Beichen West Road, Chaoyang District, Beijing No. 3, Institute of Microbiology, Chinese Academy of Sciences, with the accession number CGMCC No. 8414.
  • This strain was constructed by inactivating the wra5 gene encoding the whey acid ribose transferase OPRTase in the Mortierella alpina ATCC 32222 genome.
  • the inactivation of the wra_ gene is achieved by deleting the sequence of 213bp-230b total 18b in the 654 bp picture 5 gene.
  • the present invention also provides a method for preparing the above-mentioned strain of Mortierella alpina uracil auxotrophy, which is caused by homologous recombination to delete the 213bp-230bp total 18bp sequence in the M. alpina 5 gene, thereby inactivating the um5 gene.
  • the homology arms used were 1393 bp upstream of the simple 5 gene to 1 138 to +212 and a 1362 bp fragment downstream of +231 to +1592.
  • the specific steps were as follows: First, the knockout gene fragment was obtained, and the knockout plasmid pBIG4KOura5 was further constructed.
  • the recombinant plasmid pBIG4KOura5 was used to transform Agrobacterium tumefaciens, and finally the transformed Agrobacterium tumefaciens Agrobacterium tumefaciens C58Cl-pBIG4KOura5 (CGMCC No. 7730) containing the plasmid pBIG4KOura5 was transformed into Mortierella alpina and transformed into Mortierella alpina. Screening and identification were performed to obtain a uracil auxotrophic strain.
  • the Agrobacterium tumefaciens used therein is Agrobacterium tumefaciens C58C1. This strain was presented to Prof. Yasuyuki Kubo, Kyoto Prefectural University, Japan.
  • the Agrobacterium tumefaciens starting vector used for gene knockout is pBIG2RHPH2. This vector was obtained from Prof. Yasuyuki Kubo, Kyoto Prefectural University, Japan, and its sequence is SEQ No. 1.
  • the specific steps for the construction of the gene knockout vector are as follows:
  • the knock-out gene fragment and the plasmid pBIG4 were digested with the restriction enzymes EcoR I and Kpn I, and the knock-out gene fragment was inserted into the plasmid pBIG4 by ligation to obtain pBIG4KOura5.
  • the knockout gene fragment in step 3 is obtained by the following steps, first designing the following primers according to the NCBI database
  • primers are designed based on the sequence information of the plasmid pBluescript II SK + :
  • the plasmid pBluescript II SK+ in step 1) is then obtained by PCR. MCS gene fragment.
  • the Agrobacterium tumefaciens-mediated gene knockout method is to use Agrobacterium tumefaciens to transform Mortierella alpina, specifically: taking Agrobacterium tumefaciens and ⁇ M. alpina spores, all of which are coated on the paving On a cellophane IM solid medium, transformation culture was carried out, and then a strain of Mortierella alpina auxotrophy was obtained.
  • Agrobacterium tumefaciens transformation of Mortierella alpina is as follows: (1) Agrobacterium tumefaciens C58C1 containing plasmid pBIG4KOura5 stored at -80 ° C is contained in 100 g/mL rifampicin and 100 g /mL kanamycin YEP solid medium plate streak; 30 ° C inverted in the dark for 48 hours;
  • the cells were collected by centrifugation at 4000 g for 5 minutes, the supernatant was decanted, the cells were resuspended in 5 mL of IM medium, centrifuged at 4000 g for 5 minutes, the supernatant was decanted, and the cells were resuspended in 2 mL of IM medium;
  • the cellophane was transferred to a GY plate containing 100 g/mL spectinomycin, 100 g/mL cefotaxime, 0.05 g/L uracil, and cultured at 25-30 ° C until a large amount of spores were produced.
  • the IM solid medium is a component of 1.74 g / L ⁇ 2 ⁇ 0 4 , 1.37 g / L KH 2 P0 4 , 0.146 g / L NaCl , 0.49 g / L MgS0 4 -7H 2 0 , 0.078 g /L CaCl 2 , 0.0025g/L FeSO 4 -7H 2 O , 0.53g/L (NH 4 ) 2 S0 4 , 7.8g/L MES , 1.8g/L glucose, 0.5% glycerol, 20g/L agar .
  • the invention is based on the bioinformatics analysis of the genus A. oxysporum ATCC 32222, and adopts a method of gene knockout mediated by Agrobacterium tumefaciens.
  • a strain of uridine auxotrophic strain of Mortierella alpina was constructed.
  • the obtained strain of M. alpina uracil auxotrophic strain has multiple passages of genetic stability, and the results of fat group analysis are not significantly different from those of prototrophic strains. This strain can be used as a genetically engineered recipient strain.
  • the Agrobacterium tumefaciens C58Cl-pBIG4KOura5 obtained by the present invention has been deposited at the General Microbiology Center of the China Microbial Culture Collection Management Committee on June 28, 2013, at No. 3, No. 1 Beichen West Road, Chaoyang District, Beijing, China. Institute of Microbiology, Academy of Sciences, Zip Code 100101, with the accession number CGMCC No. 7730.
  • the strain Mortierella alpina MAUI involved in the present invention was deposited on November 01, 2013 at the General Microbiology Center of the China Microbial Culture Collection Management Committee, Address No. 3, No. 1 Beichen West Road, Chaoyang District, Beijing, China, Institute of Microbiology, Chinese Academy of Sciences, 100101 The deposit number is CGMCC No. 8414.
  • Figure 1 is a schematic diagram of constructing a knockout plasmid
  • Figure 2 is a schematic diagram showing the conserved domain analysis of Mortierella alpina OPRTase
  • Figure 3 is a gel electrophoresis diagram of a fusion PCR agarose gel.
  • Example 1 Bioinformatics analysis of Mortierella alpina ATCC 32222 genome
  • the protein coding sequence predicted by M. alpina ATCC32222 genomic information was BLAST (E-value 1E-5) Search for protein database NR (www.ncbi.nlm.nih.gov), KOGs and COGs, KEGG, Swiss-Prot and UniReflOO, BRENDA.
  • the protein structure database was aligned using InterProScan. Prediction of the full length of the wra5 gene coding sequence encoding OPRTase 654 bp, its genomic sequence has no introns. According to the wra5 gene sequence information, the M. alpina genome sequence was obtained, and the wra_ gene and the upstream and downstream sequence information were obtained.
  • the active site of the conserved sequence of OPRTase protein (Fig. 2), the DNA sequence of the wra5 gene was designed to contain different lengths of homologous arm DNA sequence knockout schemes, with different lengths and The combination of upstream and downstream sequence fragments of the spacing attempts to interrupt the wra_ gene.
  • the following successful implementations were obtained when the homology arms used were 1393 bp upstream of the wra5 gene and 1362 bp downstream from +231 to +1592, respectively.
  • the specific implementation steps of this successful case are as follows:
  • the EcoR I restriction site was introduced at the 5' end of the primer P1; the Kpn l restriction site was introduced at the 5' end of the primer P4.
  • primers P1, ⁇ 2 and primers ⁇ 3, ⁇ 4 were used to amplify the upstream and downstream fragments, respectively.
  • the gel is purified.
  • the above downstream fragment is used as a template, and P1 and ⁇ 4 are added to the reaction system for fusion PCR reaction, and the wra5 knockout gene fragment KOura5 is obtained.
  • the PCR product agarose gel electrophoresis is shown in Fig. 3, Ml is D2000 Marker, and lane 1 is upstream.
  • lane 2 is the downstream homology arm
  • lane 3 is the fusion PCR product
  • M2 is the lkb ladder marker.
  • the gene was cloned into the pEGMT-easy vector and sequenced at 3730.
  • Example 3 Construction of knockout plasmid pBIG4KOura5
  • the MCS gene fragment of plasmid pBluescript II SK+ was obtained by PCR.
  • the MCS gene fragment and the plasmid pBIG2RHPH2 were digested with restriction enzymes EcoR I and Xba I, and the kit was recovered and ligated using T4 ligase.
  • the ligation system was ( ⁇ : MCS gene fragment 2 L , vector 2 L , 10xT4 ligase buffer ⁇ L, T4 ligase l L, sterile water 41 ⁇ 4 ° C overnight.
  • the ligation product was transformed into E. coli TOP10 competent state.
  • the conversion method is as follows:
  • the knockout gene fragment KOura5 and plasmid pBIG4 were digested with the restriction enzymes Nhel and Muni, EcoR I and Kpn I, and after the kit was recovered, the T4 ligase was used to ligate, and the TOP10 competent state was transformed, and the positive transformant was picked. The plasmid was extracted and verified by sequencing, and the results showed that the connection was successful. The plasmid P BIG4KOura5 was obtained.
  • the SOC resuscitation medium is composed of 20g/L Tryptone, 5g/L yeast powder, 0.5g/L NaCl, 2.5mM KCl, !OmM MgCb, 20mM glucose; YEP
  • the solid medium was composed of the components 10 g/L Tryptone, 10 g/L yeast powder, 5 g/L NaCl, 20 g/L agar.
  • Example 4 Agrobacterium tumefaciens-mediated transformation of Mortierella alpina
  • Agrobacterium tumefaciens C58C1 containing plasmid pBIG4KOura5 stored at -80 °C was streaked on a YEP solid medium plate containing 100 g/mL rifampicin and 100 g/mL kanamycin. Incubate in the dark at 30 ° C for 48 hours.
  • the cells were collected by centrifugation at 4000 g for 5 minutes, and the supernatant was decanted. The cells were resuspended in 5 mL of IM medium, centrifuged at 4000 g for 5 minutes, and the supernatant was decanted. The cells were resuspended in 2 mL of IM medium.
  • the cellophane was transferred to a GY plate containing 100 g/mL spectinomycin, 100 g/mL cefotaxime, and 0.05 g/L uracil. Incubate at 25-30 ° C until a large amount of spores are produced.
  • the liquid YEP medium was composed of 10 g/L Tryptone, 10 g/L yeast powder, and 5 g/L NaCl.
  • Example 5 Screening and identification of ureter-deficient strains of Mortierella alpina
  • the stable genetic strain was identified as a uracil auxotrophic phenotype deposited on a GY slope containing 0.5 mg/mL 5-FOA.
  • the gene was obtained by PCR, and the PCR product was purified and sequenced, and identified as a 213 bp-230 bp deleted wra5 gene.
  • Example 6 Extraction and detection of adipose tissue of Mortierella alpina auxotrophic strain
  • the fermentation medium was purchased from the components of 50 g / L glucose, 2.0 g / L L - ammonium tartrate, 7.0 g / L KH 2 P0 4 , 2.0 g / L Na 2 HP0 4 , 1.5 g / L MgS0 4 -7H20 , 1.5 g/L Yeast extract , 0.1 g/L CaCl 2 -2H 2 0 , 8 mg/L FeCl 3 -6H 2 0 , 1 mg/L ZnS0 4 -7H 2 0, 0.1 mg/L CuS0 4 - 5H 2 0, 0.1 mg/L Co ( N0 3 ) 2 -6H 2 0, 0.1 Mg/L MnS0 4 -5H 2 0.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及一种高山被孢霉(Mortierella alpina ATCC 32222)的尿嘧啶营养缺陷型菌株及其构建方法。本发明采用高山被孢霉ATCC 32222为材料,运用根癌农杆菌介导的遗传操作技术进基因敲除,得到一株高山被孢霉尿嘧啶营养缺陷型,对产油真菌高山被孢霉ATCC 32222的基础理论研究及产品开发具有重要的意义。

Description

一种通过同源重組敲除画 5基因的高山被孢審尿嘧啶营养缺陷型 及其构建方法 本申请要求申请日为 2013年 08月 09日的中国发明专利申请 CN 201310347934.8优先权。说 【技术领域】
本发明涉及一种高山被孢霉尿嘧啶营养缺陷型菌株及其构建方 法, 属于生物工程技术领域。
【背景技术】
高山被孢霉是一种重要的花生四烯酸(ARA )生产菌株, 它具有 ARA含量高、 安全、 多不饱和脂肪酸(PUFAs )组成合理等特点, 已经应用于工业生产 ARA。 目前对高山被孢霉的研究主要集中在菌 种选育和发酵条件优化等方面。高山被孢霉的基因操作系统目前还没 有被很好的建立起来。这就对高山被孢霉脂肪酸合成途径的基础理论 研究和基因工程改造形成了极大的障碍。 目前广泛使用的丝状真菌转 化筛选标记有以下三种: 营养缺陷型标记、抗生素抗性标记和荧光报 道基因。 营养缺陷型菌株经基因工程改造后, 无外源抗性标记基因残 留, 可以用于工业生产。 所以, 获得性状良好的营养缺陷型菌株在工 业微生物育种、 遗传学、 医学、 食品生物技术等领域都有着非常重要 的作用。但是, 目前获得丝状真菌营养缺陷型菌株主要依赖于诱变筛 选的方法。 这种方法效率极低且经常伴随着基因组中其他位置 DNA 序列中未知的突变。这种由诱变得来的无表型特征的带有遗传背景隐 患的菌株可能为以后的基因工程改造和工业生产带来不可预知的麻 烦。
利用同源重组实现的基因敲除方法可以在不影响基因组中其他 基因的前提下破坏目的基因,使目的基因编码的蛋白丧失功能,而且, 与随机诱变相比, 同源重组效率相对较高, 通过同源重组获得目的菌 株的重复性好。 可见, 利用同源重组定向打断目的基因, 是获得优良 营养缺陷型菌株的最佳方法。 但是, 对于丝状真菌来说, 同源重组的 效率受很多因素的影响: 同源序列的长度、 相似性、 G/C含量、 靶基 因的转录状态、 非同源末端连接、 染色质结构和转化方法。 在一些酵 母菌中, 同源序列只需达到 50-100bp即可实现同源重组; 而丝状真 菌通常需要 lkb以上甚至几 kb的高质量同源性序列。并且不同菌株、 不同基因的敲除需要满足不同的条件,些许的序列差异都可能导致同 源重组的失败。 乳清酸麟酸核糖转移酶(OPRTase )是高山被孢霉合 成尿嘧啶合成代谢途径中的关键酶。 使编码 OPRTase的画5基因失 活, 可以获得高山被孢霉尿嘧啶营养缺陷型菌株。 但是, 由于 基因在细胞生命过程中具有极其重要的地位,导致了真核细胞的自我 防御与修复机制作用十分敏感。 用基因敲除的方法靶向失活 基 因构建丝状真菌的尿嘧啶营养缺陷型菌株,在国际上一直未有公开报 道的成功先例。
难以被转化是丝状真菌基因操作系统远远落后于与其他物种的 重要原因之一。 在国内一直未见对高山被孢霉遗传操作的先例。根癌 农杆菌介导的转化方法已经被越来越多的应用到丝状真菌中,和其它 转化方法相比具有四个优点: 一、 受体细胞可以是孢子或菌丝, 不需 制备原生质体。 二、选择具有单核的孢子作为受体时可避免菌丝的多 核所造成的转化子不稳定的问题。 三、该方法利用天然的转化载体系 统, 转化效率高, 成功率高, 载体可容纳大片段的异源 DNA, 且基 本上为单拷贝插入。 四、 该方法可以提高同源重组效率。 因此, 通过 根癌农杆菌的转化为高山被孢霉 wra5基因靶向失活提供了有效操作 手段。
高山被孢霉尿嘧啶营养缺陷型菌株为这种重要的 PUFAs生产菌 株的基因操作提供了先决条件。这种营养缺陷性菌株既可用于对产油 真菌脂肪酸合成与积累的理论研究, 也可用于基因工程改造, 具有成 为 PUFAs超级工业生产菌株的潜力。
【发明内容】
本发明要解决的技术问题是提供一种高山被孢霉尿嘧啶营养缺 陷型菌株。 所述营养缺陷型菌株是通过同源重组的方法靶向缺失 Mortierella alpina ATCC 32222 wra5基因 ( 654bp ) 中的 213bp-230bp 共 18b 的序列实现的。
所述同源重组的同源臂 DNA序列来源于 Mortierella alpina ATCC 32222 基 因 组 ( DDBJ/EMBL/GenBank accession ADAG00000000, first version ADAGO 1000000 ) 中, 觀5基因上游 1393bp ( -1180至 +212 )和下游 1362bp ( +231至 +1592 ) 的片段。
本发明还提供了一种构建上述高山被孢霉尿嘧啶营养缺陷型菌 株的方法, 所述方法包括获得 wra_ 敲除基因片段, 并利用 wra_ 敲除 基因片段进一步构建敲除质粒 pBIG4KOura5。 然后用重组质粒 pBIG4KOura5转化根癌农杆菌,最后用经转化的含质粒 pBIG4KOura5 的根癌农杆菌转化高山被孢霉,并对转化后的高山被孢霉进行筛选和 鉴定, 获得尿嘧啶营养缺陷型菌株。
具体步骤如图 1 , 用 PCR的方法获得质粒 pBluescript II SK+ 的 MCS基因片段。用限制性内切酶 Nhel和 Muni , EcoR I和 Xba I分别 对 MCS基因片段和质粒 pBIG2RHPH2进行酶切,并通过连接反应将 MCS基因片段插入质粒 BIG2RHPH2的 EcoR I和 Xba I位点之间得 到质粒 pBIG4。 用融合 PCR的方法获得并连接 ura5基因的上下游序 列,得到敲除基因片段。用限制性内切酶 EcoR I和 Kpn I对敲除基因 片段和质粒 pBIG4进行酶切, 并通过连接反应将敲除基因片段插入 质粒 pBIG4 ,得到重组质粒 pBIG4KOura5。将重组质粒 pBIG4KOura5 转化根癌农杆菌 C58C1。 借助根癌农杆菌 C58C1介导的基因同源重 组打断 基因, 经过筛选鉴定得到高山被孢霉尿嘧啶营养缺陷型 菌株。
具体地, 本发明提供一株高山被孢霉尿嘧啶营养缺陷型菌株
Mortierella alpina MAUI , 所述高山被孢霉尿嘧啶营养缺陷型菌株为 Mortierella alpina MAUI ,于 2013年 11月 01 日保藏于中国微生物菌 种保藏管理委员会普通微生物中心,地址北京市朝阳区北辰西路 1号 院 3号, 中国科学院微生物研究所, 保藏编号为 CGMCC No. 8414。 该菌株是通过失活 Mortierella alpina ATCC 32222基因组中编码乳清 酸騎酸核糖转移酶 OPRTase的 wra5基因构建而成的。
根据一种优选的实施方式, wra_ 基因的失活是通过缺失 654bp 的画5基因中的 213bp-230b 共 18b 的序列而实现的。
本发明还提供一种制备上述高山被孢霉尿嘧啶营养缺陷型菌株 的方法, 通过同源重组使高山被孢霉画5基因中的 213bp-230bp共 18bp序列缺失从而使 um5基因失活,所使用的同源臂分别是簡5基 因上游 -1180至 +212的 1393bp和下游 +231至 +1592的 1362bp的片段, 具体步骤为: 首先获得^^敲除基因片段, 并进一步构建敲除质粒 pBIG4KOura5 , 然后用重组质粒 pBIG4KOura5转化根癌农杆菌, 最 后用经转化的含质粒 pBIG4KOura5的根癌土壤杆菌 Agrobacterium tumefaciens C58Cl-pBIG4KOura5 ( CGMCC No. 7730 )转化高山被孢 霉并对转化后的高山被孢霉进行筛选和鉴定,获得尿嘧啶营养缺陷型 菌株。
其中所使用的根癌农杆菌为 Agrobacterium tumefaciens C58C1。 此菌株获赠于日本京都县立大学 Yasuyuki Kubo教授。
基因敲除使用的根癌农杆菌起始载体为 pBIG2RHPH2。此载体获 赠于日本京都县立大学 Yasuyuki Kubo教授, 其序列为 SEQ No. l。
根据一种优选的实施方式, 基因敲除载体构建的具体步骤如下:
1 )用 PCR的方法获得质粒 pBluescript II SK+的 MCS基因片段;
2 ) 用限制性内切酶 EcoR I和 Xba I对 MCS基因片段和质粒 pBIG2RHPH2进行酶切, 并通过连接反应将 MCS基因片段插入质粒 pBIG2RHPH2的 EcoR I和 Xba I位点之间得到质粒 pBIG4;
3 )用融合 PCR的方法获得并连接 wra5基因的上下游序列, 得 到敲除基因片段;
4 ) 用限制性内切酶 EcoR I和 Kpn I对敲除基因片段和质粒 pBIG4进行酶切, 并通过连接反应将敲除基因片段插入质粒 pBIG4 获得 pBIG4KOura5。
优选地, 步骤 3 ) 中的敲除基因片段是通过下述步骤获得的, 首先根据 NCBI数据库设计如下引物
PI : GACCGGAATTCCGACGCTGACATTACACATTTATCC P2:
TGACGGTGGTGCAGGCCAGAGGGCCAAAGATGATGTCGTG CTCAATG
P3:
GTCATT
P4: TGCGGGGTACCCATGCGAATCACAGATATGG
然后以高山被孢霉 ATCC32222基因组为模板, 用引物 PI、 P2 和引物 P3、 P4分别扩增上下游片段, 再以上下游片段为模板, 在反 应体系中加入 Pl、 P4进行融合 PCR反应, 获得 wra5敲除基因片段 KOura5 o
更优选地,根据质粒 pBluescript II SK+的序列信息设计如下引物:
MCS 上 游 :
TTTCGCTAGCACGACGTTGTAAAACGACGGCCAGT
MCS 下 游 :
AACAACAATTGGGGCTCCACCGCGGTGGCGGCCG
然后用 PCR的方法获得步骤 1 ) 中的质粒 pBluescript II SK+ 的 MCS基因片段。
所述的根癌农杆菌介导的基因敲除方法是采用根癌农杆菌转化 高山被孢霉, 具体为: 取 ΙΟΟμ 根癌农杆菌与 ΙΟΟμ 高山被孢霉孢 子混合, 均勾涂布于铺有玻璃纸 IM固体培养基上, 进行转化培养, 然后筛选获得高山被孢霉尿嘧啶营养缺陷型菌株。
在本发明中, 根癌农杆菌转化高山被孢霉的具体步骤如下: ( 1 ) 取保存于 -80°C的含有质粒 pBIG4KOura5的根癌农杆菌 C58C1于含有 lOO g/mL利福平和 lOO g/mL卡那霉素的 YEP固体培 养基平板划线; 30°C倒置避光培养 48小时;
( 挑取单克隆接种至 20mL含有 lOO g/mL利福平和 lOO g/mL 卡那霉素的液体 YEP培养基中 30°C , 200rpm避光培养 24-48小时;
( 4000g离心 5分钟收集菌体, 倒掉上清, 加 5mL IM培养基重 悬菌体, 4000g离心 5分钟, 倒掉上清, 加 2mL IM培养基重悬菌体;
(4)用 IM培养基调整菌浓度至 OD600=0.9, 30 °C , 200rpm避光培 养至 OD600=1.5 ;
(5)收集高山被孢霉孢子, 用血球计数器计数, 调整孢子浓度到 106个每 10( L;
(6)取 10( L根癌农杆菌与 ΙΟΟμΙ^孢子混合, 均勾涂布于铺有玻 璃纸 IM固体培养基上, 23 °C避光培养 48-96小时;
(7)将玻璃纸转移到含有 lOO g/mL壮观霉素, lOO g/mL头孢噻 肟, 0.05g/L尿嘧啶的 GY平板上, 25-30°C培养至产生大量孢子。
在本发明中, IM固体培养基是以组分 1.74g/L Κ2ΗΡ04 , 1.37g/L KH2P04 , 0.146g/L NaCl , 0.49g/L MgS04-7H20 , 0.078g/L CaCl2 , 0.0025g/L FeSO4-7H2O , 0.53g/L (NH4)2S04 , 7.8g/L MES , 1.8g/L葡萄 糖, 0.5%甘油, 20g/L琼脂构成的。
本发明基于对高山被孢霉 ATCC 32222基因组生物信息学分析的 基础上, 采用根癌农杆菌介导的基因敲除的方法, 经过大量的实践尝 试, 构建了高山被孢霉尿嘧啶营养缺陷型菌株。 获得的高山被孢霉尿 嘧啶营养缺陷型菌株具有多次传代的遗传稳定性,且脂肪组分析结果 与原养型菌株无明显差别。 该菌株可以作为基因工程的受体菌株使 用。
本发明获得的才艮癌土壤 干菌 Agrobacterium tumefaciens C58Cl-pBIG4KOura5已于 2013年 06月 28日保藏于中国微生物菌种 保藏管理委员会普通微生物中心, 地址北京市朝阳区北辰西路 1号 院 3号中国科学院微生物研究所, 邮编 100101 ,保藏编号为 CGMCC No. 7730。
本发明涉及的菌株 Mortierella alpina MAUI于 2013年 11月 01 日保藏于中国微生物菌种保藏管理委员会普通微生物中心,地址北京 市朝阳区北辰西路 1号院 3号, 中国科学院微生物研究所, 邮编 100101 , 保藏编号为 CGMCC No. 8414。
【附图说明】
图 1为构建敲除质粒示意图;
图 2为高山被孢霉 OPRTase保守结构域分析示意图;
图 3为融合 PCR琼脂糖凝胶电泳图。
【具体实施方式】
以下通过实施例来进一步阐述本发明,下例实施例中未注明具体 条件的实验方法, 基本上都按照常见的分子克隆手册进行实验操作。
实施例 1 : 高山被孢霉 ATCC 32222基因组生物信息学分析 根据高山被孢霉 ATCC32222基因组信息( DDBJ/EMBL/GenBank accession ADAG00000000, first version ADAG01000000 )预测的蛋白 质编码序列经 BLAST ( E-value 1E-5 ) 对蛋白数据库 NR (www.ncbi.nlm.nih.gov) , KOGs 和 COGs , KEGG , Swiss-Prot和 UniReflOO , BRENDA搜索比对。 使用 InterProScan对蛋白质结构数 据库进行比对。 预测得到编码 OPRTase的 wra5基因 coding序列全长 654bp,其基因组序列无内含子。并根据 wra5基因序列信息 map高山 被孢霉基因组序列, 得到 wra_ 基因以及上下游序列信息。
实施例 2: KOura5敲除基因片段的获得
根据基因组生物信息学分析结果, 针对 OPRTase的蛋白质保守 序列的活性位点 (如图 2 ), 对 wra5基因的 DNA序列设计了包含不 同长度的同源臂 DNA序列敲除方案, 以不同的长度和间距的上下游 序列片段组合尝试对 wra_ 基因进行打断。 经过大量实践和比较筛选 过程确认,使用的同源臂分别是 wra5基因上游 -1180至 +212的 1393bp 和下游 +231至 +1592的 1362bp的片段时, 能够获得以下成功实施案 例。 该成功案例的具体实施步骤如下:
首先, 根据 NCBI数据库中设计弓 I物
PI : GACCGGAATTCCGACGCTGACATTACACATTTATCC P2:
TGACGGTGGTGCAGGCCAGAGGGCCAAAGATGATGTCGTG CTCAATG
P3:
GTCATT
P4: TGCGGGGTACCCATGCGAATCACAGATATGG
引物 P1 5'端引入 EcoR I酶切位点; 引物 P4 5'端引入 Kpn l 酶切位点。 以高山被孢霉 ATCC32222基因组为模板, 用引物 Pl、 Ρ2 和引物 Ρ3、 Ρ4分别扩增上下游片段。 切胶纯化。 再以上下游片段为 模板, 反应体系中加入 Pl、 Ρ4进行融合 PCR反应, 获得 wra5敲除 基因片段 KOura5,各 PCR产物琼脂糖凝胶电泳见图 3 , Ml为 D2000 Marker , 1号泳道为上游同源臂, 2号泳道为下游同源臂, 3号泳道 为融合 PCR产物, M2 为 lkb ladder Marker。 将基因克隆到 pEGMT-easy载体上, 3730测序。 实施例 3: 敲除质粒 pBIG4KOura5的构建
根据质粒 pBluescript II SK+的序列信息设计引物:
MCS上游:
TTTCGCTAGCACGACGTTGTAAAACGACGGCCAGT MCS下游:
AACAACAATTGGGGCTCCACCGCGGTGGCGGCCG
用 PCR的方法获得质粒 pBluescript II SK+ 的 MCS基因片段。 用限制性内切酶 EcoR I和 Xba I对 MCS基因片段和质粒 pBIG2RHPH2进行双酶切, 试剂盒回收后, 使用 T4连接酶连接。 连 接体系为 ( ΙΟμυ: MCS基因片段 2 L , 载体 2 L , 10xT4连接酶 buffer^L, T4连接酶 l L, 无菌水 41μ 4°C过夜连接。
连接产物转化大肠杆菌 TOP10感受态。 转化方法如下:
(1)无菌状态下取 10( L感受态细胞,加入 l-2 L连接产物,混匀。
(2)将 (1)中感受态移入电转杯中, 避免产生气泡。
(3)将电转杯放入 Bio-Rad电转仪,调到合适预设程序档位,电转。
(4)电转后的感受态移至含有 900μΙ SOC复苏培养基的离心管中, 37 °C , 150rpm 1小时。
(5)取 20(^L涂布 lOO g/mL卡那霉素抗性 YEP固体培养基平板。 倒置 37°C培养过夜。
挑取阳性转化子, 提取质粒, 测序验证, 结果表明连接成功。获 得质粒 pBIG4。
用限制性内切酶 Nhel和 Muni , EcoR I和 Kpn I对敲除基因片段 KOura5和质粒 pBIG4进行酶切, 试剂盒回收后, 使用 T4连接酶连 接, 转化 TOP10感受态, 挑取阳性转化子, 提取质粒, 测序验证, 结果表明连接成功。 获得质粒 PBIG4KOura5。
其中, SOC复苏培养基是以组分 20g/L Tryptone, 5g/L酵母粉, 0.5g/L NaCl, 2.5mM KCl, !OmM MgCb, 20mM 葡萄糖构成的; YEP 固体培养基是以组分 lOg/LTryptone, 10g/L酵母粉, 5g/LNaCl, 20g/L 琼脂构成的。
实施例 4: 根癌农杆菌介导转化高山被孢霉
在已有的国内外文献有关根癌农杆菌转化方法报道的基础上,做 了适当的优化调整, 具体成功实施例如下:
(1)取保存于 -80°C的含有质粒 pBIG4KOura5的根癌农杆菌 C58C1 于含有 lOO g/mL利福平和 lOO g/mL卡那霉素的 YEP固体培养基平 板划线。 30°C倒置避光培养 48小时。
( 挑取单克隆接种至 20mL含有 lOO g/mL利福平和 lOO g/mL 卡那霉素的液体 YEP培养基中 30°C , 200rpm避光培养 24-48小时。
( 4000g离心 5分钟收集菌体, 倒掉上清。 加 5mLIM培养基重 悬菌体, 4000g离心 5分钟, 倒掉上清。 加 2mLIM培养基重悬菌体。
(4)用 IM培养基调整菌浓度至 OD600=0.9。 30 °C, 200rpm避光培 养至 OD600=1.5。
(5)收集高山被孢霉孢子, 用血球计数器计数, 调整孢子浓度到 106个每 10( L。
(6)取 10( L根癌农杆菌与 ΙΟΟμΙ^孢子混合, 均勾涂布于铺有玻 璃纸 IM固体培养基上。 23°C避光培养 48-96小时。
(7)将玻璃纸转移到含有 lOO g/mL壮观霉素, lOO g/mL头孢噻 肟, 0.05g/L尿嘧啶的 GY平板上。 25-30°C培养至产生大量孢子。
其中,液体 YEP培养基是以组分 10g/LTryptone, 10g/L酵母粉, 5g/LNaCl构成的。
实施例 5: 高山被孢霉尿嘧啶营养缺陷型菌株筛选和鉴定
(1)用 3mL生理盐水沖刷共培养的平 表面, 收集液体于一个无 菌 1.5mL离心管中。 过 25μηι滤膜。
( 分别取 20(^L涂布于含有 lmg/mL5-FOA, lOO g/mL壮观霉 素, lOO g/mL头孢噻肟, 0.05g/L尿嘧啶的 GY平板上。 (3) 25 °C避光培养 5-10天。
(4)随时用无菌镊子挑出长出的真菌菌丝, 接种于含有 lmg/mL 5-FOA, lOO g/mL壮观霉素, lOO g/mL头孢噻肟, 0.05g/L尿嘧啶 的 GY平板上。 25 °C避光培养 2-4天。
(5)将 (4)中明显生长的菌落分别接种到含有尿嘧啶和不含有尿嘧 啶的 SC固体平板上。
25°C培养 2-4天。
(6)观察在高山被孢霉两种平板上的生长情况。挑出只在含有尿嘧 啶的 SC平板上生长的菌落, 接种于含有 0.5mg/mL 5-FOA的 GY斜 面上。
(7)将 (6)中斜面上的高山被孢霉菌株孢子在含有 0.5mg/mL 5-FOA 的 GY斜面上传代 3次, 每一次传代都重复步骤 (5)中描述实验。
(8)稳定遗传的菌株鉴定为尿嘧啶营养缺陷型表型保藏于含有 0.5mg/mL 5-FOA的 GY斜面上。
(9)提取具有尿嘧啶营养缺陷型表型高山被孢霉基因组。 用引物: 上游: ATGACCATCAAGGATTACCAGCGCG
下游: ATCCTTAAACACCGTACTTCTCGCG
PCR获得 基因, PCR产物纯化后,测序,鉴定为 213bp-230bp 缺失的 wra5基因。
实施例 6: 高山被孢霉尿嘧啶营养缺陷型菌株脂肪组提取与检测
(1)将高山被孢霉原养型菌株与实施例 5 选获得的三株高山被 孢霉尿嘧啶营养缺陷型菌株接种于发酵培养基 (营养缺陷型菌株需额 外添加 0.05g/L尿嘧啶) 中, 25°C , 200rpm培养 7-14天。
其中, 发酵培养基是购买自以组分 50 g/L葡萄糖, 2.0 g/L L-酒石 酸铵, 7.0 g/L KH2P04, 2.0 g/L Na2HP04, 1.5 g/L MgS04-7H20 , 1.5 g/L Yeast extract , 0.1 g/L CaCl2-2H20 , 8 mg/L FeCl3-6H20 , 1 mg/L ZnS04-7H20, 0.1 mg/L CuS04-5H20, 0.1 mg/L Co ( N03 ) 2-6H20, 0.1 mg/L MnS04-5H20构成的。
(2)收集菌体, 冷冻干燥。
(3)取 1 OOmg干重菌丝, 加入 2mL 4mol/L盐酸。
(4) 80 °C水浴 0.5小时, -80°C 15分钟。 重复一次。 80°C水浴 0.5 小时。
(5)冷却至室温, 加入 ImL曱醇, 混匀。
(6)加入 ImL氯仿, 震荡 10分钟。 6000g离心 3分钟。 收集氯仿。
(7)重复 (6)两次。
(8)合并氯仿(3mL ), 加入 ImL饱和氯化钠, 混匀, 3000g离心 3分钟。 收集氯仿层于新瓶。 剩余液体加入 ImL氯仿, 3000g离心 3 分钟。 合并氯仿(4mL )。
(9)氮吹干燥, 加入 ImL 乙醚, 转移至洁净的已经称重的瓶中。 氮吹干燥, 称重得到总脂肪重量。 高山被孢霉原养型菌株与三株尿嘧 啶营养缺陷型菌株总脂肪含量见表 1。
表 1、 高山被孢霉原养型菌株与三株尿嘧啶营养缺陷型菌株总脂肪含量
菌株 样品干重 mg 总脂肪含量%
MA 46.2 30.64 ±0.035
MAUI (CGMCC No. 8414) 49.0 30.56 ±0.026
MAU2 50.5 30.72 ±0.036
MAU3 52.1 30.60 ±0.029
(10)GC分析脂肪组构成。
高山被孢霉原养型菌株与三株尿嘧啶营养缺陷型菌株脂肪组比 较见表 2。
表 2、 高山被孢霉原养型菌株与三株尿嘧啶营养缺陷型菌株脂肪组比较 n 各种脂肪酸比例 (%)
16:0 18:0 18:1 18:2 18:3 20:3 20:4 22:0 24:0
MA 14.98 10.73 8.91 15.60 2.61 1.97 34.53 1.27 1.79
MAU1 13.59 10.98 9.40 17.17 2.59 1.81 34.50 1.21 1.57
MAU2 14.4 11.35 9.67 16.83 2.56 1.90 34.84 1.26 1.62
MAU3 13.56 10.48 9.17 16.43 2.43 1.66 34.16 1.20 1.54 实验结果表明,通过本实验的方法获得的高山被孢霉尿嘧啶营养 缺陷型菌株具有多次传代的遗传稳定性,且脂肪组分析结果与原养型 菌株无明显差别。 该菌株可以作为基因工程的受体菌株使用。
虽然本发明专利已以较佳实施例公开如上,但其并非用以限定本 发明。 任何熟悉此技术的人, 在不脱离本发明的精神和范围内, 都可 做各种改动与修饰。因此本发明的保护范围应该以权利要求书所界定 的为准。

Claims

权 利 要 求 书
1、 一株高山被孢霉尿嘧啶营养缺陷型菌株, 其特征在于该菌株 是通过失活 Mortierdla alpina ATCC 32222基因组中编码乳清酸磷酸 核糖转移酶 OPRTase的 ura5基因构建而成的, 所述高山被孢霉尿嘧 啶营养缺陷型菌株为 Mortierella alpina MAUI , 于 2013年 11月 01 日保藏于中国微生物菌种保藏管理委员会普通微生物中心,地址北京 市朝阳区北辰西路 1号院 3号, 中国科学院微生物研究所,保藏编号 为 CGMCC No. 8414。
2、 根据权利要求 1所述的高山被孢霉尿嘧啶营养缺陷型菌株, 其特征在于 基因的失活是通过缺失 654bp的 wra5基因中的 213bp-230bp共 18bp的序列而实现的。
3、 一种制备权利要求 1或 2所述的高山被孢霉尿嘧啶营养缺陷 型菌株的方法, 其特征在于通过同源重组使高山被孢霉 基因中 的 213bp-230bp共 18bp序列缺失从而使 基因失活, 所使用的同 源臂分别是 基因上游 -1180至 +212的 1393bp和下游 +231至 +1592的 1362bp的片段,具体步骤为: 首先获得 敲除基因片段, 并进一步构建敲除质粒 pBIG4KOura5 ,然后用重组质粒 pBIG4KOura5 转化根癌农杆菌, 最后用经转化的含质粒 pBIG4KOura5的根癌土壤 杆菌转化高山被孢霉并对转化后的高山被孢霉进行筛选和鉴定,获得 尿嘧啶营养缺陷型菌株。
4、 根据权利要求 3所述的方法, 其特征在于所述根癌农杆菌为 Agrobacterium tumefaciens C58C1。
5、 根据权利要求 4所述的方法, 其特征在于基因敲除使用的根 癌农杆菌起始载体为 pBIG2RHPH2。
6、 根据权利要求 5所述的方法, 其特征在于基因敲除载体构建 的具体步骤如下:
1 )用 PCR的方法获得质粒 pBluescript II SK+的 MCS基因片段; 2 ) 用限制性内切酶 EcoR I和 Xba I对 MCS基因片段和质粒 pBIG2RHPH2进行酶切, 并通过连接反应将 MCS基因片段插入质粒 pBIG2RHPH2的 EcoR I和 Xba I位点之间得到质粒 pBIG4;
3 )用融合 PCR的方法获得并连接 wra5基因的上下游序列, 得 到敲除基因片段;
4 ) 用限制性内切酶 EcoR I和 Kpn I对敲除基因片段和质粒 pBIG4进行酶切, 并通过连接反应将敲除基因片段插入质粒 pBIG4 获得 pBIG4KOura5。
7、 根据权利要求 6所述的方法, 其特征在于步骤 3 ) 中的敲除 基因片段是通过下述步骤获得的,
首先根据 NCBI数据库设计如下引物
PI : GACCGGAATTCCGACGCTGACATTACACATTTATCC P2:
TGACGGTGGTGCAGGCCAGAGGGCCAAAGATGATGTCGTG CTCAATG
P3:
GTCATT
P4: TGCGGGGTACCCATGCGAATCACAGATATGG
然后以高山被孢霉 ATCC32222基因组为模板, 用引物 PI、 P2 和引物 P3、 P4分别扩增上下游片段, 再以上下游片段为模板, 在反 应体系中加入 Pl、 P4进行融合 PCR反应, 获得 KOura5敲除基因片 段。
8、根据权利要求 7所述的方法,其特征在于根据质粒 pBluescript II SK+的序列信息设计如下引物:
MCS 上 游 :
TTTCGCTAGCACGACGTTGTAAAACGACGGCCAGT MCS 下 游 :
AACAACAATTGGGGCTCCACCGCGGTGGCGGCCG
然后用 PCR的方法获得步骤 1 ) 中的质粒 pBluescriptIISK+ 的 MCS基因片段。
9、 根据权利要求 8所述的方法, 其特征在于所述的根癌农杆菌 介导的基因敲除方法是采用根癌农杆菌转化高山被孢霉, 具体为: 取 10( L根癌农杆菌与 ΙΟΟμΙ^高山被孢霉孢子混合,均匀涂布于铺有玻 璃纸 ΙΜ固体培养基上, 进行转化培养, 然后筛选获得高山被孢霉尿 嘧啶营养缺陷型菌株。
10、根据权利要求 9所述的方法, 其特征在于根癌农杆菌转化高 山被孢霉的具体步骤如下:
( 1 ) 取保存于 -80°C的含有质粒 pBIG4KOura5的根癌农杆菌 C58C1于含有 lOO g/mL利福平和 lOO g/mL卡那霉素的 YEP固体培 养基平板划线; 30°C倒置避光培养 48小时;
( 挑取单克隆接种至 20mL含有 lOO g/mL利福平和 lOO g/mL 卡那霉素的液体 YEP培养基中 30°C , 200rpm避光培养 24-48小时;
( 4000g离心 5分钟收集菌体, 倒掉上清, 加 5mLIM培养基重 悬菌体, 4000g离心 5分钟, 倒掉上清, 加 2mLIM培养基重悬菌体;
(4)用 IM培养基调整菌浓度至 OD600=0.9, 30 °C, 200rpm避光培 养至 OD600=1.5;
(5)收集高山被孢霉孢子, 用血球计数器计数, 调整孢子浓度到 106个每 10( L;
(6)取 10( L根癌农杆菌与 ΙΟΟμΙ^孢子混合, 均勾涂布于铺有玻 璃纸 IM固体培养基上, 23°C避光培养 48-96小时;
(7)将玻璃纸转移到含有 lOO g/mL壮观霉素, lOO g/mL头孢噻 肟, 0.05g/L尿嘧啶的 GY平板上, 25-30°C培养至产生大量孢子。
PCT/CN2014/072350 2013-08-09 2014-02-21 一种通过同源重组敲除ura5基因的高山被孢霉尿嘧啶营养缺陷型及其构建方法 WO2015018198A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/910,675 US9982269B2 (en) 2013-08-09 2014-02-21 Mortierella alpine uracil auxotroph with URA5 gene knocked out through homologous recombination, and construction method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310347934.8 2013-08-09
CN201310347934.8A CN103468581B (zh) 2013-08-09 2013-08-09 一种通过同源重组敲除ura5基因的高山被孢霉尿嘧啶营养缺陷型及其构建方法

Publications (1)

Publication Number Publication Date
WO2015018198A1 true WO2015018198A1 (zh) 2015-02-12

Family

ID=49793624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072350 WO2015018198A1 (zh) 2013-08-09 2014-02-21 一种通过同源重组敲除ura5基因的高山被孢霉尿嘧啶营养缺陷型及其构建方法

Country Status (3)

Country Link
US (1) US9982269B2 (zh)
CN (1) CN103468581B (zh)
WO (1) WO2015018198A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103468581B (zh) * 2013-08-09 2015-09-16 江南大学 一种通过同源重组敲除ura5基因的高山被孢霉尿嘧啶营养缺陷型及其构建方法
CN103820335B (zh) * 2014-03-11 2017-02-08 江南大学 一种过表达ω3脱饱和酶基因的高山被孢霉基因工程菌株及其构建方法
CN106754436B (zh) * 2017-01-13 2023-07-04 江南大学 高山被孢霉ccfm698菌体的制备及其在饲料添加剂中的应用
CN108384798B (zh) * 2018-02-13 2020-12-29 江南大学 一种利用根癌农杆菌转化高山被孢霉菌丝的方法
CN109880844A (zh) * 2019-03-06 2019-06-14 江苏省农业科学院 一种基于同源重组的变棕溶杆菌oh23基因敲除系统的构建方法与应用
CN109988716B (zh) * 2019-04-16 2023-09-05 上海百信生物科技有限公司 一种利用尿嘧啶营养缺陷型进行灵芝菌种保护的方法
CN110331099A (zh) * 2019-07-31 2019-10-15 江南大学 一种产油丝状真菌遗传改造菌株的快速筛选方法
CN113817765B (zh) * 2021-09-16 2024-01-16 山东大学 农杆菌同源重组系统及其应用
CN114717268A (zh) * 2021-11-01 2022-07-08 天津农学院 一种可用于无痕遗传转化菌株的制备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1839199A (zh) * 2003-08-22 2006-09-27 三得利株式会社 脂质生产菌的育种方法
CN103468581A (zh) * 2013-08-09 2013-12-25 江南大学 一种通过同源重组敲除ura5基因的高山被孢霉尿嘧啶营养缺陷型及其构建方法
CN103571762A (zh) * 2013-10-30 2014-02-12 江南大学 一种高山被孢霉重组基因表达系统及其构建方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101560475A (zh) * 2009-03-31 2009-10-21 元昊 尿嘧啶营养缺陷型汉逊酵母菌及其构建方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1839199A (zh) * 2003-08-22 2006-09-27 三得利株式会社 脂质生产菌的育种方法
CN103468581A (zh) * 2013-08-09 2013-12-25 江南大学 一种通过同源重组敲除ura5基因的高山被孢霉尿嘧啶营养缺陷型及其构建方法
CN103571762A (zh) * 2013-10-30 2014-02-12 江南大学 一种高山被孢霉重组基因表达系统及其构建方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAJPAI, P. K. ET AL.: "Production of Arachidonic Acid by Mortierella Alpina ATCC 32222", JOURNAL OF INDUSTRIAL MICROBIOLOGY, vol. 8, 31 December 1991 (1991-12-31), pages 179 - 186, XP002445443, DOI: doi:10.1007/BF01575851 *
SHEN, WEIFENG ET AL.: "Agrobacterium Tumefaciens-mediated Transformation of the Pathogen of Botrytis Cinerea", HEREDITAS, vol. 30, no. 4, 30 April 2008 (2008-04-30), pages 515 - 520 *

Also Published As

Publication number Publication date
US20160355831A1 (en) 2016-12-08
US9982269B2 (en) 2018-05-29
CN103468581A (zh) 2013-12-25
CN103468581B (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
WO2015018198A1 (zh) 一种通过同源重组敲除ura5基因的高山被孢霉尿嘧啶营养缺陷型及其构建方法
Lin et al. Functional integration of multiple genes into the genome of the oleaginous yeast Rhodosporidium toruloides
WO2015062190A1 (zh) 一种高山被孢霉重组基因表达系统及其构建方法和应用
WO2017215204A1 (zh) 一种枯草芽孢杆菌重组菌株及其制备方法与应用
Wang et al. An efficient tool for random insertional mutagenesis: Agrobacterium tumefaciens-mediated transformation of the filamentous fungus Aspergillus terreus
WO2020244380A1 (zh) 提高短乳杆菌γ-氨基丁酸合成能力的方法及其应用
WO2012037774A1 (zh) 多拷贝高效表达重组菌丝霉素的酵母菌
CN109306357B (zh) 一种表达制备蔗糖磷酸化酶的方法
CN109402152B (zh) 一种表达制备udp-葡萄糖-4-差向异构酶的方法
CN105647822B (zh) 一株过表达来源于寄生疫霉的ω-3脱饱和酶的重组高山被孢霉、其构建方法及应用
CN109022476B (zh) 一种地衣芽孢杆菌CRISPR-Cas9基因编辑系统及其应用
CN107201374B (zh) 光学纯meso-2,3-丁二醇高产工程菌株的构建方法及应用
US20180237789A1 (en) Mortierella alpine uracil auxotroph with ura5 gene knocked out through homologous recombination
CN107602707A (zh) 一种特异性调节枯草芽孢杆菌外源基因表达的dcas9‑ω融合蛋白及其应用
CN102517320A (zh) 克雷伯氏肺炎杆菌的基因重组方法
CN113462628B (zh) 一株产血红素的基因工程菌及其构建方法和应用
CN114181881A (zh) 基于氨基酸改造的新型减毒单增李斯特菌构建方法及应用
CN111073821B (zh) 一种高产洛伐他汀不产桔霉素红色红曲霉菌株的构建方法
CN109628361B (zh) 整合双拷贝功能性f4菌毛操纵子基因猪源益生菌ep1克隆株、构建方法及应用
CN109868253B (zh) 抑制菌体自溶的地衣芽孢杆菌工程菌及其构建方法和应用
CN108384740B (zh) 一种用于高密度发酵的枯草芽孢杆菌
CN107475140B (zh) 一株在酸性条件下发酵速度提高的高产普鲁兰酶的重组巴斯德毕赤酵母突变体
CN103525854A (zh) 高基因敲除效率的谢瓦氏曲霉间型变种工程菌株的构建方法
CN107083375B (zh) 一种中温α-淀粉酶及其基因和应用
CN105462998A (zh) 一种双功能酸性脲酶结构基因及其表达和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14910675

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14834249

Country of ref document: EP

Kind code of ref document: A1