WO2015016518A1 - 연속섬유 보강 수지 복합재 및 그 성형품 - Google Patents

연속섬유 보강 수지 복합재 및 그 성형품 Download PDF

Info

Publication number
WO2015016518A1
WO2015016518A1 PCT/KR2014/006563 KR2014006563W WO2015016518A1 WO 2015016518 A1 WO2015016518 A1 WO 2015016518A1 KR 2014006563 W KR2014006563 W KR 2014006563W WO 2015016518 A1 WO2015016518 A1 WO 2015016518A1
Authority
WO
WIPO (PCT)
Prior art keywords
continuous fiber
resin
layer
continuous
reinforced resin
Prior art date
Application number
PCT/KR2014/006563
Other languages
English (en)
French (fr)
Inventor
이태화
김희준
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Priority to JP2016531515A priority Critical patent/JP6446047B2/ja
Priority to EP14831608.6A priority patent/EP3028852B1/en
Priority to CN201480043620.1A priority patent/CN105473331B/zh
Priority to US14/906,268 priority patent/US20160159054A1/en
Publication of WO2015016518A1 publication Critical patent/WO2015016518A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/08Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/42Alternating layers, e.g. ABAB(C), AABBAABB(C)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft

Definitions

  • a continuous fiber reinforced resin composite material and its molded article A continuous fiber reinforced resin composite material and its molded article.
  • Continuous fiber-reinforced composites made by impregnating the continuous fibers with matrix resins have increased demand in the automotive, aerospace, building materials, and wind power fields because of the excellent mechanical properties of the fibers depending on the arrangement of the fibers.
  • a coaming-glue method is also used in which a fiber made of a resin that becomes a matrix and a continuous fiber used as a reinforcing material are mixed and impregnated using heat and pressure.
  • comming glue-based composites can be woven, but can also cause fiber breakage or airborne problems.
  • One embodiment of the present invention provides a continuous fiber reinforced resin composite that can be woven and wound.
  • Another embodiment of the present invention provides a molded article woven or wound using the continuous fiber reinforced resin composite material.
  • the continuous fiber layer and the resin layer is a laminate laminated alternately, the resin layer is a layer formed of a thermoplastic resin or a thermosetting resin, the continuous fiber layer is a continuous fiber formed by arranging the continuous fibers side by side It includes a skeleton of the fiber, the thermoplastic resin or thermosetting resin due to the resin layer penetrates into the skeleton of the continuous fiber to form a resin impregnated continuous fiber, a part of the skeleton of the continuous fiber is the resin impregnated continuous fiber.
  • the remaining portion of the skeleton of the continuous fiber provides a continuous fiber-reinforced resin composite which is a resin-impregnated continuous fiber in which a thermoplastic resin or a thermosetting resin does not penetrate.
  • the continuous fiber reinforced resin composite may include a plurality of layers of at least two layers of the continuous fiber layer or the resin layer.
  • the continuous fiber layer may have a thickness of about 20 ⁇ m to about 65 ⁇ m.
  • the continuous fiber may have an average diameter of about 5 ⁇ m to about 20 ⁇ m.
  • Skeleton of the continuous fiber may be formed of 2 to 20 ply if one continuous fiber is arranged side by side to form a ply.
  • the resin layer may have a thickness of about 10 ⁇ m to about 200 ⁇ m.
  • the bulk volume ratio of the resin impregnated continuous fibers to the resin unimpregnated continuous fibers may be about 1: 9 to about 7: 3.
  • the resin penetrates from the surface of the continuous fiber layer toward the center to a depth of 5% to 35% of the total thickness to impregnate the resin.
  • Fiber may be present.
  • the continuous fibers are stacked to form a continuous fiber skeleton, and the packing form in which the continuous fibers are stacked may be triangle packing or square packing when viewed from the cross section of the continuous fiber layer based on the circular cross section of the continuous fiber.
  • the continuous fiber may be one selected from the group consisting of carbon fibers, glass fibers, aramid fibers, and combinations thereof.
  • the resin is polytetrafluoroethylene (PTFE), polyethylene, polypropylene, polystyrene, polyphenylene oxide (PPO), polyvinyl chloride (PVC) , Polyethylene terephthalate (PET), nylon (Nylon) 6.6, polymethyl methacrylate (PMMA), and combinations thereof.
  • PTFE polytetrafluoroethylene
  • polyethylene polyethylene
  • polypropylene polypropylene
  • PPO polyphenylene oxide
  • PVC polyvinyl chloride
  • PET Polyethylene terephthalate
  • nylon Nylon
  • PMMA polymethyl methacrylate
  • Resin penetrating into the continuous fiber layer is formed derived from the resin layer may be formed by integrating the continuous fiber layer and the resin layer.
  • the continuous fiber reinforced resin composite may be wound to form the molded article.
  • the continuous fiber-reinforced resin composite has excellent mechanical properties while having flexibility suitable for application to weaving and winding processes.
  • FIG. 1 is a cross-sectional view of a continuous fiber reinforced resin composite according to an embodiment of the present invention.
  • Figure 2 is an enlarged cross-sectional view of a portion of the continuous fiber reinforced resin composite material according to another embodiment of the present invention.
  • any configuration is formed on the “top (or bottom)" of the substrate or “top (or bottom)” of the substrate means that any configuration is formed in contact with the top (or bottom) of the substrate.
  • it is not limited to not including other configurations between the substrate and any configuration formed on (or under) the substrate.
  • the continuous fiber layer and the resin layer is a laminate laminated alternately, the resin layer is a layer formed of a thermoplastic resin or a thermosetting resin, the continuous fiber layer is a continuous fiber formed by arranging the continuous fibers side by side
  • a continuous fiber reinforced resin composite comprising a skeleton of fibers.
  • the thermoplastic resin or thermosetting resin resulting from the resin layer penetrates into the skeleton of the continuous fiber to form a resin-impregnated continuous fiber, and part of the skeleton of the continuous fiber is the resin-impregnated continuous fiber, and the skeleton of the continuous fiber The remaining part is a resin-impregnated continuous fiber that is not impregnated with thermoplastic or thermosetting resin.
  • the continuous fiber reinforced resin composite material may include the continuous fiber layer or the resin layer in at least two layers or more, and may include two to eight layers.
  • the continuous fiber reinforced resin composite is a structure that can control the impregnation of the continuous fiber in a simple process and low cost, it is appropriately applied to various applications as a material having excellent mechanical properties while at the same time imparted excellent flexibility Can be.
  • the continuous fiber reinforced resin composite material can be applied to the winding process by implementing excellent flexibility and mechanical strength, can be wound to form a product.
  • 1 is a cross-sectional view of the continuous fiber reinforced resin composite material (100).
  • the continuous fiber layer 10 includes a continuous fiber skeleton formed by stacking individual continuous fibers 1 side by side in the longitudinal direction of the fiber.
  • a thermoplastic resin or a thermosetting resin may penetrate into the continuous fiber skeleton to form the continuous fiber layer 10.
  • the infiltration or impregnation of the resin into the continuous fiber skeleton means that the resin penetrates into the space between the continuous fibers and the space within the continuous fibers in the continuous fiber skeleton (FIG. No case).
  • the continuous fiber-reinforced resin composite material 100 is formed by alternately stacking a sheet made of a continuous fiber skeleton and a resin sheet and then melt-compressing, impregnating the thermoplastic resin or thermosetting resin of the resin sheet while penetrating into the continuous fiber skeleton.
  • the continuous fiber layer 10 is formed, and as a result, the continuous fiber reinforced resin composite material 100 in which the continuous fiber layer 10 and the resin layer 20 are alternately stacked may be formed.
  • thermoplastic resin in the form of a tape, a film, or the aforementioned sheet may be used, and in another example, a bath type resin You can also use a method of passing a keg.
  • the melt compression may be carried out without limitation by known processes. Specifically, a double belt may be used as the heat source used for impregnating the resin in the continuous fiber, and for example, melt compression may be performed by a hot roll method, which is a calendaring method.
  • the degree of impregnation of the resin can be adjusted according to process conditions such as temperature and pressure during melt compression.
  • It may be produced by varying the impregnation depending on the portion of the continuous fiber reinforced resin composite material by adjusting the temperature and the section of the heated portion.
  • the resin penetrating the continuous fiber layer 10 is derived from a resin sheet for forming the resin layer, and the continuous fiber layer 10 and the resin layer 20 are integrated to form the continuous fiber reinforced resin composite material 100. ).
  • the continuous fiber skeleton of the continuous fiber layer 10 may be formed of 2 to 20 ply, if one continuous fiber 1 is arranged side by side to form a ply.
  • the form in which the continuous fibers 1 are stacked to form a continuous fiber skeleton, that is, the packing form, is a triangle packing or a square packing when viewed from the cross section of the continuous fiber layer 10 based on the circular cross section of the continuous fiber 1. And the like, but are not limited thereto, and a packing form suitable for achieving desired properties can be selected.
  • the continuous fiber layer 10 may have a thickness of, for example, about 20 ⁇ m to about 65 ⁇ m.
  • the continuous fiber layer 10 having a thickness in the above range is suitable for implementing the impregnation so that the continuous fiber reinforced resin composite material 100 has mechanical strength while being given the appropriate flexibility.
  • the thickness of the continuous fiber layer 10 may be affected by how many layers of continuous fibers are stacked, but may also be affected by the size of the continuous fibers 1.
  • the continuous fiber 1 may have an average diameter of about 5 ⁇ m to about 20 ⁇ m.
  • the continuous fiber layer 10 formed of the continuous fiber 1 having the size of the above range is suitable for implementing the impregnation so that the continuous fiber reinforced resin composite material 100 has mechanical strength while being given the appropriate flexibility.
  • the continuous fiber 1 may include at least one selected from the group consisting of carbon fibers, glass fibers, aramid fibers, and combinations thereof.
  • the resin may be a known resin used in the continuous fiber reinforced resin composite material without limitation, may be selected from a thermoplastic resin or a thermosetting resin according to the desired use, specifically, polytetrafluoroethylene (PTFE), polyethylene (polyethylene), polypropylene, polystyrene, polyphenylene oxide (PPO), polyvinyl chloride (PVC), polyethylene terephthalate (PET), nylon (Nylon) 6.6, Polymethyl methacrylate (PMMA), and combinations thereof, and may include one without limitation.
  • PTFE polytetrafluoroethylene
  • PEO polyethylene
  • PEO polyvinyl chloride
  • PET polyethylene terephthalate
  • nylon Nylon
  • PMMA Polymethyl methacrylate
  • the resin layer may have a thickness of about 10 ⁇ m to about 200 ⁇ m.
  • the resin layer 20 having a thickness in the above range is suitable for implementing the impregnation so that the continuous fiber reinforced resin composite material 100 has mechanical strength while being given the appropriate flexibility.
  • Resin due to the resin layer 20 can penetrate into the skeleton of the continuous fiber to penetrate to a certain depth from the surface of the continuous fiber layer 10 toward the center, by adjusting the degree of penetration impregnation I can regulate it.
  • FIG. 2 is an enlarged view of the square A shown in FIG. 1, wherein the resin penetrates to the thickness indicated by Y to form a resin-impregnated continuous fiber, and the resin does not penetrate into the resin-impregnated continuous fiber as indicated by X. 1 and 2 (not shown to distinguish between the impregnated continuous fibers and the impregnated continuous fibers are all represented by 1).
  • the resin may be present by penetration of the resin to a depth of about 5% to about 35% of the total thickness from the surface of the continuous fiber layer 10 toward the center.
  • Continuous fiber-reinforced resin composite material 100 impregnated in the numerical range can be applied to the winding process while having an appropriate mechanical strength.
  • the amount of resin that can be impregnated in the same volume may vary depending on the type and location of the continuous fibers.
  • the bulk volume ratio of the resin impregnated continuous fibers to the resin unimpregnated continuous fibers in the continuous fiber layer 10 may be about 1: 9 to about 7: 3, specifically about 4: 6 to about 7 May be 3:
  • Continuous fiber-reinforced resin composite material 100 impregnated in the numerical range can be applied to the winding process while having an appropriate mechanical strength.
  • the bulk volume ratio means a volume ratio calculated by including all the spaces between the continuous fibers.
  • the continuous fiber reinforced resin composite 100 may be wound by a winding process while maintaining the continuity of the continuous fiber (1).
  • the continuous fiber reinforced resin composite material 100 may be wound around a specific center material while maintaining the continuity of the continuous fiber (1).
  • the continuous fiber reinforced resin composite material 100 may be manufactured and used in a sheet shape, and may have a width, a thickness, and a length, and may be formed in a shape extending in the longitudinal direction. In the latter case, the continuous fiber-reinforced resin composite material 100 having such a shape can be woven again as a weft or warp because it has a shape extending in the longitudinal direction. To weave, weft and warp must be flexible. In particular, when the weft is supplied, in the process of the rapier grasping the weft, if the material is inflexible, it will move with a large radius, so that it will hit the slope. The continuous fiber-reinforced resin composite material 100 may have the appropriate flexibility required as such weft and warp, so weaving is possible.
  • the continuous fiber reinforced resin composite 100 may be woven.
  • weft and warp must be flexible.
  • the weft is supplied, in the process of the rapier grasping the weft, if the material is inflexible, it will move with a large radius, so that it will hit the slope.
  • the continuous fiber-reinforced resin composite material 100 may be woven by being given the appropriate flexibility required as weft and warp yarns.
  • the continuous fiber reinforced resin composite is suitable for application to a product requiring a winding process since the winding process is possible.
  • the molded article may comprise a wound continuous fiber reinforced resin composite.
  • the product may be a product manufactured using a filament winding process which is a process using winding.
  • the product may be a product formed by weaving the continuous fiber reinforced resin composite as a weft or warp yarn as described above.
  • a bundle of 4000 glass fibers having a diameter of 17 ⁇ m was widened to form four skeletons of a continuous fiber having a thickness of 50 ⁇ m, and then alternately laminated with a polypropylene resin layer having a thickness of 50 ⁇ m to 10 MPa. Pressing at a pressure of 1 minute to prepare a continuous fiber reinforced resin composite. SEM images of the prepared continuous fiber-reinforced resin composites showed that the 50-micrometer-thick resin-impregnated continuous fiber region centered on the middle of one continuous fiber layer and the upper and lower portions of the resin-impregnated continuous fiber 5 A total of 10 micrometers (corresponding to Y + Y in FIG. 2) impregnated continuous fiber regions were formed in micrometer increments.
  • a bundle of 24,000 carbon fibers having a diameter of 7 ⁇ m was widened to form four skeletons of 50 ⁇ m thick continuous fibers, and then alternately laminated with a polyamide resin layer having a thickness of 50 ⁇ m at 10 MPa. Pressing at a pressure of 3 minutes to prepare a continuous fiber reinforced resin composite.
  • SEM images of the prepared continuous fiber-reinforced resin composites showed that the 15- ⁇ m-thick resin-impregnated continuous fiber region with a thickness of 50 ⁇ m of one continuous fiber layer and the upper and lower portions of the non-impregnated continuous fiber was 17.5.
  • a total of 35 ⁇ m (corresponding to Y + Y in FIG. 2) impregnated continuous fiber areas were formed in ⁇ m increments.
  • a bundle of 24,000 carbon fibers having a diameter of 7 ⁇ m was widened to form four skeletons of 50 ⁇ m thick continuous fibers, and then alternately laminated with a polyamide resin layer having a thickness of 50 ⁇ m at 10 MPa. Pressing at a pressure of 2 minutes to prepare a continuous fiber reinforced resin composite. SEM images of the prepared continuous fiber-reinforced resin composites showed that the continuous fiber area of 30 ⁇ m thick unimpregnated continuous fiber and the upper and lower portions of the continuous resin-impregnated continuous fiber were 50 ⁇ m thick in one continuous fiber layer. A total of 20 ⁇ m impregnated continuous fiber areas were formed in ⁇ m increments (corresponding to Y + Y in FIG. 2).
  • a bundle of 4000 glass fibers having a diameter of 17 ⁇ m was widened to form four skeletons of a continuous fiber having a thickness of 50 ⁇ m, and then alternately laminated with a polypropylene resin layer having a thickness of 50 ⁇ m to 10 MPa. Pressing at a pressure of 10 minutes to prepare a continuous fiber reinforced resin composite. SEM images of the prepared continuous fiber-reinforced resin composites showed that the unimpregnated continuous fiber region having a thickness of 2 ⁇ m and the upper and lower portions of the non-impregnated continuous fiber with a thickness of 50 ⁇ m of one continuous fiber layer as the center. A total of 48 ⁇ m (corresponding to Y + Y in FIG. 2) impregnated continuous fiber areas were formed in ⁇ m increments.
  • a bundle of 4000 glass fibers having a diameter of 17 ⁇ m was widened to form four skeletons of a continuous fiber having a thickness of 50 ⁇ m, and then alternately laminated with a polypropylene resin layer having a thickness of 50 ⁇ m to 10 MPa. Press the pressure of 15 minutes to prepare a continuous fiber reinforced resin composite. As a result of observing the prepared continuous fiber-reinforced resin composite material by SEM image, one continuous fiber layer was formed to be a resin-impregnated continuous fiber.
  • the flexibility of the continuous fiber-reinforced resin composites of Examples 1-4 and Comparative Example 1 was cut into a size of 5 mm (width) * 100 mm (length), and the flexibility was evaluated by the difference in height between the upper and lower surfaces when folded at 180 degrees with a force of 1 kgf. .
  • Example 1-3 The continuous fiber-reinforced resin composite of Example 1-3 was able to be woven with a height difference of 5 mm or less, and the continuous fiber-reinforced resin composite of Example 4 was relatively rotated at 180 degrees compared to Example 1-3, Example 1 A height difference of 15 mm occurred and a crack occurred in comparison with -3. Therefore, it was confirmed that Examples 1-3 have a more favorable impregnation rate than Example 4 in terms of flexibility.
  • Each of the continuous fiber-reinforced resin composites of Examples 1-4 and Comparative Example 1 was stacked in layers of Examples 1, 4 and Comparative Example 1 at 220 ° C. 10 MPa, and Examples 2 and 3 were 10 at 270 ° C. 10 MPa. Flexural strength test was performed by compression molding for a minute.
  • the molded article prepared from the continuous fiber-reinforced resin composite materials of Examples 1-4 and Comparative Example 1 was measured for flexural strength properties based on ASTM D790 and the results are shown in Table 1 below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

연속섬유층과 수지층이 교대로 적층된 적층체이고, 상기 수지층은 열가소성 수지 또는 열경화성 수지를 포함하여 형성된 층이고, 상기 연속섬유층은 연속섬유가 나란히 배열되어 형성된 연속섬유의 골격을 포함하고, 상기 연속섬유의 골격 내부로 상기 수지층에 기인한 열가소성 수지 또는 열경화성 수지가 침투되어 수지 함침 연속섬유를 형성하여, 상기 연속섬유의 골격 중 일부는 상기 수지 함침 연속섬유이고, 상기 연속섬유의 골격의 나머지 일부는 열가소성 수지 또는 열경화성 수지가 침투되지 않은 수지 비함침 연속섬유인 연속섬유 보강 수지 복합재를 제공한다.

Description

연속섬유 보강 수지 복합재 및 그 성형품
연속섬유 보강 수지 복합재 및 그 성형품에 관한 것이다.
연속섬유를 매트릭스 수지에 함침시켜 만든 연속섬유 보강 복합재는 섬유의 배열에 따라 그 섬유의 뛰어난 기계적 물성을 이용할 수 있기 때문에 자동차, 항공기, 건축 자재, 풍력 분야에 있어서 그 수요가 계속적으로 증가하고 있다.
연속섬유를 매트릭스 수지에 함침시키는 방법에는 여러 가지가 있는데, 그 중 가장 많이 사용되는 방법은 섬유를 당기면서 수지를 고온으로 녹이고 금형 안에서 함침시키는 펄트루젼 방식이 많이 사용되고 있다.
또한, 매트릭스가 되는 수지로 이루어진 섬유와 보강재로 사용되는 연속섬유를 혼사하여 열과 압력을 이용하여 함침시키는 코밍글루 방식도 사용되고 있다. 이러한 코밍글루 방식에 의한 복합재는 직조도 가능하지만 섬유가 끊어지거나 공기 중으로 날리는 문제를 발생시키기도 한다.
본 발명의 일 구현예는 직조 및 와인딩될 수 있는 연속섬유 보강 수지 복합재를 제공한다.
본 발명의 다른 구현예는 상기 연속섬유 보강 수지 복합재를 이용하여 직조되거나 와인딩된 성형품을 제공한다.
본 발명의 일 구현예에서, 연속섬유층과 수지층이 교대로 적층된 적층체이고, 상기 수지층은 열가소성 수지 또는 열경화성 수지를 포함하여 형성된 층이고, 상기 연속섬유층은 연속섬유가 나란히 배열되어 형성된 연속섬유의 골격을 포함하고, 상기 연속섬유의 골격 내부로 상기 수지층에 기인한 열가소성 수지 또는 열경화성 수지가 침투되어 수지 함침 연속섬유를 형성하여, 상기 연속섬유의 골격 중 일부는 상기 수지 함침 연속섬유이고, 상기 연속섬유의 골격의 나머지 일부는 열가소성 수지 또는 열경화성 수지가 침투되지 않은 수지 비함침 연속섬유인 연속섬유 보강 수지 복합재를 제공한다.
상기 연속섬유 보강 수지 복합재는 상기 연속섬유층 또는 상기 수지층을 적어도 2층의 복수 층을 포함할 수 있다.
상기 연속섬유층의 두께가 약 20㎛ 내지 약 65㎛일 수 있다.
상기 연속섬유는 평균 직경이 약 5㎛ 내지 약 20㎛일 수 있다.
상기 연속섬유의 골격은 상기 연속섬유 한 개가 나란히 배열되어 한 겹을 형성한다고 하면, 2 내지 20겹으로 형성될 수 있다.
상기 수지층의 두께가 약 10㎛ 내지 약 200㎛일 수 있다.
상기 수지 함침 연속섬유 대 상기 수지 비함침 연속섬유의 벌크 부피비가 약 1:9 내지 약 7:3일 수 있다.
상기 연속섬유층은 상기 연속섬유의 골격 내부로 상기 수지층에 기인한 수지가 침투됨에 따라 상기 연속섬유층의 표면으로부터 중심을 향하여 총 두께의 5% 내지 35%의 깊이까지 상기 수지가 침투되어 수지 함침 연속섬유가 존재할 수 있다.
상기 연속섬유가 쌓여 연속섬유 골격을 형성하고, 상기 연속섬유가 쌓이는 패킹 (packing) 형태는 상기 연속섬유의 원형 단면을 기준으로 상기 연속섬유층의 단면에서 볼 때, 트라이앵글 패킹 또는 스퀘어 패킹일 수 있다.
상기 연속섬유가 탄소섬유, 유리섬유, 아라미드섬유, 및 이들의 조합으로 이루어진 군으로부터 선택된 하나일 수 있다.
상기 수지는 폴리테트라플루오로에틸렌(Polytetrafluoroethylene; PTFE), 폴리에틸렌(polyethylene), 폴리프로필렌(polypropylene), 폴리스티렌(polystyrene), 폴리페닐렌 옥사이드(polyphenylene oxidel; PPO), 폴리염화비닐(polyvinyl chloride; PVC), 폴리에틸렌 테레프탈레이트(polyethylene terephthalate; PET), 나일론(Nylon) 6.6, 폴리메틸메타크릴레이트(Polymethyl methacrylate; PMMA) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다.
상기 연속섬유층에 침투하는 수지가 상기 수지층에 유래되어 형성되어 상기 연속섬유층과 상기 수지층이 일체화되어 형성될 수 있다.
본 발명의 다른 구현예에서, 상기 연속섬유 보강 수지 복합재를 포함하는 이용한 성형품이 제공된다.
상기 연속섬유 보강 수지 복합재가 와인딩되어 상기 성형품을 형성할 수 있다.
상기 연속섬유 보강 수지 복합재는 직조 및 와인딩 공정에 적용되기에 적합한 유연성을 가지면서 기계적 물성이 우수하다.
도 1은 본 발명의 일 구현예에 따른 연속섬유 보강 수지 복합재의 단면도이다.
도 2는 본 발명의 다른 구현예에 따른 연속섬유 보강 수지 복합재의 일부를 확대한 단면도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.
이하에서 기재의 “상부 (또는 하부)” 또는 기재의 “상 (또는 하)”에 임의의 구성이 형성된다는 것은, 임의의 구성이 상기 기재의 상면 (또는 하면)에 접하여 형성되는 것을 의미할 뿐만 아니라, 상기 기재와 기재 상에 (또는 하에) 형성된 임의의 구성 사이에 다른 구성을 포함하지 않는 것으로 한정하는 것은 아니다.
본 발명의 일 구현예에서, 연속섬유층과 수지층이 교대로 적층된 적층체이고, 상기 수지층은 열가소성 수지 또는 열경화성 수지를 포함하여 형성된 층이고, 상기 연속섬유층은 연속섬유가 나란히 배열되어 형성된 연속섬유의 골격을 포함하는 연속섬유 보강 수지 복합재를 제공한다. 상기 연속섬유의 골격 내부로 상기 수지층에 기인한 열가소성 수지 또는 열경화성 수지가 침투되어 수지 함침 연속섬유를 형성하여, 상기 연속섬유의 골격 중 일부는 상기 수지 함침 연속섬유이고, 상기 연속섬유의 골격의 나머지 일부는 열가소성 수지 또는 열경화성 수지가 침투되지 않은 수지 비함침 연속섬유이다.
상기 연속섬유 보강 수지 복합재는 상기 연속섬유층 또는 상기 수지층을 적어도 2층 이상의 복수 층으로 포함할 수 있고, 구체적으로 2층 내지 8층을 포함할 수 있다.
상기 연속섬유 보강 수지 복합재는 간단한 공정 및 낮은 비용으로 연속섬유의 함침성을 조절할 수 있는 구조로서, 적절히 함침성이 부여됨으로써 우수한 유연성을 부여하면서도 동시에 우수한 기계적 물성을 가진 재료로서 다양한 용도에 유용하게 적용될 수 있다.
상기 연속섬유 보강 수지 복합재는 유연성와 기계적 강도를 우수하게 구현하여 와인딩 공정에 적용될 수 있고, 와인딩되어 제품을 형성할 수 있다.
도 1은 상기 연속섬유 보강 수지 복합재(100)의 단면도이다.
상기 연속섬유층(10)은 낱개의 연속섬유(1)들이 섬유의 길이 방향으로 나란하게 배열되면서 쌓여서 형성하는 연속섬유 골격을 포함한다. 상기 연속섬유 골격으로 열가소성 수지 또는 열경화성 수지가 침투되어 상기 연속섬유층(10)을 형성할 수 있다.
상기 연속섬유 골격으로 수지가 침투되거나 함침된다는 의미는 상기 연속섬유 골격 내 연속섬유간 공간 및 연속섬유 내의 공간으로 수지가 침투함을 의미한다 (도 2에서는 개략도로서 연속섬유 내의 공간으로 수지가 침투된 경우를 나타내지 않음).
예를 들어, 상기 연속섬유 보강 수지 복합재(100)는 연속섬유 골격으로 된 시트와 수지 시트를 교대로 적층한 뒤 용융 압착시키면 상기 수지 시트의 열가소성 수지 또는 열경화성 수지가 상기 연속섬유 골격으로 침투하면서 함침되어 상기 연속섬유층(10)이 형성되고, 그 결과 연속섬유층(10)과 수지층(20)이 교대로 적층된 연속섬유 보강 수지 복합재(100)를 형성할 수 있다.
상기 연속섬유 보강 수지 복합재(100) 제조시 연속섬유층의 연속섬유가 수지 함침되게 하기 위해 테이프나 필름, 전술한 바와 같은 시트 형태의 열가소성 수지를 이용할 수도 있고, 다른 예에서는 바쓰(bath) 타입의 수지가 담긴 통을 통과시키는 방법을 사용할 수도 있다.
상기 용융 압착은 공지된 공정에 의해 제한 없이 수행될 수 있다. 구체적으로, 연속섬유에 수지를 함침시키기 위해 사용하는 열원으로는 더블벨트를 사용할 수 있고, 예를 들어, 카렌더링 방식인 핫 롤 방식에 의해 용융 압착을 수행할 수 있다.
또한, 수지의 함침 정도는 용융 압착시 온도 및 압력 등의 공정 조건에 따라 조절할 수 있다.
가열되는 부분의 온도와 구간을 조절하여 연속섬유 보강 수지 복합재의 부분에 따라 함침성을 달리하여 제조할 수도 잇다.
이와 같이, 상기 연속섬유층(10)에 침투하는 수지는 상기 수지층을 형성하기 위한 수지 시트에서 유래되어 상기 연속섬유층(10)과 상기 수지층(20)이 일체화시켜 상기 연속섬유 보강 수지 복합재(100)를 형성한다.
상기 연속섬유층(10)의 연속섬유 골격은 연속섬유(1) 한 개가 나란히 배열되어 한 겹을 형성한다고 하면, 2 내지 20겹으로 형성될 수 있다.
연속섬유 골격을 형성하기 위해 연속섬유(1)가 쌓이는 형태, 즉, 패킹 (packing) 형태는 연속섬유(1)의 원형 단면을 기준으로 연속섬유층(10) 단면에서 볼 때, 트라이앵글 패킹, 스퀘어 패킹 등 다양할 수 있고, 이에 제한되지 않고, 원하는 물성을 달성하기에 적합한 패킹 형태를 선택할 수 있다.
연속섬유 골격을 형성하기 위한 구체적인 방법은, 예를 들어, 연속섬유 다발을 광폭으로 펼쳐서 원하는 두께로 연속섬유 골격을 형성하게 할 수 있으며, 이에 제한되지 않고 공지된 방법에 따라 다양하게 제조될 수 있다.
상기 연속섬유층(10)의 두께는, 예를 들어, 약 20㎛ 내지 약 65㎛일 수 있다. 상기 범위의 두께를 갖는 연속섬유층(10)은 상기 연속섬유 보강 수지 복합재(100)가 적절한 유연성이 부여되면서 기계적 강도를 가지도록 함침성을 구현하기에 적합하다.
상기 연속섬유층(10)의 두께는 연속섬유가 몇 겹으로 쌓이는지에 영향을 받을 수도 있지만 연속섬유(1)의 크기에 의해서도 영향받을 수 있다.
예를 들어, 상기 연속섬유(1)는 평균 직경은 약 5㎛ 내지 약 20㎛일 수 있다. 상기 범위의 크기를 가지는 연속섬유(1)로 형성된 연속섬유층(10)은 상기 연속섬유 보강 수지 복합재(100)가 적절한 유연성이 부여되면서 기계적 강도를 가지도록 함침성을 구현하기에 적합하다.
상기 연속섬유(1)는 탄소섬유, 유리섬유, 아라미드섬유, 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다.
상기 수지는 연속섬유 보강 수지 복합재에 사용되는 공지된 수지를 제한 없이 사용할 수 있고, 원하는 용도에 따라 열가소성 수지 또는 열경화성 수지를 선택할 수 있으며, 구체적으로, 폴리테트라플루오로에틸렌(Polytetrafluoroethylene; PTFE), 폴리에틸렌(polyethylene), 폴리프로필렌(polypropylene), 폴리스티렌(polystyrene), 폴리페닐렌 옥사이드(polyphenylene oxidel; PPO), 폴리염화비닐(polyvinyl chloride; PVC), 폴리에틸렌 테레프탈레이트(polyethylene terephthalate; PET), 나일론(Nylon) 6.6, 폴리메틸메타크릴레이트(Polymethyl methacrylate; PMMA) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있으며, 이제 제한되지 않는다.
상기 수지층의 두께는 약 10㎛ 내지 약 200㎛일 수 있다. 상기 범위의 두께를 갖는 수지층(20)은 상기 연속섬유 보강 수지 복합재(100)가 적절한 유연성이 부여되면서 기계적 강도를 가지도록 함침성을 구현하기에 적합하다.
상기 수지층(20)에 기인한 수지가 상기 연속섬유의 골격 내부로 침투하여 상기 연속섬유층(10)의 표면으로부터 중심을 향하여 일정 깊이까지 침투될 수 있는데, 이러한 침투의 정도를 조절하여 함침성을 조절할 수 있다.
도 2는 도 1에서 표시된 정사각형 A를 확대하여 도시한 것으로서, Y로 표시된 두께까지 상기 수지가 침투하여 수지 함침 연속섬유로 형성되고, X로 표시된 중심부에는 상기 수지가 침투하지 않아 수지 비함침 연속섬유로 존재한다 (도 1 및 도 2에서는 함침 연속섬유와 함침되지 않은 연속섬유를 구별하지 않고 모두 1로 표시함).
예를 들어, 상기 수지는 상기 연속섬유층(10)의 표면으로부터 중심을 향하여 총 두께의 약 5% 내지 약 35%의 깊이까지 상기 수지가 침투되어 존재할 수 있다.
상기 수치 범위로 함침된 연속섬유 보강 수지 복합재(100)는 적절한 기계적 강도를 가지면서 와인딩 공정에 적용될 수 있다.
연속섬유의 종류 및 위치에 따라 같은 부피 내에 함침할 수 있는 수지의 양이 변할 수 있다.
다른 예를 들어, 상기 연속섬유층(10)에서 상기 수지 함침 연속섬유 대 상기 수지 비함침 연속섬유의 벌크 부피비가 약 1:9 내지 약 7:3일 수 있고, 구체적으로 약 4:6 내지 약 7:3일 수 있다. 상기 수치 범위로 함침된 연속섬유 보강 수지 복합재(100)는 적절한 기계적 강도를 가지면서 와인딩 공정에 적용될 수 있다. 상기 벌크 부피비란 연속섬유간 공간까지 모두 포함시켜 계산된 부피비를 의미한다.
전술한 바와 같이, 상기 연속섬유 보강 수지 복합재(100)는 연속섬유(1)의 연속성을 유지하면서 와인딩 공정에 의해 와인딩 될 수 있다.
예를 들어, 상기 연속섬유 보강 수지 복합재(100)는 연속섬유(1)의 연속성을 유지하면서 특정 중심재에 감길 수 있다.
상기 연속섬유 보강 수지 복합재(100)는 시트 형상으로 제조되어 사용될 수 있고, 폭, 두께 및 길이를 갖고, 길이 방향으로 연장된 형상으로 형성될 수도 있다. 후자의 경우, 길이 방향으로 연장된 형상으로 가지기 때문에 다시 이러한 형상의 연속섬유 보강 수지 복합재(100)를 위사 또는 경사로서 직조할 수 있다. 직조를 하기 위해서는 위사와 경사가 유연함을 가지고 있어야 한다. 특히, 위사가 공급될 때, 래피어가 위사를 잡아서 이동하는 과정에서 만약 유연성이 없는 재료라면 큰 반경을 가지고 이동하게 되므로 경사와 부딪치게 된다. 상기 연속섬유 보강 수지 복합재(100)는 이러한 위사와 경사로서 필요로 하는 적절한 유연성을 가질 수 있으므로 직조가 가능하다.
또한, 상기 연속섬유 보강 수지 복합재(100)는 직조될 수 있다. 직조를 하기 위해서는 위사와 경사가 유연함을 가지고 있어야 한다. 특히, 위사가 공급될 때, 래피어가 위사를 잡아서 이동하는 과정에서 만약 유연성이 없는 재료라면 큰 반경을 가지고 이동하게 되므로 경사와 부딪치게 된다. 상기 연속섬유 보강 수지 복합재(100)는 위사와 경사로서 필요로 하는 적절한 유연성이 부여되어 직조될 수 있다.
본 발명의 다른 구현예에서, 상기 연속섬유 보강 수지 복합재를 포함하는 이용한 성형품을 제공한다.
전술한 바와 같이 상기 연속섬유 보강 수지 복합재는 와인딩 공정이 가능하기 때문에 와인딩 공정을 요하는 제품에 적용하기에 적합하다.
따라서, 상기 성형품은 와인딩된 연속섬유 보강 수지 복합재를 포함할 수 있다.
예를 들어, 상기 제품은 와인딩을 이용하는 공정인 필라멘트 와인딩 공정을 이용하여 제조된 제품일 수 있다.
다른 예를 들어, 상기 제품은 전술한 바와 같이, 상기 연속섬유 보강 수지 복합재가 위사 또는 경사로서 직조되어 형성된 제품일 수 있다.
이하, 본 발명의 실시예 및 비교예를 기재한다. 그러한 하기한 실시예는 본 발명의 일 실시예일뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.
(실시예)
실시예 1
17㎛의 직경을 가지는 연속 유리섬유 4000가닥의 유리섬유의 다발을 광폭화하여 두께 50㎛의 연속섬유의 골격을 4장 형성한 뒤, 50㎛ 두께의 폴리프로필렌 수지층과 교대로 적층하여 220℃ 10MPa의 압력으로 1분간 눌러 연속섬유 보강 수지 복합재를 제조하였다. 제조된 연속섬유 보강 수지 복합재를 SEM 이미지로 관찰한 결과, 한 개의 연속섬유층의 두께 50㎛에서 중간을 중심으로 하여 40㎛ 두께의 수지 미함침 연속섬유 영역과 이러한 수지 미함침 연속섬유의 상하부로 5㎛씩 총 10㎛(도 2에서 Y+Y에 해당함)의 함침 연속섬유 영역이 형성되었다.
실시예 2
7㎛의 직경을 가지는 연속 탄소섬유 24000가닥의 탄소섬유의 다발을 광폭화하여 두께 50㎛의 연속섬유의 골격을 4장 형성한 뒤, 50㎛ 두께의 폴리아마이드 수지층과 교대로 적층하여 270℃ 10MPa의 압력으로 3분간 눌러 연속섬유 보강 수지 복합재를 제조하였다. 제조된 연속섬유 보강 수지 복합재를 SEM 이미지로 관찰한 결과, 한 개의 연속섬유층의 두께 50㎛에서 중간을 중심으로 하여 15㎛ 두께의 수지 미함침 연속섬유 영역과 이러한 수지 미함침 연속섬유의 상하부로 17.5㎛씩 총 35㎛(도 2에서 Y+Y에 해당함)의 함침 연속섬유 영역이 형성되었다.
실시예 3
7㎛의 직경을 가지는 연속 탄소섬유 24000가닥의 탄소섬유의 다발을 광폭화하여 두께 50㎛의 연속섬유의 골격을 4장 형성한 뒤, 50㎛ 두께의 폴리아마이드 수지층과 교대로 적층하여 270℃ 10MPa의 압력으로 2분간 눌러 연속섬유 보강 수지 복합재를 제조하였다. 제조된 연속섬유 보강 수지 복합재를 SEM 이미지로 관찰한 결과, 한 개의 연속섬유층의 두께 50㎛에서 중간을 중심으로 하여 30㎛ 두께의 수지 미함침 연속섬유 영역과 이러한 수지 미함침 연속섬유의 상하부로 10㎛씩 총 20㎛(도 2에서 Y+Y에 해당함)의 함침 연속섬유 영역이 형성되었다.
실시예 4
17㎛의 직경을 가지는 연속 유리섬유 4000가닥의 유리섬유의 다발을 광폭화하여 두께 50㎛의 연속섬유의 골격을 4장 형성한 뒤, 50㎛ 두께의 폴리프로필렌 수지층과 교대로 적층하여 220℃ 10MPa의 압력으로 10분간 눌러 연속섬유 보강 수지 복합재를 제조하였다. 제조된 연속섬유 보강 수지 복합재를 SEM 이미지로 관찰한 결과, 한 개의 연속섬유층의 두께 50㎛에서 중간을 중심으로 하여 2㎛ 두께의 수지 미함침 연속섬유 영역과 이러한 수지 미함침 연속섬유의 상하부로 24㎛씩 총 48㎛(도 2에서 Y+Y에 해당함)의 함침 연속섬유 영역이 형성되었다.
비교예 1
17㎛의 직경을 가지는 연속 유리섬유 4000가닥의 유리섬유의 다발을 광폭화하여 두께 50㎛의 연속섬유의 골격을 4장 형성한 뒤, 50㎛ 두께의 폴리프로필렌 수지층과 교대로 적층하여 220℃ 10MPa의 압력으로 15분간 눌러 연속섬유 보강 수지 복합재를 제조하였다. 제조된 연속섬유 보강 수지 복합재를 SEM 이미지로 관찰한 결과, 한 개의 연속섬유층 전체가 수지 함침 연속섬유가 되도록 형성하였다.
평가
실험예 1
실시예 1-4 및 비교예 1의 연속섬유 보강 수지 복합재에 대하여 5mm(폭)*100mm(길이)의 크기로 잘라 1kgf의 힘으로 180도로 꺽었을 때 위 아래 면의 높이 차이로 유연성을 평가하였다.
실시예 1-3의 연속섬유 보강 수지 복합재는 높이차이가 5mm이내로 나타나 직조가 가능하였고, 실시예 4의 연속섬유 보강 수지 복합재는 실시예 1-3 대비하여 180도로로 꺽게 될 때 상대적으로 실시예 1-3 대비하여 15mm의 높이차가 발생하였고, 크랙이 발생하였다. 따라서, 유연성이 측면에서 실시예 1-3가 실시예 4 대비하여 보다 유리한 함침률을 가짐을 확인하였다.
비교예 1의 연속섬유 보강 수지 복합재는 크랙이 가장 심하게 발생하였고 높이차가 18mm가 발생하여 직조에 적합하지 않았다.
상기 평가 결과로부터 함침률이 높아질수록 직조에 적합한 유연성은 낮아지는 경향을 확인할 수 있다.
실험예 2
실시예 1-4 및 비교예 1의 연속섬유 보강 수지 복합재를 8장씩을 적층하여 각각에 대하여 실시예1, 4, 비교예1은 220℃ 10MPa에서, 실시예 2,3은 270℃ 10MPa에서 10분간 압축성형하여 굴곡강도 실험을 진행하였다.
상기 실시예 1-4 및 비교예 1의 연속섬유 보강 수지 복합재로부터 제조된 성형품에 대하여 ASTM D790을 기준으로 굴곡강도물성을 측정하여 그 결과를 하기 표 1에 기재하였다.
표 1
구분 굴곡강도(MPa)
실시예 1 450MPa
실시예 2 1000MPa
실시예 3 950MPa
실시예 4 450MPa
비교예 1 450MPa
상기 표 1의 결과로부터, 실시예 2-3으로부터 제조된 성형품의 굴곡강도가 매우 우수함을 확인할 수 있고, 실시예 1 및 실시예 4 로부터 제조된 성형품은 비교예 1로부터 제조된 비교예 1로부터 제조된 성형품 수준과 동등한 강도를 구현함을 확인할 수 있었다.
실험예 1 및 2의 결과로부터, 특히, 실시예 2-3의 함침률일 때에 직조 가능한 유연성을 확보하면서 매우 우수한 강도를 구현하였다.
이상에서 본 발명의 바람직한 실시예들에 대하여 상세하게 설명하였지만 본 발명의 권리 범위는 이에 한정되는 것은 아니고 다음의 청구 범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다.
<부호의 설명>
1: 연속섬유
10: 연속섬유층
20: 수지층
100: 연속섬유 보강 수지 복합재

Claims (15)

  1. 연속섬유층과 수지층이 교대로 적층된 적층체이고,
    상기 수지층은 열가소성 수지 또는 열경화성 수지를 포함하여 형성된 층이고,
    상기 연속섬유층은 연속섬유가 나란히 배열되어 형성된 연속섬유의 골격을 포함하고,
    상기 연속섬유의 골격 내부로 상기 수지층에 기인한 열가소성 수지 또는 열경화성 수지가 침투되어 수지 함침 연속섬유를 형성하여, 상기 연속섬유의 골격 중 일부는 상기 수지 함침 연속섬유이고, 상기 연속섬유의 골격의 나머지 일부는 열가소성 수지 또는 열경화성 수지가 침투되지 않은 수지 비함침 연속섬유인
    연속섬유 보강 수지 복합재.
  2. 제1항에 있어서,
    상기 상기 연속섬유 보강 수지 복합재는 상기 연속섬유층 또는 상기 수지층을 적어도 2층의 복수 층을 포함하는
    연속섬유 보강 수지 복합재.
  3. 제1항에 있어서,
    상기 연속섬유층의 두께가 20㎛ 내지 65㎛인
    연속섬유 보강 수지 복합재.
  4. 제1항에 있어서,
    상기 연속섬유는 평균 직경이 5㎛ 내지 20㎛인
    연속섬유 보강 수지 복합재.
  5. 제1항에 있어서,
    상기 연속섬유의 골격은 상기 연속섬유 한 개가 나란히 배열되어 한 겹을 형성한다고 하면, 2 내지 20겹으로 형성된
    연속섬유 보강 수지 복합재.
  6. 제1항에 있어서,
    상기 수지층의 두께가 10㎛ 내지 200㎛인
    연속섬유 보강 수지 복합재.
  7. 제1항에 있어서,
    상기 수지 함침 연속섬유 대 상기 수지 비함침 연속섬유의 벌크 부피비가 1:9 내지 7:3인
    연속섬유 보강 수지 복합재.
  8. 제1항에 있어서,
    상기 연속섬유층은 상기 연속섬유의 골격 내부로 상기 수지층에 기인한 수지가 침투됨에 따라 상기 연속섬유층의 표면으로부터 중심을 향하여 총 두께의 5% 내지 35%의 깊이까지 상기 수지가 침투되어 수지 함침 연속섬유가 존재하는
    연속섬유 보강 수지 복합재.
  9. 제1항에 있어서,
    상기 연속섬유가 쌓여 연속섬유 골격을 형성하고, 상기 연속섬유가 쌓이는 패킹 (packing) 형태는 상기 연속섬유의 원형 단면을 기준으로 상기 연속섬유층 단면에서 볼 때, 트라이앵글 패킹 또는 스퀘어 패킹인
    연속섬유 보강 수지 복합재.
  10. 제1항에 있어서,
    상기 연속섬유가 탄소섬유, 유리섬유, 아라미드섬유, 및 이들의 조합으로 이루어진 군으로부터 선택된 하나인
    연속섬유 보강 수지 복합재.
  11. 제1항에 있어서,
    상기 수지는 폴리테트라플루오로에틸렌(Polytetrafluoroethylene; PTFE), 폴리에틸렌(polyethylene), 폴리프로필렌(polypropylene), 폴리스티렌(polystyrene), 폴리페닐렌 옥사이드(polyphenylene oxidel; PPO), 폴리염화비닐(polyvinyl chloride; PVC), 폴리에틸렌 테레프탈레이트(polyethylene terephthalate; PET), 나일론(Nylon) 6.6, 폴리메틸메타크릴레이트(Polymethyl methacrylate; PMMA) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하는
    연속섬유 보강 수지 복합재.
  12. 제1항에 있어서,
    상기 연속섬유층에 침투하는 수지가 상기 수지층에 유래되어 형성되어 상기 연속섬유층과 상기 수지층이 일체화되어 형성된
    연속섬유 보강 수지 복합재.
  13. 제1항 내지 제12항 중 어느 한 항의 연속섬유 보강 수지 복합재를 포함하는 이용한 성형품.
  14. 제12항에 있어서,
    상기 연속섬유 보강 수지 복합재는 와인딩된
    성형품.
  15. 제13항에 있어서,
    상기 연속섬유 보강 수지 복합재가 위사 또는 경사로서 직조된
    성형품.
PCT/KR2014/006563 2013-07-30 2014-07-18 연속섬유 보강 수지 복합재 및 그 성형품 WO2015016518A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016531515A JP6446047B2 (ja) 2013-07-30 2014-07-18 連続繊維補強樹脂複合材およびその成形品
EP14831608.6A EP3028852B1 (en) 2013-07-30 2014-07-18 Continuous fiber reinforced resin composite material and molded article thereof
CN201480043620.1A CN105473331B (zh) 2013-07-30 2014-07-18 连续纤维增强树脂复合材料及其成型品
US14/906,268 US20160159054A1 (en) 2013-07-30 2014-07-18 Continuous fiber reinforced resin composite material and molded article thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130090188 2013-07-30
KR10-2013-0090188 2013-07-30
KR10-2014-0051373 2014-04-29
KR1020140051373A KR101771287B1 (ko) 2013-07-30 2014-04-29 연속섬유 보강 수지 복합재 및 그 성형품

Publications (1)

Publication Number Publication Date
WO2015016518A1 true WO2015016518A1 (ko) 2015-02-05

Family

ID=52573183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006563 WO2015016518A1 (ko) 2013-07-30 2014-07-18 연속섬유 보강 수지 복합재 및 그 성형품

Country Status (6)

Country Link
US (1) US20160159054A1 (ko)
EP (1) EP3028852B1 (ko)
JP (1) JP6446047B2 (ko)
KR (1) KR101771287B1 (ko)
CN (1) CN105473331B (ko)
WO (1) WO2015016518A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3056338A1 (en) * 2015-02-12 2016-08-17 Jtekt Corporation Fiber reinforced thermoplastic resin member
CN106275375A (zh) * 2016-10-17 2017-01-04 中航通飞华南飞机工业有限公司 整体化成型的四轴无人机主体及制造方法
CN107984855A (zh) * 2015-11-26 2018-05-04 李英 高强度土工格栅及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106515161A (zh) * 2016-10-25 2017-03-22 江苏奇科技有限公司 一种连续玻纤增强聚丙烯复合材料及其制备方法
TW201903022A (zh) * 2017-03-09 2019-01-16 日商帝人股份有限公司 積層體及由其所構成之纖維強化樹脂複合體
GB2569151B (en) * 2017-12-07 2021-01-27 Jaguar Land Rover Ltd Reformable article
RU2020131425A (ru) * 2018-03-30 2022-05-04 Торэй Индастриз, Инк. Препрег, многослойное тело, армированный волокном композитный материал и способ получения армированного волокном композитного материала
WO2020040152A1 (ja) * 2018-08-22 2020-02-27 東レ株式会社 離型シート付き多層構造プリプレグ、プリプレグロール、プリプレグテープおよび複合材料
BR112021001755A2 (pt) * 2018-08-22 2021-04-27 Toray Industries, Inc. substrato de resina termoplástica reforçada com fibra e laminado usando o mesmo
WO2020060341A1 (ko) * 2018-09-20 2020-03-26 주식회사 엘지하우시스 전기자동차용 배터리 케이스
WO2021033992A1 (ko) * 2019-08-20 2021-02-25 주식회사 엘지하우시스 하이브리드형 섬유강화 복합재료 및 그 제조장치
WO2023008357A1 (ja) * 2021-07-27 2023-02-02 東レ株式会社 炭素繊維強化複合材料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07214714A (ja) * 1994-02-07 1995-08-15 Mitsui Toatsu Chem Inc 繊維補強樹脂シートの積層体及びその製造方法
KR20020053759A (ko) * 2000-12-27 2002-07-05 사토 아키오 표면보호층을 지닌 적층체
JP2011006578A (ja) * 2009-06-25 2011-01-13 Mitsubishi Plastics Inc 繊維・樹脂複合化シート及びfrp成形体
KR20120078345A (ko) * 2010-12-31 2012-07-10 주식회사 효성 섬유보강 복합재료의 제조방법 및 그에 의해서 제조된 섬유보강 복합재료
JP5236840B1 (ja) * 2012-07-12 2013-07-17 株式会社イノアックコーポレーション 炭素繊維強化複合材及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2983569B2 (ja) * 1990-03-02 1999-11-29 ポリプラスチックス株式会社 長繊維強化熱可塑性ポリエステル樹脂の製造法及び該樹脂よりなる成形品
US6139942A (en) * 1997-02-06 2000-10-31 Cytec Technology, Inc. Resin composition, a fiber reinforced material having a partially impregnated resin and composites made therefrom
JP2004197325A (ja) * 2002-12-16 2004-07-15 Nippon Steel Composite Co Ltd 繊維強化シート
JP2005052987A (ja) * 2003-08-05 2005-03-03 Du Pont Toray Co Ltd 繊維補強熱可塑性樹脂複合材料およびその製造方法、ならびにそれを用いた成形体
US7790637B2 (en) * 2007-10-31 2010-09-07 Apple Inc. Composite laminate having an improved cosmetic surface and method of making same
JP2010084372A (ja) * 2008-09-30 2010-04-15 Nippon Steel Composite Co Ltd 織成繊維強化シート及びその製造方法
KR101234494B1 (ko) * 2008-10-22 2013-02-18 (주)엘지하우시스 열가소성 플라스틱-연속섬유 혼성복합체 제조방법
FI20106169A (fi) * 2010-11-05 2012-05-06 Zeroboards Oy Tuote
JP2012251249A (ja) * 2011-05-31 2012-12-20 Teijin Ltd 熱収縮性改良織物および複合材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07214714A (ja) * 1994-02-07 1995-08-15 Mitsui Toatsu Chem Inc 繊維補強樹脂シートの積層体及びその製造方法
KR20020053759A (ko) * 2000-12-27 2002-07-05 사토 아키오 표면보호층을 지닌 적층체
JP2011006578A (ja) * 2009-06-25 2011-01-13 Mitsubishi Plastics Inc 繊維・樹脂複合化シート及びfrp成形体
KR20120078345A (ko) * 2010-12-31 2012-07-10 주식회사 효성 섬유보강 복합재료의 제조방법 및 그에 의해서 제조된 섬유보강 복합재료
JP5236840B1 (ja) * 2012-07-12 2013-07-17 株式会社イノアックコーポレーション 炭素繊維強化複合材及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3056338A1 (en) * 2015-02-12 2016-08-17 Jtekt Corporation Fiber reinforced thermoplastic resin member
CN107984855A (zh) * 2015-11-26 2018-05-04 李英 高强度土工格栅及其制备方法
CN106275375A (zh) * 2016-10-17 2017-01-04 中航通飞华南飞机工业有限公司 整体化成型的四轴无人机主体及制造方法

Also Published As

Publication number Publication date
US20160159054A1 (en) 2016-06-09
CN105473331B (zh) 2018-05-11
EP3028852A1 (en) 2016-06-08
JP6446047B2 (ja) 2018-12-26
EP3028852A4 (en) 2016-06-08
JP2016531026A (ja) 2016-10-06
CN105473331A (zh) 2016-04-06
KR20150016083A (ko) 2015-02-11
EP3028852B1 (en) 2019-09-25
KR101771287B1 (ko) 2017-08-25

Similar Documents

Publication Publication Date Title
WO2015016518A1 (ko) 연속섬유 보강 수지 복합재 및 그 성형품
WO2014104730A1 (ko) 연속 탄소섬유 강화 열가소성 프리프레그의 제조 방법
WO2020116877A1 (ko) 일방향으로 배향된 탄소 섬유를 포함하는 탄소 기재 및 이를 채용한 기체확산층
WO2014054868A1 (ko) 복합재료의 함침성 향상을 위한 기능성 필름 및 이를 이용한 복합재료의 제조방법
WO2012096506A2 (ko) 함침성이 우수한 고강도 복합시트 제조 장치 및 이를 이용한 고강도 복합시트 제조 방법
WO2014007505A1 (ko) 열가소성 프리프레그 및 그 제조방법
WO2014035073A1 (ko) 샌드위치 패널용 심재 및 이의 제조방법, 이를 포함하는 샌드위치 패널
WO2018216975A1 (ko) 방호용 아라미드 복합재, 그의 제조방법 및 이로 제조된 방호용 적층물
WO2018080251A1 (ko) 탄소 섬유 강화 플라스틱용 직조물 및 이로부터 형성된 성형품
WO2013105748A1 (ko) 열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩 방법 및 그를 이용한 고압용기 및 그 제조방법
KR101484371B1 (ko) 열가소성 수지 함침 연속섬유 포함 적층체 및 그 제조 방법
WO2017090880A1 (ko) 섬유 접착용 조성물 및 이를 이용한 직물
WO2018062667A1 (ko) 열가소성 복합재, 열가소성 복합재의 제조방법 및 패널
WO2018056554A1 (ko) 샌드위치 패널용 심재, 샌드위치 패널 및 샌드위치 패널의 제조방법
US6965082B2 (en) Flexible flat cable
WO2015093722A1 (ko) 일방향 아라미드 시트와 폴리에틸렌 필름을 이용한 방탄복 및 이의 제조방법
WO2018147526A1 (ko) 탄소 섬유 시트 몰딩 컴파운드의 제조 방법 및 제조 장치
WO2018044007A1 (ko) 섬유 강화 복합재 및 이를 이용한 자동차용 내·외장재
WO2017115929A1 (ko) 고강도 특성을 가지는 폴리에틸렌 타포린 및 이의 제조방법
WO2017111441A1 (ko) 섬유 강화 복합재용 조성물, 섬유 강화 복합재 및 섬유 강화 복합재의 제조방법
WO2015156564A1 (ko) 열가소성 프리프레그의 제조방법 및 이로 제조된 열가소성 프리프레그
KR20150083676A (ko) 섬유 보강 수지 복합재
WO2016167514A1 (ko) 복합재료 성형용 적층재
KR20200019676A (ko) 제직 3d 섬유 보강 구조체 및 이의 제조 방법
WO2015178662A1 (ko) 연속섬유 강화 복합재 및 그의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480043620.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831608

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14906268

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014831608

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016531515

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE