WO2013105748A1 - 열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩 방법 및 그를 이용한 고압용기 및 그 제조방법 - Google Patents

열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩 방법 및 그를 이용한 고압용기 및 그 제조방법 Download PDF

Info

Publication number
WO2013105748A1
WO2013105748A1 PCT/KR2012/011720 KR2012011720W WO2013105748A1 WO 2013105748 A1 WO2013105748 A1 WO 2013105748A1 KR 2012011720 W KR2012011720 W KR 2012011720W WO 2013105748 A1 WO2013105748 A1 WO 2013105748A1
Authority
WO
WIPO (PCT)
Prior art keywords
hybrid
thermoplastic
winding
continuous fiber
composite
Prior art date
Application number
PCT/KR2012/011720
Other languages
English (en)
French (fr)
Inventor
정기훈
윤용훈
김희준
이태화
오애리
공진우
Original Assignee
(주)엘지하우시스
주식회사 이노컴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지하우시스, 주식회사 이노컴 filed Critical (주)엘지하우시스
Priority to DE112012005634.5T priority Critical patent/DE112012005634B4/de
Priority to US14/370,688 priority patent/US20150001214A1/en
Publication of WO2013105748A1 publication Critical patent/WO2013105748A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/205Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres the structure being shaped to form a three-dimensional configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/60Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B3/00Footwear characterised by the shape or the use
    • A43B3/30Footwear characterised by the shape or the use specially adapted for babies or small children
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B3/00Footwear characterised by the shape or the use
    • A43B3/0036Footwear characterised by the shape or the use characterised by a special shape or design
    • A43B3/0094Footwear characterised by the shape or the use characterised by a special shape or design with means to differentiate between right and left shoe
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B3/00Footwear characterised by the shape or the use
    • A43B3/34Footwear characterised by the shape or the use with electrical or electronic arrangements
    • A43B3/50Footwear characterised by the shape or the use with electrical or electronic arrangements with sound or music sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/22Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
    • B29C70/222Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure the structure being shaped to form a three dimensional configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/56Tensioning reinforcements before or during shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/40Details of walls
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/047Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/16Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/80Component parts, details or accessories; Auxiliary operations
    • B29C53/84Heating or cooling
    • B29C53/845Heating or cooling especially adapted for winding and joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D23/00Producing tubular articles
    • B29D23/001Pipes; Pipe joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7154Barrels, drums, tuns, vats
    • B29L2031/7156Pressure vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7172Fuel tanks, jerry cans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/066Plastics

Definitions

  • the present invention relates to a winding of a composite material, and more particularly, to a hybrid winding method of a thermoplastic-continuous fiber hybrid composite, a high pressure vessel using the same, and a manufacturing method thereof.
  • Fiber Reinforced Plastic which is gaining popularity as a new material, exhibits excellent mechanical properties such as specific stiffness and specific strength, compared to general metal materials, so that the weight of the structure is required. It is a trend that is widely used in many industries.
  • the FRP is composed of a fiber-based reinforcing material and a resin-based matrix material, and the molding method is changed according to the shape of the structure required.
  • Filament Winding is the most suitable method for manufacturing axisymmetric or rotating composite structures using high specific rigidity and inelasticity of glass fiber, cable, carbon fiber etc. in many aspects such as manufacturing cost, time and mass production. Do.
  • the winding process using FRP is a robot hand used for manufacturing a large pipe, a liquid crystal display (LCD) or a plasma display panel (PDP), and a high pressure. It is most widely used in the field of a container.
  • LCD liquid crystal display
  • PDP plasma display panel
  • the FRP high pressure vessel is manufactured by the following manufacturing method. First, an impregnation of a continuous fiber such as carbon fiber into a liquid thermosetting resin such as epoxy or unsaturated polyester, and then a cylindrical liner that rotates the carbon fiber impregnated with resin (a core case without a liner) Winding on Subsequently, the glass fiber is impregnated into a liquid thermosetting resin such as epoxy or unsaturated polyester, and then the glass fiber impregnated with the resin is wound on the wound carbon fiber. Then, the resin is cured while being rotated on a rotating shaft in a curing furnace, and finally the FRP high pressure vessel is completed by demolding and cutting.
  • a continuous fiber such as carbon fiber into a liquid thermosetting resin such as epoxy or unsaturated polyester
  • a cylindrical liner that rotates the carbon fiber impregnated with resin (a core case without a liner) Winding on
  • the glass fiber is impregnated into a liquid thermosetting resin such as epoxy or unsaturated polyester, and
  • thermosetting resin used for each of the carbon fiber and glass fiber is different from each other, it is necessary to separate the winding process of the carbon fiber and the winding process of the glass fiber, thereby further increasing the manufacturing cost and lowering the productivity. Is holding.
  • Korean Patent Publication No. 2008-0113212 (published Dec. 29, 2008), which is applied by winding and embedded in a thermosetting resin, but includes a first reinforcing material including glass fibers and carbon. It discloses only about the pressure vessel in which the 2nd reinforcement containing fiber was formed, but it does not disclose about the hybrid winding method.
  • One object of the present invention is to provide a hybrid (or mixed) winding method of a carbon fiber-containing hybrid composite and a glass fiber-containing hybrid composite, which can balance the economical and required properties.
  • another object of the present invention is to provide a high-pressure vessel that balances economics and required properties by using a hybrid winding method of a thermoplastic-continuous fiber hybrid composite containing carbon fibers or glass fibers.
  • Another object of the present invention is to provide a method of manufacturing a high-pressure container that can easily balance between economical efficiency and required properties with productivity improvement.
  • the hybrid winding method of the thermoplastic plastic-continuous fiber hybrid composite according to the present invention for achieving the above object comprises the steps of: mixing and supplying a thermoplastic plastic-carbon continuous fiber hybrid composite and a thermoplastic plastic-glass continuous fiber hybrid composite; Applying tension to the hybridly fed hybrid composites; Tensioning and winding the hybrid composite supplied hybridly along the outer circumferential surface of the mandrel; And applying heat to the hybrid wound hybrid composites.
  • the high-pressure container according to the present invention for achieving the above another object has a liner having a shape corresponding to the desired container shape; And a strength reinforcing layer formed by winding a thermoplastic composite material impregnated with carbon fibers and glass fibers in the thermoplastic plastic on the outer circumferential surface of the liner.
  • the manufacturing method of the high-pressure container according to the present invention for achieving the another object is Inserting a liner having a shape corresponding to the desired container shape into the mandrel; Hybridizing and winding the thermoplastic-carbon continuous fiber hybrid composite and the thermoplastic-glass continuous fiber hybrid composite along the outer circumferential surface of the liner while rotating the mandrel; And applying heat to the hybrid winding hybrid composite, wherein the hybrid winding comprises hybridizing and supplying a thermoplastic-carbon continuous fiber hybrid composite and a thermoplastic-glass continuous fiber hybrid composite. And tensioning the supplied hybrid composites.
  • Winding method according to the present invention by using a mixture of carbon fiber and glass fiber, and by using a thermoplastic that does not require a curing process, it is possible to achieve a balance between economic efficiency and required properties while reducing manufacturing costs and productivity.
  • the high-pressure container according to the present invention is formed by the hybrid winding of the carbon fiber-containing hybrid composite material and the glass fiber-containing hybrid composite material economical and required properties Balanced and recyclable with the use of thermoplastics.
  • the manufacturing method of the high-pressure container according to the present invention can easily balance the economics and the required properties through a hybrid winding method using a carbon fiber and glass fiber in a hybrid, using a thermoplastic resin that does not require a curing process, It is possible to manufacture high pressure containers that can improve productivity and recycle.
  • thermoplastic plastic-continuous fiber hybrid composite according to the present invention.
  • Figure 2 is a flow chart illustrating a method of manufacturing a thermoplastic-continuous fiber hybrid composite according to the present invention.
  • FIG. 3 is a view schematically showing a winding apparatus according to a preferred embodiment of the present invention.
  • thermoplastic-continuous fiber hybrid composite is a flowchart illustrating a hybrid winding process of the thermoplastic-continuous fiber hybrid composite according to the present invention.
  • FIG. 5 is a perspective view showing a high-pressure container according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view taken along line II ′ of FIG. 5 according to the first embodiment of the present invention.
  • FIG. 7 is a cross-sectional view taken along line II ′ of FIG. 5 according to the second exemplary embodiment of the present invention.
  • thermoplastic plastic-continuous fiber hybrid composite according to the present invention, a high pressure container using the same, and a method of manufacturing the same will be described.
  • FIG. 1 is a view schematically showing a method for manufacturing a thermoplastic plastic-continuous fiber hybrid composite according to the present invention
  • FIG. 2 is a flowchart illustrating a method for manufacturing a thermoplastic plastic-continuous fiber hybrid composite according to the present invention.
  • the thermoplastic plastic-continuous fiber hybrid composite according to the present invention has a multilayer structure in which thermoplastic fibers and continuous fibers such as glass fiber or carbon fiber (carbon fiber or graphite fiber) are laminated.
  • the thermoplastic is referred to as a thermoplastic resin, for example, polyamide (PA), polypropylene (polypropylene), polyethylene (polyethylene), polyethylene terephthalate (PET), polyacetate (polyacetate), acrylic It may be formed of one or more materials selected from ronitryl butadiene styrene (Acrylonitril-butadiene-styrene; ABS) resin.
  • the thermoplastic plastic is preferably formed of at least one of polyamide (PA), polypropylene, and polyethylene having excellent impregnation, cost, and physical properties.
  • the thermoplastic plastic-continuous fiber hybrid composite includes a) uniformly spreading the glass fiber bundles or carbon fiber bundles in a broad width (S10), b) heating the unfolded glass fiber or carbon fiber (S20), and c) heating. Forming a thermoplastic-continuous fiber joint by bonding the glass fibers or carbon fibers to the tape-shaped thermoplastic plastic (S30), and d) folding the joint in a zigzag form to form a multilayer thermoplastic plastic-continuous fiber assembly (S40). ) And e) pressing the multi-layer thermoplastic plastic-continuous fiber conjugate (S50).
  • the glass fiber bundle of step (a) is not particularly limited as long as it is usually used for continuous fiber reinforced plastics, but it is preferable to select a sizing glass fiber to increase chemical bonding strength.
  • Carbon fiber bundles are easier to widen than 1200TEX than 2400TEX, but considering the economical aspect of the hybrid composite, 2400TEX is more preferable because of higher productivity.
  • Carbon fiber bundles may use 24K, which is typically used in winding processes. The smaller the diameter of the carbon fiber, the better, but it is generally preferable that the level of 2 ⁇ m to 7 ⁇ m.
  • the glass fiber bundle or carbon fiber bundle can be gradually widened using a multi-stage convex bar and guide bar to spread evenly in the form of a sheet.
  • the number of can be adjusted as needed.
  • the heating in step b) heats the unfolded glass fibers or carbon fibers to a temperature of 120 to 280 ° C.
  • the finally produced thermoplastic-continuous fiber hybrid composite is excellent in flexibility and has an easy weaving effect.
  • the temperature at this time is appropriately selected with reference to the melting temperature according to the type of the tape-shaped thermoplastic plastic used, it is preferable to optimize the hybrid composite to a temperature as high as possible to maintain flexibility.
  • the tape-shaped thermoplastic plastic of step c) may be arranged without gaps in the same plane side by side with a plurality of plastic tapes having a predetermined width unfolded, and the sum of the widths matches the widths of the heated glass fibers or carbon fibers. It is desirable to be.
  • thermoplastic plastic tape of step c) may be located above, above, or below the heated glass fiber or carbon fiber, but is preferably located above both the upper and lower parts.
  • the width of the thermoplastic tape is not particularly limited, but may be 5 mm to 40 mm wide, preferably 10 mm to 20 mm wide, and by controlling it, the content of the continuous fiber in the thermoplastic plastic-continuous fiber hybrid composite produced can be controlled.
  • thermoplastic tape If the width of the thermoplastic tape is less than 5mm, it is difficult to control the content of the continuous fiber in the hybrid composite, and if it exceeds 40mm, It is difficult to apply the winding process to products with curved dome shapes, such as high pressure containers.
  • Thermoplastic plastic-glass continuous fiber hybrid composite including glass fibers is preferably adjusted to include 40 to 80% by weight of glass fibers.
  • the content of the glass fiber is less than 40% by weight, the impact resistance of the hybrid composite may be lowered.
  • the content of the glass fiber exceeds 80% by weight, the specific stiffness of the hybrid composite may be lowered.
  • thermoplastic plastic-carbon continuous fiber hybrid composite including carbon fibers is preferably adjusted to include 40 to 80% by weight of carbon fibers.
  • the content of the carbon fiber is less than 40% by weight, the specific rigidity of the hybrid composite may be lowered.
  • the content of the carbon fiber exceeds 80% by weight, it may lead to a decrease in the impact resistance of the hybrid composite and an increase in the manufacturing cost. This is because 24K carbon fiber is about 20 times more expensive than 2400TEX glass fiber, which costs about 30,000 won per kilogram and costs 1,500 won per kilogram.
  • the carbon fibers are only about twice as high as the glass fibers.
  • the arithmetic calculation considering the specific gravity is as follows. First, when glass fiber is used at 100%, the weight is about 3.0 times that of the carbon fiber composite material, but the price is about 15%. When 50% of the carbon fiber is used, the weight is about 2.0 times that of the glass fiber composite material, and the price is about 57%. When 75% of the carbon fiber is used, it is about 1.5 times the weight of the glass fiber composite material, and the price is about 79%.
  • the thermoplastic-continuous fiber conjugate of step c) may be a structure in which glass fibers or carbon fibers and a tape-shaped thermoplastic are laminated, or a structure in which thermoplastic tape, glass fibers or carbon fibers and a tape-shaped thermoplastic are sequentially stacked. have.
  • the tape-shaped thermoplastics, glass fibers or carbon fibers, and tape-shaped thermoplastics are laminated in this order.
  • thermoplastics do not require elongation properties, so most commercialized thermoplastics that can be processed into films or tapes can be applied.
  • the thermoplastic may have a thickness of 30 ⁇ m to 200 ⁇ m and may include a coupling agent.
  • the multi-layer thermoplastic plastic-continuous fiber assembly of step d) has a plurality of tape-shaped plastic contact surfaces folded to form a zigzag shape, with the result that the width is the same as or similar to that of one plastic tape.
  • Step e) Compression of step e) may be carried out under the conditions of 120 °C to 280 °C. If the compression temperature is less than 120 ° C., the folded state of the multilayer thermoplastic-continuous fiber conjugate may not be maintained and may be released again, and if it exceeds 280 ° C., the hybrid composite may lose its flexibility due to excessive impregnation.
  • thermoplastic plastic-continuous fiber hybrid composite prepared by steps a) to e) is a composite material using carbon fiber or glass fiber as a continuous fiber and thermoplastic material as a base material, and melt impregnation of the plastic resin by hot pressing It means the former continuous fiber reinforced plastic.
  • thermoplastic plastic-continuous fiber hybrid composite prepared by FIG. 1 will be described with reference to FIGS. 3 to 7, and a high pressure container manufactured using the same will be described.
  • FIG. 3 is a view schematically showing a winding device according to a preferred embodiment of the present invention
  • Figure 4 is a flow chart for explaining the hybrid winding method of the thermoplastic-continuous fiber hybrid composite according to the present invention
  • Figure 5 6 is a perspective view illustrating a high pressure container according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view taken along line II ′ of FIG. 5 according to the first embodiment of the present invention
  • FIG. 7 is a second embodiment of the present invention.
  • 5 is a cross-sectional view taken along the line II ′ of FIG.
  • the winding device includes a fiber supply member 310, a winding head 320, and a mandrel 330.
  • the fiber supply member 310 is a conventional supply of a thermoplastic-continuous fiber hybrid composite 305 containing glass fiber or carbon fiber, and is wound on a plurality of bobbins 315 having a reel shape. Thermoplastic plastic-continuous fiber hybrid composite 305.
  • thermoplastic-continuous fiber hybrid composites 305 of the present invention may be a thermoplastic-carbon continuous fiber hybrid composite 305a, and the other may be a thermoplastic-glass continuous fiber hybrid composite 305b, and these The two hybrid composites 305a and 305b may be arranged next to each other.
  • the thermoplastic-continuous fiber hybrid composite 305 may exist in a roving state and, when winding, the carbon fiber-glass fiber hybrid in which these two hybrid composites 305a and 305b are mixed (or mixed). Can be fed into the roving.
  • the mandrel 330 is for winding the thermoplastic-continuous fiber hybrid composite 305 supplied from the fiber supply member 310 by rotational driving, and may be a basic frame of a molding.
  • the mandrel 330 is fixed to the support 340, and can be rotated at a constant speed while being mounted horizontally with respect to the ground.
  • FIG. 3 illustrates a state in which a liner 510 is fitted to the mandrel 330.
  • the liner 510 becomes a basic frame of the high pressure container 500 (refer to FIG. 5) according to the present invention, and is inserted into the mandrel 330 to rotate at a constant speed.
  • Liner 510 is responsible for the airtightness and corrosion resistance of the high-pressure container 500, may be formed of a metal material such as steel (steel), aluminum (Al) may be a cylindrical having a receiving space therein.
  • the liner 510 may have a shape corresponding to a desired container shape, and more preferably, substantially the same shape. For example, as illustrated in FIG. 5, a cylinder-shaped cylinder part and both sides positioned at a center part thereof are illustrated. It may be a shape including a dome portion of a dome shape (edge shape) at the edge. The central portion of the side end of the dome portion may be provided with a metal boss 515 extending from the dome portion to provide a fastening system with the external accessory. Unlike in the figure, the boss 515 may be formed only at one side edge .
  • the winding head 320 includes a tension unit 321 for applying tension to the carbon fiber-glass fiber hybrid roving, and a torch unit 323 and carbon fiber for applying heat to the carbon fiber-glass fiber hybrid roving. It may be composed of a roll portion 325 for pressing and cooling the glass fiber hybrid roving.
  • the tension part 321, the torch part 323, and the roll part 325 are spaced apart from each other, and the roll part 325 may be omitted.
  • the winding head 320 may be rotated more than nine axes by a rotary motor (not shown) and a transfer device (not shown).
  • the winding device may apply a single head or a multi head.
  • the torch unit 323 may adopt a method of applying heat using a combustion gas method in order to reduce the size of the winding head 320.
  • the torch unit 323 may adopt a method of using an electric heating element or a method of using a laser in addition to the method of using a combustion gas method, but the method of using an electric heating element or a laser increases the size of the head. There is a disadvantage.
  • the flow rate of the combustion gas is controlled according to the linear velocity at which the carbon fiber-glass fiber hybrid roving is wound.
  • the winding device for guiding the thermoplastic plastic-continuous fiber hybrid composite 305 supplied from the fiber supply member 310 between the fiber supply member 310 and the mandrel 330 to the mandrel 330 may further comprise a fiber conveying device.
  • the fiber transfer device may be mounted to a protrusion formed to protrude in a position facing the fiber supply member 310.
  • the mandrel 330 driver (not shown) is driven to rotate the mandrel 330, and the thermoplastic-carbon continuous fiber hybrid composite 305a and the thermoplastic-glass continuous fiber hybrid composite 305b in the fiber supply member 310. ) Are mixed (or mixed) and supplied (S110).
  • the carbon fiber-glass fiber hybrid roving in which these two hybrid composites 305a and 305b are mixed is tensioned by the tension unit 321 (S120), and then the carbon fiber-glass fiber hybrid roving is rotated. 510 (when there is no liner 510) is continuously wound at a constant speed along the outer circumferential surface of the mandrel 330 (S130).
  • This hybrid winding process is freely moved in the desired direction, such as the X-axis direction, Y-axis direction, Z-axis direction, etc. with respect to the mandrel 330 using the winding head 320 that can be rotated more than nine axes as shown in FIG.
  • the carbon fiber-glass fiber hybrid roving may be continuously wound on the liner 510.
  • the X-axis winding is a longitudinal winding or a helical winding that winds the winding angle almost coincident with the rotational direction of the liner 510, and the Y-axis winding winds the winding angle substantially constant perpendicular to the axis. Circumferential winding (hoop winding).
  • the winding angle may be adjusted according to the rotational speed of the liner 510 (the mandrel 330 if there is no liner 510) and the rotational or moving speed ratio of the winding head 320.
  • the boss 515 is also wound by carbon fiber-glass fiber hybrid roving.
  • the carbon fiber-glass fiber hybrid roving wound on the liner 510 (the mandrel 330 if there is no liner 510) is heated by the torch part 323 (S140) and then by the roll part 325. Squeezed and cooled (S150). Through this hot pressing process, the thermoplastic is melt-impregnated in the carbon fiber-glass fiber hybrid roving. This is because the carbon fiber-glass fiber hybrid roving is a unique material with a structure that can be sufficiently impregnated with proper heat and pressure.
  • thermoplastic may be melt-impregnated in the carbon fiber-glass fiber hybrid roving.
  • thermoplastic as a base material, unlike a thermosetting resin, a separate curing process is not required.
  • the carbon fiber-glass fiber hybrid roving when the carbon fiber-glass fiber hybrid roving is wound along the outer circumferential surface of the liner 510, the carbon fiber-glass fiber hybrid roving may be mixed in a vertical configuration or a horizontal configuration and continuously wound.
  • the hybrid winding configuration is a vertical configuration
  • the two hybrid composites 305a and 305b are wound while being alternately arranged adjacent to each other on the same plane.
  • the high pressure container 500 in which a single layer of strength reinforcing layer 520 is formed is formed by winding a thermoplastic composite material impregnated with carbon fibers and glass fibers in the thermoplastic plastic on the outer circumferential surface of the liner 510.
  • the hybrid winding configuration is a horizontal configuration
  • the two hybrid composites 305a and 305b are alternately wound with several layers stacked on different planes.
  • one of the thermoplastic-carbon continuous fiber hybrid composite 305a is in contact with the liner 510, and one of the thermoplastic-glass continuous fiber hybrid composite 305b is exposed to the outside.
  • the interface between these two hybrid composites 305a and 305b is maintained even after the thermoplastic plastic is melt-impregnated in the carbon fiber-glass fiber hybrid roving by hot pressing (or heat). Accordingly, as shown in FIG. 7, the glass fiber is impregnated with the first strength reinforcement layer 520a and the thermoplastic resin in which the thermoplastic composite in which the carbon fiber is impregnated in the thermoplastic plastic is formed on the outer circumferential surface of the liner 510.
  • the high-pressure container 500 is formed of a thermoplastic composite material impregnated with carbon fibers and glass fibers in the thermoplastic plastics, including a strength reinforcing layer 520 formed by hybrid winding on the outer circumferential surface of the liner 510. And required properties It is easy to balance between them and can be recycled by using a thermoplastic resin.
  • the hybrid winding configuration is a vertical configuration, it is more advantageous in terms of uniformity and content control of carbon fibers and glass fibers.
  • the winding method of the present invention can achieve a balance between economical and demanded properties through controlling the content of carbon fiber and glass fiber in the production of moldings that do not require much weight reduction by using carbon fiber and glass fiber in a mixture.
  • thermoplastic that does not require a curing process
  • the hybrid winding method is applied to the manufacture of the high pressure vessel, it is possible to easily balance the economics and the required physical properties, it is possible to manufacture a high-pressure container that can be recycled with a reduction in production cost and productivity.
  • the present invention has been described for convenience of description, the hybrid winding method of the thermoplastic plastic-continuous fiber hybrid composite of the present invention using the molding of the high-pressure container, but is not limited to this, various molding such as pipe or robot hand Of course, it can apply to manufacture of a base material.
  • Example of this invention is described compared with a comparative example.
  • Table 1 shows the tensile strength measurement results of the continuous fiber isotropic composite materials prepared in Examples and Comparative Examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Child & Adolescent Psychology (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩 방법 및 그를 이용한 고압용기 및 그 제조방법을 개시한다. 본 발명에 따른 열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩 방법은 열가소성 플라스틱-탄소연속섬유 혼성복합체 및 열가소성 플라스틱-유리연속섬유 혼성복합체를 혼성하여 공급하는 단계; 혼성 공급된 혼성복합체들에 텐션을 가하는 단계; 텐션이 가해져 혼성 공급된 혼성복합체들을 맨드릴의 외주면을 따라 와인딩하는 단계; 및 혼성 와인딩된 혼성복합체들에 열을 가하는 단계를 포함하는 것을 특징으로 한다.

Description

열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩 방법 및 그를 이용한 고압용기 및 그 제조방법
본 발명은 복합재료의 와인딩에 관한 것으로, 더욱 상세하게는 열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩(Hybrid Winding) 방법 및 그를 이용한 고압용기 및 그 제조방법에 관한 것이다.
신소재로 각광받고 있는 섬유강화 복합재료(Fiber Reinforced Plastic; 이하 FRP)는 일반 금속재료에 비해 비강성(Specific Stiffness)과 비강도(Specific Strength) 등의 우수한 기계적 성질을 나타내므로 구조물의 경량화가 요구되는 여러 산업분야에서 널리 사용이 확대되고 있는 추세이다.
이러한 FRP는 섬유계열의 보강재료와 수지계열의 기지재료(Matrix Material)로 구성되어 있고, 요구되는 구조물의 형상에 따라 성형방법을 달리하고 있다. 축대칭 혹은 회전체 복합재료 구조물을 제작하는 데에는 제작비용, 시간, 대량생산 등 여러 측면에서 유리섬유나 케이블, 탄소섬유 등의 높은 비강성 및 비탄성도를 이용한 필라멘트 와인딩(Filament Winding) 공법이 가장 적절하다.
일반적으로, FRP를 이용한 와인딩 공정은 대형 파이프(pipe), 액정표시장치(Liquid Crystal Display; LCD) 또는 플라즈마표시패널(Plasma Display Panel; PDP)의 제조공정에 사용되는 로봇핸드(Robot hand), 고압용기 등의 분야에 가장 널리 이용되고 있다.
그 중 FRP 고압용기는 아래의 제조방법에 의해 제작되고 있다. 먼저, 탄소섬유와 같은 연속섬유(Filament)를 에폭시 또는 불포화 폴리에스테르와 같은 액상의 열경화성 수지에 함침(Impregnation)시킨 후, 수지를 함침시킨 탄소섬유를 회전하는 원통형의 라이너(라이너가 없는 경우 심축)에 와인딩 한다. 이어서, 유리섬유를 에폭시 또는 불포화 폴리에스테르와 같은 액상의 열경화성 수지에 함침시킨 후, 수지를 함침시킨 유리섬유를 와인딩된 탄소섬유 위에 와인딩 한다. 그런 다음, 경화로에서 회전축에 걸어 회전시키면서 수지를 경화시킨 후, 탈형 및 절단을 거쳐 최종적으로 FRP 고압용기를 완성한다.
그러나, 상기한 방법으로 제조된 FRP 고압용기의 경우, 기지재료로 별도의 경화공정을 필요로 하는 열경화성 수지를 사용함에 따라 제조비용의 상승 및 생산성 저하를 초래하는 문제점을 안고 있다.
또한, 탄소섬유와 유리섬유 각각에 사용되는 열경화성 수지의 최적화된 조성이 서로 달라서 탄소섬유의 와인딩 공정과 유리섬유의 와인딩 공정을 분리해서 진행해야 하기 때문에 더더욱 제조비용의 상승 및 생산성 저하를 초래하는 문제점을 안고 있다.
관련 선행문헌으로는 한국 공개특허 KR 2008-0113212호(2008.12.29. 공개)가 있으며, 상기 문헌에는 권선(winding)으로 도포되고, 열경화성 수지에 매립되되, 유리섬유를 포함하는 제1 보강재 및 탄소섬유를 포함하는 제2 보강재가 형성된 압력 용기에 대하여 개시하고 있을 뿐, 혼성 와인딩 방법에 대하여 개시하는 바가 없다.
본 발명의 하나의 목적은 경제성과 요구 물성 간 균형을 이룰 수 있는 탄소섬유 함유 혼성복합체와 유리섬유 함유 혼성복합체의 혼성(또는 혼사) 와인딩 방법을 제공하는 것이다.
또한, 본 발명의 다른 목적은 탄소섬유 또는 유리섬유를 함유하는 열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩 방법을 이용하여 경제성과 요구 물성 간 균형을 이루는 고압용기를 제공하는 것이다.
또한, 본 발명의 또 다른 목적은 생산성 향상과 더불어 손쉽게 경제성과 요구 물성 간 균형을 이룰 수 있는 고압용기의 제조방법을 제공하는 것이다.
상기 하나의 목적을 달성하기 위한 본 발명에 따른 열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩 방법은, 열가소성 플라스틱-탄소연속섬유 혼성복합체 및 열가소성 플라스틱-유리연속섬유 혼성복합체를 혼성하여 공급하는 단계; 혼성 공급된 혼성복합체들에 텐션(tension)을 가하는 단계; 텐션이 가해져 혼성 공급된 혼성복합체를 맨드릴(mandrel)의 외주면을 따라 와인딩하는 단계; 및 혼성 와인딩된 혼성복합체들에 열을 가하는 단계를 포함하는 것을 특징으로 한다.
또한, 상기 다른 목적을 달성하기 위한 본 발명에 따른 고압용기는 원하는 용기 형상에 대응하는 형상을 가지는 라이너; 및 열가소성 플라스틱에 탄소섬유와 유리섬유가 함침되어 있는 열가소성 복합재가 상기 라이너의 외주면에 와인딩되어 형성되는 강도보강층;을 포함하는 것을 특징으로 한다.
또한, 상기 또 다른 목적을 달성하기 위한 본 발명에 따른 고압용기의 제조방법은 원하는 용기 형상에 대응하는 형상을 가지는 라이너를 맨드릴에 끼우는 단계; 상기 맨드릴을 회전시키면서 상기 라이너의 외주면을 따라 열가소성 플라스틱-탄소연속섬유 혼성복합체와 열가소성 플라스틱-유리연속섬유 혼성복합체를 혼성하여 와인딩하는 단계; 및 혼성 와인딩된 혼성복합체에 열을 가하는 단계;를 포함하며, 상기 혼성복합체를 혼성 와인딩하는 단계는 열가소성 플라스틱-탄소연속섬유 혼성복합체 및 열가소성 플라스틱-유리연속섬유 혼성복합체를 혼성하여 공급하는 단계 및 혼성 공급된 혼성복합체들에 텐션을 가하는 단계를 포함하는 것을 특징으로 한다.
본 발명에 따른 와인딩 방법은 탄소섬유와 유리섬유를 혼성으로 사용하고, 경화공정이 필요 없는 열가소성 플라스틱을 사용함으로써, 제조비용 절감 및 생산성 향상과 더불어 경제성과 요구 물성 간 균형을 이룰 수 있다.
또한, 본 발명에 따른 고압용기는 탄소섬유 함유 혼성복합체 및 유리섬유 함유 혼성복합체가 혼성 와인딩되어 형성됨으로써 경제성과 요구 물성 간 균형을 이루고, 열가소성 수지의 사용으로 재활용이 가능하다.
또한, 본 발명에 따른 고압용기의 제조방법은 탄소섬유와 유리섬유를 혼성으로 사용하고, 경화공정이 필요 없는 열가소성 수지를 사용하는 혼성 와인딩 방법을 통해 손쉽게 경제성과 요구 물성 간 균형을 이룰 수 있고, 생산성 향상 및 재활용이 가능한 고압용기의 제작이 가능하다.
도 1은 본 발명에 따른 열가소성 플라스틱-연속섬유 혼성복합체의 제조방법을 개략적으로 도시한 도면이다.
도 2는 본 발명에 따른 열가소성 플라스틱-연속섬유 혼성복합체의 제조방법을 설명하기 위한 순서도이다.
도 3은 본 발명의 바람직한 실시예에 따른 와인딩 장치를 개략적으로 도시한 도면이다.
도 4는 본 발명에 따른 열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩 공정을 설명하기 위한 순서도이다.
도 5는 본 발명의 일 실시예에 따른 고압용기를 도시한 사시도이다.
도 6은 본 발명의 제1 실시예에 따른 도 5를 선 I-I'로 절취한 단면도이다.
도 7은 본 발명의 제2 실시예에 따른 도 5를 선 I-I'로 절취한 단면도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예를 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
이하 첨부된 도면을 참조하여 본 발명에 따른 열가소성 플라스틱-연속섬유 혼성 복합체의 혼성 와인딩(hybrid winding) 방법 및 그를 이용한 고압용기 및 그 제조방법에 대하여 설명하기로 한다.
도 1은 본 발명에 따른 열가소성 플라스틱-연속섬유 혼성 복합체의 제조방법을 개략적으로 도시한 도면이고, 도 2는 본 발명에 따른 열가소성 플라스틱-연속섬유 혼성복합체의 제조방법을 설명하기 위한 순서도이다.
도 1 및 도 2를 참조하면, 본 발명에 따른 열가소성 플라스틱-연속섬유 혼성 복합체는 열가소성 플라스틱과 유리섬유 또는 탄소섬유(carbon fiber 또는 graphite fiber)와 같은 연속섬유가 적층된 다층 구조를 가진다. 이때, 열가소성 플라스틱은 열가소성 수지로 일컬어지며, 예를 들어, 폴리아미드(polyamide; PA), 폴리프로필렌(polypropylene), 폴리에틸렌(polyethylene), 폴리에틸렌테레프탈레이트 (polyethyleneterephthalate; PET), 폴리아세테이트(polyacetate), 아크릴로나이트릴 뷰타다이엔 스타이렌(acrylonitril-butadiene-styrene; ABS) 수지 중에서 선택되는 하나 이상의 재질로 형성될 수 있다. 열가소성 플라스틱은 함침성, 비용, 물성 등이 우수한 폴리아미드(polyamide; PA), 폴리프로필렌(polypropylene), 폴리에틸렌(polyethylene) 중 하나 이상의 재질로 형성되는 것이 바람직하다.
이러한 열가소성 플라스틱-연속섬유 혼성복합체는 a)유리섬유 다발 또는 탄소섬유 다발을 광폭으로 균일하게 펼치는 단계(S10)와, b)펼쳐진 유리섬유 또는 탄소섬유를 가열하는 단계(S20)와, c)가열된 유리섬유 또는 탄소섬유와 테이프 형상의 열가소성 플라스틱을 접합하여 열가소성 플라스틱-연속섬유 접합체를 형성하는 단계(S30)와, d)접합체를 지그재그 형태로 접어 다층 열가소성 플라스틱-연속섬유 접합체를 만드는 단계(S40) 및 e)다층 열가소성 플라스틱-연속섬유 접합체를 압착시키는 단계(S50)를 포함하여 제조될 수 있다.
(a)단계의 유리섬유 다발은 통상 연속섬유 강화 플라스틱에 사용되는 것이면 특별히 제한되지 않으나, 화학적 결합력을 높이기 위해 사이징(sizing) 처리된 유리섬유를 선택하는 것이 바람직하다. 또한, 유리섬유의 직경은 작을수록 좋으나 통상 15㎛ 내지 20㎛ 수준의 것이 바람직하다.
유리섬유 다발은 1200TEX가 2400TEX보다는 광폭화 측면에서 용이하나, 혼성복합체의 경제적 측면을 고려한다면 2400TEX를 사용하는 것이 생산성이 높아 보다 바람직하다. 탄소섬유 다발은 통상적으로 와인딩 공정에 사용되는 24K를 사용할 수 있다. 탄소섬유의 직경은 작을수록 좋으나 통상 2㎛ 내지 7㎛ 수준의 것이 바람직하다.
a)단계에서 유리섬유 다발 또는 탄소섬유 다발을 다단계의 볼록 바(convex bar) 및 가이드 바(guide bar)를 이용하여 점진적으로 광폭화하여 시트 형태로 균일하게 펼칠 수 있으며, 사용되는 볼록 바 및 가이드 바의 수는 필요에 따라 조절될 수 있다.
b)단계의 가열은 펼쳐진 유리섬유 또는 탄소섬유를 120 내지 280℃의 온도로 가열한다. 이 온도범위 내에서 유리섬유 또는 탄소섬유를 테이프 형상의 열가소성 플라스틱에 접합하는 경우 최종적으로 제조되는 열가소성 플라스틱-연속섬유 혼성 복합체의 유연성이 뛰어나 직조가 용이한 효과가 있다. 이때의 온도는 사용되는 테이프 형상의 열가소성 플라스틱의 종류에 따라 용융온도를 참고로 하여 적절히 선택되며, 혼성복합체가 유연성을 유지할 수 있는 가급적 높은 온도로 최적화하는 것이 바람직하다.
c)단계의 테이프 형상의 열가소성 플라스틱은 복수개의 일정 폭을 가진 플라스틱 테이프가 펼쳐진 상태에서 나란히 동일 평면에 간극 없이 배열된 것일 수 있는데, 그 폭의 합이 가열된 유리섬유 또는 탄소섬유의 폭과 일치되는 것이 바람직하다.
c)단계의 열가소성 플라스틱 테이프는 가열된 유리섬유 또는 탄소섬유의 상부 또는 상, 하부에 위치할 수 있으나, 상, 하부 양쪽에 위치하는 것이 바람직하다.
열가소성 플라스틱 테이프의 폭은 특별히 제한되는 것은 아니나, 5㎜ 내지 40㎜ 폭, 바람직하게는 10mm 내지 20mm 폭일 수 있고, 이를 조절함으로써 제조되는 열가소성 플라스틱-연속섬유 혼성복합체 내의 연속섬유 함량을 조절할 수 있다.
열가소성 플라스틱 테이프의 폭이 5mm 미만일 경우, 혼성복합체 내의 연속섬유 함량 조절이 어렵고, 40mm를 초과하는 경우, 고압용기와 같이 곡면 형태의 돔 형상(dome shape)이 있는 제품에 와인딩 공정을 적용하는데 어려움이 있다.
유리섬유를 포함하는 열가소성 플라스틱-유리연속섬유 혼성복합체는 유리섬유가 40 내지 80 중량%로 포함되도록 조절되는 것이 바람직하다. 유리섬유의 함량이 40중량% 미만일 경우, 혼성복합체의 내충격성이 저하될 수 있다. 반면, 유리섬유의 함량이 80중량%를 초과하는 경우, 혼성복합체의 비강성(specific stiffness)이 저하될 수 있다.
탄소섬유를 포함하는 열가소성 플라스틱-탄소연속섬유 혼성복합체는 탄소섬유가 40 내지 80 중량%로 포함되도록 조절되는 것이 바람직하다. 탄소섬유의 함량이 40중량% 미만일 경우, 혼성복합체의 비강성이 저하될 수 있다. 반면, 탄소섬유의 함량이 80중량%를 초과하는 경우, 혼성복합체의 내충격성 저하와 더불어 제조단가의 상승을 초래할 수 있다. 이는 24K의 탄소섬유는 kg당 가격이 30,000원 수준으로 kg당 가격이 1,500원 수준인 2400TEX의 유리섬유에 비해 약 20배가 더 비싸기 때문이다.
그렇지만, 연속섬유로 직조된 등방성 복합재료를 기준으로 인장강성을 비교하면, 탄소섬유가 유리섬유보다 약 2배 정도 인장강성이 높을 뿐이다.
비중까지 고려한 산술적인 계산을 하면 다음과 같다. 먼저, 유리섬유를 100%로 사용하는 경우, 탄소섬유 복합재료에 비해 약 3.0배의 중량이 되지만, 약 15% 수준의 가격이 된다. 탄소섬유를 50% 사용하는 경우, 유리섬유 복합재료에 비해 약 2.0배의 중량이 되며, 약 57% 수준의 가격이 된다. 탄소섬유를 75% 사용하는 경우, 유리섬유 복합재료에 비해 약 1.5배의 중량이 되며, 약 79% 수준의 가격이 된다.
이에 따라, 경량화가 절대적으로 필요하지 않은 경우에는 경제성을 고려하여 탄소섬유와 유리섬유를 혼성으로 사용하는 것이 바람직하며, 이들의 함량 조절을 통해 경제성과 요구 물성 간 균형을 이룰 수 있다.
c)단계의 열가소성 플라스틱-연속섬유 접합체는 유리섬유 또는 탄소섬유와 테이프 형상의 열가소성 플라스틱이 적층된 구조이거나 열가소성 플라스틱 테이프, 유리섬유 또는 탄소섬유 및 테이프 형상의 열가소성 플라스틱이 순서대로 적층된 구조일 수 있다. 바람직하게는, 테이프 형상의 열가소성 플라스틱, 유리섬유 또는 탄소섬유 및 테이프 형상의 열가소성 플라스틱이 순서대로 적층된 구조이다.
테이프 형상의 열가소성 플라스틱은 신장(Elongation) 특성이 요구되지 않으므로 필름 또는 테이프 형태로 가공이 가능한 대부분의 상업화된 열가소성 플라스틱이 적용될 수 있다. 열가소성 플라스틱은 두께가 30㎛ 내지 200㎛일 수 있고, 커플링제를 포함할 수 있다.
d)단계의 다층 열가소성 플라스틱-연속섬유 접합체는 복수개의 테이프 형상의 플라스틱 간 접촉면이 접혀 지그재그 형태를 갖는 것인데, 결과적으로 그 폭이 플라스틱 테이프 하나의 폭과 동일 또는 비슷하게 된다.
e)단계의 압착은 120℃ 내지 280℃의 조건 하에서 실시될 수 있다. 압착 온도가 120℃ 미만일 경우 다층 열가소성 플라스틱-연속섬유 접합체의 접힌 상태가 유지되지 않고 다시 풀어질 수 있고, 280℃를 초과하는 경우 과도한 함침으로 인해 혼성복합체의 유연성을 상실할 수 있다.
a) 내지 e)단계에 의해 제조된 열가소성 플라스틱-연속섬유 혼성복합체는 연속섬유로 탄소섬유 또는 유리섬유를 사용하고, 기지재료로 열가소성 플라스틱을 사용한 복합재료이며, 열간압착에 의한 플라스틱 수지의 용융함침 전의 연속섬유 강화 플라스틱을 의미한다.
이하에서는, 도 3 내지 도 7을 참조하여 도 1에 의해 제조된 열가소성 플라스틱-연속섬유 혼성복합체를 이용한 혼성 와인딩 방법을 설명하고, 그를 이용하여 제조된 고압용기 및 그 제조방법을 설명하기로 한다.
도 3은 본 발명의 바람직한 실시예에 따른 와인딩 장치를 개략적으로 도시한 도면이고, 도 4는 본 발명에 따른 열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩 방법을 설명하기 위한 순서도이고, 도 5는 본 발명의 일 실시예에 따른 고압용기를 도시한 사시도이고, 도 6은 본 발명의 제1 실시예에 따른 도 5를 선 I-I'로 절취한 단면도이며, 도 7은 본 발명의 제2 실시예에 따른 도 5를 선 I-I'로 절취한 단면도이다.
도 3을 참조하면, 와인딩 장치는 섬유공급부재(310), 와인딩 헤드(winding head, 320) 및 맨드릴(mandrel, 330)을 포함하여 구성된다.
섬유공급부재(310)는 유리섬유 또는 탄소섬유를 함유하는 열가소성 플라스틱-연속섬유 혼성복합체(305)를 공급하는 통상적인 것으로, 릴(Reel) 형태를 가진 다수개의 보빈(bobbin, 315)에 와인딩된 열가소성 플라스틱-연속섬유 혼성복합체(305)를 포함한다.
본 발명의 열가소성 플라스틱-연속섬유 혼성복합체(305) 중 하나는 열가소성 플라스틱-탄소연속섬유 혼성복합체(305a)일 수 있고, 나머지 하나는 열가소성 플라스틱-유리연속섬유 혼성복합체(305b)일 수 있으며, 이들 두 혼성복합체(305a, 305b)는 서로 이웃하여 배열될 수 있다. 여기서, 열가소성 플라스틱-연속섬유 혼성복합체(305)는 로빙(Roving) 상태로 존재할 수 있고, 와인딩될 때에는 이들 두 혼성복합체(305a, 305b)가 혼성(또한 혼사)되는 상태의 탄소섬유-유리섬유 혼성로빙으로 공급될 수 있다.
맨드릴(330)은 회전구동에 의해 섬유공급부재(310)로부터 공급된 열가소성 플라스틱-연속섬유 혼성복합체(305)를 와인딩하기 위한 것으로 성형물의 기본 틀체가 될 수 있다. 맨드릴(330)은 지지대(340)에 고정되고, 지면에 대해 수평하게 거치된 상태에서 일정속도로 회전할 수 있게 된다.
한편, 도 3에서는 라이너(Liner, 510)가 맨드릴(330)에 끼워진 상태를 도시하였다. 라이너(510)는 본 발명에 따른 고압용기(500, 도 5 참조)의 기본 틀체가 되며, 맨드릴(330)에 끼워져 일정속도로 회전할 수 있다. 라이너(510)는 고압용기(500)의 기밀성 및 내부식성을 담당하는 것으로, 강(steel), 알루미늄(Al)과 같은 금속 재질로 형성되어 내부에 수용 공간을 갖는 원통형일 수 있다.
라이너(510)는 원하는 용기 형상에 대응하는 형상, 보다 바람직하게 실질적으로 동일한 형상을 가질 수 있는데, 일례로, 도 5에 도시된 바와 같이, 중앙부에 위치하는 실린더(cylinder) 형상의 실린더부 및 양측 가장자리에 돔 형상(dome shape)의 돔부를 포함하는 형상일 수 있다. 돔부의 측단 중앙부에는 돔부로부터 연장 돌출되어 외부 보기류와의 체결시스템을 제공하는 금속 재질의 보스(boss, 515)가 제공될 수 있다. 도면에서와 달리, 보스(515)는 일 측 가장자리에만 형성될 수도 있다.
와인딩 헤드(320)는 탄소섬유-유리섬유 혼성로빙에 텐션(tension)을 가하는 텐션부(321)와, 탄소섬유-유리섬유 혼성로빙에 열을 가하는 토치(torch)부(323) 및 탄소섬유-유리섬유 혼성로빙을 압착 및 냉각하는 롤 부(325)로 구성될 수 있다. 텐션부(321), 토치부(323) 및 롤 부(325)는 서로 이격 배치되며, 롤 부(325)는 생략 가능하다. 와인딩 헤드(320)는 회전모터(미도시) 및 이송장치(미도시)에 의해 9축 이상 회전이 가능하다.
와인딩 장치는 싱글 헤드(single head) 또는 멀티 헤드(multi head)를 적용할 수 있다. 멀티 헤드 와인딩 장치의 경우, 와인딩 헤드(320)의 크기를 소형화하기 위하여 토치부(323)는 연소가스 방식을 이용하여 열을 가하는 방법을 채택할 수 있다. 싱글 헤드 와인딩 장치의 경우, 토치부(323)는 연소가스 방식을 이용하는 방법 외에 전기발열체를 이용하는 방법이나 레이저를 이용하는 방법 등을 채택할 수 있으나, 전기발열체나 레이저를 이용한 방법들은 헤드의 크기가 대형화되는 단점이 있다.
연속가스 방식을 이용한 토치부(323)의 경우, 탄소섬유-유리섬유 혼성로빙이 와인딩되는 선속도에 따라 연소가스의 유량을 제어한다.
한편, 도시하지는 않았으나, 와인딩 장치는 섬유공급부재(310)와 맨드릴(330) 사이에 섬유공급부재(310)에서 공급되는 열가소성 플라스틱-연속섬유 혼성복합체(305)를 맨드릴(330)로 안내하기 위한 섬유이송장치를 더 포함할 수 있다. 섬유이송장치는 섬유공급부재(310)와 대면되는 위치에 돌출 형성되는 돌출부에 장착될 수 있다.
이러한 와인딩 장치의 구동방법을 살펴보면 다음과 같다. 우선, 맨드릴(330) 구동기(미도시)를 구동시켜 맨드릴(330)을 회전시키면서 섬유공급부재(310)에서 열가소성 플라스틱-탄소연속섬유 혼성복합체(305a) 및 열가소성 플라스틱-유리연속섬유 혼성복합체(305b)를 혼성(또는 혼사)하여 공급한다(S110).
그러면, 이들 두 혼성복합체(305a, 305b)가 혼성된 각각의 탄소섬유-유리섬유 혼성로빙에는 텐션부(321)에 의해 텐션이 가해진(S120) 후, 탄소섬유-유리섬유 혼성로빙이 회전하는 라이너(510)(라이너(510)가 없을 경우 맨드릴(330))의 외주면을 따라 일정한 속도를 가지고 연속적으로 와인딩된다(S130).
이러한 혼성 와인딩 공정은 9축 이상 회전 가능한 와인딩 헤드(320)를 사용하여 맨드릴(330)에 대해 X축 방향, Y축 방향, Z축 방향 등의 원하는 방향으로 자유자재로 이동시켜서 도 5에 도시된 바와 같이 라이너(510) 상에 탄소섬유-유리섬유 혼성로빙을 연속적으로 와인딩 할 수 있다. 여기서, X축 방향 와인딩은 와인딩 각도를 라이너(510)의 회전방향과 거의 일치하게 감는 축방향 와인딩(longitudinal winding 또는 helical winding)이며, Y축 방향 와인딩은 와인딩 각도를 축에 거의 수직으로 일정하게 감는 원주방향 와인딩(hoop winding)이다. 와인딩 공정 시, 와인딩 각도는 라이너(510)(라이너(510)가 없을 경우 맨드릴(330))의 회전속도와 와인딩 헤드(320)의 회전 또는 이동속도비에 따라 조절될 수 있다. 한편, 도시되지 않았으나 보스(515)도 탄소섬유-유리섬유 혼성로빙에 의해 와인딩된다.
라이너(510)(라이너(510)가 없을 경우 맨드릴(330)) 상에 와인딩된 탄소섬유-유리섬유 혼성로빙은 토치부(323)를 통해 열이 가해진(S140) 후 롤 부(325)에 의해 압착 및 냉각된다(S150). 이러한 열간압착 과정을 통해 열가소성 플라스틱이 탄소섬유-유리섬유 혼성로빙에 용융함침된다. 이는 탄소섬유-유리섬유 혼성로빙이 적절한 열과 압력으로도 충분히 함침이 될 수 있는 구조를 가지고 있는 독창적인 소재이기 때문이다.
한편, 롤 부(325)에 의한 압착 공정을 생략하더라도 열가소성 플라스틱이 탄소섬유-유리섬유 혼성로빙에 용융함침될 수 있음은 물론이다.
이후, 맨드릴(330)을 냉각시키는 등의 통상적인 방법을 통해 라이너(510)(라이너(510)가 없을 경우 와인딩된 구조물)를 탈형한 후 절단 공정을 거치면 도 5에 도시된 본 발명의 고압용기(500)가 완성된다.
본 발명의 혼성 와인딩 공정은 기지재료로 열가소성 플라스틱을 사용하므로, 열경화성 수지와 달리 별도의 경화과정이 필요 없다.
특히, 탄소섬유-유리섬유 혼성로빙이 라이너(510)의 외주면을 따라 와인딩될 때, 탄소섬유-유리섬유 혼성로빙은 수직 구성 또는 수평 구성으로 혼성되어 연속적으로 와인딩될 수 있다.
이 중, 혼성 와인딩 구성이 수직 구성일 경우에는, 동일 평면 상에서는 두 혼성복합체(305a, 305b)가 서로 이웃하여 교호(交互)적으로 배열되면서 와인딩된다.
이로 인해, 열간압착(또는 열)에 의해 열가소성 플라스틱이 탄소섬유-유리섬유 혼성로빙에 용융함침될 때 이들 두 혼성복합체(305a, 305b) 간 계면이 서로 섞이게 됨에 따라, 도 6에 도시된 바와 같이, 열가소성 플라스틱에 탄소섬유와 유리섬유가 함침되어 있는 열가소성 복합재가 라이너(510)의 외주면에 와인딩되어 형성되는 단층의 강도보강층(520)이 형성된 고압용기(500)가 성형된다.
이와는 다르게, 혼성 와인딩 구성이 수평 구성일 경우에는, 두 혼성복합체(305a, 305b)는 서로 다른 평면 상에 교대로 수 층이 적층되어 와인딩된다. 이때, 열가소성 플라스틱-탄소연속섬유 혼성복합체(305a) 중 하나는 라이너(510)와 접촉하고, 열가소성 플라스틱-유리연속섬유 혼성복합체(305b) 중 하나는 외부에 노출된다.
그 결과, 열간압착(또는 열)에 의해 열가소성 플라스틱이 탄소섬유-유리섬유 혼성로빙에 용융함침된 후에도 이들 두 혼성복합체(305a, 305b) 간 계면이 유지된다. 이에 따라, 도 7에 도시된 바와 같이, 열가소성 플라스틱에 탄소섬유가 함침되어 있는 열가소성 복합재가 라이너(510)의 외주면에 와인딩되어 형성되는 제1 강도보강층(520a)과 열가소성 플라스틱에 유리섬유가 함침되어 있는 열가소성 복합재가 라이너(510)의 외주면에 와인딩되어 형성되는 제2 강도보강층(520b)이 교대로 라미네이트(laminate)된 제1 층 내지 제n 층(520a1, 520b1, 520a2, 520b2, …, 520an, 520bn)의 다층의 강도보강층(520)이 형성된 고압용기(500)가 성형된다. 이때, 제1 강도보강층(520a) 중 한 층은 라이너(510)와 접촉하고, 제2 강도보강층(520b) 중 한 층은 외부에 노출된다.
이러한 고압용기(500)는 열가소성 플라스틱에 탄소섬유와 유리섬유가 함침되어 있는 열가소성 복합재가 라이너(510)의 외주면에 혼성 와인딩되어 형성되는 강도보강층(520)을 포함하여 형성되므로 사용자의 요청에 의한 경제성과 요구 물성 간 균형을 이루기가 용이하고, 열가소성 수지의 사용으로 재활용이 가능하다.
그러나, 혼성 와인딩 구성이 수직 구성일 경우가, 균일성 및 탄소섬유와 유리섬유의 함량 조절 측면에서 보다 유리하다.
한편, 로빙 폭의 제약이 없는 파이프나 로봇핸드의 경우에는 수직 구성과 수평 구성을 혼합한 혼성 와인딩 방법을 사용할 수 있다.
이렇듯, 본 발명의 와인딩 방법은 탄소섬유와 유리섬유를 혼성으로 사용함으로써 경량화가 크게 요구되지 않는 성형물의 제조시 탄소섬유 및 유리섬유의 함량 조절을 통해 경제성과 요구 물성 간 균형을 이룰 수 있다.
또한, 기지재료로 경화공정이 필요 없는 열가소성 플라스틱을 사용함으로써, 제조비용 절감 및 생산성 향상의 효과가 있다. 또한, 상기한 혼성 와인딩 방법을 고압용기의 제조에 응용할 경우, 손쉽게 경제성과 요구 물성 간 균형을 이룰 수 있고, 제조비용 절감 및 생산성 향상과 더불어 재활용이 가능한 고압용기의 제작이 가능하다.
한편, 본 발명은 설명의 편의를 위하여, 본 발명의 열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩 방법을 고압용기의 성형에 이용하여 설명하였으나, 이에 한정되는 것은 아니며, 파이프나 로봇핸드 등의 다양한 성형기재의 제조에 적용할 수 있음은 물론이다.
이하, 본 발명의 실시예를 비교예와 대비하여 기재한다.
실시예
50중량%의 PA66 테이프 및 광폭화 후 260℃의 온도로 가열된 50중량%의 탄소섬유를 접합시킨 후 지그재그 형태로 접은 다음 롤러를 사용하여 압착하여 연속섬유로 직조된 등방성 복합재료를 제조하였다.
비교예
탄소섬유를 대신하여 유리섬유를 사용한 것을 제외하고는 실시예와 동일하다.
물성측정시험
<인장강도>
ASTM D638 규격에 의거하여 시험하였다. 단, 시편의 크기는 Type1을 따르며, 인장속도는 5mm/min이다.
표 1
구분 실시예 비교예
인장강도 53GPa 23GPa
표 1은 실시예 및 비교예에서 제조한 연속섬유 등방성 복합재료의 인장강도 측정결과이다.
표 1을 참조하면, 탄소섬유를 50중량% 사용하는 경우, 탄소섬유의 인장강도가 유리섬유의 인장강도보다 약 2.3배 정도 높음을 확인할 수 있었다.
이를 통해, 경량화가 절대적으로 필요치 않을 때에는 상대적으로 가격이 훨씬 저렴한 유리섬유를 탄소섬유와 혼성하여 사용하는 것이 경제성과 요구되는 물성 간에 균형을 이루는데 바람직함을 알 수 있었다.
이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 기술자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형은 본 발명이 제공하는 기술 사상의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.
[부호의 설명]
305 : 열가소성 플라스틱-연속섬유 혼성복합체
305a : 열가소성 플라스틱-탄소연속섬유 혼성복합체
305b : 열가소성 플라스틱-유리연속섬유 혼성복합체
310 : 섬유공급부재
315 : 보빈
320 : 와인딩 헤드
321 : 텐션부
323 : 토치부
325 : 롤 부
330 : 맨드릴
340 : 지지대
500 : 고압용기
510 : 라이너
515 : 보스
520 : 강도보강층
520a : 제1 강도보강층
520b : 제2 강도보강층

Claims (17)

  1. 열가소성 플라스틱-탄소연속섬유 혼성복합체 및 열가소성 플라스틱-유리연속섬유 혼성복합체를 혼성하여 공급하는 단계;
    혼성 공급된 혼성복합체들에 텐션을 가하는 단계;
    텐션이 가해져 혼성 공급된 혼성복합체들을 맨드릴의 외주면을 따라 와인딩하는 단계; 및
    혼성 와인딩된 혼성복합체들에 열을 가하는 단계를 포함하는 것을 특징으로 하는 열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩 방법.
  2. 제1항에 있어서,
    상기 열가소성 플라스틱-탄소연속섬유 혼성복합체는
    탄소섬유의 함량이 40 내지 80중량%인 것을 특징으로 하는 열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩 방법.
  3. 제1항에 있어서,
    상기 열가소성 플라스틱-유리연속섬유 혼성복합체는
    유리섬유의 함량이 40 내지 80중량%인 것을 특징으로 하는 열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩 방법.
  4. 제1항에 있어서,
    상기 와인딩은
    상기 혼성 공급된 혼성복합체들이 동일 평면 상에 교호적으로 배열되는 수직 구성인 것을 특징으로 하는 열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩 방법.
  5. 제1항에 있어서,
    상기 와인딩은
    상기 혼성 공급된 혼성복합체들이 서로 다른 평면 상에 교대로 적층되는 수평 구성인 것을 특징으로 하는 열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩 방법.
  6. 제1항에 있어서,
    상기 와인딩은
    9축 이상 회전 가능한 와인딩 헤드를 사용하여 수행하는 것을 특징으로 하는 열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩 방법.
  7. 제1항에 있어서,
    상기 열을 가한 후,
    상기 와인딩된 혼성복합체들을 압착 및 냉각하는 단계를 더 포함하는 것을 특징으로 하는 열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩 방법.
  8. 원하는 용기 형상에 대응하는 형상을 가지는 라이너; 및
    열가소성 플라스틱에 탄소섬유와 유리섬유가 함침되어 있는 열가소성 복합재가 상기 라이너의 외주면에 와인딩되어 형성되는 강도보강층;을 포함하는 것을 특징으로 하는 고압용기.
  9. 제8항에 있어서,
    상기 강도보강층은
    상기 탄소섬유와 상기 유리섬유가 상기 열가소성 플라스틱에 혼합되어 함침된 단층인 것을 특징으로 하는 고압용기.
  10. 제8항에 있어서,
    상기 강도보강층은
    제1 강도보강층 및 제2 강도보강층이 교대로 라미네이트된 다층 구조이며,
    상기 제1 강도보강층은 열가소성 플라스틱에 탄소섬유가 함침되어 있는 열가소성 복합재이고, 상기 제2 강도보강층은 열가소성 플라스틱에 유리섬유가 함침되어 있는 열가소성 복합재인 것을 특징으로 하는 고압용기.
  11. 제10항에 있어서,
    상기 제1 강도보강층 중 한 층은 상기 라이너와 접촉하고, 상기 제2 강도보강층 중 한 층은 외부에 노출되는 것을 특징으로 하는 고압용기.
  12. 제8항에 있어서,
    상기 라이너는
    수용 공간을 갖되, 중앙부는 실린더 형상을 갖는 실린더부로 형성되고, 가장자리는 돔(dome) 형상을 갖는 돔부로 형성되는 것을 특징으로 하는 고압용기.
  13. 제12항에 있어서,
    상기 돔부의 측단 중앙부에는
    상기 돔부로부터 연장 돌출되어 외부 보기류와의 체결시스템을 제공하는 보스가 더 포함되는 것을 특징으로 하는 고압용기.
  14. 원하는 용기 형상에 대응하는 형상을 가지는 라이너를 맨드릴에 끼우는 단계;
    상기 맨드릴을 회전시키면서 상기 라이너의 외주면을 따라 열가소성 플라스틱-탄소연속섬유 혼성복합체와 열가소성 플라스틱-유리연속섬유 혼성복합체를 혼성하여 와인딩하는 단계; 및
    혼성 와인딩된 혼성복합체에 열을 가하는 단계;를 포함하며,
    상기 혼성복합체를 혼성 와인딩하는 단계는 열가소성 플라스틱-탄소연속섬유 혼성복합체 및 열가소성 플라스틱-유리연속섬유 혼성복합체를 혼성하여 공급하는 단계 및 혼성 공급된 혼성복합체들에 텐션을 가하는 단계를 포함하는 것을 특징으로 하는 고압용기의 제조방법.
  15. 제14항에 있어서,
    상기 열을 가한 후,
    상기 혼성 와인딩된 혼성복합체들을 압착 및 냉각하는 단계를 더 포함하는 것을 특징으로 하는 고압용기의 제조방법.
  16. 제14항에 있어서,
    상기 와인딩은
    상기 혼성 공급된 혼성복합체들이 동일 평면 상에 교호적으로 배열되는 수직 구성의 와인딩으로 수행하는 것을 특징으로 하는 고압용기의 제조방법.
  17. 제14항에 있어서,
    상기 와인딩은
    상기 혼성 공급된 혼성복합체들이 서로 다른 평면 상에 교대로 적층되는 수평 구성의 와인딩으로 수행하는 것을 특징으로 하는 고압용기의 제조방법.
PCT/KR2012/011720 2012-01-11 2012-12-28 열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩 방법 및 그를 이용한 고압용기 및 그 제조방법 WO2013105748A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112012005634.5T DE112012005634B4 (de) 2012-01-11 2012-12-28 Hybrides Wicklungsverfahren für einen hybriden thermoplastischen Kunststoff-Endlosfaser-Verbundstoff und ein Hochdruckbehälter, der diesen verwendet und ein Verfahren für dessen Herstellung
US14/370,688 US20150001214A1 (en) 2012-01-11 2012-12-28 Hybrid winding method for thermoplastic plastic-continuous fiber hybrid composite and a high pressure vessel using the same and a method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120003602A KR101407800B1 (ko) 2012-01-11 2012-01-11 열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩 방법 및 그를 이용한 고압용기 및 그 제조방법
KR10-2012-0003602 2012-01-11

Publications (1)

Publication Number Publication Date
WO2013105748A1 true WO2013105748A1 (ko) 2013-07-18

Family

ID=48781660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011720 WO2013105748A1 (ko) 2012-01-11 2012-12-28 열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩 방법 및 그를 이용한 고압용기 및 그 제조방법

Country Status (5)

Country Link
US (1) US20150001214A1 (ko)
KR (1) KR101407800B1 (ko)
DE (1) DE112012005634B4 (ko)
TW (1) TWI511867B (ko)
WO (1) WO2013105748A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111537321A (zh) * 2020-04-24 2020-08-14 哈尔滨工业大学 制作定向纤维增强复合材料测试试样的模具及使用方法
CN115447175A (zh) * 2022-09-13 2022-12-09 中国计量大学 一种气瓶中复合材料的缠绕张力调节方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101635078B1 (ko) * 2014-07-31 2016-07-04 주식회사 라지 다층 연속섬유-열가소성수지 복합체 제조장치 및 제조방법
DE102015007047B4 (de) * 2015-05-29 2017-10-19 Audi Ag Verfahren und Vorrichtung zur Herstellung eines mit Druck beaufschlagbaren Behälters
DE102015016699A1 (de) 2015-12-22 2017-06-22 Daimler Ag Druckgasbehälter
DE102016121267A1 (de) * 2016-11-07 2018-05-09 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Verfahren zum Herstellen eines schichtförmigen Bauteils
JP6729497B2 (ja) 2017-06-06 2020-07-22 トヨタ自動車株式会社 タンクの製造方法
DE102018210788A1 (de) 2018-06-29 2020-01-02 Ford Global Technologies, Llc Herstellungsverfahren für einen faserverstärkten Behälter
EP3797975A1 (en) 2019-09-26 2021-03-31 Corex Materials Corporation Composite container and method to manufacture composite container
WO2022060504A2 (en) * 2020-08-14 2022-03-24 Arris Composites Inc. Method for composite truss manufacturing
DE102023102709A1 (de) 2023-02-03 2024-08-08 Thomas Bäumer Verfahren zur Herstellung einer Polkappenverstärkung für einen Druckbehälter sowie Druckbehälter mit Polkappenverstärkung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723755B2 (ja) * 1986-12-26 1995-03-15 東燃株式会社 繊維強化複合樹脂管の製造法
WO1995029824A1 (en) * 1994-05-02 1995-11-09 Aerojet-General Corporation Compressed gas mobile storage module and lightweight composite cylinders
KR960005988Y1 (ko) * 1994-09-29 1996-07-19 한국가스공사 압축천연가스차량용 연료용기
KR20100044391A (ko) * 2008-10-22 2010-04-30 (주)엘지하우시스 열가소성 플라스틱-연속섬유 혼성복합체 제조방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2105247B (en) * 1981-06-23 1985-04-24 Courtaulds Plc Process for making a fibre-reinforced moulding
CA1277188C (en) * 1984-11-19 1990-12-04 James E. O'connor Fiber reinforced thermoplastic articles and process for the preparationthereof
US4894105A (en) * 1986-11-07 1990-01-16 Basf Aktiengesellschaft Production of improved preimpregnated material comprising a particulate thermoplastic polymer suitable for use in the formation of substantially void-free fiber-reinforced composite article
US5160568A (en) * 1987-09-11 1992-11-03 E. I. Du Pont De Nemours And Company Apparatus including a heated guide eye for winding a plurality of lengths of thermoplastic resin impregnated yarns
US4990213A (en) * 1988-11-29 1991-02-05 Northrop Corporation Automated tape laminator head for thermoplastic matrix composite material
US5039368A (en) * 1989-09-25 1991-08-13 Thiokol Corporation Thermoplastic matrix filament winding head
CA2057201C (en) * 1990-12-19 1998-05-19 Vernon M. Benson Multiple axes fiber placement machine
USH1261H (en) * 1992-05-15 1993-12-07 Gibson Baylor D On-line consolidation of filament wound thermoplastic parts
US5447586A (en) * 1994-07-12 1995-09-05 E. I. Du Pont De Nemours And Company Control of thermoplastic tow placement
US6565793B1 (en) * 1998-09-11 2003-05-20 Essef Corporation Method for fabricating composite pressure vessels
US7090736B2 (en) * 2003-02-20 2006-08-15 Essef Corporation Pressure vessel prestressing technique
JP2006022441A (ja) * 2004-07-08 2006-01-26 Teijin Techno Products Ltd 熱可塑性樹脂強化用炭素繊維
DE102006043582B3 (de) * 2006-09-16 2008-03-06 Xperion Gmbh Druckbehälter
KR20090091104A (ko) * 2006-11-22 2009-08-26 후쿠이 켄 열가소성 수지 다층 보강 시트재 및 그 제조 방법, 및 열가소성 수지 복합 재료 성형품의 성형 방법
DE102010017413B4 (de) * 2010-06-17 2012-08-30 Xperion Gmbh Druckbehälter zum Speichern eines Fluides

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723755B2 (ja) * 1986-12-26 1995-03-15 東燃株式会社 繊維強化複合樹脂管の製造法
WO1995029824A1 (en) * 1994-05-02 1995-11-09 Aerojet-General Corporation Compressed gas mobile storage module and lightweight composite cylinders
KR960005988Y1 (ko) * 1994-09-29 1996-07-19 한국가스공사 압축천연가스차량용 연료용기
KR20100044391A (ko) * 2008-10-22 2010-04-30 (주)엘지하우시스 열가소성 플라스틱-연속섬유 혼성복합체 제조방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111537321A (zh) * 2020-04-24 2020-08-14 哈尔滨工业大学 制作定向纤维增强复合材料测试试样的模具及使用方法
CN111537321B (zh) * 2020-04-24 2023-01-06 哈尔滨工业大学 制作定向纤维增强复合材料测试试样的模具及使用方法
CN115447175A (zh) * 2022-09-13 2022-12-09 中国计量大学 一种气瓶中复合材料的缠绕张力调节方法
CN115447175B (zh) * 2022-09-13 2024-05-24 中国计量大学 一种气瓶中复合材料的缠绕张力调节方法

Also Published As

Publication number Publication date
DE112012005634T5 (de) 2014-10-09
DE112012005634B4 (de) 2017-03-09
TW201332752A (zh) 2013-08-16
KR20130082404A (ko) 2013-07-19
KR101407800B1 (ko) 2014-06-19
TWI511867B (zh) 2015-12-11
US20150001214A1 (en) 2015-01-01

Similar Documents

Publication Publication Date Title
WO2013105748A1 (ko) 열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩 방법 및 그를 이용한 고압용기 및 그 제조방법
WO2014104730A1 (ko) 연속 탄소섬유 강화 열가소성 프리프레그의 제조 방법
WO2017122942A1 (ko) 형성 가능한 플라스틱 재료로 이루어진 소재의 토출을 제어하는 헤드 유닛 및 헤드 서플라이 유닛
WO2017122941A1 (ko) 헤드 유닛의 이동과, 형성 가능한 플라스틱 재료의 텐션 및 온도를 제어하는 트랜스포머
WO2016175512A1 (ko) 형성 가능한 플라스틱 재료를 위한 3d 입체물 제조 로봇
JP5311444B2 (ja) 樹脂プリプレグの製造方法、樹脂プリプレグ用繊維シート、樹脂プリプレグ及びその複合材料
US20040009338A1 (en) Plastic rail system and other building products reinforced with polymer matrix composites
US20070006961A1 (en) Method of making reinforced PVC plastisol resin and products prepared therewith
WO2019107991A1 (ko) 연속섬유 보강 열가소성 수지 복합재료 및 그 제조방법
WO2017057827A1 (ko) 폴리에스테르 수지 발포층과 섬유층을 포함하는 자동차 내외장재
CN102218831A (zh) 连续纤维多轴向增强热塑性预固结片材及其制备方法
WO2012096506A2 (ko) 함침성이 우수한 고강도 복합시트 제조 장치 및 이를 이용한 고강도 복합시트 제조 방법
US11597168B2 (en) Thin-layer tape automated lamination method and device
WO2017200133A1 (ko) 보강재 재질 변경으로 피로저항 성능이 개선된 가요성을 갖는 액화가스 저장탱크용 2차 가스배리어
WO2019054787A2 (ko) 이송필름을 이용한 강화플라스틱 파이프 연속 제조장치 및 제조방법
CN115674797A (zh) 一种生物基聚酰胺复合板材及其制备方法和应用
WO2018056554A1 (ko) 샌드위치 패널용 심재, 샌드위치 패널 및 샌드위치 패널의 제조방법
EP4140710A1 (en) Reinforced fiber tape material and production method therefor, fiber reinforced resin
JPH0580341B2 (ko)
WO2019107579A1 (ko) 다이렉트 프리폼 제조용 섬유 적층 장치 및 방법
WO2021137447A1 (ko) 연속섬유 복합재 제조장치
WO2018160033A2 (ko) 고분자 복합 재료를 활용한 3d 입체물 및 이의 제조 로봇 시스템
WO2017213480A1 (ko) 샌드위치 패널 및 그의 제조방법
WO2021137457A1 (ko) 비함침 타입의 연속섬유 복합재 제조장치
WO2022014869A1 (ko) 3차원 구조체와 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864982

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14370688

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012005634

Country of ref document: DE

Ref document number: 1120120056345

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12864982

Country of ref document: EP

Kind code of ref document: A1