WO2017122941A1 - 헤드 유닛의 이동과, 형성 가능한 플라스틱 재료의 텐션 및 온도를 제어하는 트랜스포머 - Google Patents

헤드 유닛의 이동과, 형성 가능한 플라스틱 재료의 텐션 및 온도를 제어하는 트랜스포머 Download PDF

Info

Publication number
WO2017122941A1
WO2017122941A1 PCT/KR2016/014968 KR2016014968W WO2017122941A1 WO 2017122941 A1 WO2017122941 A1 WO 2017122941A1 KR 2016014968 W KR2016014968 W KR 2016014968W WO 2017122941 A1 WO2017122941 A1 WO 2017122941A1
Authority
WO
WIPO (PCT)
Prior art keywords
rollers
transformer
roller
tow
unit
Prior art date
Application number
PCT/KR2016/014968
Other languages
English (en)
French (fr)
Inventor
만손얀-안데르스
고대화
Original Assignee
주식회사 키스타
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 키스타 filed Critical 주식회사 키스타
Publication of WO2017122941A1 publication Critical patent/WO2017122941A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling

Definitions

  • the present invention relates to a transformer for controlling movement of a head unit, tension and temperature of a formable plastic material, and more particularly, a 3D three-dimensional object manufacturing robot utilizing a polymer and / or a composite material, and a material for discharging the material.
  • the present invention relates to a transformer for use in the 3D solid object manufacturing robot, which can control the movement of the head unit and control the tension and temperature of the formable plastic material.
  • 3D printing or 3D molding has been in the spotlight because it can reduce the amount of raw materials used in lightweight composite material and improve mechanical performance.
  • the lamination speed has also been improved to allow it to function as part of an automated process.
  • the additive processing technology has great potential in that it can be extended not only to the automotive parts market but also to various fields such as aircraft, electronic parts, consumer electronics, sports goods, and building materials. However, more research and development is required to produce sophisticated skeletal structures in a cost-effective manner.
  • the additive manufacturing apparatus for manufacturing the inner skeleton uses raw materials of thin and long strands, which are mostly made of materials that are easily solidified, cured or degraded. There is a need for a technique for preventing the raw material from hardening, hardening or deterioration until it passes through the inside of the additive processing apparatus and is discharged to the outside.
  • the additive manufacturing apparatus performs free trajectory movements (eg, rotational, linear or curved movements) in order to produce shapes of various complex structures, in which, due to its geometrical characteristics, the additive machining is performed in a wide range of joint motions.
  • free trajectory movements eg, rotational, linear or curved movements
  • the tension of the raw material is difficult to be kept constant while passing through the device.
  • the tension of the raw material is too strong, it may lead to failure of the lamination processing equipment. If the tension of the raw material is too weak, it is difficult to control the discharge speed and position of the raw material.
  • Korean Patent Publication No. 10-1198621 name of the invention: a plastic composite bumper beam for automobiles discloses a bumper beam having an insert reinforcement inserted therein.
  • the description regarding the manufacturing apparatus for manufacturing the bumper beam with the inserted insert reinforcement has not been sufficiently disclosed, and no clue can be found to overcome the above-mentioned problems.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a transformer capable of controlling the tension and temperature of a tow of a formable plastic material.
  • Another object of the present invention is to provide a transformer capable of freely moving a head unit for discharging a tow of a formable plastic material within a limited space.
  • a transformer according to the present invention for achieving the above object is a transformer for controlling the movement or rotation of the head unit, the transformer comprises a plurality of rollers defining a movement path of the material made of a formable plastic material; And a case accommodating the plurality of rollers, wherein at least one of the plurality of rollers is a tension adjusting roller for maintaining the tension of the material.
  • a transformer according to the present invention for achieving the above object is a transformer for controlling the movement or rotation of the head unit, the transformer comprises a plurality of rollers defining a movement path of the material made of a formable plastic material; And a connecting member connecting at least two rollers of the plurality of rollers, wherein at least one of the plurality of rollers is a tension adjusting roller for maintaining the tension of the material, and the transformer is formed of the plurality of rollers.
  • the tension and temperature of the tow of the formable plastic material can be adjusted, and the head unit discharging the tow can be freely moved within a limited space. Will be.
  • FIG. 1A is a perspective view of a 3D stereoscopic manufacturing robot 100 according to a first embodiment of the present invention.
  • FIG. 1B is a perspective view of a 3D stereoscopic manufacturing robot 100 according to a second embodiment of the present invention.
  • FIG. 2A is a diagram illustrating a movement path of the tow 50 in the 3D stereoscopic manufacturing robot 100 according to the first embodiment of the present invention.
  • FIG. 2B is a diagram illustrating a movement path of the tow 50 in the 3D stereoscopic manufacturing robot 100 according to the second embodiment of the present invention.
  • FIG 3 is a schematic diagram of a transformer unit 300 which is one component of the 3D solid-state manufacturing robot 100 according to the first embodiment of the present invention.
  • FIG. 4A is a right exploded perspective view of a transformer unit 300 that is one component of the 3D stereoscopic manufacturing robot 100 according to the first embodiment of the present invention.
  • 4B is an exploded left side perspective view of the transformer unit 300 that is one component of the 3D stereoscopic manufacturing robot 100 according to the first embodiment of the present invention.
  • FIG. 5 is an enlarged view centering on a fourth roller 314 that is a tension adjusting roller of FIGS. 4A and 4B.
  • 6A is a right exploded perspective view of a transformer unit 300 that is one component of the 3D stereoscopic manufacturing robot 100 according to the second embodiment of the present invention.
  • 6B is an exploded left side perspective view of the transformer unit 300 that is one component of the 3D stereoscopic manufacturing robot 100 according to the second embodiment of the present invention.
  • FIG. 7 is an enlarged view of the head supply 400 including the transformer unit 300 in the 3D stereoscopic manufacturing robot 100 of FIGS. 1A and 1B.
  • FIGS. 8 to 10 are diagrams illustrating the rotation of the head unit 200 according to the operation of the transformer unit 300 according to the first embodiment of the present invention.
  • 11 to 13 are views illustrating the rotation of the head unit 200 according to the operation of the transformer unit 300 according to the second embodiment of the present invention.
  • FIG. 1A is a perspective view of a 3D stereoscopic manufacturing robot 100 according to a first embodiment of the present invention
  • FIG. 2A is a moving path of the tow 50 in the 3D stereoscopic manufacturing robot 100 according to the first embodiment of the present invention
  • 3 is a schematic diagram of a transformer unit 300 which is one configuration of the 3D solid-state manufacturing robot 100 according to the first embodiment of the present invention.
  • the 3D solid object manufacturing robot 100 includes a head unit 200, a transformer unit 300, and a head supply unit 400. ) And a body unit 500.
  • the body unit 500 includes a rotation base 510 and a connecting arm 520.
  • the rotation base 510 has a rotational movement F-F 'on a horizontal plane about the rotation axis 501a.
  • One end of the connection arm 520 is connected to the rotation base 510, and the other end of the connection arm 520 is connected to the head supply unit 400.
  • connection arm 520 and the head supply unit 400, and the connection arm 520 and the rotation base 510 may be connected by a pivotable member such as a pivot hinge or a shaft, but are not limited thereto. .
  • connection arm 520 is rotatably connected to the rotating base 510.
  • the connection arm 520 rotates around the connection axis 501b of the portion where the connection arm 520 and the rotation base 510 are connected to each other.
  • the other end of the connecting arm 520 is rotatably connected to the head supply unit 400.
  • the connecting arm 520 is a member in the longitudinal direction, and adjusts the height of the head supply unit 400 with respect to the horizontal plane.
  • the head supply unit 400 performs a rotational motion D-D 'about the connection shaft 401a of the portion where the connection arm 520 and the head supply unit 400 are interconnected.
  • the head supply unit 400 makes a rotational movement (C-C ') about the longitudinal axis. At this time, as the head supply unit 400 rotates, the transformer unit 300 and the head unit 100 connected to the head supply unit 400 also rotate in association with each other.
  • the head unit 200 is connected to the head supply unit 400.
  • the head unit 200 is connected to the head fastening part 440 provided in the head supply unit 400.
  • the head unit 200 performs a rotational motion B-B 'about the connection shaft 401b of the portion where the head unit 200 and the head fastening part 440 are interconnected.
  • the rotational movement B-B 'of the head unit 200 is adjusted by the operation of the transformer unit 300 to be described later. That is, the head unit 200 is connected to the transformer unit 300, the head unit 200 and the transformer unit 300 located in an area facing each other with respect to the connecting shaft 401b, the opposite direction (for example For example, when one component of the transformer unit 300 descends, the head unit 200 rises, and when one component of the transformer unit 300 rises, the head unit 200 descends. ')
  • the head unit 200 makes a 360 degree rotational movement A-A 'about its longitudinal axis 201a.
  • the wheel assembly allows the head unit 200 to rotate multiple degrees 360 degrees (360 °, 720 ° ).
  • a spacer may be provided in the head unit 200 so that the conducting wires included in the head unit 200 are not affected by the rotation of the head unit 200.
  • FIG. 1B is a perspective view of the 3D stereoscopic manufacturing robot 100 according to the second embodiment of the present invention
  • FIG. 2B is a moving path of the tow 50 in the 3D stereoscopic manufacturing robot 100 according to the second embodiment of the present invention. It is a perspective view showing.
  • the 3D solid object manufacturing robot 100 includes a head unit 200, a transformer unit 300, and a head supply unit 400. ) And a body unit 500.
  • the head unit 200 the head supply unit 400, and the body unit 500 are described in the first embodiment shown in FIGS. 1A and 2A. Since the description is the same as that of description, it will be omitted. However, the configuration of the transformer unit 300 is different from the first embodiment, which will be described in more detail below.
  • 3D stereoscopic manufacturing robot 100 may be a multi-axis rotational motion.
  • the six-axis rotational motion has been described as possible, but if the tiltable tool table robot, to which the rotation base 510 is coupled, eight-axis rotation is possible.
  • the possible rotation of the 3D three-dimensional object manufacturing robot 100 according to the present invention is as follows.
  • First axis rotation A rotation around the longitudinal axis 201a of the head unit 200 (A-A ').
  • Second axis rotation rotation of the head unit 200 controlled by the transformer unit 300 (B-B ').
  • Third axis rotation rotation about the longitudinal axis of the head supply unit 400 (C-C ').
  • 6th axis rotation rotation (F-F ') of the rotation base 510 about the rotation axis 501a perpendicular
  • the operation of the head unit 200 for discharging the formable plastic material can be finely manipulated, thereby making it possible to manufacture a 3D solid object having a more complicated and sophisticated shape.
  • the movement path of the tow 50 is the head unit 200, as shown in FIG. 2A. ), And is formed by the internal passage by the connection of the transformer unit 300 and the head supply unit 400. As shown in FIG. 2B, the movement path of the tow 50 in the transformer unit 300 according to the second embodiment is the same.
  • the 3D solid-state manufacturing robot 100 having the transformer unit 300 according to the first and second embodiments of the present invention includes a head supply unit 400, a transformer unit 300, and a head unit ( It has a built-in (built-in) structure that includes a moving path of the tow 50 connected to 200 therein.
  • the tow 50 is a continuous strand of polymer material or composite material, yarn, tow, bundle, band, Tape or the like.
  • Polymer materials include thermoplastics such as PLA, PE, PP, PA, ABS, PC, PET, PEI, PEEK, or thermosetting resins such as epoxy, unsaturated polyester, PI, and PUR. (thermosetting resins).
  • the polymer material is not limited thereto.
  • the reinforcing fibers may be GF (glass fiber), CF (carbon fiber), NF (natural fiber), aramid fiber (AF) and the like.
  • a 3D solid body manufacturing robot may be used for texturing yarn or roving.
  • the final composite material is a mixture of fibers in the polymer material
  • the fibers may be glass fibers, carbon fibers, boron fibers, alumina fibers, silicon carbide fibers, aramid fibers, various whiskers or combinations thereof It is not limited to this.
  • the manufacturing apparatus 100 may be infused with a yarn, tow, strand, band or tape. Individual yarns, tows, strands, bands, and tapes may be incorporated into the tow, in whole or in part, in an oven (including collectors, heaters, compressors, etc.).
  • the head supply unit 400, the transformer unit 300 and the head unit 100 finally help to compact and coalesce the tow 50.
  • yarns, strands, tows, bands, tapes, and the like are exemplified as materials of the finally manufactured three-dimensional object, but in the following description, the three-dimensional material is consistently described as tow to clearly understand the invention. do.
  • the tow 50 is provided through an inlet 430 provided at the end of the pipe 410 of the head supply unit 400. It passes through the internal path of the 3D stereoscopic manufacturing robot 100 with the transformer unit 300 according to the first and second embodiments of the present invention.
  • Inlet 430 receives the tow from a tow supply unit (not shown) provided on the outside.
  • the tow supply unit (not shown) may be included.
  • the inlet 430 may be connected to a heater (not shown) provided outside to receive air having a regulated temperature.
  • the temperature controlled air supplied through the inlet 430 prevents the tow 50 from hardening, curing or deteriorating until the tow 50 reaches the inlet 430, and the 3D solid-state robot 100 Toe 50 passing through the interior of the to prevent the hardening, hardening or deterioration.
  • the tow 50 passing through the inlet 430 passes through the inlet pipe 410 of the head supply unit 400 to enter the transformer unit 300.
  • the head supply unit 400 includes the head supply heater 420 inside the inflow pipe 410, the tow 50 is not hardened while passing through the pipe 410 in the longitudinal direction. The movement continues to the transformer unit 300.
  • the transformer unit 300 includes a plurality of rollers, which guide the movement of the tow 50.
  • the tow 50 which has entered the transformer unit 300 through the head supply unit 400 changes its traveling direction while contacting a part of the plurality of rollers.
  • the traveling path of the tow 50 is defined by the structure or arrangement of the plurality of rollers.
  • the transformer unit 300 for rotating the head unit 200 moves or rotates the head unit 200
  • the arrangement of the rollers (shown by five rollers in FIG. 2A, but not limited to these) is changed. Accordingly, the advancing direction of the tow 50 may vary, and the tension of the tow 50 may also be affected.
  • At least one of the plurality of rollers is designed to be able to keep the tension of the tow 50 constant.
  • at least one of the plurality of rollers corresponds to a tension holding roller of the tow 50.
  • the remaining rollers except the tension holding roller guide the progress of the tow 50 and participate in the rotation of the head unit 200.
  • the transformer unit 300 for rotating the head unit 200 moves or rotates the head unit 200
  • the arrangement of the plurality of rollers does not change.
  • at least one of the plurality of rollers is a tension adjusting roller, the tension of the tow 50 can be kept constant.
  • the tow 50 passing through the transformer unit 300 continues to the head unit 200.
  • a coupling 302 is provided at the front end of the transformer unit 300, and the coupling 302 is connected to the coupling 252 located at the end of the head unit 200.
  • the coupling 252 of the head unit 200 and the coupling 302 of the transformer unit 300 may be directly connected to each other, or may be indirectly connected by an appropriate connection member.
  • Tow 50 entering the head unit 200 passes through the head unit 200 and is discharged to the outside.
  • the head unit 200 in the longitudinal direction is provided with a heater (not shown), to prevent the tow 50 passing through the inside is hardened, hardened or deteriorated.
  • the 3D solid object manufacturing robot 100 including the transformer unit 300 according to the present invention includes a plurality of heaters to prevent hardening, hardening, or deterioration of the tow 50.
  • a plurality of heaters to prevent hardening, hardening, or deterioration of the tow 50.
  • the head unit 200 may further include a temperature control forced air pipe (not shown) for controlling the temperature of the tow 50 discharged to the outside.
  • the forced air pipe adjusts the temperature of the tow 50 directly or indirectly, and the tow 50 whose temperature is controlled by the forced air pipe is discharged from the head unit 200 without being adhered to the substrate.
  • the temperature of the adjusted tow 50 may be interpreted as a temperature or a temperature range for achieving discharge without adhesion of the tow 50 and / or required discharge rate.
  • 3D stereoscopic manufacturing robot 100 equipped with a transformer unit 300 according to the present invention is a specific temperature controlled by a heater (head heater (not shown) or head supply heater 420) or forced air pipe (not shown) B is not limited to the temperature range. That is, it is sufficient to have a function which can adjust (raise, lower or hold
  • transformer unit 300 which is one component of the 3D stereoscopic-object manufacturing robot 100 according to the first embodiment of the present invention will be described.
  • FIG. 3 is a schematic view of a transformer unit 300 which is one component of the 3D stereoscopic manufacturing robot 100 according to the first embodiment of the present invention
  • FIG. 4A is a right exploded perspective view of the transformer unit 300 of the present invention
  • FIG. 4B is a The left exploded perspective view of the transformer unit 300 of this invention.
  • the transformer unit 300 includes a plurality of rollers.
  • a total of five rollers it is assumed that a total of five rollers is included, but in other embodiments, fewer rollers may be included, and in another embodiment, more rollers may be included.
  • At least two or more rollers of the first to fifth rollers 311 to 315 are connected by wires 327 to keep the distance between the first to fifth rollers 311 to 315 constant. Accordingly, the movement path of the tow 50 formed on the first to fifth rollers 311 to 315 can be maintained at a constant length.
  • the first to fifth rollers 311 to 315 define a movement path of the tow 50.
  • the transformer unit Structural stability of the 300 is achieved, and the overall length of the tow 50 passing through the transformer unit 300 is constant.
  • the wires 327 are fastened to the wire engaging portions 322 to 325 located on the right side surfaces of the second to fifth rollers 312 to 315, so that the length of each roller is kept constant.
  • the shapes of the first to sixth chains 341 to 346 provided in the transformer unit 300 may be changed in conjunction with the positional changes of the first to fifth rollers 311 to 315.
  • the relative position of the second roller 312 with respect to the first roller 311 and the relative position of the first roller 311 with respect to the second roller 312 are constant. That is, the arrangement (separation distance and relative angle) of the first roller 311 and the second roller 312 with respect to each other does not change.
  • the relative position of the fifth roller 315 relative to the third roller 313 and the relative position of the third roller 313 relative to the fifth roller 315 are constant. That is, the arrangement (separation distance and relative angle) of the third roller 313 and the fifth roller 315 with respect to each other does not change.
  • the fourth roller 314 positioned between the third roller 313 and the fifth roller 315 also has a relative position with respect to the third roller 313 and the fifth roller 315, but the fourth roller 314 is fourth.
  • the roller 314 operates as a tension adjusting roller, the position is variable within a predetermined range.
  • first roller 311 and the second roller 312 move in one unit, and the third to fifth rollers 313 to 315 also move in one unit.
  • the second roller 312 and the third roller 313 are connected by the connecting member 350.
  • the third and fourth rollers 313 and 314 When a part of the transformer unit 300 is rotated around the fifth roller 315, the third and fourth rollers 313 and 314 also rotate while maintaining a constant separation distance and a relative angle.
  • the change in position of the second roller 312 is accompanied by a change in position of the first roller 311 disposed at a constant separation distance and relative angle.
  • Positional changes of the first and second rollers 311 and 312 according to the rotation of the fifth roller 315 are connected by the movement of the head unit 200. This is because the coupling 252 of the head unit 200 is connected with the coupling 302 of the transformer unit 300, and the coupling 302 of the transformer unit 300 is in close proximity to the first roller 311. Because it is fixed. That is, the separation distance and the placement angle between the coupling 302 and the first roller 311 of the transformer unit 300 are constant.
  • the head unit 200 is connected to the head fastening part 440 of the head supply 400, the head unit 200 is formed around the head fastening part 440 and the connecting shaft 401b of the head unit 200. 200 and a portion of the transformer unit 300 (regions in which the first roller 311 and the second roller 312 are located) perform relative movement.
  • the principle of the lever, the head fastening portion 440 and the connecting shaft 401b of the head unit 200 is the support point, the area where the first roller 311 of the transformer unit 300 is located is the power point, the head unit 200 ) Is the point of action.
  • the length of the head fastening part 440 is constant, and the transformer unit 300 for controlling the operation of the head unit 100 is located inside the head fastening part 440. Therefore, the transformer unit 300 according to the present invention is provided at a limited distance (the length of the head fastening part 440), thereby enabling the movement of the head unit 200, and accordingly, the 3D stereoscopic manufacturing robot ( 100) can be made more compact.
  • FIG. 4A is an exploded perspective view of the right side of the transformer unit 300 and illustrates in detail the right side surfaces of the first to fifth rollers 311 to 315 included in the transformer unit 300.
  • At least two or more rollers of the first to fifth rollers 311 to 315 are connected by wires 327, so that the distance between the rollers 311 to 315 is kept constant.
  • the wire 327 keeps the distance between the 1st-5th rollers 311-315 constant. Accordingly, the movement path of the tow 50 formed by the first to fifth rollers 311 to 315 can be maintained at a constant length.
  • At least one of the first to fifth rollers 311 to 315 functions as a tension adjusting roller having a function of adaptively adjusting the tension of the tow 50 passing through the transformer unit 300.
  • the fourth roller 314 is shown to have an adaptive tension adjustment function of the tow 50.
  • another roller may perform such a function, and a tension roller may be provided separately.
  • each of the rollers 311 to 315 provided in the transformer unit 300 defines a movement path of the tow 50. 2A, the tow 50 enters the transformer unit 300, is guided by the first to fifth rollers 311 to 315, and proceeds to the head unit 200.
  • the tow 50 advances to the head unit 200 while changing a traveling direction while contacting a portion of the circumferential surface of each of the first to fifth rollers 311 to 315.
  • the tension of the tow 50 may change (increase or decrease).
  • the fourth roller 314, which is a tension adjusting roller having a function of adjusting the tension of the tow 30, may include an elastic member 318.
  • the fourth roller 314 is movable within a predetermined distance by the elastic member 318.
  • one end of the elastic member 318 is connected to the center of the fourth roller 314, which is an adaptive tension adjusting roller, and the other end of the elastic member 318 is inside the transformer unit 300. Is fixed to.
  • the fourth roller 314 keeps the tension of the tow 50 constant by moving the position within a predetermined distance in response to the tension change of the tow 50 generated when the transformer unit 300 is deformed.
  • FIG. 5 is an enlarged view centering on a fourth roller 314 which is a tension adjusting roller.
  • the elastic member 318 connected to the tension adjusting roller 314 is movable at a predetermined distance (between Ta and Tb) in response to the tension change of the tow 50.
  • the elastic member 318 may be positioned at the position where the fourth roller 314 may loosen the tension of the tow 50 (for example, , Ta position).
  • the elastic member 318 may be positioned at a position where the fourth roller 314 may increase the tension of the tow 50 (eg, Tb position).
  • the tension change of the tow 50 is changed.
  • the tension of the tow 50 can be adjusted constantly.
  • the elastic member 318 is mentioned as a means for enabling the positional movement of the fourth roller 314, which is an adaptive tension adjusting roller, but may be provided with other means.
  • transformer unit 300 may be isolated and protected from the outside by the wire cover 320 and the roller cover 360.
  • the wire cover 320 is provided on the right side (surface shown in FIG. 4A) of the transformer unit 300 to protect the wires 327 and the like, and the roller cover 360 is on the left side of the transformer unit 300 (FIG. 4B) to protect the first to fifth rollers 311 to 315, the elastic member 318, and the like.
  • transformer unit 300 which is one component of the 3D stereoscopic manufacturing robot 100 according to the second embodiment of the present invention will be described.
  • FIG. 6A is a right exploded perspective view of the transformer unit 300 according to the second embodiment of the present invention
  • FIG. 6B is a left exploded perspective view of the transformer unit 300 according to the second embodiment of the present invention.
  • the transformer unit 300 includes a plurality of rollers.
  • a description will be made that it includes a total of four rollers.
  • fewer rollers may be included, and in another embodiment, more rollers may be included.
  • At least two or more of the first to fourth rollers 381 to 384 are fixed in position. Accordingly, the movement path of the tow 50 formed on the first to fourth rollers 381 to 384 can be maintained at a constant length.
  • the first to fourth rollers 381 to 384 define a moving path of the tow 50.
  • the transformer unit Structural stability of the 300 is achieved, and the overall length of the tow 50 passing through the transformer unit 300 is constant.
  • each roller is fixed by a wire (not shown) fastened to a wire catching portion (not shown) on one side of the first to fourth rollers 381 to 384. And the spacing or length between each roller can be kept constant.
  • each roller 381 to 384 with respect to each other is constant.
  • the first roller 381 may be located adjacent to the fastening area 389 to which the head unit 200 and the head fastening part 440 of the head supply 400 are connected.
  • the head unit 200 may be mounted in the fastening area 389 to rotate in the direction B-B 'about the rotation shaft 401b (see FIG. 1B).
  • FIG. 6A is a right exploded perspective view of the transformer unit 300 and illustrates in detail the right side surfaces of the first to fourth rollers 381 to 384 included in the transformer unit 300 according to the second embodiment.
  • At least one of the first to fourth rollers 381 to 384 functions as a tension adjusting roller having a function of adaptively adjusting the tension of the tow 50 passing through the transformer unit 300.
  • the third roller 383 is shown to have an adaptive tension adjustment function of the tow 50.
  • another roller may perform such a function, and a tension roller may be provided separately.
  • each of the rollers 381 to 384 provided in the transformer unit 300 defines a movement path of the tow 50. 2B, the tow 50 enters the transformer unit 300, is guided by the first to fourth rollers 381 to 384, and proceeds to the head unit 200.
  • the tow 50 advances to the head unit 200 while changing a traveling direction while contacting a portion of the circumferential surface of each of the first to fourth rollers 381 to 384.
  • the tension of the tow 50 passing through the first to fourth rollers 381 to 384 may change (increase or decrease).
  • the third roller 383, which is a tension adjusting roller having a function of adjusting the tension of the tow 30, may include an elastic member 388.
  • the third roller 383 can be moved within a predetermined distance by the elastic member 388.
  • one end of the elastic member 388 is connected to the center of the third roller 383, which is an adaptive tension adjusting roller, and the other end of the elastic member 388 is inside the transformer unit 300. Is fixed to. In FIG. 6A, the other end of the elastic member 388 is fixed to the center of the fourth roller 384, but may be fixed to a different area.
  • the third roller 383 keeps the tension of the tow 50 constant by moving the position within a predetermined distance in response to the tension change of the tow 50 generated while passing through the transformer unit 300.
  • the tow 50 corresponds to the tension change of the tow 50. It is possible to constantly adjust the tension of the tow 50.
  • the elastic member 388 is mentioned as a means for enabling the positional movement of the third roller 383, which is an adaptive tension adjusting roller, but may be provided with other means.
  • the internal components of the transformer unit 300 may be isolated and protected from the outside by the covers 390 and 391.
  • FIG. 7 is an enlarged view of the head supply unit 400 to which the transformer unit 300 is connected.
  • the structure of the head supply unit 400 may be the same in the first embodiment and the second embodiment.
  • the transformer unit 300 is connected to the head supply unit 400, and the head unit 200 is connected to the head supply unit 400 through the head fastening unit 440.
  • the head unit 400 is not illustrated.
  • the transformer unit 300 may include a heater assembly 370.
  • the heater assembly 370 generates air of an appropriate temperature to prevent the tow 50 passing through the interior of the transformer unit 300 from hardening, curing or deteriorating.
  • the temperature controlled air generated by the heater assembly 370 is transferred into the transformer unit 300 through the heater holder 372 and the heater guider 377.
  • the air of appropriate temperature delivered through the heater assembly 370 is delivered to the movement path of the tow 50 through the transformer unit 300.
  • the heater assembly 370 may be mounted on the heater plate 375 to be detachably fixed to the head supply 400.
  • the tow 50 passing through the transformer unit 300 which is one component of the 3D solid object manufacturing robot 100 according to the present invention, is hardened or cured by maintaining an appropriate temperature by air supplied on a moving path. Deterioration can be avoided.
  • a configuration for preventing hardening, hardening, or deterioration of the tow 50 may include an external heater (not shown) connected to the inlet 430 of the head supply 400, and a head supply heater of the head supply 400. 420, there is a head heater (not shown) of the head unit 200. These heating devices allow the tow 50 to harden, harden or deteriorate.
  • At least one of the rollers 311 to 315 of the transformer unit 300 according to the first embodiment of the present invention may further include a motor (not shown). This has a function of adjusting the discharge rate and the discharge speed of the tow 50 guided by the rollers 311 to 315.
  • Each roller 311 to 315 may be separately connected to a motor, and the user may determine the rotational speed of each roller 311 to 315 by controlling the motor.
  • the rotational speed of the rollers 311 to 315 is directly related to the moving speed of the tow 50 guided by the respective rollers 311 to 315.
  • the motor may be connected to only some of the rollers of the plurality of rollers (311 to 315).
  • At least one of the rollers 381 to 384 of the transformer unit 300 according to the second embodiment of the present invention may include at least one motor (not shown). This has a function of adjusting the discharge rate and discharge rate of the tow 50 guided by the rollers 381 to 384.
  • Each of the rollers 381 to 384 can be individually motorized, and the user can determine the rotational speed of each of the rollers 381 to 384 by controlling the motor.
  • the rotational speed of the rollers 381 to 384 is directly related to the moving speed of the tow 50 guided by the respective rollers 381 to 384.
  • a motor may be connected to only some of the rollers 381 to 383.
  • the transformer unit 300 according to the first embodiment may be connected to the motor. The rotation / movement operation of the head unit 200 by the following will be described.
  • FIG. 8 illustrates a case where the configuration of the transformer unit 300 according to the first embodiment is located in the state of FIG. 3.
  • the head unit 200 is placed on an extension line in a direction substantially parallel to the horizontal plane, that is, the length direction of the head supply 400.
  • FIG. 9 the case where the area provided with the third to fifth rollers 313 to 315 of the transformer unit 300 is rotated downward with respect to the fifth roller 314 is illustrated in FIG. 9 and rotated upward.
  • the case is shown in FIG.
  • the third to fifth rollers 313 to 315 since the third to fifth rollers 313 to 315 are included in the same member, the third to fifth rollers 313 to 315 may move in one unit.
  • the first and second rollers 311 and 312 are also included in the same member, they can move in one unit.
  • FIG. 9 illustrates a case in which a partial region (the region including the third to fifth rollers) of the transformer unit 300 including the fifth roller 315 is rotated about the fifth roller 315.
  • Rotation of the partial region (the region including the third to fifth rollers) of the transformer unit 300 around the fifth roller 315 connects the third roller 313 and the second roller 312.
  • the member 350 is raised to move another region (the region including the first and second rollers) of the transformer unit 300. If another area (the area including the first and second rollers) rises, it causes the movement or rotation of the head unit 200 connected to the another area. Specifically, the head unit 200 on the opposite side of the another area with respect to the connecting shaft 401b is directed downward.
  • FIG. 10 illustrates a case in which a partial region (the region including the third to fifth rollers) of the transformer unit 300 including the fifth roller 315 is rotated in the opposite direction of FIG. 9.
  • Rotation of the partial region (the region including the third to fifth rollers) of the transformer unit 300 around the fifth roller 315 connects the third roller 313 and the second roller 312.
  • the member 350 is pulled down to move another region (the region including the first and second rollers) of the transformer unit 300. If another area (the area including the first and second rollers) descends, it causes the movement or rotation of the head unit 200 connected to the another area. Specifically, the head unit 200 on the opposite side of the another area with respect to the connecting shaft 401b is facing upward.
  • the transformer unit 300 uses the plurality of rollers 311 to 315 to rotate the head unit 200 while deforming the shape in a limited space (within the length range defined by the head fastening unit 440). In this case, the 3D stereoscopic manufacturing robot 100 can be made compact.
  • 11 illustrates a state in which the head unit 200 is placed on an extension line in a direction substantially parallel to the horizontal plane, that is, in the longitudinal direction of the head supply 400. Unlike the first embodiment, the rotation of the head unit 200 does not affect the respective rollers 381 to 384 provided in the transformer unit 300. 12 illustrates a case in which the head unit 200 is rotated vertically downward. 11 and 12, in the second embodiment, the head unit 200 is rotatably fixed by the head fastening portion 440, the interconnection of the head unit 200 and the transformer 300 is tow 50 ) To form a movement path.
  • the transformer unit 300 maintains a constant tension of the tow 50 by using a plurality of rollers 381 to 384, and the head unit 300 is connected to the head fastening part 440 to be easily rotatable. do.
  • the present invention can be variously applied to transformers for controlling the tension and temperature of plastic materials.
  • the present invention can be applied to a transformer used in a 3D three-dimensional object manufacturing robot capable of controlling the tension and temperature of a formable plastic material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)

Abstract

헤드 유닛의 이동과, 형성 가능한 플라스틱 재료의 텐션 및 온도를 제어하는 트랜스포머가 개시된다. 헤드 유닛의 이동 또는 회전을 제어하는 트랜스포머로서, 트랜스포머는 형성 가능한 플라스틱 재료로 이루어진 소재의 이동 경로를 정의하는 복수의 롤러 및 복수의 롤러를 수용하는 케이스를 포함하고, 복수의 롤러 중 적어도 하나는 상기 소재의 텐션을 유지하기 위한 텐션 조절용 롤러이다. 이에 의하여, 형성 가능한 플라스틱 재료의 토우(tow)의 텐션 및 온도를 조절할 수 있고, 토우를 토출하는 헤드 유닛을, 한정된 공간 내에서 자유롭게 이동시킬 수 있게 된다.

Description

헤드 유닛의 이동과, 형성 가능한 플라스틱 재료의 텐션 및 온도를 제어하는 트랜스포머
본 발명은 헤드 유닛의 이동과, 형성 가능한 플라스틱 재료의 텐션 및 온도를 제어하는 트랜스포머 에 관한 것으로, 더욱 상세하게는, 고분자 및/또는 복합 재료를 활용한 3D 입체물 제조 로봇과, 상기 재료를 토출하는 헤드 유닛의 이동을 제어하고, 형성 가능한 플라스틱 재료의 텐션과 온도를 제어할 수 있는, 상기 3D 입체물 제조 로봇에 이용되는 트랜스포머에 관한 것이다.
최근, 플라스틱 복합소재를 이용하여 강도와 내구성을 보강하기 위한 내부 보강재(reinforcement)를 제조하는 기술이 이용되고 있다. 적층 가공(additive manufacturing) 장치 및 폴리머/복합재의 내부 보강재와 같은 내부 골격 제조 기술에 대한 연구가 활발히 이루어지고 있다.
이를 이용하면, 경량 복합 소재 입체물의 원재료 사용량은 줄이면서도 기계적 성능을 높일 수 있다는 점에서 3D 프린팅이나 3D 몰딩이 각광받고 있다. 특히, 적층 가공 속도도 개선되어 자동화 공정의 일부로서 기능할 수 있게 되었다.
적층 가공 기술은 자동차 부품 시장뿐만 아니라, 항공기, 전자부품, 가전제품(consumer electronics), 스포츠 용품(sporting goods), 건축소재 등 다양한 분야로 확장될 수 있다는 점에서 잠재적 가치가 매우 높다. 하지만, 비용면에서 효율적인 방식으로 정교한 골격 구조를 제조하기 위해서는 더욱 많은 연구개발이 이루어져야 한다.
특히, 내부 골격을 제조하는 적층 가공 장치는, 가늘고 길게 이어진 스트랜드의 원재료를 사용하는데, 이 원재료는 대부분 쉽게 굳어지거나(solidified) 경화되거나(cured) 열화되는(degraded) 물질로 이루어지기 때문에, 원재료가 적층 가공 장치의 내부를 통과하여 외부로 토출될 때까지 원재료가 굳어지거나 경화되거나 열화되지 않도록 하기 위한 기술이 필요하다.
또한, 적층 가공 장치는 다양하고 복잡한 구조의 형상을 제조하기 위해, 자유로운 궤적 운동(예를 들어, 회전, 직선 또는 곡선 운동)을 하게 되는데, 이때, 형상적 특성 때문에, 광범위한 관절 운동을 하는 적층 가공 장치를 통과하는 동안 원재료의 텐션이 일정하게 유지되기 어렵다는 문제점이 있다.
원재료의 텐션이 너무 강하면 적층 가공 장치의 고장을 가져올 수 있고, 원재료의 텐션이 너무 약하면 원재료의 토출 속도와 위치를 제어하기가 어려워진다.
한국등록특허공보 제10-1198621호(발명의 명칭: 자동차용 플라스틱 복합재 범퍼 빔)는 본체 내부에 인서트 보강재가 삽입된 범퍼 빔을 개시하고 있다. 하지만, 인서트 보강재가 삽입된 범퍼 빔을 제조하는 제조 장치와 관련한 설명이 충분한 개시가 이루어지지 않았고, 위에서 언급한 문제점을 극복할만한 단서를 찾을 수 없다.
본 발명은 상기 문제점을 감안하여 안출된 것으로, 본 발명의 목적은, 형성 가능한 플라스틱 재료의 토우(tow)의 텐션 및 온도를 제어할 수 있는 트랜스포머를 제공함에 있다.
본 발명의 또 다른 목적은, 형성 가능한 플라스틱 재료의 토우(tow)를 토출하는 헤드 유닛을, 한정된 공간 내에서 자유롭게 이동시킬 수 있는 트랜스포머를 제공함에 있다.
상기 목적을 달성하기 위한 본 발명에 따른 트랜스포머는, 헤드 유닛의 이동 또는 회전을 제어하는 트랜스포머로서, 상기 트랜스포머는 형성 가능한 플라스틱 재료로 이루어진 소재의 이동 경로를 정의하는 복수의 롤러; 및 상기 복수의 롤러를 수용하는 케이스;를 포함하고, 상기 복수의 롤러 중 적어도 하나는 상기 소재의 텐션을 유지하기 위한 텐션 조절용 롤러이다.
상기 목적을 달성하기 위한 본 발명에 따른 트랜스포머는, 헤드 유닛의 이동 또는 회전을 제어하는 트랜스포머로서, 상기 트랜스포머는 형성 가능한 플라스틱 재료로 이루어진 소재의 이동 경로를 정의하는 복수의 롤러; 및 상기 복수의 롤러 중 적어도 2개의 롤러를 연결하는 연결부재;를 포함하고, 상기 복수의 롤러 중 적어도 하나는 상기 소재의 텐션을 유지하기 위한 텐션 조절용 롤러이고, 상기 트랜스포머는, 상기 복수의 롤러의 배치를 변경함으로써, 상기 헤드 유닛을 이동 또는 회전시킨다.
상기 구성에 따른 본 발명의 일 실시예에 따른 트랜스포머에 의하면, 형성 가능한 플라스틱 재료의 토우(tow)의 텐션 및 온도를 조절할 수 있고, 토우를 토출하는 헤드 유닛을, 한정된 공간 내에서 자유롭게 이동시킬 수 있게 된다.
도 1a는 본 발명의 제1 실시예에 따른 3D 입체물 제조 로봇(100)의 사시도이다.
도 1b는 본 발명의 제2 실시예에 따른 3D 입체물 제조 로봇(100)의 사시도이다.
도 2a는 본 발명의 제1 실시예에 따른 3D 입체물 제조 로봇(100)에서 토우(50)의 이동 경로를 나타내는 도면이다.
도 2b는 본 발명의 제2 실시예에 따른 3D 입체물 제조 로봇(100)에서 토우(50)의 이동 경로를 나타내는 도면이다.
도 3은 본 발명의 제1 실시예에 따른 3D 입체물 제조 로봇(100)의 일구성인 트랜스포머 유닛(300)의 개략도이다.
도 4a는 본 발명의 제1 실시예에 따른 3D 입체물 제조 로봇(100)의 일구성인 트랜스포머 유닛(300)의 우측 분해사시도이다.
도 4b는 본 발명의 제1 실시예에 따른 3D 입체물 제조 로봇(100)의 일구성인 트랜스포머 유닛(300)의 좌측 분해사시도이다.
도 5는 도 4a 및 도 4b의 텐션 조절용 롤러인 제4 롤러(314)를 중심으로 한 확대도이다.
도 6a는 본 발명의 제2 실시예에 따른 3D 입체물 제조 로봇(100)의 일구성인 트랜스포머 유닛(300)의 우측 분해사시도이다.
도 6b는 본 발명의 제2 실시예에 따른 3D 입체물 제조 로봇(100)의 일구성인 트랜스포머 유닛(300)의 좌측 분해사시도이다.
도 7은 도 1a 및 1b의 3D 입체물 제조 로봇(100)에서, 트랜스포머 유닛(300)을 포함하는 헤드 서플라이(400)를 확대한 확대도이다.
도 8 내지 10은 본 발명의 제1 실시예에 따른 트랜스포머 유닛(300)의 동작에 따른 헤드 유닛(200)의 회전을 나타내는 도면이다.
도 11 내지 13은 본 발명의 제2 실시예에 따른 트랜스포머 유닛(300)의 동작에 따른 헤드 유닛(200)의 회전을 나타내는 도면이다.
본 발명이 실시될 수 있는 특정 실시예를 도시한 첨부 도면을 참조하면서, 본 발명을 상세히 설명한다. 첨부 도면에 도시된 특정 실시예에 대하여, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 실시하기에 충분하도록 상세히 설명된다. 특정 실시예 이외의 다른 실시예는 서로 상이하지만 상호배타적일 필요는 없다. 아울러, 후술의 상세한 설명은 한정적인 의미로서 취하려는 것이 아님을 이해해야 한다.
첨부 도면에 도시된 특정 실시예에 대한 상세한 설명은, 그에 수반하는 도면들과 연관하여 읽히게 되며, 도면은 전체 발명의 설명에 대한 일부로 간주된다. 방향이나 지향성에 대한 언급은 설명의 편의를 위한 것일 뿐, 어떠한 방식으로도 본 발명의 권리범위를 제한하는 의도를 갖지 않는다.
구체적으로, "아래, 위, 수평, 수직, 상측, 하측, 상향, 하향, 상부, 하부" 등의 위치를 나타내는 용어나, 이들의 파생어(예를 들어, "수평으로, 아래쪽으로, 위쪽으로" 등)는, 설명되고 있는 도면과 관련 설명을 모두 참조하여 이해되어야 한다. 특히, 이러한 상대어는 설명의 편의를 위한 것일 뿐이므로, 본 발명의 장치가 특정 방향으로 구성되거나 동작해야 함을 요구하지는 않는다.
또한, "장착된, 부착된, 연결된, 이어진, 상호 연결된" 등의 구성 간의 상호 결합 관계를 나타내는 용어는, 별도의 언급이 없는 한, 개별 구성들이 직접적 혹은 간접적으로 부착 혹은 연결되거나 고정된 상태를 의미할 수 있고, 이는 이동 가능하게 부착, 연결, 고정된 상태뿐만 아니라, 이동 불가능한 상태까지 아우르는 용어로 이해되어야 한다.
먼저, 본 발명의 제1 실시예에 따른 트랜스포머 유닛을 포함하는 3D 입체물 제조 로봇(100)의 전체 구성에 대해 설명하기로 한다.
도 1a는 본 발명의 제1 실시예에 따른 3D 입체물 제조 로봇(100)의 사시도, 도 2a는 본 발명의 제1 실시예에 따른 3D 입체물 제조 로봇(100)에서 토우(50)의 이동 경로를 나타내는 사시도, 도 3은 본 발명의 제1 실시예에 따른 3D 입체물 제조 로봇(100)의 일구성인 트랜스포머 유닛(300)의 개략도이다.
도 1a에 도시된 바와 같이, 본 발명의 제1 실시예에 따른 3D 입체물 제조 로봇(100)은 헤드 유닛(head unit)(200), 트랜스포머 유닛(300), 헤드 서플라이 유닛(head supply)(400) 및 바디 유닛(body unit)(500)을 포함한다.
먼저, 바디 유닛(500)은 회전 베이스(510)와 연결암(520)을 포함한다. 회전 베이스(510)는 회전축(501a)을 중심으로, 수평면상에서 회전 운동(F-F')을 한다. 연결암(520)의 일단은 회전 베이스(510)에 연결되고, 연결암(520)의 타단은 헤드 서플라이 유닛(400)에 연결된다.
연결암(520)과 헤드 서플라이 유닛(400), 그리고, 연결암(520)과 회전 베이스(510)는, 피봇힌지나 샤프트와 같이 축을 중심으로 회동 가능한 부재에 의해 연결될 수 있지만, 이에 한정되지 않는다.
더욱 구체적으로, 연결암(520)의 일단은 회전 베이스(510)에 대해 회동 가능하게 연결된다. 연결암(520)과 회전 베이스(510)가 상호 연결된 부위의 연결축(501b)을 중심으로, 연결암(520)은 회전 운동(E-E')을 한다.
연결암(520)의 타단은 헤드 서플라이 유닛(400)에 대해 회동 가능하게 연결된다. 연결암(520)은 길이방향의 부재로서, 수평면에 대한 헤드 서플라이 유닛(400)의 높이를 조절한다.
다시 말해, 연결암(520)과 헤드 서플라이 유닛(400)이 상호 연결된 부위의 연결축(401a)을 중심으로, 헤드 서플라이 유닛(400)은 회전 운동(D-D')을 한다.
헤드 서플라이 유닛(400)은 길이방향의 축을 중심으로 회전 운동(C-C')을 한다. 이때, 헤드 서플라이 유닛(400)이 회전함에 따라, 헤드 서플라이 유닛(400)에 연결되어 있는 트랜스포머 유닛(300)과 헤드 유닛(100)도 연동하여 회전하게 된다.
또한, 헤드 유닛(200)은 헤드 서플라이 유닛(400)에 대해 연결된다. 헤드 유닛(200)은 헤드 서플라이 유닛(400)에 구비된 헤드 체결부(440)에 연결된다. 헤드 유닛(200)과 헤드 체결부(440)가 상호 연결된 부위의 연결축(401b)을 중심으로, 헤드 유닛(200)은 회전 운동(B-B')을 한다.
구체적으로, 헤드 유닛(200)의 회전 운동(B-B')은 후술할 트랜스포머 유닛(300)의 동작에 의해 조절된다. 즉, 헤드 유닛(200)은 트랜스포머 유닛(300)과 연결되어 있고, 상기 연결축(401b)을 중심으로 서로 마주보는 영역에 위치한 헤드 유닛(200)과 트랜스포머 유닛(300)은, 반대 방향(예를 들어, 트랜스포머 유닛(300)의 일구성이 하강하면 헤드 유닛(200)이 상승하고, 트랜스포머 유닛(300)의 일구성이 상승하면 헤드 유닛(200)이 하강)으로 수직 회전 운동(B-B')을 한다.
헤드 유닛(200)은 그의 길이 방향의 축(201a)을 중심으로, 360도 회전 운동(A-A')을 한다. 휠 어셈블리에 의하여 헤드 유닛(200)은 멀티플 360도 회전(360°,720°…)이 가능하다. 이때, 헤드 유닛(200)에 포함된 도선들이 헤드 유닛(200)의 회전에 영향을 받지 않도록, 헤드 유닛(200)에는 스페이서가 구비될 수 있다.
도 1b는 본 발명의 제2 실시예에 따른 3D 입체물 제조 로봇(100)의 사시도, 도 2b는 본 발명의 제2 실시예에 따른 3D 입체물 제조 로봇(100)에서 토우(50)의 이동 경로를 나타내는 사시도이다.
도 1b에 도시된 바와 같이, 본 발명의 제2 실시예에 따른 3D 입체물 제조 로봇(100)은 헤드 유닛(head unit)(200), 트랜스포머 유닛(300), 헤드 서플라이 유닛(head supply)(400) 및 바디 유닛(body unit)(500)을 포함한다.
여기서, 헤드 유닛(head unit)(200), 헤드 서플라이 유닛(head supply)(400) 및 바디 유닛(body unit)(500)에 대한 설명은, 도 1a 및 도 2a에 도시된 제1 실시예에 대한 설명과 동일하므로 생략하기로 한다. 다만, 트랜스포머 유닛(300)의 구성이 제1 실시예와 다르며, 이에 대해서는 아래에서 더욱 상세하게 설명하기로 한다.
본 발명의 각 실시예에 따른 3D 입체물 제조 로봇(100)은 다축 회전 운동을 할 수 있다. 위의 설명에서는, 6축 회전 운동이 가능한 것으로 설명했지만, 회전 베이스(510)가 결합되는, 틸팅 가능한 툴 테이블(tool table) 로봇을 포함하면, 8축 회전이 가능해진다.
즉, 본 발명에 따른 3D 입체물 제조 로봇(100)의 가능한 회전은 아래와 같다.
제1축 회전: 헤드 유닛(200)의 길이 방향축(201a)을 중심으로 한 회전(A-A').
제2축 회전: 트랜스포머 유닛(300)에 의해 조절되는 헤드 유닛(200)의 회전(B-B').
제3축 회전: 헤드 서플라이 유닛(400)의 길이방향의 축을 중심으로 한 회전(C-C').
제4축 회전: 헤드 서플라이 유닛(400)에 연결된 연결암(520)과의 연결축(401a)을 중심으로 한 헤드 서플라이 유닛(400)의 회전(D-D').
제5축 회전: 연결암(520)에 연결된 회전 베이스(510)의 연결축(501b)을 중심으로 한 연결암(520)의 회전(E-E').
제6축 회전: 수평면에 수직인 회전축(501a)을 중심으로 한 회전 베이스(510)의 회전(F-F').
제7축 및 제8축 회전: 회전 베이스(510)와 결합되는 2축 회전 가능한 툴 테이블(미도시)의 회전.
이에 따라, 형성 가능한 플라스틱 재료를 토출하는 헤드 유닛(200)의 동작을 미세하게 조작할 수 있어, 더욱 복잡하고 정교한 형상의 3D 입체물을 제조하는 것이 가능해진다.
본 발명의 제1 실시예에 따른 트랜스포머 유닛(300)이 채용되는 3D 입체물 제조 로봇(100)에서, 토우(tow)(50)의 이동 경로는, 도 2a에 도시된 바와 같이, 헤드 유닛(200), 트랜스포머 유닛(300) 및 헤드 서플라이 유닛(400)의 연결에 의한 내부 통로에 의해 형성된다. 도 2b에 도시된 바와 같이, 제2 실시예에 따른 트랜스포머 유닛(300)에서 토우(50)의 이동 경로도 이와 마찬가지이다.
이와 같이, 본 발명의 제1 실시예 및 제2 실시예에 따른 트랜스포머 유닛(300)을 구비한 3D 입체물 제조 로봇(100)은, 헤드 서플라이 유닛(400), 트랜스포머 유닛(300) 및 헤드 유닛(200)으로 연결되는 토우(50)의 이동 경로를 내부에 포함하는 빌트인(built-in)구조를 갖는다.
여기서, 토우(50)란, 고분자 재료(polymer material) 또는 복합 재료(composite material)의 연속적으로 이어진 스트랜드(strand), 얀(yarn), 토우(tow), 번들(bundle), 밴드(band), 테이프(tape) 등이다. 고분자 재료로는 PLA, PE, PP, PA, ABS, PC, PET, PEI, PEEK 등의 열가소성 수지(thermoplastics) 혹은 에폭시(epoxy), 불포화 폴리에스터 수지(unsaturated polyester), PI, PUR 등의 열경화성 수지(thermosetting resins)일 수 있다. 하지만, 고분자 물질은 이에 한정되지 않는다. 또한, 보강재(reinforcing fibers)는 는 GF(glass fiber), CF(carbon fiber), NF(natural fiber), AF(aramid fiber) 등일 수 있다. 또한, 3D 입체물 제조 로봇은 직물용 실(textile yarn)이나 로빙(roving)을 위해 이용될 수도 있다.
또한, 최종 복합재 재료는 상기 고분자 재료에 섬유를 혼합한 것으로, 상기 섬유는 유리 섬유, 탄소 섬유, 보론 섬유, 알루미나 섬유, 탄화규소 섬유, 아라미드 섬유, 각종 휘스커(whisker) 또는 이들의 조합일 수 있지만, 이에 한정되지 않는다.
처음에 제조 장치(100)에는 얀, 토우, 스트랜드, 밴드 또는 테이프가 주입될 수 있다. 개별적인 얀, 토우, 스트랜드, 밴드, 테이프는 오븐(oven)(수집기(collector), 히터(heater), 압축기(compactor) 등을 포함)에서 전체적으로 혹은 부분적으로 토우로 합쳐지게 된다. 헤드 서플라이 유닛(400), 트랜스포머 유닛(300) 및 헤드 유닛(100)은 최종적으로 토우(50)를 압밀(compaction)하고 합쳐지게 하는데 도움을 준다.
또한, 본 설명에 있어서는 최종적으로 제조된 입체물의 소재로서, 얀, 스트랜드, 토우, 밴드, 테이프 등을 예시했지만, 이하의 설명에서는 발명을 명확히 이해할 수 있도록 입체물의 소재를 토우로 일관하여 기재하기로 한다.
다시, 도 2a 및 도 2b를 참조하면서, 토우(50)의 이동 경로에 대해 설명하면, 토우(50)는 헤드 서플라이 유닛(400)의 파이프(410)의 끝단에 구비된 유입구(430)를 통해 본 발명의 제1 및 제2 실시예에 따른 트랜스포머 유닛(300)을 구비한 3D 입체물 제조 로봇(100)의 내부 경로를 통과한다. 유입구(430)는 외부에 구비된 토우 공급부(미도시)로부터 토우를 공급받는다. 물론, 상기 토우 공급부(미도시)를 포함해도 무방하다.
또한, 후술하겠지만, 유입구(430)는 외부에 구비된 히터(미도시)와 연결되어 조절된 온도를 가지는 공기를 공급받을 수 있다. 유입구(430)를 통해 공급된, 온도 조절된 공기는, 토우(50)가 유입구(430)에 이를 때까지 토우(50)가 굳어지거나 경화되거나 열화되는 것을 방지하고, 3D 입체물 제조 로봇(100)의 내부를 통과하는 토우(50)가 굳어지거나 경화되거나 열화되는 것을 막는다. 유입구(430)를 통과한 토우(50)는 헤드 서플라이 유닛(400)의 유입 파이프(410)를 지나 트랜스포머 유닛(300)으로 진입한다.
이때, 헤드 서플라이 유닛(400)은 유입 파이프(410)의 내부에 헤드 서플라이 히터(420)를 구비하고 있기 때문에, 길이 방향의 파이프(410)를 지나는 동안, 토우(50)는 경화되지 않은 상태로 트랜스포머 유닛(300)까지 이동을 계속하게 된다.
이하에서 더욱 상세히 설명하겠지만, 트랜스포머 유닛(300)은 복수의 롤러를 구비하며, 상기 복수의 롤러는 토우(50)의 이동을 가이드한다. 헤드 서플라이 유닛(400)을 지나 트랜스포머 유닛(300)에 진입한 토우(50)는, 복수의 롤러의 일부와 접촉하면서 진행 방향을 변경한다. 다시 말해, 토우(50)의 진행 경로는 복수의 롤러의 구조나 배치에 의해 정의된다.
이때, 도 2a에 도시된 제1 실시예에 따른 3D 입체물 제조 로봇(100)에서는, 헤드 유닛(200)을 회전시키는 트랜스포머 유닛(300)이 헤드 유닛(200)을 이동시키거나 회전시킬 때, 복수의 롤러(도 2a에서는 5개의 롤러로 도시하지만, 이에 한정되지 않음)의 배치가 변하게 된다. 이에 따라, 토우(50)의 진행 방향이 달라질 수 있고, 토우(50)의 텐션 또한 영향을 받게 된다.
다만, 복수의 롤러 중 적어도 하나는, 토우(50)의 텐션을 일정하게 유지할 수 있게 설계되어 있다. 구체적으로, 상기 복수의 롤러 중 적어도 하나는 토우(50)의 텐션 유지용 롤러에 해당한다. 또한, 텐션 유지용 롤러를 제외한 나머지 복수의 롤러는, 토우(50)의 진행을 가이드하는 동시에, 헤드 유닛(200)의 회전에 관여한다.
이와 달리, 도 2b에 도시된 제2 실시예에 따른 3D 입체물 제조 로봇(100)에서는, 헤드 유닛(200)을 회전시키는 트랜스포머 유닛(300)이 헤드 유닛(200)을 이동시키거나 회전시킬 때, 복수의 롤러(도 2b에서는 4개의 롤러로 도시하지만, 이에 한정되지 않음)의 배치가 변하지 않는다. 다만, 복수의 롤러 중 적어도 하나는 텐션 조절용 롤러이기 때문에, 토우(50)의 텐션을 일정하게 유지할 수 있게 된다.
트랜스포머 유닛(300)을 통과한 토우(50)는 헤드 유닛(200)으로 진행을 계속한다. 트랜스포머 유닛(300)의 전단에는 커플링(302)이 구비되며, 상기 커플링(302)은 헤드 유닛(200)의 끝단에 위치한 커플링(252)과 연결된다. 이때, 헤드 유닛(200)의 커플링(252)과 트랜스포머 유닛(300)의 커플링(302)은 서로 직접 연결될 수도 있고, 적절한 연결 부재에 의해 간접적으로 연결될 수 있다.
헤드 유닛(200)으로 진입한 토우(50)는 헤드 유닛(200)을 통과하여 외부로 토출된다. 이때, 길이 방향의 헤드 유닛(200)은 히터(미도시)를 구비하며, 내부를 통과 중인 토우(50)가 굳어지거나 경화되거나 열화되는 것을 방지한다.
본 발명에 따른 트랜스포머 유닛(300)을 구비하는 3D 입체물 제조 로봇(100)은, 토우(50)의 굳어짐, 경화 혹은 열화를 방지하기 위하여 다수의 히터를 구비한다. 다만, 토우(50)가 본 발명에 따른 3D 제조 로봇(100)으로부터 토출될 때에는 토우(50)의 온도를 조절할 필요가 있다. 이는, 토우(50)가 토출되는 기판상에 토우(50)가 달라붙거나 굳어지는 것을 방지하고, 토우(50)를 정확한 위치로 토출하고, 토출되는 속도를 조절하기 위한 것이다.
헤드 유닛(200)은 외부로 토출되는 토우(50)의 온도를 조절하기 위한 온도조절 강제공기 파이프(미도시)를 더 구비할 수 있다. 강제공기 파이프는 직간접적으로 토우(50)의 온도를 조절하며, 강제공기 파이프에 의해 온도가 조절된 토우(50)는 기판에 유착되지 않고, 헤드 유닛(200)으로부터 토출될 수 있게 된다.
조절된 토우(50)의 온도는, 토우(50)의 유착 없는 토출 및/또는 요구되는 토출률을 이루기 위한 온도 또는 온도 범위로 해석되면 무방하다.
본 발명에 따른 트랜스포머 유닛(300)이 구비된 3D 입체물 제조 로봇(100)은 히터(헤드 히터(미도시) 또는 헤드 서플라이 히터(420))나 강제공기 파이프(미도시)에 의해 조절되는 특정 온도나 온도 범위에 한정되지 않는다. 즉, 토우(50)의 재료나 성질에 따라, 토우(50)의 온도를 조절(상승, 하강 또는 유지)할 수 있는 기능을 갖는 것으로 충분하다.
이하에서는, 본 발명의 제1 실시예에 따른 3D 입체물 제조 로봇(100)의 일구성인 트랜스포머 유닛(300)의 세부적인 구조와 동작에 대해 설명한다.
도 3은 본 발명의 제1 실시예에 따른 3D 입체물 제조 로봇(100)의 일구성인 트랜스포머 유닛(300)의 개략도, 도 4a는 본 발명의 트랜스포머 유닛(300)의 우측 분해사시도, 도 4b는 본 발명의 트랜스포머 유닛(300)의 좌측 분해사시도이다.
도 4a 및 도 4b에 도시된 바와 같이, 트랜스포머 유닛(300)은 복수의 롤러를 포함한다. 제1 실시예에서는, 총 5개의 롤러를 포함하는 것으로 상정하여 설명하지만, 이와 다른 실시예에서는 더 적은 개수의 롤러가 포함될 수 있고, 또 다른 실시예에서는 더 많은 개수의 롤러가 포함될 수도 있다.
제1 내지 제5 롤러(311 내지 315) 중 적어도 2개 이상의 롤러는 와이어(327)에 의해 연결되어, 제1 내지 제5 롤러(311 내지 315) 사이의 거리를 일정하게 유지시킨다. 이에 따라, 제1 내지 제5 롤러(311 내지 315)에 형성되는 토우(50)의 이동 경로를 일정한 길이로 유지할 수 있게 된다.
다시 말해, 제1 내지 제5 롤러(311 내지 315)는 토우(50)의 이동 경로를 정의하는데, 제1 내지 제5 롤러(311 내지 315) 사이의 거리가 일정하게 유지됨에 따라, 트랜스포머 유닛(300)의 구조적 안정성이 도모되고, 트랜스포머 유닛(300)을 지나는 토우(50)의 전체 길이가 일정(constant)해진다.
본 실시예에서는, 제2 내지 제5 롤러(312 내지 315)의 우측면에 위치한 와이어 걸림부(322 내지 325)에 와이어(327)가 체결되어, 각 롤러의 길이가 일정하게 유지된다.
한편, 트랜스포머 유닛(300)에 구비된 제1 내지 제6 체인(341 내지 346)은, 제1 내지 제5 롤러(311 내지 315)의 위치 변화에 연동하여 형상이 달라질 수 있다.
본 실시예에서는, 제1 롤러(311)에 대한 제2 롤러(312)의 상대적 위치, 제2 롤러(312)에 대한 제1 롤러(311)의 상대적 위치는 일정하다. 즉, 제1 롤러(311)와 제2 롤러(312)의 서로에 대한 배치(이격 거리와 상대적 각도)는 변하지 않는다.
또한, 제3 롤러(313)에 대한 제5 롤러(315)의 상대적 위치, 제5 롤러(315)에 대한 제3 롤러(313)의 상대적 위치는 일정하다. 즉, 제3 롤러(313)와 제5 롤러(315)의 서로에 대한 배치(이격 거리와 상대적 각도)는 변하지 않는다.
이때, 제3 롤러(313)와 제5 롤러(315) 사이에 위치하는 제4 롤러(314)도, 제3 롤러(313) 및 제5 롤러(315)에 대한 상대적 위치가 일정하지만, 제4 롤러(314)는 텐션 조절용 롤러로 동작하는 경우, 소정 범위 내에서 위치가 가변적이다.
이에 따라, 제1 롤러(311) 및 제2 롤러(312)는 하나의 단위로 움직이고, 제3 롤러 내지 제5 롤러(313 내지 315)도 하나의 단위로 움직이는 것으로 설명될 수 있다.
한편, 제2 롤러(312)와 제3 롤러(313)는 연결부재(350)에 의해 연결된다.
제5 롤러(315)를 중심으로, 트랜스포머 유닛(300)의 일부가 회전하게 되면, 제3 및 제4 롤러(313,314)도 일정한 이격 거리와 상대적 각도를 유지하면서 회전하게 된다.
이에 따라, 연결부재(350)에 의해 제3 롤러(313)와 연결된 제2 롤러(312)의 위치도 변화하게 된다.
제2 롤러(312)의 위치 변화는, 일정한 이격 거리와 상대적 각도를 가지고 배치된 제1 롤러(311)의 위치변화를 수반한다.
제5 롤러(315)의 회전에 따른 제1 및 제2 롤러(311,312)의 위치 변화는, 헤드 유닛(200)의 움직임으로 연결된다. 이는 헤드 유닛(200)의 커플링(252)은 트랜스포머 유닛(300)의 커플링(302)과 연결되어 있고, 트랜스포머 유닛(300)의 커플링(302)은 제1 롤러(311)와 근접하여 고정되어 있기 때문이다. 즉, 트랜스포머 유닛(300)의 커플링(302)과 제1 롤러(311) 사이의 이격 거리와 배치 각도는 일정하다.
또한, 헤드 유닛(200)은 헤드 서플라이(400)의 헤드 체결부(440)에 연결되어 있기 때문에, 헤드 체결부(440)와 헤드 유닛(200)의 연결축(401b)을 중심으로 헤드 유닛(200)과 트랜스포머 유닛(300)의 일부(제1 롤러(311) 및 제2 롤러(312)가 위치한 영역)는 상대적인 운동을 한다.
지레의 원리로 설명하면, 헤드 체결부(440)와 헤드 유닛(200)의 연결축(401b)이 받침점, 트랜스포머 유닛(300)의 제1 롤러(311)가 위치한 영역이 힘점, 헤드 유닛(200)이 작용점이 된다.
제1 롤러(311)가 위치한 트랜스포머 유닛(300)의 영역이 상승 이동(회전)하게 되면, 헤드 유닛(200)은 하강 이동(회전)하게 되고, 제1 롤러(311)가 위치한 트랜스포머 유닛(300)의 영역이 하강 이동(회전)하게 되면, 헤드 유닛(200)이 상승 이동(회전)하게 된다.
이때, 헤드 체결부(440)의 길이는 일정하고, 헤드 유닛(100)의 동작을 제어하는 트랜스포머 유닛(300)은, 헤드 체결부(440)의 내부에 위치한다. 따라서, 본 발명에 따른 트랜스포머 유닛(300)은, 제한된 거리(헤드 체결부(440)의 길이)에 구비되어, 헤드 유닛(200)의 이동을 도모할 수 있게 되며, 이에 따라 3D 입체물 제조 로봇(100)을 더욱 컴팩트하게 구성할 수 있게 된다.
도 4a는 트랜스포머 유닛(300)의 우측 분해사시도로서, 트랜스포머 유닛(300)에 포함된 제1 내지 제5 롤러(311 내지 315)의 우측면을 세부적으로 도시하고 있다.
제1 내지 제5 롤러(311 내지 315) 중 적어도 2개 이상의 롤러는 와이어(327)에 의해 연결되어, 각 롤러(311 내지 315) 사이의 간격이 일정하게 유지된다.
즉, 와이어(327)는, 트랜스포머 유닛(300)의 형상이 변하는 경우에도, 제1 내지 제5 롤러(311 내지 315) 사이의 거리를 일정하게 유지시킨다. 이에 따라, 제1 내지 제5 롤러(311 내지 315)에 의하여 형성되는 토우(50)의 이동 경로를 일정한 길이로 유지할 수 있게 된다.
한편, 트랜스포머 유닛(300)에 구비된 제1 내지 제6 체인(341 내지 346)은 제1 내지 제5 롤러(311 내지 315)의 위치 변화에 따른 트랜스포머 유닛(300)의 변형에 연동하여, 형상이 달라질 수 있다.
제1 내지 제5 롤러(311 내지 315) 중 적어도 하나의 롤러는, 트랜스포머 유닛(300)을 통과하는 토우(50)의 텐션을 적응적으로 조절하는 기능을 갖는 텐션 조절용 롤러로서 기능한다.
본 실시예에서는 제4 롤러(314)가 토우(50)의 적응적 텐션 조절 기능을 갖는 것으로 도시되어 있다. 다만, 이와 다른 롤러가 이와 같은 기능을 수행할 수도 있고, 텐션 조절용 롤러가 별도로 구비되어도 무방하다.
위에서 설명한 바와 같이, 트랜스포머 유닛(300)에 구비된 각각의 롤러(311 내지 315)는 토우(50)의 이동 경로를 정의한다. 도 2a를 참조하면, 토우(50)는 트랜스포머 유닛(300)으로 진입하여, 제1 내지 제5 롤러(311 내지 315)에 의해 가이드되어 헤드 유닛(200)으로 진행한다.
즉, 토우(50)는 제1 내지 제5 롤러(311 내지 315) 각각의 원주면 일부를 접촉하면서, 진행 방향을 바꾸면서 헤드 유닛(200)으로 나아가게 된다.
이때, 제1 내지 제5 롤러(311 내지 315)의 상대적 위치가 변화하는 경우, 토우(50)의 텐션이 변화(증가 혹은 감소)할 수 있다.
토우(30)의 텐션을 조절하는 기능을 갖는 텐션 조절용 롤러인 제4 롤러(314)는 탄성 부재(318)를 구비할 수 있다. 탄성 부재(318)에 의해 제4 롤러(314)는 소정 거리 내에서 이동이 가능하다.
도 4b에 도시된 바와 같이, 탄성 부재(318)의 일단은, 적응적 텐션 조절용 롤러인 제4 롤러(314)의 중심에 연결되고, 탄성 부재(318)의 타단은 트랜스포머 유닛(300)의 내부에 고정된다.
제4 롤러(314)는 트랜스포머 유닛(300)이 변형되면서 발생하는 토우(50)의 텐션 변화에 대응하여, 소정 거리 내에서 위치가 이동함으로써 토우(50)의 텐션을 일정하게 유지한다.
도 5는 텐션 조절용 롤러인 제4 롤러(314)를 중심으로 한 확대도이다.
도 5에 도시된 바와 같이, 텐션 조절용 롤러(314)에 연결된 탄성 부재(318)는, 토우(50)의 텐션 변화에 대응하여, 소정 거리(Ta와 Tb 사이)에서 이동 가능하다.
즉, 트랜스포머 유닛(300)의 변형에 따라 토우(50)의 텐션이 높아지면, 탄성 부재(318)는 제4 롤러(314)가 토우(50)의 텐션을 느슨하게 할 수 있는 위치(예를 들어, Ta 위치)로 이동하는 것을 허용한다.
마찬가지로, 트랜스포머 유닛(300)의 변형에 따라 토우(50)의 텐션이 낮아지면, 탄성 부재(318)는 제4 롤러(314)가 토우(50)의 텐션을 높일 수 있는 위치(예를 들어, Tb 위치)로 이동하는 것을 허용하게 된다.
이와 같이, 토우(50)의 이동 경로가, 적응적 텐션 조절용 롤러인 제4 롤러(314)를 포함하는 제1 내지 제5 롤러(311 내지 315)에 의해 형성되면, 토우(50)의 텐션 변화에 대응하여 토우(50)의 텐션을 일정하게 조절할 수 있게 된다.
본 실시예에서는, 적응적 텐션 조절용 롤러인 제4 롤러(314)의 위치 이동을 가능케 하는 수단으로서, 탄성 부재(318)를 언급했지만, 이와 다른 수단을 구비해도 무방하다.
한편, 트랜스포머 유닛(300)의 내부 구성들은 와이어 커버(320) 및 롤러 커버(360)에 의해서 외부로부터 격리되고 보호될 수 있다.
와이어 커버(320)는 트랜스포머 유닛(300) 의 우측면(도 4a에 도시된 면)에 구비되어, 와이어(327) 등을 보호하고, 롤러 커버(360)는 트랜스포머 유닛(300)의 좌측면(도 4b에 도시된 면)에 구비되어, 제1 내지 제5 롤러(311 내지 315), 탄성 부재(318) 등을 보호한다.
이하에서는, 본 발명의 제2 실시예에 따른 3D 입체물 제조 로봇(100)의 일구성인 트랜스포머 유닛(300)의 세부적인 구조와 동작에 대해 설명한다.
도 6a는 본 발명의 제2 실시예에 따른 트랜스포머 유닛(300)의 우측 분해사시도, 도 6b는 본 발명의 제2 실시예에 따른 트랜스포머 유닛(300)의 좌측 분해사시도이다.
도 6a 및 도 6b에 도시된 바와 같이, 트랜스포머 유닛(300)은 복수의 롤러를 포함한다. 제2 실시예에서는, 총 4개의 롤러를 포함하는 것으로 상정하여 설명하지만, 이와 다른 실시예에서는 더 적은 개수의 롤러가 포함될 수 있고, 또 다른 실시예에서는 더 많은 개수의 롤러가 포함될 수도 있다.
제1 내지 제4 롤러(381 내지 384) 중 적어도 2개 이상의 롤러는 위치가 고정되어 있다. 이에 따라, 제1 내지 제4 롤러(381 내지 384)에 형성되는 토우(50)의 이동 경로를 일정한 길이로 유지할 수 있게 된다.
다시 말해, 제1 내지 제4 롤러(381 내지 384)는 토우(50)의 이동 경로를 정의하는데, 제1 내지 제4 롤러(381 내지 384) 사이의 거리가 일정하게 유지됨에 따라, 트랜스포머 유닛(300)의 구조적 안정성이 도모되고, 트랜스포머 유닛(300)을 지나는 토우(50)의 전체 길이가 일정(constant)해진다.
특히, 위에서 설명한 제1 실시예에서와 마찬가지로, 제1 내지 제4 롤러(381 내지 384)의 일측면에 와이어 걸림부(미도시)에 체결된 와이어(미도시)에 의해 각 롤러의 위치가 고정되고, 각 롤러 사이의 간격 혹은 길이가 일정하게 유지될 수 있다.
본 실시예에서는, 서로에 대한 각 롤러(381 내지 384)의 상대적 위치(이격 거리 또는 상대적 각도)가 일정하다.
여기서, 제1 롤러(381)는 헤드 유닛(200)과 헤드 서플라이(400)의 헤드 체결부(440)가 연결되는 체결영역(389)에 인접하여 위치할 수 있다. 헤드 유닛(200)은 상기 체결영역(389)에서 장착되어, 회전축(401b)(도 1b 참조)을 중심으로 B-B' 방향으로 회전할 수 있다.
도 6a는 트랜스포머 유닛(300)의 우측 분해사시도로서, 제2 실시예에 따른 트랜스포머 유닛(300)에 포함된 제1 내지 제4 롤러(381 내지 384)의 우측면을 세부적으로 도시하고 있다.
한편, 제1 내지 제4 롤러(381 내지 384) 중 적어도 하나의 롤러는, 트랜스포머 유닛(300)을 통과하는 토우(50)의 텐션을 적응적으로 조절하는 기능을 갖는 텐션 조절용 롤러로서 기능한다.
도 6a 및 도 6b에서는 제3 롤러(383)가 토우(50)의 적응적 텐션 조절 기능을 갖는 것으로 도시되어 있다. 다만, 이와 다른 롤러가 이와 같은 기능을 수행할 수도 있고, 텐션 조절용 롤러가 별도로 구비되어도 무방하다.
위에서 설명한 바와 같이, 트랜스포머 유닛(300)에 구비된 각각의 롤러(381 내지 384)는 토우(50)의 이동 경로를 정의한다. 도 2b를 참조하면, 토우(50)는 트랜스포머 유닛(300)으로 진입하여, 제1 내지 제4 롤러(381 내지 384)에 의해 가이드되어 헤드 유닛(200)으로 진행한다.
즉, 토우(50)는 제1 내지 제4 롤러(381 내지 384) 각각의 원주면 일부를 접촉하면서, 진행 방향을 바꾸면서 헤드 유닛(200)으로 나아가게 된다.
이때, 제1 내지 제4 롤러(381 내지 384)를 지나는 토우(50)의 텐션이 변화(증가 혹은 감소)할 수 있다.
이를 방지하기 위해, 토우(30)의 텐션을 조절하는 기능을 갖는 텐션 조절용 롤러인 제3 롤러(383)는 탄성 부재(388)를 구비할 수 있다. 탄성 부재(388)에 의해 제3 롤러(383)는 소정 거리 내에서 이동이 가능하다.
도 6a에 도시된 바와 같이, 탄성 부재(388)의 일단은, 적응적 텐션 조절용 롤러인 제3 롤러(383)의 중심에 연결되고, 탄성 부재(388)의 타단은 트랜스포머 유닛(300)의 내부에 고정된다. 도 6a에서는 탄성 부재(388)의 타단이 제4 롤러(384)의 중심에 고정되어 있지만, 이와 다른 영역에 고정될 수도 있다.
제3 롤러(383)는 트랜스포머 유닛(300)을 지나면서 발생하는 토우(50)의 텐션 변화에 대응하여, 소정 거리 내에서 위치가 이동함으로써 토우(50)의 텐션을 일정하게 유지한다. 이와 관련해서는, 도 5와 관련한 설명과 동일하므로, 여기서는 상세한 설명을 생략하기로 한다.
토우(50)의 이동 경로가, 적응적 텐션 조절용 롤러인 제3 롤러(383)를 포함하는 제1 내지 제4 롤러(381 내지 384)에 의해 형성되면, 토우(50)의 텐션 변화에 대응하여 토우(50)의 텐션을 일정하게 조절할 수 있게 된다.
본 실시예에서는, 적응적 텐션 조절용 롤러인 제3 롤러(383)의 위치 이동을 가능케 하는 수단으로서, 탄성 부재(388)를 언급했지만, 이와 다른 수단을 구비해도 무방하다.
한편, 트랜스포머 유닛(300)의 내부 구성들은 커버(390,391)에 의해서 외부로부터 격리되고 보호될 수 있다.
도 7은 트랜스포머 유닛(300)이 연결되는 헤드 서플라이 유닛(400)을 확대한 도면이다. 헤드 서플라이 유닛(400)의 구조는 제1 실시예 및 제2 실시예에서 동일할 수 있다. 도 7에 도시된 바와 같이, 트랜스포머 유닛(300)은 헤드 서플라이 유닛(400)과 연결되고, 헤드 유닛(200)은 헤드 체결부(440)를 통해 헤드 서플라이 유닛(400) 과 연결된다. 도 7에서는 헤드 유닛(400)의 도시가 생략되어 있다.
본 발명에 따른 트랜스포머 유닛(300)은 히터 어셈블리(370)를 포함할 수 있다. 히터 어셈블리(370)는 적절한 온도의 공기를 발생시켜 트랜스포머 유닛(300)의 내부를 통과하는 토우(50)가 굳어지거나 경화되거나 열화되는 것을 방지한다. 히터 어셈블리(370)에 의해 발생된 온도 조절된 공기는, 히터 홀더(372)와 히터 가이더(377)를 통해 트랜스포머 유닛(300)의 내부로 전달된다.
구체적으로, 히터 어셈블리(370)를 통해 전달된 적절한 온도의 공기는 트랜스포머 유닛(300)을 통과하는 토우(50)의 이동 경로에 전달된다.
히터 어셈블리(370)는 히터 플레이트(375) 위에 탑재되어, 헤드 서플라이(400)에 탈착 가능하게 고정될 수 있다.
이와 같이, 본 발명에 따른 3D 입체물 제조 로봇(100)의 일 구성인 트랜스포머 유닛(300)을 통과하는 토우(50)는, 이동 경로상에 공급되는 공기에 의해 적절한 온도를 유지하여 굳어지거나 경화되거나 열화되는 것을 피할 수 있다.
토우(50)의 굳어짐, 경화 또는 열화를 방지하는 구성은 히터 어셈블리(370) 외에도, 헤드 서플라이(400)의 유입구(430)와 연결된 외부 히터(미도시), 헤드 서플라이(400)의 헤드 서플라이 히터(420), 헤드 유닛(200)의 헤드 히터(미도시)가 있다. 이러한 히팅 장치들에 의해 토우(50)는 굳어짐이나 경화 또는 열화를 피할 수 있게 된다.
한편, 본 발명의 제1 실시예에 따른 트랜스포머 유닛(300)의 각 롤러(311 내지 315) 중 적어도 하나는 모터(미도시)를 더 구비할 수 있다. 이는, 각 롤러(311 내지 315)에 의해 가이드되는 토우(50)의 토출률 및 토출 속도를 조절하는 기능을 가진다.
각각의 롤러(311 내지 315)는 개별적으로 모터가 연결될 수 있고, 사용자는 모터를 제어함으로써, 각각의 롤러(311 내지 315)의 회전 속도를 결정할 수 있다. 롤러(311 내지 315)의 회전 속도는 각각의 롤러(311 내지 315)에 의해 가이드되는 토우(50)의 이동 속도에 직접적으로 관여한다. 물론, 다른 실시예에서는, 복수의 롤러(311 내지 315) 중 일부의 롤러에만 모터가 연결될 수도 있다.
이와 마찬가지로, 본 발명의 제2 실시예에 따른 트랜스포머 유닛(300)의 각 롤러(381 내지 384) 중 적어도 하나는 적어도 하나의 모터(미도시)를 구비할 수 있다. 이는, 각 롤러(381 내지 384)에 의해 가이드되는 토우(50)의 토출률 및 토출 속도를 조절하는 기능을 가진다.
각각의 롤러(381 내지 384)는 개별적으로 모터가 연결될 수 있고, 사용자는 모터를 제어함으로써, 각각의 롤러(381 내지 384)의 회전 속도를 결정할 수 있다. 롤러(381 내지 384)의 회전 속도는 각각의 롤러(381 내지 384)에 의해 가이드되는 토우(50)의 이동 속도에 직접적으로 관여한다. 물론, 다른 실시예에서는, 복수의 롤러(381 내지 383) 중 일부의 롤러에만 모터가 연결될 수도 있다.이하에서는, 도 8 내지 도 10을 참조하면서, 제1 실시예에 따른 트랜스포머 유닛(300)에 의한 헤드 유닛(200)의 회전/이동 동작을 설명하기로 한다.
도 8은 제1 실시예에 따른 트랜스포머 유닛(300)의 구성이 도 3의 상태에 위치한 경우를 도시한다. 이때, 헤드 유닛(200)은 수평면과 대략 평행한 방향, 즉, 헤드 서플라이(400)의 길이 방향의 연장선상에 놓이게 된다.
여기서, 트랜스포머 유닛(300)의 제3 내지 제5 롤러(313 내지 315)가 구비된 영역이, 제5 롤러(314)를 중심으로 하방으로 회전한 경우를 도 9에 도시하였고, 상방으로 회전한 경우를 도 10에 도시하였다. 도 3에 도시된 바와 같이, 제3 내지 제5 롤러(313 내지 315)는 동일한 부재에 포함되어 있기 때문에, 하나의 단위로 움직일 수 있다. 또, 제1 및 제2 롤러(311 및 312)도 동일한 부재에 포함되어 있기 때문에, 하나의 단위로 움직일 수 있다.
아울러, 제2 롤러(312) 및 제3 롤러(313)가 연결부재(350)에 의해 연결되므로, 제5 롤러(315)가 회전하는 경우, 모든 롤러가 연동하여 이동할 수 있게 된다.
도 9는 제5 롤러(315)가 포함된 트랜스포머 유닛(300)의 일부 영역(제3 내지 제5 롤러가 포함된 영역)이 제5 롤러(315)를 중심으로 회전한 경우를 나타낸다.
제5 롤러(315)를 중심으로 한 트랜스포머 유닛(300)의 일부 영역(제3 내지 제5 롤러가 포함된 영역)의 회전은, 제3 롤러(313)와 제2 롤러(312)를 잇는 연결부재(350)를 상승시켜, 트랜스포머 유닛(300)의 또 다른 영역(제1 및 제2 롤러가 포함된 영역)을 이동시킨다. 또 다른 영역(제1 및 제2 롤러가 포함된 영역)이 상승하면, 상기 또 다른 영역에 연결되어 있는 헤드 유닛(200)의 이동 또는 회전을 야기한다. 구체적으로, 연결축(401b)을 기준으로 상기 또 다른 영역의 반대편에 있는 헤드 유닛(200)이 아래를 향하게 된다.
도 10은 제5 롤러(315)를 포함하는 트랜스포머 유닛(300)의 일부 영역(제3 내지 제5 롤러가 포함된 영역)이, 도 9의 반대 방향으로 회전한 경우를 나타낸다.
제5 롤러(315)를 중심으로 한 트랜스포머 유닛(300)의 일부 영역(제3 내지 제5 롤러가 포함된 영역)의 회전은, 제3 롤러(313)와 제2 롤러(312)를 잇는 연결부재(350)를 아래로 끌어당겨, 트랜스포머 유닛(300)의 또 다른 영역(제1 및 제2 롤러가 포함된 영역)을 이동시킨다. 또 다른 영역(제1 및 제2 롤러가 포함된 영역)이 하강하면, 상기 또 다른 영역에 연결되어 있는 헤드 유닛(200)의 이동 또는 회전을 야기한다. 구체적으로, 연결축(401b)을 기준으로 상기 또 다른 영역의 반대편에 있는 헤드 유닛(200)이 위를 향하게 된다.
이와 같이, 트랜스포머 유닛(300)은 복수의 롤러(311 내지 315)를 이용하여, 한정된 공간(헤드 체결부(440)에 의해 한정된 길이 범위내)에서 형상이 변형되면서, 헤드 유닛(200)을 회전시킬 수 있기에, 3D 입체물 제조 로봇(100)을 컴팩트하게 만들 수 있다.
마지막으로, 도 11 및 도 12를 참조하면서, 제2 실시예에 따른 트랜스포머 유닛(300)에 의한 헤드 유닛(200)의 회전/이동 동작을 설명하기로 한다.
도 11은 헤드 유닛(200)이 수평면과 대략 평행한 방향, 즉, 헤드 서플라이(400)의 길이 방향의 연장선상에 놓인 상태를 나타낸다. 제1 실시예와 달리, 제2 실시예에서는 헤드 유닛(200)의 회전은 트랜스포머 유닛(300)에 구비된 각 롤러(381 내지 384)에 영향을 주지 않는다. 도 12는 헤드 유닛(200)이 수직 하방으로 회전한 경우를 나타낸다. 도 11 및 12와 같이, 제2 실시예에서는, 헤드 유닛(200)은 헤드 체결부(440)에 의해 회전 가능하게 고정되고, 헤드 유닛(200)과 트랜스포머(300)의 상호 연결은 토우(50)의 이동 경로를 형성하기 위한 것이다.
트랜스포머 유닛(300)은 복수의 롤러(381 내지 384)를 이용하여, 토우(50)의 텐션을 일정하게 유지하고, 헤드 유닛(300)은 헤드 체결부(440)에 연결되어 용이하게 회전 가능하게 된다.
본 발명의 바람직한 실시 형태를 포함하는 특정 실시예의 관점에서 본 발명을 설명했지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 위에서 설명된 발명의 구성에 있어서, 다양한 치환이나 변형을 예측할 수 있을 것이다. 또한, 본 발명의 권리범위와 기술적 사상을 벗어나지 않는 한, 구조적이고 기능적인 변조가 다양하게 이루어질 수 있다. 따라서, 본 발명의 사상이나 권리범위는 본 명세서에 첨부된 청구범위에 기술된 바와 같이 광범위하게 이해될 수 있을 것이다.
본 발명은 플라스틱 재료의 텐션 및 온도를 제어하는 트랜스포머 등에 다양하게 적용될 수 있다. 예를 들어, 본 발명은 형성 가능한 플라스틱 재료의 텐션과 온도를 제어할 수 있는 3D 입체물 제조 로봇에 이용되는 트랜스포머에 적용될 수 있다.
상기에서는 본 발명의 실시예들을 참조하여 설명하였지만, 해당 기술분야에서 통상의 지식을 가진 자는 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 것이다.

Claims (16)

  1. 헤드 유닛의 이동 또는 회전을 제어하는 트랜스포머로서,
    상기 트랜스포머는 형성 가능한 플라스틱 재료로 이루어진 소재의 이동 경로를 정의하는 복수의 롤러; 및
    상기 복수의 롤러를 수용하는 케이스;를 포함하고,
    상기 복수의 롤러 중 적어도 하나는 상기 소재의 텐션을 유지하기 위한 텐션 조절용 롤러인, 트랜스포머.
  2. 제1항에 있어서,
    상기 텐션 조절용 롤러와 연결되어, 상기 텐션 조절용 롤러의 이동을 허용하는 탄성 부재;를 더 포함하는, 트랜스포머.
  3. 제1항에 있어서,
    상기 복수의 롤러 중 적어도 하나의 회전 속도를 제어하기 위한 적어도 하나의 모터;를 더 포함하는, 트랜스포머.
  4. 제1항에 있어서,
    상기 헤드 유닛은, 상기 복수의 롤러에 의해 가이드된 상기 소재를 토출시키는, 트랜스포머.
  5. 제4항에 있어서,
    상기 헤드 유닛은, 상기 트랜스포머의 일단에 회전 가능하게 연결되는, 트랜스포머.
  6. 제1항에 있어서,
    상기 소재의 굳어짐, 경화 또는 열화를 방지하도록 조절된 온도의 공기를 발생시키는 히터 어셈블리;를 더 포함하는, 트랜스포머.
  7. 제1항에 있어서,
    상기 히터 어셈블리에 의해 발생한 공기를, 상기 소재의 이동 경로로 가이드하는 히터 가이더;를 더 포함하는, 트랜스포머.
  8. 제1항에 있어서,
    상기 소재는, 스트랜드(strand), 얀(yarn), 토우(tow), 번들(bundle), 밴드(band) 또는 테이프(tape)로 구성된, 트랜스포머.
  9. 헤드 유닛의 이동 또는 회전을 제어하는 트랜스포머로서,
    상기 트랜스포머는 형성 가능한 플라스틱 재료로 이루어진 소재의 이동 경로를 정의하는 복수의 롤러; 및
    상기 복수의 롤러 중 적어도 2개의 롤러를 연결하는 연결부재;를 포함하고,
    상기 복수의 롤러 중 적어도 하나는 상기 소재의 텐션을 유지하기 위한 텐션 조절용 롤러이고, 상기 트랜스포머는, 상기 복수의 롤러의 배치를 변경함으로써, 상기 헤드 유닛을 이동 또는 회전시키는, 트랜스포머.
  10. 제9항에 있어서,
    상기 텐션 조절용 롤러와 연결되어, 상기 텐션 조절용 롤러의 이동을 허용하는 탄성 부재;를 더 포함하는, 트랜스포머.
  11. 제9항에 있어서,
    상기 트랜스포머는,
    상기 복수의 롤러 중 하나의 롤러를 중심으로 한 일부 영역의 회전에 따라, 상기 연결부재 및 상기 연결부재에 연결된 적어도 하나의 롤러가 연동하여 이동함으로써, 상기 헤드 유닛의 이동 또는 회전을 제어하는, 트랜스포머.
  12. 제9항에 있어서,
    상기 복수의 롤러 중 적어도 하나의 회전 속도를 제어하기 위한 적어도 하나의 모터;를 더 포함하는, 트랜스포머.
  13. 제9항에 있어서,
    상기 헤드 유닛은, 복수의 롤러에 의해 가이드된 상기 소재를 토출시키는, 트랜스포머.
  14. 제9항에 있어서,
    상기 소재는, 스트랜드(strand), 얀(yarn), 토우(tow), 번들(bundle), 밴드(band) 또는 테이프(tape)로 구성된, 트랜스포머.
  15. 제9항에 있어서,
    상기 소재의 굳어짐, 경화 또는 열화를 방지하도록 조절된 온도의 공기를 발생시키는 히터 어셈블리;를 포함하는, 트랜스포머.
  16. 제15항에 있어서,
    상기 히터 어셈블리에 의해 발생한 공기를, 상기 소재의 이동 경로로 가이드하는 히터 가이더;를 더 포함하는, 트랜스포머.
PCT/KR2016/014968 2016-01-14 2016-12-21 헤드 유닛의 이동과, 형성 가능한 플라스틱 재료의 텐션 및 온도를 제어하는 트랜스포머 WO2017122941A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160004900A KR101755015B1 (ko) 2016-01-14 2016-01-14 헤드 유닛의 이동과, 형성 가능한 플라스틱 재료의 텐션 및 온도를 제어하는 트랜스포머
KR10-2016-0004900 2016-01-14

Publications (1)

Publication Number Publication Date
WO2017122941A1 true WO2017122941A1 (ko) 2017-07-20

Family

ID=59311903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014968 WO2017122941A1 (ko) 2016-01-14 2016-12-21 헤드 유닛의 이동과, 형성 가능한 플라스틱 재료의 텐션 및 온도를 제어하는 트랜스포머

Country Status (2)

Country Link
KR (1) KR101755015B1 (ko)
WO (1) WO2017122941A1 (ko)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10040240B1 (en) 2017-01-24 2018-08-07 Cc3D Llc Additive manufacturing system having fiber-cutting mechanism
US10081129B1 (en) 2017-12-29 2018-09-25 Cc3D Llc Additive manufacturing system implementing hardener pre-impregnation
US10131088B1 (en) 2017-12-19 2018-11-20 Cc3D Llc Additive manufacturing method for discharging interlocking continuous reinforcement
US10216165B2 (en) 2016-09-06 2019-02-26 Cc3D Llc Systems and methods for controlling additive manufacturing
US10319499B1 (en) 2017-11-30 2019-06-11 Cc3D Llc System and method for additively manufacturing composite wiring harness
US10345068B2 (en) 2017-02-13 2019-07-09 Cc3D Llc Composite sporting equipment
US10543640B2 (en) 2016-09-06 2020-01-28 Continuous Composites Inc. Additive manufacturing system having in-head fiber teasing
US10589463B2 (en) 2017-06-29 2020-03-17 Continuous Composites Inc. Print head for additive manufacturing system
US10603840B2 (en) 2016-09-06 2020-03-31 Continuous Composites Inc. Additive manufacturing system having adjustable energy shroud
US10625467B2 (en) 2016-09-06 2020-04-21 Continuous Composites Inc. Additive manufacturing system having adjustable curing
US10717512B2 (en) 2016-11-03 2020-07-21 Continuous Composites Inc. Composite vehicle body
US10723073B2 (en) 2017-01-24 2020-07-28 Continuous Composites Inc. System and method for additively manufacturing a composite structure
US10759114B2 (en) 2017-12-29 2020-09-01 Continuous Composites Inc. System and print head for continuously manufacturing composite structure
US10759113B2 (en) 2016-09-06 2020-09-01 Continuous Composites Inc. Additive manufacturing system having trailing cure mechanism
US10798783B2 (en) 2017-02-15 2020-10-06 Continuous Composites Inc. Additively manufactured composite heater
US10814569B2 (en) 2017-06-29 2020-10-27 Continuous Composites Inc. Method and material for additive manufacturing
US10821720B2 (en) 2016-11-04 2020-11-03 Continuous Composites Inc. Additive manufacturing system having gravity-fed matrix
US10857729B2 (en) 2017-12-29 2020-12-08 Continuous Composites Inc. System and method for additively manufacturing functional elements into existing components
US10919222B2 (en) 2017-12-29 2021-02-16 Continuous Composites Inc. System and method for additively manufacturing functional elements into existing components
US11052603B2 (en) 2018-06-07 2021-07-06 Continuous Composites Inc. Additive manufacturing system having stowable cutting mechanism
US11110656B2 (en) 2018-04-12 2021-09-07 Continuous Composites Inc. System for continuously manufacturing composite structure
US11110654B2 (en) 2018-04-12 2021-09-07 Continuous Composites Inc. System and print head for continuously manufacturing composite structure
US11161300B2 (en) 2018-04-11 2021-11-02 Continuous Composites Inc. System and print head for additive manufacturing system
US11161297B2 (en) 2012-08-29 2021-11-02 Continuous Composites Inc. Control methods for additive manufacturing system
US11167495B2 (en) 2017-12-29 2021-11-09 Continuous Composites Inc. System and method for additively manufacturing functional elements into existing components
US11235539B2 (en) 2018-09-13 2022-02-01 Continuous Composites Inc. Fiber management arrangement and method for additive manufacturing system
US11235522B2 (en) 2018-10-04 2022-02-01 Continuous Composites Inc. System for additively manufacturing composite structures
US11247395B2 (en) 2018-10-26 2022-02-15 Continuous Composites Inc. System for additive manufacturing
US11292192B2 (en) 2018-11-19 2022-04-05 Continuous Composites Inc. System for additive manufacturing
US11312083B2 (en) 2019-05-28 2022-04-26 Continuous Composites Inc. System for additively manufacturing composite structure
US11338503B2 (en) 2019-01-25 2022-05-24 Continuous Composites Inc. System for additively manufacturing composite structure
US11358331B2 (en) 2018-11-19 2022-06-14 Continuous Composites Inc. System and head for continuously manufacturing composite structure
US11420390B2 (en) 2018-11-19 2022-08-23 Continuous Composites Inc. System for additively manufacturing composite structure
US11465348B2 (en) 2020-09-11 2022-10-11 Continuous Composites Inc. Print head for additive manufacturing system
US11760021B2 (en) 2021-04-27 2023-09-19 Continuous Composites Inc. Additive manufacturing system
US11760029B2 (en) 2020-06-23 2023-09-19 Continuous Composites Inc. Systems and methods for controlling additive manufacturing
US11840022B2 (en) 2019-12-30 2023-12-12 Continuous Composites Inc. System and method for additive manufacturing
US11904534B2 (en) 2020-02-25 2024-02-20 Continuous Composites Inc. Additive manufacturing system
US12030252B2 (en) 2022-04-05 2024-07-09 Continuous Composites Inc. Additive manufacturing system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011067893A (ja) * 2009-09-25 2011-04-07 Daihen Corp 溶接ロボットにおけるワイヤ送給装置の設置構造
KR20120025801A (ko) * 2010-09-08 2012-03-16 스웰 주식회사 복합기능을 가지는 용접 와이어 송급장치
US20140232035A1 (en) * 2013-02-19 2014-08-21 Hemant Bheda Reinforced fused-deposition modeling
KR20150117723A (ko) * 2014-04-10 2015-10-21 주식회사 인스턴 마무리 가공 공구부를 구비한 3d 프린터
KR20150137153A (ko) * 2014-05-28 2015-12-09 (주) 디토스 3d 프린터의 필라멘트 자동 투입/제거 장치 및 자동 투입/제거 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011067893A (ja) * 2009-09-25 2011-04-07 Daihen Corp 溶接ロボットにおけるワイヤ送給装置の設置構造
KR20120025801A (ko) * 2010-09-08 2012-03-16 스웰 주식회사 복합기능을 가지는 용접 와이어 송급장치
US20140232035A1 (en) * 2013-02-19 2014-08-21 Hemant Bheda Reinforced fused-deposition modeling
KR20150117723A (ko) * 2014-04-10 2015-10-21 주식회사 인스턴 마무리 가공 공구부를 구비한 3d 프린터
KR20150137153A (ko) * 2014-05-28 2015-12-09 (주) 디토스 3d 프린터의 필라멘트 자동 투입/제거 장치 및 자동 투입/제거 방법

Cited By (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11161297B2 (en) 2012-08-29 2021-11-02 Continuous Composites Inc. Control methods for additive manufacturing system
US10603840B2 (en) 2016-09-06 2020-03-31 Continuous Composites Inc. Additive manufacturing system having adjustable energy shroud
US10908576B2 (en) 2016-09-06 2021-02-02 Continuous Composites Inc. Systems and methods for controlling additive manufacturing
US10625467B2 (en) 2016-09-06 2020-04-21 Continuous Composites Inc. Additive manufacturing system having adjustable curing
US11579579B2 (en) 2016-09-06 2023-02-14 Continuous Composites Inc. Systems and methods for controlling additive manufacturing
US10632673B2 (en) 2016-09-06 2020-04-28 Continuous Composites Inc. Additive manufacturing system having shutter mechanism
US10543640B2 (en) 2016-09-06 2020-01-28 Continuous Composites Inc. Additive manufacturing system having in-head fiber teasing
US10901386B2 (en) 2016-09-06 2021-01-26 Continuous Composites Inc. Systems and methods for controlling additive manufacturing
US10647058B2 (en) 2016-09-06 2020-05-12 Continuous Composites Inc. Control methods for additive manufacturing system
US10216165B2 (en) 2016-09-06 2019-02-26 Cc3D Llc Systems and methods for controlling additive manufacturing
US10994481B2 (en) 2016-09-06 2021-05-04 Continuous Composites Inc. Additive manufacturing system having in-head fiber-teasing
US10884388B2 (en) 2016-09-06 2021-01-05 Continuous Composites Inc. Systems and methods for controlling additive manufacturing
US11000998B2 (en) 2016-09-06 2021-05-11 Continous Composites Inc. Additive manufacturing system having in-head fiber-teasing
US10895858B2 (en) 2016-09-06 2021-01-19 Continuous Composites Inc. Systems and methods for controlling additive manufacturing
US11029658B2 (en) 2016-09-06 2021-06-08 Continuous Composites Inc. Systems and methods for controlling additive manufacturing
US10759113B2 (en) 2016-09-06 2020-09-01 Continuous Composites Inc. Additive manufacturing system having trailing cure mechanism
US10864715B2 (en) 2016-09-06 2020-12-15 Continuous Composites Inc. Additive manufacturing system having multi-channel nozzle
US10766191B2 (en) 2016-09-06 2020-09-08 Continuous Composites Inc. Additive manufacturing system having in-head fiber weaving
US10717512B2 (en) 2016-11-03 2020-07-21 Continuous Composites Inc. Composite vehicle body
US10773783B2 (en) 2016-11-03 2020-09-15 Continuous Composites Inc. Composite vehicle body
US10787240B2 (en) 2016-11-03 2020-09-29 Continuous Composites Inc. Composite vehicle body
US10766595B2 (en) 2016-11-03 2020-09-08 Continuous Composites Inc. Composite vehicle body
US10766594B2 (en) 2016-11-03 2020-09-08 Continuous Composites Inc. Composite vehicle body
US11383819B2 (en) 2016-11-03 2022-07-12 Continuous Composites Inc. Composite vehicle body
US10864677B2 (en) 2016-11-04 2020-12-15 Continuous Composites Inc. Additive manufacturing system implementing in-situ anchor-point fabrication
US10953598B2 (en) 2016-11-04 2021-03-23 Continuous Composites Inc. Additive manufacturing system having vibrating nozzle
US10828829B2 (en) 2016-11-04 2020-11-10 Continuous Composites Inc. Additive manufacturing system having adjustable nozzle configuration
US10843406B2 (en) 2016-11-04 2020-11-24 Continuous Composites Inc. Additive manufacturing system having multi-flex nozzle
US10933584B2 (en) 2016-11-04 2021-03-02 Continuous Composites Inc. Additive manufacturing system having dynamically variable matrix supply
US10967569B2 (en) 2016-11-04 2021-04-06 Continuous Composites Inc. Additive manufacturing system having interchangeable nozzle tips
US10821720B2 (en) 2016-11-04 2020-11-03 Continuous Composites Inc. Additive manufacturing system having gravity-fed matrix
US10870233B2 (en) 2016-11-04 2020-12-22 Continuous Composites Inc. Additive manufacturing system having feed-tensioner
US10919204B2 (en) 2017-01-24 2021-02-16 Continuous Composites Inc. Continuous reinforcement for use in additive manufacturing
US10857726B2 (en) 2017-01-24 2020-12-08 Continuous Composites Inc. Additive manufacturing system implementing anchor curing
US10723073B2 (en) 2017-01-24 2020-07-28 Continuous Composites Inc. System and method for additively manufacturing a composite structure
US10040240B1 (en) 2017-01-24 2018-08-07 Cc3D Llc Additive manufacturing system having fiber-cutting mechanism
US11014290B2 (en) 2017-01-24 2021-05-25 Continuous Composites Inc. Additive manufacturing system having automated reinforcement threading
US10850445B2 (en) 2017-01-24 2020-12-01 Continuous Composites Inc. Additive manufacturing system configured for sheet-printing composite material
US10843396B2 (en) 2017-01-24 2020-11-24 Continuous Composites Inc. Additive manufacturing system
US10940638B2 (en) 2017-01-24 2021-03-09 Continuous Composites Inc. Additive manufacturing system having finish-follower
US10794650B2 (en) 2017-02-13 2020-10-06 Continuous Composites Composite sporting equipment
US10345068B2 (en) 2017-02-13 2019-07-09 Cc3D Llc Composite sporting equipment
US10798783B2 (en) 2017-02-15 2020-10-06 Continuous Composites Inc. Additively manufactured composite heater
US10993289B2 (en) 2017-02-15 2021-04-27 Continuous Composites Inc. Additive manufacturing system for fabricating custom support structure
US10932325B2 (en) 2017-02-15 2021-02-23 Continuous Composites Inc. Additive manufacturing system and method for discharging coated continuous composites
US11052602B2 (en) 2017-06-29 2021-07-06 Continuous Composites Inc. Print head for additively manufacturing composite tubes
US11130285B2 (en) 2017-06-29 2021-09-28 Continuous Composites Inc. Print head and method for printing composite structure and temporary support
US10906240B2 (en) 2017-06-29 2021-02-02 Continuous Composites Inc. Print head for additive manufacturing system
US10814569B2 (en) 2017-06-29 2020-10-27 Continuous Composites Inc. Method and material for additive manufacturing
US11135769B2 (en) 2017-06-29 2021-10-05 Continuous Composites Inc. In-situ curing oven for additive manufacturing system
US10589463B2 (en) 2017-06-29 2020-03-17 Continuous Composites Inc. Print head for additive manufacturing system
US10319499B1 (en) 2017-11-30 2019-06-11 Cc3D Llc System and method for additively manufacturing composite wiring harness
US10131088B1 (en) 2017-12-19 2018-11-20 Cc3D Llc Additive manufacturing method for discharging interlocking continuous reinforcement
US11167495B2 (en) 2017-12-29 2021-11-09 Continuous Composites Inc. System and method for additively manufacturing functional elements into existing components
US10919222B2 (en) 2017-12-29 2021-02-16 Continuous Composites Inc. System and method for additively manufacturing functional elements into existing components
US10857729B2 (en) 2017-12-29 2020-12-08 Continuous Composites Inc. System and method for additively manufacturing functional elements into existing components
US10081129B1 (en) 2017-12-29 2018-09-25 Cc3D Llc Additive manufacturing system implementing hardener pre-impregnation
US11623394B2 (en) 2017-12-29 2023-04-11 Continuous Composites Inc. System, print head, and compactor for continuously manufacturing composite structure
US11110655B2 (en) 2017-12-29 2021-09-07 Continuous Composites Inc. System, print head, and compactor for continuously manufacturing composite structure
US11135764B2 (en) 2017-12-29 2021-10-05 Continuous Composites Inc. Additive manufacturing system implementing hardener pre-impregnation
US11135770B2 (en) 2017-12-29 2021-10-05 Continuous Composites Inc. System for continuously manufacturing composite structure
US10759114B2 (en) 2017-12-29 2020-09-01 Continuous Composites Inc. System and print head for continuously manufacturing composite structure
US10807303B2 (en) 2017-12-29 2020-10-20 Continuous Composites, Inc. Additive manufacturing system implementing hardener pre-impregnation
US11623393B2 (en) 2017-12-29 2023-04-11 Continuous Composites Inc. System, print head, and compactor for continuously manufacturing composite structure
US11161300B2 (en) 2018-04-11 2021-11-02 Continuous Composites Inc. System and print head for additive manufacturing system
US11130284B2 (en) 2018-04-12 2021-09-28 Continuous Composites Inc. System and head for continuously manufacturing composite structure
US11958243B2 (en) 2018-04-12 2024-04-16 Continuous Composites Inc. System for continuously manufacturing composite structure
US11110654B2 (en) 2018-04-12 2021-09-07 Continuous Composites Inc. System and print head for continuously manufacturing composite structure
US11110656B2 (en) 2018-04-12 2021-09-07 Continuous Composites Inc. System for continuously manufacturing composite structure
US11052603B2 (en) 2018-06-07 2021-07-06 Continuous Composites Inc. Additive manufacturing system having stowable cutting mechanism
US11235539B2 (en) 2018-09-13 2022-02-01 Continuous Composites Inc. Fiber management arrangement and method for additive manufacturing system
US11338528B2 (en) 2018-09-13 2022-05-24 Continouos Composites Inc. System for additively manufacturing composite structures
US11760013B2 (en) 2018-10-04 2023-09-19 Continuous Composites Inc. System for additively manufacturing composite structures
US11752696B2 (en) 2018-10-04 2023-09-12 Continuous Composites Inc. System for additively manufacturing composite structures
US11235522B2 (en) 2018-10-04 2022-02-01 Continuous Composites Inc. System for additively manufacturing composite structures
US11787112B2 (en) 2018-10-04 2023-10-17 Continuous Composites Inc. System for additively manufacturing composite structures
US11279085B2 (en) 2018-10-26 2022-03-22 Continuous Composites Inc. System for additive manufacturing
US11607839B2 (en) 2018-10-26 2023-03-21 Continuous Composites Inc. System for additive manufacturing
US11247395B2 (en) 2018-10-26 2022-02-15 Continuous Composites Inc. System for additive manufacturing
US11806923B2 (en) 2018-10-26 2023-11-07 Continuous Composites Inc. System for additive manufacturing
US11325304B2 (en) 2018-10-26 2022-05-10 Continuous Composites Inc. System and method for additive manufacturing
US11511480B2 (en) 2018-10-26 2022-11-29 Continuous Composites Inc. System for additive manufacturing
US11292192B2 (en) 2018-11-19 2022-04-05 Continuous Composites Inc. System for additive manufacturing
US11358331B2 (en) 2018-11-19 2022-06-14 Continuous Composites Inc. System and head for continuously manufacturing composite structure
US11420390B2 (en) 2018-11-19 2022-08-23 Continuous Composites Inc. System for additively manufacturing composite structure
US11400643B2 (en) 2019-01-25 2022-08-02 Continuous Composites Inc. System for additively manufacturing composite structure
US11485070B2 (en) 2019-01-25 2022-11-01 Continuous Composites Inc. System for additively manufacturing composite structure
US11618208B2 (en) 2019-01-25 2023-04-04 Continuous Composites Inc. System for additively manufacturing composite structure
US11338503B2 (en) 2019-01-25 2022-05-24 Continuous Composites Inc. System for additively manufacturing composite structure
US11958238B2 (en) 2019-01-25 2024-04-16 Continuous Composites Inc. System for additively manufacturing composite structure utilizing comparison of data cloud and virtual model of structure during discharging material
US11478980B2 (en) 2019-01-25 2022-10-25 Continuous Composites Inc. System for additively manufacturing composite structure
US11541603B2 (en) 2019-05-28 2023-01-03 Continuous Composites Inc. System for additively manufacturing composite structure
US11312083B2 (en) 2019-05-28 2022-04-26 Continuous Composites Inc. System for additively manufacturing composite structure
US11958245B2 (en) 2019-05-28 2024-04-16 Continuous Composites Inc. System for additively manufacturing composite structure
US11840022B2 (en) 2019-12-30 2023-12-12 Continuous Composites Inc. System and method for additive manufacturing
US11904534B2 (en) 2020-02-25 2024-02-20 Continuous Composites Inc. Additive manufacturing system
US11760030B2 (en) 2020-06-23 2023-09-19 Continuous Composites Inc. Systems and methods for controlling additive manufacturing
US11760029B2 (en) 2020-06-23 2023-09-19 Continuous Composites Inc. Systems and methods for controlling additive manufacturing
US11926100B2 (en) 2020-06-23 2024-03-12 Continuous Composites Inc. Systems and methods for controlling additive manufacturing
US11813793B2 (en) 2020-09-11 2023-11-14 Continuous Composites Inc. Print head for additive manufacturing system
US11465348B2 (en) 2020-09-11 2022-10-11 Continuous Composites Inc. Print head for additive manufacturing system
US11613080B2 (en) 2020-09-11 2023-03-28 Continuous Composites Inc. Print head for additive manufacturing system
US11541598B2 (en) 2020-09-11 2023-01-03 Continuous Composites Inc. Print head for additive manufacturing system
US11760021B2 (en) 2021-04-27 2023-09-19 Continuous Composites Inc. Additive manufacturing system
US11958247B2 (en) 2021-04-27 2024-04-16 Continuous Composites Inc. Additive manufacturing system
US12030252B2 (en) 2022-04-05 2024-07-09 Continuous Composites Inc. Additive manufacturing system

Also Published As

Publication number Publication date
KR101755015B1 (ko) 2017-07-06

Similar Documents

Publication Publication Date Title
WO2017122941A1 (ko) 헤드 유닛의 이동과, 형성 가능한 플라스틱 재료의 텐션 및 온도를 제어하는 트랜스포머
WO2017122942A1 (ko) 형성 가능한 플라스틱 재료로 이루어진 소재의 토출을 제어하는 헤드 유닛 및 헤드 서플라이 유닛
WO2016175512A1 (ko) 형성 가능한 플라스틱 재료를 위한 3d 입체물 제조 로봇
WO2017122943A1 (ko) 형성 가능한 플라스틱 재료로 이루어진 소재를 공급하는 소재 공급 장치 및 이를 포함하는 3d 입체물 제조 로봇
WO2016080767A1 (ko) 로봇 시스템 및 그를 갖는 3차원 프린터
WO2014104730A1 (ko) 연속 탄소섬유 강화 열가소성 프리프레그의 제조 방법
WO2013105748A1 (ko) 열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩 방법 및 그를 이용한 고압용기 및 그 제조방법
WO2017196137A1 (ko) 삼차원 물체 제조용 와이어 공급장치
WO2019117525A1 (ko) 섬유 장력 조절 장치, 이를 포함하는 섬유강화 복합재 제조 장치 및 그 제조 방법
US11413806B2 (en) Method for fabricating a 3D composite structure including smoothing of support structures
US10189215B2 (en) Laying device and a method for the laying down of fibre tapes
US20220080651A1 (en) System for deposition and fabrication of 3d integrated composite structures
WO2015174758A1 (ko) 장섬유 보강 플라스틱 복합재 및 장섬유 보강 플라스틱 복합재의 제조 방법
DK0525263T3 (da) Vakuumstøbefremgangsmåde og apparat til vakuumstøbning af fiberarmerede harpikssammensætninger
WO2022065801A1 (ko) 보호 케이스용 커버 부재 및 이의 제조방법
WO2021033992A1 (ko) 하이브리드형 섬유강화 복합재료 및 그 제조장치
WO2019093628A1 (ko) 불연속 일방향 배향 섬유강화 복합재의 제조방법, 불연속 일방향 배향 섬유강화 복합재 및 샌드위치 구조체
WO2019078412A1 (ko) 경화 장치 및 디스플레이 패널 경화 방법
WO2017131344A1 (ko) 프리프레그 제조 장치 및 이를 이용한 프리프레그 제조 방법
WO2018151548A1 (ko) 고분자 복합 재료를 활용한 3d 입체물 제조 로봇 시스템
JPS62182136A (ja) 軸ずれ防止機能付きガラスフアイバ被覆用押出機
KR101879684B1 (ko) 형성 가능한 플라스틱 재료로 이루어진 소재의 토출을 제어하는 헤드 유닛 및 헤드 서플라이 유닛
CN215964584U (zh) 一种光纤包覆层的固化设备
WO2018160033A2 (ko) 고분자 복합 재료를 활용한 3d 입체물 및 이의 제조 로봇 시스템
WO2024005501A1 (ko) 스티프너 제조장치, 이를 이용하는 스티프너 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16885252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16885252

Country of ref document: EP

Kind code of ref document: A1