WO2019117525A1 - 섬유 장력 조절 장치, 이를 포함하는 섬유강화 복합재 제조 장치 및 그 제조 방법 - Google Patents

섬유 장력 조절 장치, 이를 포함하는 섬유강화 복합재 제조 장치 및 그 제조 방법 Download PDF

Info

Publication number
WO2019117525A1
WO2019117525A1 PCT/KR2018/015254 KR2018015254W WO2019117525A1 WO 2019117525 A1 WO2019117525 A1 WO 2019117525A1 KR 2018015254 W KR2018015254 W KR 2018015254W WO 2019117525 A1 WO2019117525 A1 WO 2019117525A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
tension
roller
composite material
reinforced composite
Prior art date
Application number
PCT/KR2018/015254
Other languages
English (en)
French (fr)
Inventor
송강현
김희준
문영이
박상호
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180127370A external-priority patent/KR102362209B1/ko
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Publication of WO2019117525A1 publication Critical patent/WO2019117525A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H59/00Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators
    • B65H59/10Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators by devices acting on running material and not associated with supply or take-up devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H59/00Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators
    • B65H59/40Applications of tension indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H71/00Moistening, sizing, oiling, waxing, colouring or drying filamentary material as additional measures during package formation

Definitions

  • the present invention relates to a fiber tension adjusting device, an apparatus for manufacturing a fiber reinforced composite material including the same, and a manufacturing method thereof.
  • Fiber-reinforced composites have been attracting attention as industrial materials in automobile, aviation, electronics, construction, sports leisure and defense industries, and have the advantage of being able to change the composition relatively freely in the molding process.
  • Such a fiber-reinforced composite material is continuously produced by impregnating a thermosetting or thermoplastic resin into fibers continuously supplied in a forming process such as drawing and curing or solidifying in a mold.
  • a fiber reinforced unidirectional tape (hereinafter referred to as a "UD tape”) is a fiber reinforced unidirectional tape (hereinafter, referred to as a "UD tape") in which reinforcing fibers (eg, glass, carbon fiber, etc.) Refers to an intermediate substrate that is continuously produced and rolled in a tape form.
  • UD tapes have excellent mechanical properties and are used as reinforcing materials in low physical properties of injection molded parts.
  • a prior art related to the present invention is Korean Patent Laid-Open Publication No. 10-2013-0009888 (published on March 23, 2013), which discloses a technique for molding a molded article of a thermoplastic resin composite material.
  • Another object of the present invention is to provide a fiber-reinforced composite material manufacturing apparatus capable of improving the straightness and spreading performance of the fiber by controlling the tension of the fiber precisely, thereby improving the mechanical properties of the composite material.
  • Another object of the present invention is to improve the straightness and spreading performance of the fiber by the apparatus for manufacturing a fiber reinforced composite material to which the fiber tension adjusting device capable of improving the straightness and spreading performance of the fiber is applied to improve the mechanical properties of the composite material Reinforced composite material.
  • a fiber tension adjusting device includes a rotating arm having rollers for winding and feeding fibers, a tension sensor for detecting the tension of the fibers wound around the rollers, and a tension sensor And a driving cylinder for rotating the rotating arm in the forward and reverse directions so as to adjust the tension of the fiber supplied through the roller, wherein the tension sensor is provided in the rotating arm, The change of the position of the pivot arm can be detected.
  • one end of the pivot arm is rotatably connected by the first hinge, and the roller is provided at the other end of the pivot arm.
  • the tension sensor includes at least one positioning sensor provided inside the pivot arm.
  • a positioning sensor may be provided inside the pivoting arm to sense a change in tension of the fiber wound on the roller.
  • the driving cylinder may include an actuating rod protruding forward and backward, and a distal end of the actuating rod may be connected to the pivot arm through a second hinge.
  • the tension signal detected by the tension sensor is simultaneously transmitted to the driving cylinder and the servomotor of the bobbin, and may be used for controlling the pressure of the actuating rod and controlling the rotational speed of the servomotor.
  • the operation rod reduces the tension applied to the roller by pushing the pivot arm forward, and when the tension detected by the tension sensor is less than the set range The tension applied to the roller can be increased by pulling the pivoting arm backward.
  • an apparatus for manufacturing a fiber-reinforced composite material including: a bobbin for feeding and feeding fibers; a fiber supply unit including a fiber tension adjusting device for adjusting a tension of the fiber; And an impregnating mold portion for passing the fibers through the spreading portion and impregnating the resin with resin, wherein the fiber tension adjusting device includes a rotating arm having rollers for winding and feeding fibers, A tension sensor for detecting a tension, and a driving cylinder for rotating the rotating arm in the forward and reverse directions to adjust the tension of the fiber supplied through the roller by using the tension detected by the tension sensor, Is provided on the rotating arm and detects a change in the position of the rotating arm in accordance with a change in tension of the fiber wound on the roller .
  • a method for manufacturing a fiber-reinforced composite material using a fiber-reinforced composite material manufacturing apparatus comprising the steps of: (a) (C) a step of infiltrating the resin in the impregnating mold part through the spreading part and supplying the expanded fiber to the fiber-reinforced composite material A manufacturing method can be provided.
  • a fiber-reinforced composite material produced by using the apparatus for producing a fiber-reinforced composite material, wherein the fiber-reinforced composite material satisfies the following formula 1.
  • the present invention it is possible to precisely control the tensile force of the fiber during the production of the fiber-reinforced composite material, thereby improving the straightness and spreading performance of the fiber, thereby inducing impregnation.
  • This has the advantage of improving the surface quality and mechanical properties of the composite material.
  • FIG. 1 is a conceptual view briefly showing a fiber tension adjusting device according to an embodiment of the present invention.
  • FIG. 2 and FIG. 3 are conceptual views showing an operation in which tension is controlled by a fiber tension adjusting device according to an embodiment of the present invention.
  • FIG. 4 is a conceptual view briefly showing an apparatus for manufacturing a fiber-reinforced composite material including a fiber tension adjusting device according to an embodiment of the present invention.
  • FIG. 5 is a flowchart briefly showing a method of manufacturing a composite material according to an embodiment of the present invention.
  • FIG. 6 is a photograph showing the degree of spreading of fibers according to a conventional comparative example.
  • FIG. 7 is a photograph showing the degree of spreading of the fiber supplied through the fiber tension adjusting device according to the embodiment of the present invention.
  • the terms first, second, A, B, (a), (b), and the like can be used. These terms are intended to distinguish the components from other components, and the terms do not limit the nature, order, order, or number of the components.
  • the fiber-reinforced composite material refers to a composite material which can be continuously produced by impregnating a continuous fiber with resin by various molding processes such as drawing and curing or solidifying in an impregnation mold.
  • a fiber-reinforced unidirectional tape (hereinafter referred to as a "UD tape") is produced by impregnating a thermoplastic resin with a reinforcing fiber (eg, glass, carbon fiber or the like) .
  • the UD tape has excellent mechanical properties and can be used as a reinforcing material for various materials.
  • the fiber-tension control device of the present invention can maintain the tension of the reinforcing fiber uniformly .
  • FIG. 1 is a conceptual view briefly showing a fiber tension adjusting device according to an embodiment of the present invention.
  • a fiber tension control apparatus 100 includes a pivot arm 110 having a roller 120, a tension sensor 150 for detecting a tension of the fiber, And a driving cylinder 130 for adjusting the tension.
  • 'fiber' refers to a fiber-reinforced composite material, specifically, reinforcement fiber used for manufacturing a UD tape, such as glass fiber or carbon fiber.
  • the fibers are supplied to the spreading unit 300 (see FIG. 4) through the fiber supplying unit 200 (see FIG. 4).
  • the spreading unit 300 the supplied fibers are spread to a predetermined width, Supply.
  • the fiber may be impregnated with a resin (e.g., a thermoplastic resin) to produce a fiber-reinforced composite material.
  • a resin e.g., a thermoplastic resin
  • the fibers are wound and stored on the bobbin 1 and can be fed toward the spreading unit 300 (see FIG. 2) and the impregnating mold 400.
  • a plurality of guide rollers 5 and 7 for guiding the supply of fibers may be further provided.
  • the fibers f supplied from the bobbin 1 need to be adjusted to a uniform tension.
  • the straightness and spreading performance of the fiber may be deteriorated, which may adversely affect the surface quality of the fiber-reinforced composite material and lower the mechanical properties thereof.
  • the bobbin (1) is provided with a servomotor (1a) for rotating and driving the fiber so as to be fed out.
  • the fibers are fed from the bobbin 1 to the rollers 120 through a plurality of guide rollers 5,
  • One end of the pivoting arm 110 is connected to the first hinge 111 so that the first hinge 111 rotates in clockwise and counterclockwise directions about the rotation center.
  • a roller 120 is provided at the other end of the pivot arm 110, which is opposite to the first hinge 111.
  • the fibers supplied through the bobbin 1 and the guide rollers 5 and 7 are wound on the roller 120 provided at the other end of the pivoting arm 110 and then supplied while maintaining a constant tension in the set direction W .
  • the tension sensor 150 refers to a sensor that detects the tension of the fiber wound on the roller 120.
  • the tension sensor 150 is provided on the pivot arm 110.
  • the tension sensor 150 provided on the pivoting arm 110 can detect the change in the position of the pivoting arm 110 and detect the tension change of the fiber wound on the roller 120 quickly and accurately.
  • the tension sensor 150 which is a tension means for detecting the tension of the fiber, is not provided on a position different from that of the roller 120 and the pivoting arm 110 to which the fibers are wound, The tension of the fiber can be detected quickly and accurately.
  • the tension sensor 9150 may include at least one positioning sensor (not shown) provided inside the pivot arm 110 to detect a position of the pivot arm 110.
  • the tension signals S1 and S2 detected by the tension sensor 150 can be simultaneously transmitted to the driving cylinder 130 and the servomotor 1a of the bobbin 1 through which the operating rod pressure And the rotational speed of the servomotor 1a can be adjusted.
  • the tension sensor 150 may be located in the driving cylinder 130, but is not limited thereto and may be used in various forms.
  • the driving cylinder 130 adjusts the tension so that the tensile force of the fiber can be uniform within the target reference range by using the tension of the fiber detected by the tension sensor 150
  • the rotation of the pivoting arm 110 can be controlled for this purpose.
  • the driving cylinder 130 rotates the rotary arm 110 and the roller 120 in the direction of decreasing the tension of the fiber, Can be adjusted.
  • the driving cylinder 130 rotates the rotary arm 110 and the roller 120 in the direction of increasing the tension of the fiber, Can be adjusted.
  • the driving cylinder 130 includes an operating rod 131 that protrudes back and forth along the longitudinal direction of the cylinder according to the detected tension value detected by the tension sensor 150.
  • the driving cylinder 130 may be a pneumatic cylinder.
  • the present invention is not limited to this, and various linear driving actuators capable of controlling the protruding and retracting length of the actuating rod 131 can be used.
  • the front portion of the operation rod 131 is connected to the pivot arm 110 via the second hinge 133.
  • the rotation arm 110 and the roller 120 pivot in a clockwise or counterclockwise direction in response to the back and forth movement of the operation rod 131 and the tension of the fiber can be precisely controlled have.
  • FIG. 2 is a conceptual view showing an operation in which a tension is controlled by a fiber tension adjusting device according to an embodiment of the present invention, with reference to FIGS. 2 and 3.
  • FIG. 2 is a conceptual view showing an operation in which a tension is controlled by a fiber tension adjusting device according to an embodiment of the present invention, with reference to FIGS. 2 and 3.
  • FIG. 2 is a conceptual view showing an operation in which a tension is controlled by a fiber tension adjusting device according to an embodiment of the present invention, with reference to FIGS. 2 and 3.
  • a fiber adjustment device 100 is used to reduce the tension of the fiber.
  • the tension sensor 150 senses that the tension is increased and stops the tension of the fiber f when the tension of the fiber f supplied to the roller 120 in the set direction W exceeds the target reference range
  • the cylinder 130 moves the operation rod 131 forward.
  • the turning arm 110 and the roller 120 rotate in the clockwise direction in accordance with the forward driving of the operating rod 131 and the tension of the fiber f wound on the roller 120 is appropriately reduced to be maintained within the target reference range .
  • a fiber adjustment device 100 is used to increase the tension of the fiber.
  • the tension sensor 150 detects that the tension is reduced, 130 move the operating rod 131 rearward.
  • the turning arm 110 and the roller 120 are rotated counterclockwise in accordance with the retraction of the operation rod 131 and the tension of the fiber f wound on the roller 120 can be appropriately increased. As a result, the tension of the fiber (f) can be maintained within the target reference range.
  • the operation rod 131 may be pulled backward to increase the tension applied to the roller.
  • the fiber conditioning apparatus 100 can recognize the tension electronically and control the tension in real time or at a predetermined time period (e.g., 0.01 seconds, etc.). As a result, the tension range can be precisely controlled to about 1/10 of that of conventional mechanical krill.
  • a predetermined time period e.g. 0.01 seconds, etc.
  • FIG. 4 is a conceptual view briefly showing an apparatus for manufacturing a fiber-reinforced composite material including a fiber tension adjusting device according to an embodiment of the present invention.
  • the fiber-reinforced composite material manufacturing apparatus includes a fiber supply unit 200, a spreading unit 300, and a fiber supply unit 300.
  • the fiber supply unit 200 includes a bobbin 1 and a fiber tension controller 100, And an impregnating mold part 400.
  • the fibers supplied with the tension adjusted within the set range through the above-described fiber tension adjusting device 100 can be supplied to the spreading unit 300 through the fiber supplying unit 200.
  • the spreading unit 300 spreads the uniformly tensioned fibers with a predetermined width through the fiber supplying unit 200.
  • the fibers extended through the spreading unit 300 can be supplied to the impregnating mold 400.
  • the impregnating mold 400 receives the fibers from the spreading unit 300 and receives the resin through the resin injecting unit 410.
  • the resin is impregnated into the fibers in the impregnating mold 400.
  • FIG. 5 is a flowchart briefly showing a method of manufacturing a composite material according to an embodiment of the present invention.
  • a method for fabricating a composite material includes fiber tension control and fiber feeding (S110), spreading (S120), and impregnation (S130).
  • the tension of the fiber supplied through the above-described fiber tension adjusting device 100 can be adjusted to be within the set range.
  • the tension sensor 150 detects the tension of the fibers caught by the roller 120 of the pivoting arm 110 as shown in Fig.
  • the tension of the detected fiber is greater than or less than the set range
  • the operating rod 131 is projected and retracted to rotate the rotating arm 110 clockwise or counterclockwise as described in FIGS.
  • the tension of the fiber wound on the roller 120 can be reduced or increased, so that the tension of the fiber can be adjusted to be kept within the set range.
  • the tension range can be precisely controlled to about 1/10 of that of conventional mechanical krill.
  • the spreading step (S120) refers to a step of unfolding the fibers supplied from the fiber supply unit 200 (see Fig. 4). In this step, the fibers supplied with the tension adjusted through the fiber supplying unit 200 (see FIG. 4) are spread with a certain width.
  • the impregnation step S130 receives the expanded fibers through the spreading unit 300 (see FIG. 4), receives the resin through the resin injection unit 410 (see FIG. 4) And impregnating the resin with the resin.
  • the fiber reinforced composites manufactured through the fiber tension controlling and fiber supplying step (S110), the spreading step (S120), and the impregnating step (S130) have improved surface quality and mechanical properties .
  • FIG. 6 is a photograph showing a degree of spreading of fibers according to a conventional comparative example
  • FIG. 7 is a photograph showing a degree of spreading of a fiber supplied through a fiber tension adjusting device according to an embodiment of the present invention.
  • FIG. 6 the degree of spreading of the fiber (f) according to the conventional comparative example is shown.
  • a certain tension was maintained in the fiber by using a mechanical device using a leather strap and a spring.
  • an error occurred in the tension due to deformation and damage of the spring and the leather strap depending on the use for a long period of time.
  • fiber cracking and deflection (c) are somewhat generated. This may result in defects such as surface curvature of the fiber-reinforced composite material after impregnation due to lowering of straightness and spreading performance of the fiber, which may cause deterioration of mechanical properties.
  • the tension control of the fiber is precisely controlled by using the fiber tension control device 100 (see FIG. 1) according to an embodiment of the present invention.
  • a fiber-reinforced composite material produced using the apparatus for producing a fiber-reinforced composite material, wherein the fiber-reinforced composite material satisfies the following formula (1).
  • the formula 1 is intended to show the magnitude of the tensile strength [MPa] with respect to the unit density [g / cm 3 ], and may have a meaning as a non-strength meaning a magnitude of strength that can be realized at a certain weight.
  • the apparatus for manufacturing a fiber-reinforced composite material can improve the straightness and spreading performance of the fiber by precisely controlling the tension of the fiber during production of the composite material.
  • the fiber-reinforced composite material manufacturing apparatus the fiber-reinforced composite material produced from the composite material is realized by uniformly maintaining the tensile force between the fibers impregnated in one direction including the fiber, so that the straightness and spreading performance of the fiber are uniformly excellent do.
  • the fiber-reinforced composites have improved tensile strength as they have uniform linear straightening and spreading performance between the fibers. Although the average tension level of the fibers in the composite material is also important, the tensile strength can be further improved by uniformly reducing the deviation of the interfiber tension. Since the fibers in the fiber-reinforced composite material are individually formed to have a tensile force within the reference range by the tensile force sensor in the fiber-reinforced composite material producing apparatus, the deviation of the inter-fiber tension in the fiber-reinforced composite material is reduced.
  • the fiber-reinforced composite material is formed by reducing the unevenness of the tensile strength between the fibers and uniformly imparting the same, it is possible to achieve an excellent tensile strength under the same conditions such as density.
  • Equation (1) above means that the fiber-reinforced composite material is made from the fiber-reinforced composite material manufacturing apparatus, and thus excellent mechanical properties are achieved.
  • the method for producing the fiber-reinforced composite material may be the same as the fiber-reinforced composite material manufacturing method described above while using the fiber-reinforced composite material manufacturing apparatus.
  • the structure and the function of the present invention it is possible to precisely control the tension of the fiber supplied in the production of the fiber-reinforced composite material, thereby improving the straightness and spreading performance of the fiber. According to this, the surface quality of the fiber-reinforced composite material can be improved after impregnation, and the mechanical properties of the composite material can be further improved.
  • defects of various composites for example, defective bending of the product surface, deterioration of mechanical properties, and the like
  • a tension error when using a conventional device made of a material such as a spring and a leather strap can be prevented in advance.

Abstract

본 발명은 섬유의 직진도 및 펼침 성능을 향상시키고, 복합재의 기계적 물성을 향상시킬 수 있는 섬유 장력 조절 장치, 이를 포함하는 섬유강화 복합재 제조 장치 및 그 제조 방법에 관한 것이다. 본 발명의 일 실시예에 따른 섬유 장력 조절 장치는 섬유를 감아 공급하는 롤러를 구비하는 회동 암, 상기 롤러에 감긴 섬유의 장력을 검출하는 장력센서, 및 상기 장력센서에서 검출된 장력을 이용하여 상기 롤러를 통해 공급되는 섬유의 장력을 조절하도록 상기 회동 암을 정, 역 방향으로 회동시키는 구동 실린더를 포함한다.

Description

섬유 장력 조절 장치, 이를 포함하는 섬유강화 복합재 제조 장치 및 그 제조 방법
본 발명은 섬유 장력 조절 장치, 이를 포함하는 섬유강화 복합재 제조 장치 및 그 제조 방법에 관한 것이다.
섬유강화 복합재는 자동차, 항공, 전자, 건설, 스포츠 레저 및 국방 산업 등과 관련하여 산업재료로서 각광을 받고 있으며, 성형 공정에서 그 조성을 비교적 자유롭게 변화시킬 수 있는 장점이 있다.
이러한 섬유강화 복합재는 인발 등의 성형 공정에서 연속적으로 공급되는 섬유에 열경화성 또는 열가소성 수지가 함침되고, 몰드 내에서 경화 또는 응고가 이루어지면서 연속적으로 생산된다.
일 예로서, 섬유보강 일방향 테이프(Unidirectional Tape, 이하, 'UD 테이프'라 함)는 열가소성 수지에 강화섬유(예: Glass, Carbon Fiber 등)(이하, 간략히 '섬유'라 함)를 일방향으로 함침시켜 연속적으로 제조되며 테이프 형태로 감아 제공되는 중간기재를 말한다. 이러한 UD 테이프는 기계적 물성이 우수하여 사출 성형품의 물성이 낮은 부분에 보강재로 활용된다.
한편, UD 테이프와 같은 섬유강화 복합재의 물성을 강화시키기 위해서는 다양한 방법이 존재하지만, 그 중에서 함침 금형으로 공급되는 섬유의 직진도 및 펼침 성능을 향상시키는 것이 중요하다.
이를 위해, 종래에는 가죽 끈과 스프링을 이용한 기계식 크릴을 사용하여 섬유에 일정한 장력을 유지시켜주었다. 하지만 종래의 방식에 따르면 장기간 사용에 따라 스프링 및 가죽 끈의 변형 및 손상에 의해 각 섬유에 걸리는 장력에 큰 오차가 발생하는 문제가 있었다. 그 결과 섬유의 직진도 및 펼침 성능이 저하되어 함침 후의 섬유강화 복합재의 표면에 굴곡진 형상이 나타나거나 또는 섬유강화 복합재의 기계적 물성을 저하시키는 원인으로 작용하였다.
본 발명과 관련된 선행문헌으로는 대한민국 공개특허공보 제10-2013-0009888호(2013.01.23. 공개)가 있으며, 상기 선행문헌에는 열가소성 수지 복합 재료 성형품의 성형 방법에 관한 기술이 개시되어 있다.
본 발명의 목적은 섬유의 장력을 정밀하게 제어하여 섬유의 직진도 및 펼침 성능을 향상시킬 수 있는 섬유 장력 조절 장치를 제공함에 있다.
본 발명의 다른 목적은 섬유의 장력을 정밀하게 제어하여 섬유의 직진도 및 펼침 성능을 향상시켜 복합재의 기계적 물성을 향상시킬 수 있는 섬유강화 복합재 제조 장치를 제공함에 있다.
본 발명의 또 다른 목적은 섬유의 장력을 정밀하게 제어하여 섬유의 직진도 및 펼침 성능을 향상시켜 복합재의 기계적 물성을 향상시킬 수 있는 섬유강화 복합재 제조 방법을 제공함에 있다.
본 발명의 또 다른 목적은 섬유의 직진도 및 펼침 성능을 향상시킬 수 있는 섬유 장력 조절 장치를 적용한 상기 섬유강화 복합재 제조 장치에 의해, 섬유의 직진도 및 펼침 성능을 향상시켜 복합재의 기계적 물성을 향상시킨 섬유강화 복합재를 제공함에 있다.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명의 일 실시예에 따른 섬유 장력 조절 장치는, 섬유를 감아 공급하는 롤러를 구비하는 회동 암, 상기 롤러에 감긴 섬유의 장력을 검출하는 장력센서, 및 상기 장력센서에서 검출된 장력을 이용하여 상기 롤러를 통해 공급되는 섬유의 장력을 조절하도록 상기 회동 암을 정, 역 방향으로 회동시키는 구동 실린더를 포함하며, 상기 장력센서는 상기 회동 암에 구비되어, 상기 롤러에 감긴 섬유의 장력 변화에 따른 상기 회동 암의 포지션 변화를 감지할 수 있다.
이때, 상기 회동 암의 일단부는 제1 힌지에 의해 회동 가능하게 연결되고, 상기 회동 암의 타단부에는 상기 롤러가 구비될 수 있다.
또한, 상기 장력센서는 상기 회동 암의 내부에 구비되는 적어도 하나의 포지셔닝 센서를 포함한다. 포지셔닝 센서가 회동 암의 내부에 구비되어 롤러에 감긴 섬유의 장력 변화를 감지할 수 있다. 이로써, 회동 암과 떨어진 위치에서 장력을 검출하지 않으며, 회동 암과 일체로 구성되어 롤러에 감겨진 섬유의 장력을 신속하고 정확하게 검출할 수 있다.
또한, 상기 구동 실린더는 전후로 출몰하는 작동 로드를 구비하며, 상기 작동 로드의 선단은 상기 회동 암과 제2 힌지를 통해 연결될 수 있다.
또한, 상기 장력센서에서 검출된 장력 신호는 상기 구동 실린더와, 보빈의 서보모터에 동시 전송되며, 상기 작동 로드의 압력 조절 및 상기 서보모터의 회전속도 조절에 이용될 수 있다.
또한, 상기 작동 로드는, 상기 장력센서에서 검출된 장력이 설정범위를 초과할 때, 상기 회동 암을 전방으로 밀어 상기 롤러에 걸린 장력을 감소시켜주며, 상기 장력센서에서 검출된 장력이 설정범위 미만일 때, 상기 회동 암을 후방으로 당겨 상기 롤러에 걸린 장력을 증가시켜줄 수 있다.
본 발명의 다른 실시예에 따른 섬유강화 복합재 제조 장치는 섬유를 권출하여 공급하는 보빈과, 섬유의 장력을 조절하는 섬유 장력 조절 장치를 포함하는 섬유공급부, 상기 섬유공급부에서 공급된 섬유를 펼치는 스프레딩부, 및 상기 스프레딩부를 통과한 섬유를 통과시키며 섬유에 수지를 함침하는 함침금형부를 포함하며, 상기 섬유 장력 조절 장치는, 섬유를 감아 공급하는 롤러를 구비하는 회동 암, 상기 롤러에 감긴 섬유의 장력을 검출하는 장력센서, 및 상기 장력센서에서 검출된 장력을 이용하여 상기 롤러를 통해 공급되는 섬유의 장력을 조절하도록 상기 회동 암을 정, 역 방향으로 회동시키는 구동 실린더를 포함하고, 상기 장력센서는 상기 회동 암에 구비되어, 상기 롤러에 감긴 섬유의 장력 변화에 따른 상기 회동 암의 포지션 변화를 감지할 수 있다.
본 발명의 또 다른 실시예에 따르면 섬유강화 복합재 제조 장치를 이용한 섬유강화 복합재 제조 방법으로서, (a) 상기 섬유공급부에서, 섬유의 장력을 조절하여 설정된 장력이 유지되도록 섬유를 공급하는 단계, (b) 상기 스프레딩부에서, 상기 섬유공급부를 통해 공급된 섬유를 펼치는 단계, 및 (c) 상기 함침금형부에서, 상기 스프레딩부를 거쳐 펼쳐진 섬유를 공급받아 수지를 함침하는 단계를 포함하는 섬유강화 복합재 제조 방법을 제공할 수 있다.
본 발명의 또 다른 실시예에 따르면, 섬유강화 복합재 제조 장치를 이용하여 제조된 섬유강화 복합재로서, 하기 식 1을 만족하는 섬유강화 복합재를 제공할 수 있다.
[식 1]
인장 강도/밀도 ≥ 1350 MPa·cm3/g
본 발명에 의하면 섬유강화 복합재의 제조 시 섬유의 장력을 정밀하게 제어하여 섬유의 직진도 및 펼침 성능을 향상시켜 함침을 유도할 수 있다. 이에 따르면, 복합재의 표면 품질과 기계적 물성을 향상시킬 수 있는 장점이 있다.
또한, 본 발명에 의하면 섬유 공급 시 장력 오차로 인해 발생되는 다양한 복합재의 불량 현상(예: 제품 표면의 굴곡 불량, 기계적 물성 저하 등)을 방지할 수 있다.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.
도 1은 본 발명의 일 실시예에 따른 섬유 장력 조절 장치를 간략히 도시한 개념도이다.
도 2 및 도 3은 본 발명의 일 실시예에 따른 섬유 장력 조절 장치에 의해 장력이 조절되는 작동 모습을 보여주는 개념도이다.
도 4는 본 발명의 일 실시예에 따른 섬유 장력 조절 장치를 포함하는 섬유강화 복합재 제조 장치를 간략히 도시한 개념도이다.
도 5는 본 발명의 일 실시예에 따른 복합재 제조 방법을 간략히 도시한 순서도이다.
도 6은 종래의 비교예에 따른 섬유의 펼침 정도를 나타낸 사진이다.
도 7은 본 발명의 일 실시예에 따른 섬유 장력 조절 장치를 통해 공급된 섬유의 펼침 정도를 보여주는 사진이다.
이하, 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다. 또한, 본 발명의 일부 실시예들을 예시적인 도면을 참조하여 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가질 수 있다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 수 있다.
본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질, 차례, 순서 또는 개수 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 다른 구성 요소가 "개재"되거나, 각 구성 요소가 다른 구성 요소를 통해 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
또한, 본 발명을 구현함에 있어서 설명의 편의를 위하여 구성요소를 세분화하여 설명할 수 있으나, 이들 구성요소가 하나의 장치 또는 모듈 내에 구현될 수도 있고, 혹은 하나의 구성요소가 다수의 장치 또는 모듈들에 나뉘어져서 구현될 수도 있다.
본 발명에서, 섬유강화 복합재는 인발 등의 다양한 성형 공정을 이용하여 연속적으로 공급되는 섬유에 수지를 함침하고, 함침금형 내에서 경화 또는 응고가 이루어지도록 하여 연속적으로 생산이 가능한 복합재료를 말한다. 예컨대, 섬유보강 일방향 테이프(Unidirectional Tape, 이하, 'UD 테이프'라 함)는 열가소성 수지에 강화섬유(예: Glass, Carbon Fiber 등)(이하, 간략히 '섬유'라 함)를 일방향으로 함침시켜 연속적으로 제조된다. UD 테이프는 기계적 물성이 우수하여 다양한 소재의 보강재로 활용될 수 있다.
UD 테이프와 같은 섬유강화 복합재의 물성을 강화시키기 위해서는 강화 섬유의 직진도 및 펼침 성능을 향상시키는 것이 중요한데, 이하에서 설명될 본 발명의 섬유 장력 조절 장치는 강화 섬유의 장력을 균일하게 유지시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 섬유 장력 조절 장치를 간략히 도시한 개념도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 섬유 장력 조절 장치(100)는 롤러(120)를 구비하는 회동 암(110), 섬유의 장력을 검출하는 장력센서(150), 그리고 섬유의 장력을 조절하는 구동 실린더(130)를 포함한다.
여기서, '섬유'는 섬유강화 복합소재, 구체적으로는 UD 테이프를 제조하는데 이용되는 강화 섬유로서, 유리 섬유(Glass Fiber) 또는 탄소 섬유(Carbon Fiber) 등을 말한다.
이러한 섬유는 섬유공급부(200, 도 4 참조)를 통해 스프레딩부(300, 도 4 참조)로 공급되며, 스프레딩부(300)에서는 공급된 섬유를 일정한 폭으로 펼친 후 함침금형(400)으로 공급한다. 이어서, 함침금형(400)에서는 섬유에 수지(예: 열가소성 수지 등)가 함침되어, 섬유강화 복합재가 제조될 수 있다.
도 1에 도시된 바와 같이, 섬유는 보빈(1)에 감아 보관되는데, 스프레딩부(300, 도 2 참조) 및 함침금형(400)을 향해 공급될 수 있다. 이때, 필요에 따라 섬유의 공급을 가이드 해주는 다수 개의 가이드 롤러(5, 7)가 더 구비되어 이용될 수 있다.
한편, 보빈(1)에서 공급되는 섬유(f)는 균일한 장력으로 조절될 필요성이 있다.
만일, 섬유의 장력이 정밀하게 제어되지 못할 경우 섬유의 직진도 및 펼침 성능이 저하되어 섬유강화 복합재의 표면 품질을 저하시키며 기계적 물성을 낮추는 악영향을 끼칠 수 있기 때문이다.
보빈(1)은 섬유를 권출하여 공급하도록 회전 구동하는 서보모터(1a)를 구비한다.
섬유는 보빈(1)에서 권출된 후 다수 개의 가이드 롤러(5, 7)를 거쳐 롤러(120)까지 공급된다.
회동 암(110)은 일단부가 제1 힌지(111)에 연결되어 제1 힌지(111)를 회전중심으로 정, 역 방향, 즉 시계방향 또는 반시계 방향으로 시계 추와 같이 회동한다.
제1 힌지(111)의 반대 편인 회동 암(110)의 타단부에는 롤러(120)가 구비된다.
보빈(1) 및 가이드 롤러(5, 7)을 통해 공급된 섬유는 회동 암(110)의 타단부에 구비된 롤러(120)에 감겨진 후 설정 방향(W)으로 일정한 장력을 유지하며 공급된다.
장력센서(150)는 롤러(120)에 감겨 공급되는 섬유의 장력을 검출하는 센서를 말한다.
구체적인 예로서, 장력센서(150)는 회동 암(110)에 구비된다. 이와 같이 구성됨에 따라, 회동 암(110)에 구비된 장력센서(150)는 회동 암(110)의 포지션 변화를 감지하여 롤러(120)에 감긴 섬유의 장력 변화를 신속하고 정확하게 검출할 수 있다.
다시 말해, 섬유의 장력을 검출하는 장력수단인 장력센서(150)는 섬유가 감겨 공급되는 롤러(120) 및 회동 암(110)과 다른 위치상에 설치되지 않으며, 회동 암(110)와 일체형 구조로 이루어짐에 따라 섬유의 장력을 신속하고 정확하게 검출할 수 있다.
예컨대, 장력센서9150)는 회동 암(110)의 내부에 구비되어 회동 암(110)의 포지션을 검출하는 적어도 하나의 포지셔닝 센서(미도시)를 포함하여 구성될 수 있다.
장력센서(150)에서 검출된 장력 신호(S1, S2)는 구동 실린더(130)와 보빈(1)의 서보모터(1a)에 동시 전송될 수 있는데, 이를 통해 구동 실린더(130)의 작동 로드 압력을 조절하고, 서보모터(1a)의 회전속도를 조절할 수 있다.
이와 다른 예로서, 장력센서(150)는 구동 실린더(130)에 위치할 수 있는데, 이에 한정되지 않으며 다양한 형태로 변경되어 이용될 수 있다.
구동 실린더(130)는 장력센서(150)에서 검출된 섬유의 장력(이하, '장력 검출치'라 함)을 이용하여, 섬유의 장력이 목표한 기준 범위 내에서 균일해질 수 있도록 장력을 조절하는데, 이를 위해 회동 암(110)의 회동을 제어할 수 있다.
다시 말해, 구동 실린더(130)는 장력 검출치가 기준 범위보다 클 경우 섬유의 장력을 감소시키는 방향으로 회동 암(110) 및 롤러(120)를 회동시켜, 장력 검출치가 기준 범위 내에 포함되도록 섬유의 장력을 조절할 수 있다.
이와 반대로, 구동 실린더(130)는 장력 검출치가 기준 범위보다 작을 경우 섬유의 장력을 증가시키는 방향으로 회동 암(110) 및 롤러(120)를 회동시켜, 장력 검출치가 기준 범위 내에 포함되도록 섬유의 장력을 조절할 수 있다.
구체적으로는, 구동 실린더(130)는 장력센서(150)에서 검출된 장력 검출치에 따라 실린더의 길이 방향을 따라 전후로 출몰하는 작동 로드(131)를 포함한다.
예컨대, 구동 실린더(130)는 공압 실린더를 이용할 수 있는데, 이에 한정되지 않으며, 작동 로드(131)를 전후로 출몰시키며 출몰 길이를 제어할 수 있는 다양한 직선 구동형 액츄에이터를 이용할 수 있다.
작동 로드(131)의 앞쪽 부위(이하, '선단'이라 함)는 회동 암(110)과 제2 힌지(133)를 통해 연결된다. 이와 같이 연결됨에 따라, 작동 로드(131)의 전후 이동에 따라 회동 암(110)과 롤러(120)는 시계 방향 또는 반시계 방향으로 시계 추와 같이 회동을 하며 섬유의 장력을 정밀하게 제어할 수 있다.
도 2 및 도 3을 참조하여 본 발명의 일 실시예에 따른 섬유 장력 조절 장치에 의해 장력이 조절되는 작동 모습을 보여주는 개념도이다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 섬유 조절 장치(100)를 이용하여 섬유의 장력을 감소시켜주는 모습을 보여준다.
롤러(120)에 감겨 설정 방향(W)으로 공급되는 섬유(f)의 장력이 목표하는 기준 범위(즉, 설정범위)를 초과한 경우, 장력센서(150)는 장력이 증가되었음을 감지하고, 구동 실린더(130)는 작동 로드(131)를 전방으로 이동시킨다. 작동 로드(131)의 전진 구동에 따라 회동 암(110)과 롤러(120)는 시계 방향으로 회동하며, 롤러(120)에 감긴 섬유(f)의 장력은 적절히 감소되어 목표하는 기준 범위 이내로 유지될 수 있다.
도 3을 참조하면, 본 발명의 일 실시예에 따른 섬유 조절 장치(100)를 이용하여 섬유의 장력을 증가시키는 모습을 보여준다.
롤러(120)에 감겨 설정 방향(W)으로 공급되는 섬유(f)의 장력이 목표하는 기준 범위(즉, 설정범위) 미만일 경우, 장력센서(150)는 장력이 감소되었음을 감지고, 구동 실린더(130)는 작동 로드(131)를 후방으로 이동시킨다. 작동 로드(131)의 후퇴 구동에 따라 회동 암(110)과 롤러(120)는 반시계 방향으로 회동하며, 롤러(120)에 감긴 섬유(f)의 장력은 적절히 증가될 수 있다. 그 결과, 섬유(f)의 장력을 목표하는 기준 범위 이내로 유지시킬 수 있다.
즉, 작동 로드(131)는 도 2에 도시된 바와 같이 장력센서(150)에서 검출된 장력이 설정범위를 초과할 때, 회동 암(110)을 전방으로 밀어 롤러(120)에 걸린 장력을 감소시켜줄 수 있다.
이와 반대로 작동 로드(131)는 도 3에 도시된 바와 같이 장력센서(150)에서 검출된 장력이 설정범위 미만일 때, 회동 암(110)을 후방으로 당겨 상기 롤러에 걸린 장력을 증가시켜줄 수 있다.
이와 같이, 본 발명의 일 실시예에 따른 섬유 조절 장치(100)는 전자식으로 장력을 인지하여 실시간 또는 일정시간주기(예: 0.01초 등)마다 장력을 제어할 수 있다. 이에 따르면 기존의 기계식 크릴과 비교하여 대략 1/10 수준으로 장력 범위를 정밀하게 제어할 수 있다.
도 4는 본 발명의 일 실시예에 따른 섬유 장력 조절 장치를 포함하는 섬유강화 복합재 제조 장치를 간략히 도시한 개념도이다.
도 4를 참조하면, 섬유강화 복합재 제조 장치는 앞서 설명한 보빈(1)과 섬유 장력 조절 장치(100)를 포함하여 장력이 조절된 섬유를 공급하는 섬유공급부(200), 스프레딩부(300), 그리고 함침금형부(400)를 포함한다.
전술된 섬유 장력 조절 장치(100)를 통해 설정범위 내로 장력이 조절되어 공급되는 섬유는 섬유공급부(200)를 통해 스프레딩부(300)로 공급될 수 있다.
스프레딩부(300)는 섬유공급부(200)를 통해 균일한 장력으로 조절된 섬유를 일정한 폭으로 펼치는 작업을 수행한다. 그리고 스프레딩부(300)를 통해 펼쳐진 섬유는 함침금형(400)에 공급될 수 있다.
함침금형(400)은 스프레딩부(300)에서 섬유를 공급받으며, 이와 함께 수지주입부(410)를 통해 수지를 공급받는데, 함침금형(400) 내에서 수지는 섬유에 함침된다.
도 5는 본 발명의 일 실시예에 따른 복합재 제조 방법을 간략히 도시한 순서도이다.
도 5를 참조하면, 본 발명의 일 실시예에 따른 복합재 제조 방법은 섬유 장력 조절 및 섬유 공급 단계(S110), 스프레딩 단계(S120), 그리고 함침 단계(S130)를 포함한다.
섬유 장력 조절 및 섬유 공급 단계(S110)에서는, 전술된 섬유 장력 조절 장치(100, 도 4 참조)를 통해 공급되는 섬유의 장력을 설정범위 내로 조절하여 공급할 수 있다.
이 단계에서 장력센서(150)는 도 1에 도시된 바와 같이 회동 암(110)의 롤러(120)에 걸린 섬유의 장력을 검출한다. 그리고 검출된 섬유의 장력이 설정범위를 초과하거나 미만일 경우 도 2 및 도 3에서 설명한 바와 같이 작동 로드(131)를 출몰시켜 회동 암(110)을 시계 또는 반시계 방향으로 회동시킨다. 이와 같은 방식으로 롤러(120)에 감긴 섬유의 장력을 감소시키거나 증가시킬 수 있어 섬유의 장력이 설정범위 내에 유지되도록 조절할 수 있다. 이에 따르면 기존의 기계식 크릴과 비교하여 대략 1/10 수준으로 장력 범위를 정밀하게 제어할 수 있다.
스프레딩 단계(S120)는 섬유공급부(200, 도 4 참조)에서 공급된 섬유를 펼치는 단계를 말한다. 이 단계에서는, 섬유공급부(200, 도 4 참조)를 통해 장력이 조절된 상태로 공급된 섬유를 일정한 폭으로 펼치는 작업을 수행한다.
함침 단계(S130)는 스프레딩부(300, 도 4 참조)를 통해 펼쳐진 섬유를 공급받으며 이와 함께 수지주입부(410, 도 4 참조)를 통해 수지를 공급받아 함침금형(400, 도 4 참조) 내에서 섬유에 수지를 함침하는 단계를 말한다.
이러한 섬유 장력 조절 및 섬유 공급 단계(S110), 스프레딩 단계(S120), 그리고 함침 단계(S130)를 거쳐 제조된 섬유강화 복합재는 섬유의 직진도 및 펼침 성능 향상으로 인해 표면 품질 및 기계적 물성이 향상될 수 있다.
도 6은 종래의 비교예에 따른 섬유의 펼침 정도를 나타낸 사진이고, 도 7은 본 발명의 일 실시예에 따른 섬유 장력 조절 장치를 통해 공급된 섬유의 펼침 정도를 보여주는 사진이다.
도 6을 참조하면, 종래의 비교예에 따른 섬유(f)의 펼침 정도를 보여준다. 종래의 경우 가죽 끈과 스프링을 이용한 기계식 장치를 이용하여 섬유에 일정한 장력을 유지시켜 주었는데, 장기간 사용에 따라 스프링 및 가죽 끈의 변형 및 손상에 의해 장력에 오차가 발생하였다. 이에 따라, 섬유 갈라짐 및 벌어짐 불량(c)이 다소 발생되는 문제가 있었다. 이는 섬유의 직진도 및 펼침 성능을 저하시켜 함침 후에 섬유강화 복합재의 표면 굴곡 등의 불량을 초래할 수 있으며, 기계적 물성을 저하시키는 원인이 될 수 있었다.
도 7을 참조하면, 본 발명의 일 실시예에 따른 섬유 장력 조절 장치(100, 도 1 참조)를 이용함으로써, 섬유의 장력 조절이 정밀하게 제어된 경우를 보여준다.
즉, 전술한 섬유 장력 조절 장치(100, 도 1 참조)를 이용하여 섬유의 장력(f)을 설정범위 내로 균일하게 조절해 줌으로써 종래의 비교예를 통해 나타난 섬유 갈라짐 및 벌어짐 불량(c, 도 6 참조)이 전혀 발생되지 않았다.
본 발명의 또 다른 실시예에서, 상기 섬유강화 복합재 제조 장치를 이용하여 제조된 섬유강화 복합재를 제공하고, 상기 섬유강화 복합재는 하기 식 1을 만족한다.
[식 1]
인장 강도/밀도 ≥ 1350 MPa·cm3/g
상기 식 1은 단위 밀도 [g/cm3]에 대한 인장 강도 [MPa]의 크기를 나타내고자 한 것으로서, 일정 중량에서 구현할 수 있는 강도의 크기를 의미하는 비강도로서의 의미를 가질 수 있다.
전술한 바와 같이, 상기 섬유강화 복합재 제조 장치는 복합재의 제조시 섬유의 장력을 정밀하게 제어하여 섬유의 직진도 및 펼침 성능을 향상시킬 수 있다. 그 결과, 상기 섬유강화 복합재 제조 장치는 복합재로부터 제조된 섬유강화 복합재는 포함된 일방향으로 함침된 섬유간의 장력이 균일하게 유지되어 구현되고, 그에 따라, 섬유의 직진도와 펼침 성능이 전체적으로 균일하게 우수하게 된다.
섬유간 균일하게 우수한 직진도와 펼침 성능을 가지게 됨에 따라, 상기 섬유강화복합재는 인장 강도가 향상된다. 복합재 내의 섬유의 평균 장력 수준도 중요하지만, 균일하게 섬유간 장력의 편차를 줄여서 제조됨으로써, 더욱 인장 강도를 향상시킬 수 있다. 상기 섬유강화 복합재 제조 장치 중 장력센서에 의해서 상기 섬유강화 복합재 중의 섬유가 개별적으로 기준 범위 내에 장력을 가지도록 형성되기 때문에, 상기 섬유강화 복합재 내의 섬유간 장력의 편차가 줄어든다.
이와 같이, 상기 섬유강화 복합재는 섬유간 장력의 편차가 줄어들고 균일하게 부여되어 형성됨에 따라, 밀도 등의 조건이 동일한 상황에서 보다 우수한 인장 강도를 달성하게 된다.
상기 식 1은 상기 섬유강화 복합재가 상기 섬유강화 복합재 제조 장치로부터 제조되었기 때문에 우수한 기계적 물성을 달성함을 의미한다.
상기 섬유강화 복합재를 제조하는 방법은 상기 섬유강화 복합재 제조 장치를 이용하면서, 전술하여 설명된 상기 섬유강화 복합재 제조 방법에 따를 수 있다.
상술한 바와 같이, 본 발명의 구성 및 작용에 따르면, 섬유강화 복합재의 제조 시 공급되는 섬유의 장력을 정밀하게 제어하여 섬유의 직진도 및 펼침 성능을 향상시킬 수 있다. 이에 따르면, 함침 후에 섬유강화 복합재의 표면 품질을 향상시킬 수 있으며, 복합재의 기계적 물성을 더욱 향상시킬 수 있다.
나아가, 스프링 및 가죽 끈 등의 소재로 이루어진 종래의 장치를 사용할 때의 장력 오차로 인한 다양한 복합재의 불량(예: 제품 표면의 굴곡 불량, 기계적 물성 저하 등)을 미연에 방지할 수 있다.
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다.

Claims (14)

  1. 섬유를 감아 공급하는 롤러를 구비하는 회동 암;
    상기 롤러에 감긴 섬유의 장력을 검출하는 장력센서; 및
    상기 장력센서에서 검출된 장력을 이용하여 상기 롤러를 통해 공급되는 섬유의 장력을 조절하도록 상기 회동 암을 정, 역 방향으로 회동시키는 구동 실린더;를 포함하며,
    상기 장력센서는 상기 회동 암에 구비되어, 상기 롤러에 감긴 섬유의 장력 변화에 따른 상기 회동 암의 포지션 변화를 감지하는
    섬유 장력 조절 장치.
  2. 제1항에 있어서,
    상기 회동 암의 일단부는 제1 힌지에 의해 회동 가능하게 연결되고,
    상기 회동 암의 타단부에는 상기 롤러가 구비되는
    섬유 장력 조절 장치.
  3. 제1항에 있어서,
    상기 장력센서는,
    상기 회동 암의 내부에 구비되는 적어도 하나의 포지셔닝 센서를 포함하는
    섬유 장력 조절 장치.
  4. 제1항에 있어서,
    상기 구동 실린더는 전후로 출몰하는 작동 로드를 구비하며,
    상기 작동 로드의 선단은 상기 회동 암과 제2 힌지를 통해 연결되는
    섬유 장력 조절 장치.
  5. 제4항에 있어서,
    상기 장력센서에서 검출된 장력 신호는,
    상기 구동 실린더와, 보빈의 서보모터에 동시 전송되며,
    상기 작동 로드의 압력 조절 및 상기 서보모터의 회전속도 조절에 이용되는
    섬유 장력 조절 장치.
  6. 제5항에 있어서,
    상기 작동 로드는,
    상기 장력센서에서 검출된 장력이 설정범위를 초과할 때, 상기 회동 암을 전방으로 밀어 상기 롤러에 걸린 장력을 감소시켜주며,
    상기 장력센서에서 검출된 장력이 설정범위 미만일 때, 상기 회동 암을 후방으로 당겨 상기 롤러에 걸린 장력을 증가시켜주는
    섬유 장력 조절 장치.
  7. 섬유를 권출하여 공급하는 보빈과, 섬유의 장력을 조절하는 섬유 장력 조절 장치를 포함하는 섬유공급부;
    상기 섬유공급부에서 공급된 섬유를 펼치는 스프레딩부; 및
    상기 스프레딩부를 통과한 섬유를 통과시키며 섬유에 수지를 함침하는 함침금형부;를 포함하며,
    상기 섬유 장력 조절 장치는,
    섬유를 감아 공급하는 롤러를 구비하는 회동 암;
    상기 롤러에 감긴 섬유의 장력을 검출하는 장력센서; 및
    상기 장력센서에서 검출된 장력을 이용하여 상기 롤러를 통해 공급되는 섬유의 장력을 조절하도록 상기 회동 암을 정, 역 방향으로 회동시키는 구동 실린더;를 포함하고,
    상기 장력센서는 상기 회동 암에 구비되어, 상기 롤러에 감긴 섬유의 장력 변화에 따른 상기 회동 암의 포지션 변화를 감지하는
    섬유강화 복합재 제조 장치.
  8. 제7항에 있어서,
    상기 회동 암의 일단부는 제1 힌지에 의해 회동 가능하게 연결되고,
    상기 회동 암의 타단부에는 상기 롤러가 구비되는
    섬유강화 복합재 제조 장치.
  9. 제7항에 있어서,
    상기 장력센서는,
    상기 회동 암의 내부에 구비되는 적어도 하나의 포지셔닝 센서를 포함하는
    섬유강화 복합재 제조 장치.
  10. 제7항에 있어서,
    상기 구동 실린더는 전후로 출몰하는 작동 로드를 구비하며,
    상기 작동 로드의 선단은 상기 회동 암과 제2 힌지를 통해 연결되는
    섬유강화 복합재 제조 장치.
  11. 제10항에 있어서,
    상기 장력센서에서 검출된 장력 신호는,
    상기 구동 실린더와, 상기 보빈의 서보모터에 동시 전송되며,
    상기 작동 로드의 압력 조절 및 상기 서보모터의 회전속도 조절에 이용되는
    섬유강화 복합재 제조 장치.
  12. 제11항에 있어서,
    상기 작동 로드는,
    상기 장력센서에서 검출된 장력이 설정범위를 초과할 때, 상기 회동 암을 전방으로 밀어 상기 롤러에 걸린 장력을 감소시켜주며,
    상기 장력센서에서 검출된 장력이 설정범위 미만일 때, 상기 회동 암을 후방으로 당겨 상기 롤러에 걸린 장력을 증가시켜주는
    섬유강화 복합재 제조 장치.
  13. 제7항 내지 제12항 중 어느 한 항의 섬유강화 복합재 제조 장치를 이용한 섬유강화 복합재 제조 방법으로서,
    (a) 상기 섬유공급부에서, 섬유의 장력을 조절하여 설정된 장력이 유지되도록 섬유를 공급하는 단계;
    (b) 상기 스프레딩부에서, 상기 섬유공급부를 통해 공급된 섬유를 펼치는 단계;
    (c) 상기 함침금형부에서, 상기 스프레딩부를 거쳐 펼쳐진 섬유를 공급받아 수지를 함침하는 단계;
    를 포함하는 섬유강화 복합재 제조 방법.
  14. 제7항 내지 제12항 중 어느 한 항의 섬유강화 복합재 제조 장치를 이용하여 제조된 섬유강화 복합재이고, 상기 섬유강화 복합재는 하기 식 1을 만족하는 섬유강화 복합재.
    [식 1]
    인장 강도/밀도 ≥ 1350 MPa·cm3/g
PCT/KR2018/015254 2017-12-11 2018-12-04 섬유 장력 조절 장치, 이를 포함하는 섬유강화 복합재 제조 장치 및 그 제조 방법 WO2019117525A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0169513 2017-12-11
KR20170169513 2017-12-11
KR10-2018-0127370 2018-10-24
KR1020180127370A KR102362209B1 (ko) 2017-12-11 2018-10-24 섬유 장력 조절 장치, 이를 포함하는 섬유강화 복합재 제조 장치 및 그 제조 방법

Publications (1)

Publication Number Publication Date
WO2019117525A1 true WO2019117525A1 (ko) 2019-06-20

Family

ID=66819318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015254 WO2019117525A1 (ko) 2017-12-11 2018-12-04 섬유 장력 조절 장치, 이를 포함하는 섬유강화 복합재 제조 장치 및 그 제조 방법

Country Status (1)

Country Link
WO (1) WO2019117525A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110775676A (zh) * 2019-11-01 2020-02-11 西安交通大学 用于碳纤维预浸带稳定输送的角度式张力控制方法及装置
CN114318701A (zh) * 2022-02-21 2022-04-12 南通宏澳纺织有限公司 一种刺绣机的织物拉紧装置和刺绣机
WO2022156013A1 (zh) * 2021-01-22 2022-07-28 北京航空航天大学 一种用于纤维束张力调控的变杆长刚柔耦合机构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990068573A (ko) * 1999-06-03 1999-09-06 백남룡 실장력조절장치
KR101374804B1 (ko) * 2012-09-28 2014-03-17 임한석 섬유 장력조절장치
JP2015039853A (ja) * 2013-08-22 2015-03-02 村田機械株式会社 フィラメントワインディング装置
JP2016068365A (ja) * 2014-09-30 2016-05-09 トヨタ自動車株式会社 フィラメントワインディング装置
KR20160054661A (ko) * 2014-11-06 2016-05-17 한화첨단소재 주식회사 일방향 연속섬유강화 열가소성 복합재 제조장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990068573A (ko) * 1999-06-03 1999-09-06 백남룡 실장력조절장치
KR101374804B1 (ko) * 2012-09-28 2014-03-17 임한석 섬유 장력조절장치
JP2015039853A (ja) * 2013-08-22 2015-03-02 村田機械株式会社 フィラメントワインディング装置
JP2016068365A (ja) * 2014-09-30 2016-05-09 トヨタ自動車株式会社 フィラメントワインディング装置
KR20160054661A (ko) * 2014-11-06 2016-05-17 한화첨단소재 주식회사 일방향 연속섬유강화 열가소성 복합재 제조장치 및 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110775676A (zh) * 2019-11-01 2020-02-11 西安交通大学 用于碳纤维预浸带稳定输送的角度式张力控制方法及装置
WO2022156013A1 (zh) * 2021-01-22 2022-07-28 北京航空航天大学 一种用于纤维束张力调控的变杆长刚柔耦合机构
CN114318701A (zh) * 2022-02-21 2022-04-12 南通宏澳纺织有限公司 一种刺绣机的织物拉紧装置和刺绣机
CN114318701B (zh) * 2022-02-21 2022-12-16 南通宏澳纺织有限公司 一种刺绣机的织物拉紧装置和刺绣机

Similar Documents

Publication Publication Date Title
WO2019117525A1 (ko) 섬유 장력 조절 장치, 이를 포함하는 섬유강화 복합재 제조 장치 및 그 제조 방법
WO2017122941A1 (ko) 헤드 유닛의 이동과, 형성 가능한 플라스틱 재료의 텐션 및 온도를 제어하는 트랜스포머
WO2016175512A1 (ko) 형성 가능한 플라스틱 재료를 위한 3d 입체물 제조 로봇
WO2017122942A1 (ko) 형성 가능한 플라스틱 재료로 이루어진 소재의 토출을 제어하는 헤드 유닛 및 헤드 서플라이 유닛
WO2019107991A1 (ko) 연속섬유 보강 열가소성 수지 복합재료 및 그 제조방법
WO2012036340A1 (ko) 발포 폼보드 원단 커팅장치
CN106769545B (zh) 碳纤维丝束可展开性测试装置及测量方法
WO2019054787A2 (ko) 이송필름을 이용한 강화플라스틱 파이프 연속 제조장치 및 제조방법
CN110202805A (zh) 一种热塑性连续纤维展纱设备
KR20190069289A (ko) 섬유 장력 조절 장치, 이를 포함하는 섬유강화 복합재 제조 장치 및 그 제조 방법
EP1516861B1 (de) Vorrichtung und Verfahren zum Konfektionieren optischer Fasern
CN108761677B (zh) 光缆生产设备及系统
KR20050113606A (ko) 전사성형방법 및 전사성형장치
CN108724769B (zh) 制造丝束预浸料的设备和方法
WO2023116059A1 (zh) 一种气流扰动式碳纤维宽展设备
WO2023101520A1 (ko) 초탄성 재질의 유연한 성장 로봇
JPH0335099B2 (ko)
US20210078265A1 (en) Automated fiber placement system and associated method
JP3956327B2 (ja) 線条体の張力調整方法及び装置
CZ313694A3 (en) Pilger mill for cold rolling long thick-walled tubes
KR20170004527A (ko) 광통신 포설용 마이크로튜브용 고속 정렬권취기
WO2017131344A1 (ko) 프리프레그 제조 장치 및 이를 이용한 프리프레그 제조 방법
KR101926733B1 (ko) 탄소섬유 공급설비용 탄소섬유 피딩장치
CN114193658B (zh) 一种连续碳纤维3d打印丝材外包裹方法及制备系统
CN109937271A (zh) 用于铺展纤维的器械和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888936

Country of ref document: EP

Kind code of ref document: A1