WO2023101520A1 - 초탄성 재질의 유연한 성장 로봇 - Google Patents

초탄성 재질의 유연한 성장 로봇 Download PDF

Info

Publication number
WO2023101520A1
WO2023101520A1 PCT/KR2022/019535 KR2022019535W WO2023101520A1 WO 2023101520 A1 WO2023101520 A1 WO 2023101520A1 KR 2022019535 W KR2022019535 W KR 2022019535W WO 2023101520 A1 WO2023101520 A1 WO 2023101520A1
Authority
WO
WIPO (PCT)
Prior art keywords
vine
robot
growth
tip
flexible
Prior art date
Application number
PCT/KR2022/019535
Other languages
English (en)
French (fr)
Inventor
유지환
김남균
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2023101520A1 publication Critical patent/WO2023101520A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/06Arms flexible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/14Programme-controlled manipulators characterised by positioning means for manipulator elements fluid
    • B25J9/142Programme-controlled manipulators characterised by positioning means for manipulator elements fluid comprising inflatable bodies

Definitions

  • the present invention relates to a flexible growth robot made of a superelastic material, and more particularly, a superelastic material that can be extended forward by pneumatic pressure and can form a large body with a small volume material through bulging. of flexible growth robots.
  • the Vine robot includes a Vine 1, a Feeder 2, a case 3, and a pressure regulator 4.
  • the vine 1 has an inner circumferential portion 1a and an outer circumferential portion 1b, and moves forward or backward by the pressure of the front end space 1c between the inner circumferential portion 1a and the outer circumferential portion 1b, and separate The direction can be controlled to turn through the actuator means.
  • the Vinerobot has the advantage of being capable of three-dimensional operation compared to conventional technologies, and has recently been attracting attention as the most popular technology.
  • the currently disclosed Vine robot has a limit that can only grow by operating the inner circumferential part 1a and the outer circumferential part 1b, and the Vine 1 that has grown to a certain length is retracted by buckling ) caused problems.
  • other means must be devised for shape locking of the Vine 1, leading to a problem in which the Vine robot is very difficult to manufacture.
  • the present invention is an invention made to solve the above-mentioned problems of the prior art, and an object of the present invention is to form a tip having a relatively small diameter compared to the outer circumference at the tip to affect the tail tension applied to the inner circumference It is to provide a flexible growth robot made of superelastic material that can minimize
  • the flexible growth robot may further include a pressure regulator for adjusting the pressure in the front end space.
  • the vine may be formed of a superelastic material.
  • the growth state of the Vine can be controlled with a second pressure lower than the first pressure.
  • the vine includes a stretching region bent between the tip portion and the outer circumferential portion, but the stretching region may be reduced when the vine grows.
  • the tip portion or the stretching area when the spine grows, the tip portion or the stretching area is bulged so that the outer circumferential portion can be expanded.
  • the everting area in which the tip portion is disposed may be reduced when the spine grows.
  • the steering means may include one or more fixing parts that limit expansion of a specific portion of the barine.
  • the steering means includes a mount inserted into the tip space formed inside the tip portion and having a through hole into which the end of the barine is inserted, and one end of the fixing part is connected to the mount, and the other end of the fixing part is connected to the mount. It can be fixed by contacting the bar.
  • a bent portion may be formed between the tip portion and the outer circumferential portion, and the other end of the fixing portion may contact the outer circumferential portion or the bent portion.
  • the fixing part may be in contact with at least one surface of the inner and outer surfaces of the bar to control the expansion of the bar.
  • a cover arranged to surround an outer circumferential surface of the vine may be further included, and when the vine grows, the cover disposed in a folded state may be unfolded.
  • the feeder may include an inner circumferential portion spaced apart from the inside of the outer circumferential portion and extending a predetermined length from the other end of the tip portion toward the opening of the case.
  • the inner circumferential portion may have an open end to communicate with the front end space and the outside.
  • the data collection unit may further include a cable extending along a central portion formed by an inner circumferential portion of the vine and a sensing module connected to the cable to obtain external information.
  • the feeder may further include a stacker located at the other end of the barn, having an extension portion extending from the tip portion fitted to an outer surface and accommodating a predetermined portion of the barn.
  • the stacker may stack the extension part in layers and accommodate the vine.
  • the stacker is formed as a cylindrical tool having a through hole therein, and a camera may be disposed passing through the inside of the stacker.
  • the growth direction of the vine is controlled by limiting the growth of a portion of the surface area of the vine by adhering to or adsorbing a predetermined portion of the surface of the vine.
  • the steering means is characterized in that by applying a magnetic force to the vine to control the growth direction of the vine.
  • the steering unit is characterized in that it comprises an external magnetic field generating device disposed at a predetermined distance from the barine.
  • the steering means includes a magnetic material located outside the vine, and a predetermined portion of the surface of the vine is attached to the magnetic material to limit the growth of the surface area, so that the growth direction is controlled.
  • the flexible growth robot made of superelastic material according to the present invention according to the above configuration has the advantage of being able to form a very large body with a small volume material as bulging occurs. This can lead to the effect that the growth length is increased and the locking characteristic is given, so that the shape can be fixed.
  • the flexible growth robot made of super-elastic material according to the present invention significantly reduces the influence of tail tension, thereby preventing problems caused by buckling in advance, and making it easier to manufacture, and can be utilized in more diverse industrial groups. can lead
  • 1 is a diagram showing the structure of a conventional Vine robot.
  • FIG. 2 is a diagram showing the structure of a flexible growth robot according to the present invention.
  • FIG. 3 is a view showing the structure of a vine according to the present invention.
  • Figure 6 is a graph showing the characteristics of the superelastic material according to the present invention.
  • Figure 8 is a view showing the tension applied to the bar according to the present invention.
  • 9 and 10 are views showing the retraction of the barine according to the present invention.
  • Fig. 11 shows the fixing characteristics of the vine according to the present invention.
  • FIG. 12 is a view showing a steering means of a stiffness adjuster type according to a first embodiment of the present invention.
  • FIG. 13 is a view showing a tendon-type steering means according to a second embodiment of the present invention.
  • FIG. 14 is a view showing a mount type steering means according to a third embodiment of the present invention.
  • 15 and 16 are views showing the central part of a bar according to the prior art and the present invention, respectively.
  • FIG. 17 is a view showing an unfolding type cover according to a fourth embodiment of the present invention.
  • FIG. 18 is a view showing an everting type cover according to a fifth embodiment of the present invention.
  • FIG. 19 is a view showing a companion growth type cover according to a sixth embodiment of the present invention.
  • 20 is a view showing the structure of a vine including an inner circumferential portion of a predetermined length according to a seventh embodiment of the present invention.
  • 21 to 23 are diagrams showing a method for accommodating each bar using a feeder of a stacker according to an eighth embodiment of the present invention.
  • 24 and 25 are diagrams showing the steering means of the adsorption method according to the ninth embodiment of the present invention.
  • 26 is a view showing the steering means of the magnetic force method according to the tenth embodiment of the present invention.
  • FIG. 27 is a view showing the steering means of the magnetic method according to the 11th embodiment of the present invention.
  • FIG. 2 is a view showing the structure of a flexible growth robot
  • FIG. 3 is a view showing the structure of a vine
  • FIGS. 4 and 5 are a view showing the structure of a vine. The drawings showing the are respectively shown.
  • the flexible growth robot 10 may include a case 100, a bar 200, a pressure regulator 300, a feeder 400, and a steering unit 500.
  • the case 100 is a housing 100 with a part opened, and one end of the bar 200 is fixed to one side of the housing 100.
  • one side of the housing 100 to which the bar 200 is fixed may be the side of the open portion, and thus the case inner space and the inner space of the bar may be connected.
  • One end of the vine 200 is fixed to the case 100 and the other end may grow in the other direction.
  • a part of the length of the barn 200 may be connected to the feeder 400.
  • the feeder 400 may be in the form of a wound feeding drum as shown or may be configured in another form such as a folding or cylindrical tool, and the feeder 400 increases or decreases the length of the bar 200. It can be configured in several device types. Depending on the shape characteristics of the feeder 400, it may be selected and placed inside or outside the case 100, and when located inside the case 100, one end of the feeder 400 may be placed inside the case 100. It may be extended to be connected to the inside of the fitter 400 .
  • the pressure regulator 300 may be configured with a means such as a compressor, and when the pressure increases through the pressure regulator 300, the vine 200 grows, and the pressure increases through the pressure regulator 300. When reduced, the bar 200 may retract.
  • the barine 200 will be described in more detail with reference to the illustrated case 100, the pressure regulator 300, the feeder 400, and the steering means 500.
  • the vine 200 includes an outer circumferential portion 210 having one end fixed to one side of the case 100 and a tip portion 230 extending from the other end of the outer circumferential portion 210, A front end space 240 formed by the outer circumferential portion 210 and the tip portion 230 may be further included. And as the outer circumferential portion 210 and the tip portion 230 are formed to have different diameters, the vine 200 may further include a bent portion 250 connecting the outer circumferential portion 210 and the tip portion 230. there is. In addition, the vine 200 may further include an inner circumferential portion 220 spaced apart from the inner side of the outer circumferential portion 210 and extending in one direction toward the case 100 side.
  • the inner circumferential portion 220 is disposed inside the outer circumferential portion 210 and may extend from the tip portion 230 toward the opening portion of the case 100 .
  • the inner circumferential portion 220 may be formed by selecting a length as needed, and when the feeder 400 is disposed inside the case 100, the inner circumferential portion 220 has a length up to the inside of the case 100. may be extended and connected to the feeder 400.
  • the inner circumferential portion 220 may be formed to a predetermined length, and the other end of the inner circumferential portion 220 may be formed open to communicate the front end space 240 and the outside. This will be described in more detail below in another embodiment.
  • the bar 200 may be formed of a superelastic material. Accordingly, the outer circumferential portion 210 of the bar 200 is a bulging region, the bending portion 250 is a stretching region, and the tip portion 230 is an everting region, respectively. may be configured.
  • the everting is an operation of turning the body over at the tip part 230 by the force induced by the pressure of the tip space 240
  • the bulging is an operation in which the superelastic material expands by the pressure of the tip space 240. It is an action that becomes When the growth direction of the veins 200 is controlled, the bulging area may be enlarged while the stretching area or the everting area is reduced.
  • the everting of the tip part 230 and the bulging propagation of the outer circumferential part 210 and the bent part 250 can be performed independently of each other, and when the barne 200 grows, the everting and bulging can all be used.
  • the vine 200 may be bulged after the everting first occurs, or the everting and bulging may occur simultaneously.
  • the outer circumferential portion 210 of the barb 200 has a first diameter D
  • the tip portion 230 has a second diameter ( d) can have
  • the first diameter (D) may be formed larger than the second diameter (d).
  • the first diameter D and the second diameter d are the inner or outer diameters of the outer circumferential portion 210 and the tip portion 230, respectively. It may be any one of them, and it may be more preferable to compare each other by inner diameter.
  • the everting pressure (PE) which is the reference pressure for the everting operation, and the expansion propagation pressure (Bulging Pressure, the reference pressure at which the expansion propagation occurs) propagation pressure (PBP).
  • the everting pressure (PE) may be configured similar to or lower than the initiation pressure (Initiation Pressure) of the expansion propagation pressure (PBP).
  • the vine 200 is formed of a superelastic material as described above, it can grow at a lower pressure after the initial pressure.
  • the initial pressure is defined as the first pressure (P1)
  • the pressure applied during growth is defined as the second pressure (P2).
  • FIG. 6 to 11 relate to a flexible growth robot according to the present invention
  • FIG. 6 is a graph showing the characteristics of a superelastic material
  • FIG. 7 is a diagram schematically showing the expansion of a bar
  • Figures 9 and 10 are views showing the retraction of the bar
  • Figure 11 is a view showing the fixing characteristics of the bar, respectively.
  • the bar 200 may be formed of a superelastic material having an 'S'-shaped curve of a pressure-volume graph. Accordingly, when the Vine 200 reaches the first pressure P1, which is the starting pressure, the volume rapidly expands, and even at a pressure lower than the first pressure P1, the volume exceeds the first volume V1. volume can be controlled.
  • the second pressure (P2) controlling the growth volume of the vine 200 is formed in a volume larger than the second volume (V2) on the graph, and may be higher than the third pressure (P3), which is the lowest pressure at which bulging is maintained.
  • the first pressure P1 and the third pressure P3 may be pressures that generate sudden expansion or sudden contraction of the bar 200, respectively.
  • the present invention defines the growth state by maintaining the second pressure P2, which is the propagation pressure, after the first pressure P1, which is the initiation pressure, so that the growth time or shape can be controlled.
  • the Vine 200 lowers the Tail Tension (Ttail) applied to the inner circumferential portion 220 through the characteristics of the super-elastic material, thereby eliminating the harmful effect applied to the robot.
  • Ttail Tail Tension
  • the elastic force formed in the bent portion 250 mostly cancels the axial force caused by the internal pressure, as a result, only the axial force generated in the tip portion 230 affects the tail tension, so the tail tension is According to the equation, it can lead to an advantage that it is lower than that of conventional robots even though it has a larger diameter outer circumference.
  • P is the pressure in the tip space
  • d is the diameter of the tip
  • D is the diameter of the outer periphery.
  • the flexible growth robot according to the present invention has a small tail tension as the tail tension is determined by the tip portion 230 as shown in the above equation, the robot can have a high critical integration angle, regardless of the curvature of the previously grown body.
  • the flexible growth robot according to the present invention generates only a very small amount of tail tension because the elastic force of the material maintains equilibrium with the internal pressure, thereby reducing unnecessary bending moment caused by the tail tension.
  • the robot has a curvature, it has the advantage of being able to grow longer with a higher curvature by reducing the frictional force generated by the tail tension.
  • the bar 200 in order to retract the bar 200, a significant amount of tail tension must be applied to the tip portion 230. However, if there is no hardware on the tip portion 230, the tail tension applied through the inner circumferential portion 220 affects the entire body in the process of transmitting force to the tip portion 230. In addition, in order to retreat without buckling, the rigidity of the bar 200 must be maintained except for a portion close to the tip portion. So far, a separate mechanism has been required to partially change the stiffness. As described above, the bar 200 according to the present invention has the advantage of solving the above problems at once as it is formed of a super-elastic material.
  • the pressure of the entire robot can be gradually released by removing air from the front end space 240 inside the robot. This leads to a critical pressure of expansion and contraction at the tip 230 . While the contracted tip portion 230 does not generate a large restoring force due to its small diameter, the diameter and rigidity of the outer circumferential portion 210 may be maintained to prevent buckling while the inner circumferential portion 220 is being pulled. This can lead to the advantage of preventing buckling from occurring.
  • the payload of a flexible growth robot is very important for lifting heavy objects or supporting its own body or tip mount. And it is usually limited by bending stiffness.
  • the vine 200 may have shape fixing characteristics. Vine 200, which grows into a curve by bulging while receiving a moment, has different strains at different parts. At this time, the strain outside the curve is greater than the strain inside the curve. Then, when the moment is removed, equilibrium stress is reached along an unloading path different from the existing loading path due to the effect of the hysteresis of the bar 200.
  • the bar 200 can achieve equilibrium without an external force even in a state of curvature. Accordingly, the shape fixing characteristic of the superelastic material of the vine can maintain the bent shape without external force while maintaining the pressure, leading to the advantage that the grown shape is fixed. This can lead to the advantage of being able to grow with various curvatures as the shape is maintained even when the applied moment is removed.
  • FIG. 12 to 14 are views showing steering means according to various embodiments according to the present invention
  • FIG. 12 is a view showing a steering means of a stiffness adjuster type according to a first embodiment of the present invention
  • FIG. 14 shows a view showing a tendon-type steering means according to a second embodiment of the present invention
  • FIG. 14 shows a view showing a mount-type steering means according to a third embodiment of the present invention.
  • the flexible growth robot according to the present invention may further include various types of steering means 500 for controlling the direction of the barine 200.
  • various types of steering means 500 will be described as examples. do.
  • the outer circumferential portion 210 may be divided into a plurality of parts including a first outer circumferential portion 211 and a second outer circumferential portion 212 along the circumferential direction, each of which is between the outer wall and the inner wall and between the outer wall and the inner wall. It may include the formed hollow part.
  • the first outer circumferential portion 211 includes a first outer wall 211a, a first inner wall 211b, and a first hollow portion 211c formed therebetween
  • the second outer circumferential portion 212 includes the second outer wall (212a), a second inner wall (212b) and a second hollow part (212c) formed therebetween.
  • the steering means 500 may include a stiffness adjuster 510 for adjusting a plurality of hollow portions including the first hollow portion 211c and the second hollow portion 212c to different pressures, and the stiffness adjuster 510 may be provided to adjust the stiffness of each outer circumferential portion 210 .
  • the direction may be controlled toward the outer circumferential portion 210 in which the hollow part is formed at a relatively low pressure among the plurality of outer circumferential portions 210.
  • the growth angle of the plurality of hollow parts including the first hollow part 211c and the second hollow part 212c may also be controlled through a pressure difference between them.
  • the steering means 500 may include a plurality of tendons 520 inserted into the outer circumference 210 of the barne 200.
  • the plurality of tendons 520 may be spaced apart from each other in the circumferential direction of the outer circumferential portion 210, and the tendons 520 may grow together, clamp, or retreat in the growth direction of the tendons 200. can be adjusted. That is, when some of the plurality of tendons 520 are clamped or retracted during growth of the tendon 200, the tip of the tendon 200 may be bent in the corresponding direction.
  • the steering means 500 may include a mount 530 disposed in the front end space 240 of the bar 200, and the mount 530 includes the inside of the bar 200.
  • a through hole 531 into which the main part 220 is inserted may be formed.
  • one end of the fixing part 532 may be connected to the mount 530, and the other end of the fixing part 532 is among the tip part 230, the bent part 250, and the outer circumferential part 210 of the bar 200. It may be in contact with any one inner surface, and more preferably, the other end of the fixing part 532 is in contact with the inner surface of the bent part 250, which is a stretching area, to limit the growth of the corresponding part, thereby limiting the growth of the bar 200.
  • the fixing part 532 may be used separately from the mount 530, and may be formed of a member that can be taped and detached to limit the growth of the bar 200 in one direction. .
  • the flexible growth robot of the present invention can lead to the advantage of shape locking due to the characteristics of the superelastic material even if the fixing part 532 is separated after the direction is turned through the fixing part 532. .
  • 15 and 16 are schematic views showing the central part of a bar according to the prior art and according to the present invention, respectively.
  • the bar 200 of the flexible growth robot 10 according to the present invention may have a cylindrical center 221 due to the characteristic that the inner circumferential portion 220 has elasticity of a super-elastic material.
  • the shape of the inner circumferential portion 22 of the conventional growth robot 20 has a curved central portion 23 that appears when the pressures PI and PO of the central portion 23 and the tip space 24 must be the same. ), it can lead to the advantage of being able to more smoothly secure the internal channel compared to having it.
  • the arrangement or control of the data collection unit 600 composed of the cable 610 and the sensing module 620 can lead to a more smooth advantage.
  • the sensing module 620 may be connected to the cable 610 to acquire external information.
  • FIG. 17 to 19 are views showing a cover according to various embodiments of the present invention
  • FIG. 17 is a view showing a cover of an unfolding time according to a fourth embodiment of the present invention
  • FIG. Figure 19 shows a view showing an everting type cover according to the fifth embodiment
  • FIG. 19 shows a view showing an accompanying growth type cover according to the sixth embodiment of the present invention.
  • the flexible growth robot according to the present invention includes the bar 200 made of a super-elastic material, a burst phenomenon may occur due to stress in a circumferential direction.
  • the flexible growth robot according to the present invention may further include various types of covers 700 to prevent bursting.
  • various types of covers 700 will be exemplified and described.
  • the cover 700 according to the present invention is stacked in a folded state, and the cover body 710 formed to surround the outer circumferential portion 210, the tip portion 230, and the bent portion 250 of the bar 200 can include At this time, when the vines 200 grow, the stacked cover bodies 710 may be extended to continuously cover the grown vines 200 while being maintained to have a predetermined inner diameter.
  • the cover 700 according to the present invention is stacked in an inwardly folded state, and the cover body formed to surround the outer circumferential portion 210, the tip portion 230, and the bent portion 250 of the bar 200 ( 710) may be included.
  • the stacked cover body 710 may be unfolded so as to continuously cover the grown vine 200.
  • the cover 710 includes a cover body 710 formed to surround the outer circumferential portion 210, the tip portion 230, and the bent portion 250 of the bar 200, and the bar ( 200) may include an insertion portion 720 disposed in the central portion 221 formed by the inner circumferential portion 220. Accordingly, when the inner circumferential portion 220 of the vine 200 is everted, the insertion portion 720 may be configured to continuously surround the grown vine 200 as it is also everted together.
  • the feeder 400 of the present invention is connected to the tip portion 230 of the barine to accommodate a part of the barine 200 and to adjust the length of the barine 200
  • the feeder 400 is characterized in that it is a device capable of adjusting the end of the barine 200 used as the barine 200 grows by accommodating the end material of the barine 200.
  • the feeder 400 may be configured without limitation in shape, material, method, etc., as long as it can accommodate the end of the barine 200.
  • the feeder 400 of the present invention is spaced apart from the inside of the outer circumferential portion 210 and extends a certain length (L) from the other end of the tip portion 230 toward the opening portion of the case.
  • the feeder 400 is formed on the inside from the outer circumferential portion 210 and extends from the tip portion 230, but is characterized in that the inner circumferential portion 220 is formed to have a predetermined length in the case side direction. to be At this time, the inner circumferential portion 220 is characterized in that the end is formed open, and the front end space inside the bar 200 communicates with the space outside the bar line 200 through the open portion formed at the end. . That is, in FIG. 2, since the feeder 400 is disposed inside the case, the inner circumferential portion 220 is formed with a length extending to the inside of the case, whereas in FIG. 20, the feeder 400 is disposed inside the case.
  • the inner circumference 220 is formed to a predetermined length, and the end of the inner circumference 220 is located on the other side of the outer circumference 210, and the inner circumference 220 is the case. will be placed outside. Accordingly, when the vine 200 is grown to the other side by the pressure regulator 300, the inner circumferential portion 220 turns over from the outer circumferential portion 210 to the outside due to the pressure of the tip space 240. By being expanded, the vine 200 may grow.
  • the feeder 400 is composed of the inner circumferential portion 220, it can be composed of the material of the barne 200 without any other configuration of the present invention, and thus has the advantage of being composed of a simple device.
  • a data collection unit 600 including a cable 610 extending along the center 221 formed by the inner circumferential portion 220 and a sensing module 620 connected to the cable to obtain external information can be provided
  • the feeder 400 according to the eighth embodiment of the present invention is located at the other end of the barn 200, and the extension part 260 extending from the tip part 230 is fitted to the outer surface.
  • It may be composed of a stacker 410 accommodating the barine 200 as being.
  • the bar 200 of the present invention is formed of a super-elastic material, it can be accommodated in a very small volume by using the characteristics of the material.
  • the stacker 410 is a device configured to accommodate the material of the vine 200 on the outer surface of the stacker 410, and the stacker 410 is preferably formed to have a certain length.
  • the length of the extension part 260 accommodated in the stacker 410 is longer than the length of the stacker 410, so that the extension part 260 can be folded and accommodated in the stacker 410.
  • the stacker 410 may be configured without limitation as long as it can accommodate the extension part 260, which is a part of the bar 200 extending from the tip part 230, and if the inside is formed through a hole A plurality of sensors may pass through the through hole.
  • the stacker 410 may be formed as a tool having a cylindrical shape with a through hole inside, and accessories such as a camera 800 to be provided with the robot or a position sensor may be provided through the inside hole of the stacker 410. and can be easily mounted on the robot.
  • the present invention is composed of the stacker 410, devices such as a wired camera 800 and a sensor can be easily mounted, and the Vine 200 itself becomes an internal channel and is wider than the diameter before bulging. It has the advantage of being able to form internal channels with a diameter.
  • the extension part 260 extends from the outer surface of the stacker 410. , It can be stacked and accommodated in layers in a direction perpendicular to the longitudinal direction of the stacker 410. Accordingly, as shown in FIG. 22 , as the tip space 240 expands, the stacked extensions 260 are unwound and grown one by one, so that the length of the bar 200 can be adjusted. Also, referring to FIG. 23 , the extension part 260 may be simply fitted into the outer surface of the stacker 410 and accommodated therein. At this time, as shown in (a) of FIG.
  • the stacker 410 is located outside the outer circumferential surface and the end of the extension part 260 can be inserted so that it is located at the other end of the stacker 410, In addition, as shown in (b) of FIG. 23, the stacker 410 is located inside the outer circumferential surface and the end of the extension part 260 can be fitted to one end of the stacker 410. there is.
  • the steering means of the present invention is grown by adhering or adsorbing any part of the surface of the vine 200. It may be a steering means 540 that limits and controls the direction.
  • the steering means 540 adsorbs the surface of the tip part 230, and the steering means 540 may be attached to at least one of an outer surface and an inner surface of the tip part 230, and the tip part 230 Any device capable of adsorbing a predetermined area of the circumference of 230 may be configured without limitation.
  • the steering means 540 may be a device of an adhesion method such as negative pressure, electroadhesion, or tape, or a friction modulation method such as gaeko tape or inflating a balloon inside the outer circumferential surface ( It may be a device of Friction Modulation Method).
  • the steering means 540 of the present invention is attached to the outer surface of the barine 200, and is a suction unit formed to surround the entire end of the barine 200 in the form of having a plurality of wings. After being formed, by generating adsorption on wings disposed in the direction to be steered, the growth of the vein 200 is restricted in the corresponding direction, so that the growth direction can be changed and travel can be performed.
  • FIG. 24 the steering means 540 of the present invention is attached to the outer surface of the barine 200, and is a suction unit formed to surround the entire end of the barine 200 in the form of having a plurality of wings. After being formed, by generating adsorption on wings disposed in the direction to be steered
  • the steering means 540 is attached to the inner surface of the bar 200 and is formed by means of a friction modulation method to generate friction modulation in a portion in a direction to be steered, thereby causing the bar ( 200) is restricted from growth in that direction and the direction can be reversed.
  • the steering means 550 of the present invention applies magnetic force to the barn 200 to control the growth direction.
  • the steering unit may be an external magnetic field generating device 550 spaced apart from the bar 200 by a predetermined distance.
  • the external magnetic field generating device 550 is a completely external magnet provided independently of the robot 10, and is characterized in that it is freely movable in an external space.
  • a magnetic field sensing means such as a magnetic material for sensing the magnetic force of the external magnetic field generating device 550 is further included inside the bar 200 . Therefore, as the external magnetic field generating device 550 moves while generating a magnetic field, the magnetic field sensing means provided inside the barne 200 can move along the direction in which the external magnetic field generating device 550 moves, , It is characterized in that the growth direction of the vine 200 can be controlled.
  • the magnetic field sensing means may be a stacker 410 formed of a magnetic material, and the stacker 410 moves along the direction of movement of the magnetic field generated by the external magnetic field generator 550, so that the bar ( 200) is characterized in that the growth direction can be controlled.
  • FIG. 27 shows a view showing the steering means of the magnetic method according to the eleventh embodiment.
  • a predetermined portion of the surface of the barne 200 is attached to the magnetic material 561 to limit the growth of the surface area, so that the growth direction is controlled.
  • a magnetic means that reacts with the magnetic body 561 by attraction may be provided inside the bar 200 .
  • the magnetic material 561 can move freely along the circumference of the bar 200 and can move along the outer surface while being attached to the surface area of the bar 200 .
  • the magnetic means provided inside the barine 200 may also be formed to be freely movable inside the barine.
  • the magnetic body 561 is preferably formed to have a predetermined size smaller than the surface area of the bar 200 so that a partial area of the bar 200 may be limited in growth. Any one or more of them may be permanent magnets, and thus, when the bar 200 grows in one direction, either one of the two can quickly turn around and move along the circumference of the end of the bar 200, and stop at any one part Accordingly, the growth direction of the bar 200 can be controlled by attaching the magnetic material 561 to any position of the bar 200 and limiting the growth of the corresponding portion. It can also be formed as a device in which a magnetic force is provided by receiving a signal from the outside at the moment.
  • the present invention is composed of a steering device, straight and curved driving is possible, and direction change can be implemented smoothly and freely, and it is easy to maintain the shape of the part where the robot grows due to the shape locking characteristic of the superelastic material itself. It has an effect.
  • outer periphery 211 first outer periphery
  • first hollow portion 212 second outer peripheral portion
  • tip part 240 tip space
  • Feeder 410 Stacker
  • first stiffness adjuster 512 second stiffness adjuster
  • cover body 720 insertion part
  • the present invention relates to a growth robot, there is industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

본 발명은 공압에 의해 전방으로 연장 가능하게 형성되되, 벌징(bulging)을 통해 작은 부피의 재료로 큰 바디를 형성할 수 있는 초탄성 재질의 유연한 성장 로봇에 관한 것으로서, 본 발명의 유연한 성장 로봇은 케이스의 일측 면에 일단이 고정되는 외주부와, 상기 외주부의 타단에서 연장 형성되는 팁부를 포함하되, 상기 외주부, 팁부 및 내주부에 의해 선단공간이 형성되는 바인; 상기 바인의 팁부와 연결되어 상기 바인의 일부를 수용하고, 상기 바인의 길이를 조절하는 피더; 및 상기 바인의 성장 방향을 제어하는 조향수단;을 포함하고, 상기 팁부의 직경이 상기 외주부의 직경 보다 작게 형성되어, 상기 팁부와 외주부 사이가 절곡되어 상기 내주부에 가해지는 테일 텐션의 영향을 줄이면서, 바인을 초탄성 재질로 구성함으로써 조향수단에 의해 조절되는 방향에 대해 형상이 고정되며 성장할 수 있어 정밀한 제어가 가능한 유연한 성장 로봇에 관한 것이다.

Description

초탄성 재질의 유연한 성장 로봇
본 발명은 초탄성 재질의 유연한 성장 로봇에 관한 것으로서, 보다 상세하게는 공압에 의해 전방으로 연장 가능하게 형성되되, 벌징(bulging)을 통해 작은 부피의 재료로 큰 바디를 형성할 수 있는 초탄성 재질의 유연한 성장 로봇에 관한 것이다.
내부에 중공이 형성된 파이프 또는 붕괴된 건물의 잔해더미 등 사람이 특정 목적 지점까지 도달할 수 없는 상황에서, 사람을 대신하여 목적 지점까지 이동 후 다양한 검사, 유지/보수 작업 또는 구명활동 등을 수행하기 위한 목적으로 다양한 형태의 이동형 로봇이 개발되고 있다. 종래의 이동형 로봇은 무한궤도식 크롤러를 구비한 차체에 카메라와 보수작업용 공구 등을 탑재한 형태로 형성되거나, 길이 방향으로 길게 형성된 호스 등에 자벌레의 움직임을 적용하여 진행이 가능한 형태 등으로 형성된다. 이때, 무한궤도식 크롤러 타입의 로봇은 평면에서는 원활하게 이동할 수 있으나 단이 형성되거나 상하 방향 또는 경사진 방향으로의 주행이 어려운 단점이 있다. 또한 자벌레 움직임을 적용한 로봇은 곡부, T자, Y자형 분기부 등 다양하게 굴곡진 경로로 진행하는 것이 곤란하여 활용에 제한이 있는 단점이 있다.
이에 따라 상술한 단점들을 보완하기 위해 , 최근 US 2021-0354289 A1 등의 문헌에서는 선단부가 자라나는 방식의 소프트로봇, 일명 바인로봇(Vine Robot)이 공개되어 있다. 상기 바인로봇은 도 1에 도시된 바와 같이, 바인(1), 피더(2), 케이스(3) 및 압력조절기(4)를 포함하여 구성된다. 이때 상기 바인(1)은 내주부(1a)와 외주부(1b)를 가지되, 상기 내주부(1a)와 외주부(1b) 사이의 선단공간(1c)의 압력에 의해 전진하거나 후퇴하고, 별도의 액추에이터 수단을 통해 방향이 선회되도록 제어될 수 있다.
상기 바인로봇은 종래의 기술들에 비해 입체적인 운용이 가능하다는 장점이 있어 최근 가장 각광받는 기술로서 주목받고 있다. 다만, 현재 공개된 바인로봇은 내주부(1a)와 외주부(1b)에 대한 운용으로만 성장 가능한 한계점이 있으며, 일정 이상의 길이로 성장한 바인(1)이 좌굴(buckling)에 의해서 리트렉션(Retraction)이 생기는 문제가 야기되었다. 이와 더불어 바인(1)의 형상 고정(Shape Locking)을 위해서 다른 수단들이 강구되어야 하여, 바인로봇의 제작이 매우 어려워지는 문제로 이어졌다.
본 발명은 상술한 종래 기술의 문제점을 해결하기 위하여 안출된 발명으로서, 본 발명의 목적은 외주부에 비해 비교적 작은 직경을 가진 팁부가 선단에 형성되어 내주부에 가해지는 테일 텐션(Tail Tension)의 영향을 최소화시킬 수 있는 초탄성 재질의 유연한 성장 로봇을 제공하기 위한 것이다.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 목적을 달성하기 위한 본 발명의 일실시예에 따른 유연한 성장 로봇은, 일부가 개구된 케이스; 상기 케이스의 일측 면에 일단이 고정되는 외주부, 상기 외주부의 타단에서 연장 형성되는 팁부 및 상기 외주부와 팁부에 의해 형성되는 선단공간을 포함하는 바인; 상기 바인의 팁부와 연결되며, 상기 바인의 길이를 조절하는 피더; 및 상기 바인의 성장 방향을 제어하는 조향수단;을 포함하고, 상기 팁부의 직경은 상기 외주부의 직경 보다 작게 형성되며, 상기 팁부와 외주부의 사이는 구부러져 형성된다.
또한, 상기 유연한 성장 로봇은 상기 선단공간의 압력을 조절하는 압력조절기;를 더 포함할 수 있다.
또한, 상기 바인은 초탄성 재질로 형성될 수 있다.
또한, 상기 바인은 성장 시에 선단공간을 제1압력으로 형성한 후에 상기 제1압력 보다 낮은 제2압력으로 성장 상태를 제어할 수 있다.
또한, 상기 바인은 상기 팁부와 외주부 사이에 절곡된 스트레칭 영역(Stretching Region)을 포함하되, 상기 바인이 성장하면 상기 스트레칭 영역이 줄어들 수 있다.
또한, 본 발명에 따른 유연한 성장 로봇은, 상기 바인이 성장하면 상기 팁부 또는 스트레칭 영역이 벌징(Bulging)되어 외주부가 확장될 수 있다.
또한, 본 발명에 따른 유연한 성장 로봇은, 상기 바인이 성장하면 상기 팁부가 배치된 이버팅 영역이 줄어들 수 있다.
또한, 상기 조향수단은, 상기 바인의 특정부분의 팽창을 제한하는 하나 이상의 고정부를 포함할 수 있다.
또한, 상기 조향수단은, 상기 팁부의 내측에 형성된 선단공간에 삽입되되 상기 바인의 끝단이 삽입되는 관통홀이 형성된 마운트를 포함하고, 상기 마운트에 고정부의 일단이 연결되되, 상기 고정부의 타단이 상기 바인에 접촉되어 고정할 수 있다.
또한, 상기 팁부와 외주부 사이에 절곡된 절곡부가 형성되되, 상기 고정부의 타단이 상기 외주부 또는 상기 절곡부에 접촉될 수 있다.
또한, 상기 고정부는, 상기 바인의 내면 및 외면 중 적어도 어느 한 면 이상에 접촉되어 상기 바인의 팽창을 제어할 수 있다.
또한, 상기 바인의 외주면을 감싸도록 배치되는 커버;를 더 포함하고, 상기 바인이 성장하면, 접힌 상태로 배치된 상기 커버가 펼쳐질 수 있다.
또한, 상기 피더는, 상기 외주부의 내측에 이격되어 상기 케이스의 개구 부분 측을 향해 상기 팁부의 타단으로부터 일정 길이로 연장 형성되는 내주부를 포함할 수 있다.
또한, 상기 내주부는 끝단이 개방 형성되어 상기 선단공간과 외부를 연통할 수 있다.
또한, 상기 바인의 내주부에 의해 형성된 중심부를 따라 연장되는 케이블과, 상기 케이블과 연결되어 외부 정보를 획득하는 센싱모듈을 포함하는 데이터 수집유닛;을 더 포함할 수 있다.
또한, 상기 피더는, 상기 바인의 타단에 위치하고, 상기 팁부로부터 연장되는 연장부가 외면에 끼움 되며 상기 바인의 소정 부분을 수용하는 스택커를 더 포함할 수 있다.
또한, 상기 스택커는 상기 연장부를 겹겹으로 적층하며 상기 바인을 수용할 수 있다.
또한, 상기 스택커는 내부가 통공되는 원통 형상의 툴로 형성되며, 상기 스택커의 내부를 통과하며 카메라가 배치될 수 있다.
또한, 상기 바인의 표면 중 소정 부분에 접착 또는 소정 부분을 흡착하여 상기 바인의 일부 표면적의 성장을 제한함으로써, 상기 바인의 성장 방향을 제어하는 것을 특징으로 한다.
또한, 상기 조향수단은, 상기 바인에 자기력을 작용하여 바인의 성장 방향을 제어하는 것을 특징으로 한다.
또한, 상기 조향수단은, 상기 바인으부터 소정 거리 이격되어 배치되는 외부 자기장 발생 장치를 포함하는 것을 특징으로 한다.
또한, 상기 조향수단은, 바인의 외부에 위치하는 자성체를 포함하고, 상기 바인의 표면 중 소정 부분이 상기 자성체와 부착되어 표면적의 성장을 제한됨으로써, 성장 방향이 제어되는 것을 특징으로 한다.
상술한 구성에 의한 본 발명에 따른 초탄성 재질의 유연한 성장 로봇은, 벌징이 발생됨에 따라 작은 부피의 재료로 매우 큰 바디를 형성할 수 있는 장점이 있다. 이는 성장길이가 늘어남과 더불어 고정 특성(Locking Characteristic)이 부여되어 형상 고정이 될 수 있는 효과로 이어질 수 있다.
아울러 본 발명에 따른 초탄성 재질의 유연한 성장 로봇은, 테일 텐션의 영향이 현저하게 줄어들어 좌굴에 의해서 발생되는 문제를 미연에 방지할 수 있으며, 제작이 보다 용이하게 보다 다양한 산업군에서 활용할 수 있는 효과로 이어질 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 종래의 바인로봇의 구조를 도시한 도면.
도 2는 본 발명에 따른 유연한 성장 로봇의 구조를 도시한 도면.
도 3은 본 발명에 따른 바인의 구조를 도시한 도면.
도 4 및 도 5는 본 발명에 따른 바인의 성장을 도시한 도면.
도 6은 본 발명에 따른 초탄성 재질의 특성을 도시한 그래프.
도 7은 본 발명에 따른 바인의 팽창을 개략적으로 도시한 도면.
도 8은 본 발명에 따른 바인에 가해지는 텐션을 도시한 도면.
도 9 및 도 10은 본 발명에 따른 바인의 후퇴(Retraction)를 도시한 도면.
도 11은 본 발명에 따른 바인의 고정 특성을 도시한 도면.
도 12는 본 발명의 제1실시예에 따른 강성조절기 타입의 조향수단을 도시한 도면.
도 13은 본 발명의 제2실시예에 따른 힘줄 타입의 조향수단을 도시한 도면.
도 14는 본 발명의 제3실시예에 따른 마운트 타입의 조향수단을 도시한 도면.
도 15 및 도 16은 각각 종래기술 및 본 발명에 따른 바인의 중심부를 도시한 도면.
도 17은 본 발명의 제4실시예에 따른 펼침 타입의 커버를 도시한 도면.
도 18은 본 발명의 제5실시예에 따른 에버팅(Everting) 타입의 커버를 도시한 도면.
도 19는 본 발명의 제6실시예에 따른 동반 성장 타입의 커버를 도시한 도면.
도 20은 본 발명의 제7실시예에 따른 소정 길이의 내주부를 포함하는 바인의 구조를 도시한 도면
도 21 내지 23은 본 발명의 제8실시예에 따른 스택커의 피더를 이용한 각 바인 수용 방법을 도시한 도면
도 24 및 25는 본 발명의 제9실시예에 따른 흡착 방법의 조향수단을 도시한 도면
도 26은 본 발명의 제10실시예에 따른 자기력 방법의 조향수단을 도시한 도면
도 27은 본 발명의 제11실시예에 따른 마그네틱 방법의 조향수단을 도시한 도면
이하 첨부한 도면들을 참조하여 본 발명의 다양한 실시예에 따른 유연한 성장 로봇을 포함하는 성장형 소프트로봇을 상세히 설명한다. 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 또한 명세서 전반에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
이때 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
도 2 내지 도 5는 본 발명에 따른 유연한 성장 로봇에 관한 것으로, 도 2는 유연한 성장 로봇의 구조를 나타낸 도면을, 도 3은 바인의 구조를 나타낸 도면을, 도 4 및 도 5는 바인의 성장을 나타낸 도면을 각각 나타낸다.
도 2를 참조하면, 본 발명에 따른 유연한 성장 로봇(10)은, 케이스(100), 바인(200), 압력조절기(300), 피더(400) 및 조향수단(500)을 포함하여 구성될 수 있다. 이때 상기 케이스(100)는 일부가 개구된 하우징(100)으로, 상기 바인(200)의 일단이 상기 하우징(100)의 일측 면에 고정된다. 이때 상기 바인(200)이 고정되는 상기 하우징(100)의 일측면은 개구된 부분 측일 수 있으며, 이에 상기 케이스 내부 공간과 상기 바인의 내부 공간이 연결될 수 있다. 상기 바인(200)은 일단이 상기 케이스(100)에 고정되며 타단이 타측 방향으로 성장할 수 있다. 그리고 상기 바인(200)은 길이 중 일부가 상기 피더(400)와 연결될 수 있다. 여기서 상기 피더(400)는 도시된 바와 같이 권취된 피딩드럼 형태이거나 접철식, 원통형의 툴 등의 다른 형태로 구성될 수도 있으며, 상기 피더(400)는 상기 바인(200)의 길이를 늘리거나 줄어들게 하는 여러 장치 형태로 구성될 수 있다. 상기 피더(400)의 형상 특징에 따라 상기 케이스(100)의 내부 및 외부에 선택되어 배치될 수 있으며, 상기 케이스(100) 내부에 위치되는 경우 상기 피터(400)의 일단이 상기 케이스(100) 내부의 상기 피터(400)와 연결되도록 연장되는 형태일 수 있다. 또한, 상기 압력조절기(300)는 컴프레샤 등의 수단으로 구성될 수 있으며, 상기 압력조절기(300)를 통해 압력이 높아지면 상기 바인(200)이 성장하고, 상기 압력조절기(300)를 통해 압력이 줄어들면 상기 바인(200)이 후퇴할 수 있다. 이하, 후술되는 내용에서는 도시된 케이스(100), 압력조절기(300), 피더(400) 및 조향수단(500)을 참조하여 상기 바인(200)을 보다 상세히 설명한다.
도 3을 참조하면, 상기 바인(200)은 상기 케이스(100)의 일측 면에 일단이 고정되는 외주부(210)와, 상기 외주부(210)의 타단에서 연장 형성되는 팁부(230)를 포함하되, 상기 외주부(210), 및 팁부(230)에 의해 형성된 선단공간(240)을 더 포함할 수 있다. 그리고 상기 외주부(210)와 팁부(230)와 서로 다른 직경으로 형성됨에 따라, 상기 바인(200)은 상기 외주부(210)와 팁부(230) 사이를 연결하는 절곡부(250)를 더 포함할 수 있다. 또한, 상기 바인(200)은 상기 외주부(210)의 내측에 이격되어 상기 케이스(100) 측인 일방향으로 연장되는 내주부(220)를 더 포함할 수 있다. 상기 내주부(220)는 상기 외주부(210)의 내측에 배치되는 것으로, 상기 팁부(230)로부터 상기 케이스(100)의 개구 부분 측을 향해 연장 형성되는 것일 수 있다. 상기 내주부(220)는 필요에 따라 길이가 선택되어 형성될 수 있으며, 상기 케이스(100) 내부에 상기 피더(400)가 배치되면 상기 내주부(220)는 상기 케이스(100)의 내부까지 길이가 연장되어 상기 피더(400)와 연결될 수 있다. 또한, 상기 내주부(220)는 소정 길이로 형성될 수 있으며, 상기 내주부(220)의 타끝단이 개방 형성되어 상기 선단공간(240)과 외부를 연통할 수 있다. 이에 대해 다른 실시예로 이하에서 보다 상세히 설명한다.
상기 바인(200)은 초탄성 재질로 형성될 수도 있다. 이에 상기 바인(200)의 외주부(210)는 벌징 영역(Bulging Region)으로, 상기 절곡부(250)는 스트레칭 영역(Streching Region)으로, 상기 팁부(230)는 에버팅 영역(Everting Region)으로 각각 구성될 수도 있다. 이때 상기 에버팅은 상기 선단공간(240)의 압력에 의해 유도되는 힘에 의해서 상기 팁부(230)에서 몸을 뒤집는 동작이며, 상기 벌징은 초탄성 재질이 상기 선단공간(240)의 압력에 의해서 팽창되는 동작이다. 상기 바인(200)이 성장하는 방향으로 제어가 되는 경우에는 상기 스트레칭 영역 또는 에버팅 영역이 줄어들면서 상기 벌징 영역이 확대될 수 있다. 여기서 상기 팁부(230)의 에버팅과 상기 외주부(210) 및 절곡부(250)의 팽창 전파(Bulging propagation)는 서로 독립적으로 수행이 가능하며, 상기 바인(200)이 성장하는 경우에는 상기 에버팅 및 벌징 모두를 사용할 수 있다. 그리고 상기 바인(200)은 에버팅이 먼저 발생된 이후에 벌징되거나, 에버팅 및 벌징이 동시에 발생되도록 구성될 수도 있다.
도 4의 에버팅 동작과 도 5의 팽창 전파 동작을 각각 참조하면, 상기 바인(200)은 상기 외주부(210)가 제1직경(D)을 가지되, 상기 팁부(230)가 제2직경(d)을 가질 수 있다. 이때 상기 제1직경(D)은 상기 제2직경(d) 보다 크게 형성될 수 있다. 그리고 상기 바인(200)의 두께는 선단공간(240)에 비해 매우 작으므로, 상기 제1직경(D) 및 제2직경(d)은 각각 상기 외주부(210) 및 팁부(230)의 내경 또는 외경 중 어느 하나일 수 있으며, 내경으로 서로 비교하는 것이 보다 바람직할 수 있다. 기체가 주입됨에 따라 상기 선단공간(240)으로 가해지는 압력이 높아지면, 에버팅 동작이 되는 기준 압력인 에버팅 압력(Everting Pressure, PE) 및 팽창 전파가 발생되는 기준 압력인 팽창 전파 압력(Bulging Propagation Pressure, PBP)으로 도달할 수 있다. 이때 상기 에버팅 압력(PE)이 팽창 전파 압력(PBP)의 개시압력(Initiation Pressure) 보다 낮거나 서로 유사하게 구성될 수도 있다. 여기서 바인(200)은 상술한 바와 같이 초탄성 재질로 형성됨에 따라, 개시압력 이후에는 보다 낮은 압력으로 성장할 수 있다. 이때 상기 개시압력은 제1압력(P1)으로 성장 시에 가해지는 압력은 제2압력(P2)으로 각각 정의한다.
도 6 내지 도 11은 본 발명에 따른 유연한 성장 로봇에 관한 것으로, 도 6은 초탄성 재질의 특성을 도시한 그래프를, 도 7은 바인의 팽창을 개략적으로 도시한 도면을, 도 8은 바인에 가해지는 텐션을 도시한 도면을, 도 9 및 도 10은 바인의 후퇴를 도시한 도면을, 도 11은 바인의 고정 특성을 도시한 도면을 각각 나타낸다.
도 6 및 도 7을 참조하면, 상기 바인(200)은 압력-볼륨 그래프의 커브가 ‘S’자 형상인 초탄성 재질로 형성될 수 있다. 이에 따라 상기 바인(200)은 개시압력인 제1압력(P1)에 도달하면 부피(Volume)가 급격하게 팽창함과 더불어, 상기 제1압력(P1) 보다 낮은 압력에서도 제1부피(V1) 이상으로 부피를 제어할 수 있다. 여기서 상기 바인(200)의 성장 부피를 제어하는 제2압력(P2)은 그래프 상에서 제2부피(V2)보다 큰 부피에서 형성되어 벌징이 유지되는 최저 압력인 제3압력(P3) 보다 높을 수 있다. 여기서 상기 제1압력(P1) 및 제3압력(P3)은 각각 상기 바인(200)의 급속 성장(Sudden Expansion) 또는 급속 수축(Sudden Contraction)을 발생시키는 압력일 수 있다. 이처럼 본 발명은 개시압력(Initiation Pressure)인 제1압력(P1) 이후에 팽창압력(Propagation Pressure)인 제2압력(P2)을 유지함에 따라 자라나는 상태를 정의하여 상기 바인(200)의 성장 시간이나 형태 등을 제어할 수 있다.
도 8을 참조하면, 상기 바인(200)은 초탄성 재질에 따른 특성을 통해 상기 내주부(220)로 가해지는 꼬리 장력(Tail Tension, Ttail)을 낮추어, 로봇에 가해지는 해로운 영향을 해소할 수 있는 장점이 있다. 보다 상세히는 절곡부(250)에서 형성되는 탄성력이 내부 압력에 의한 축력을 대부분 상쇄시켜줌에 따라 결과적으로, 팁부(230)에서 발생된 축력만이 꼬리 장력에 영향을 미치므로 상기 꼬리 장력은 아래의 식에 따라 더 큰 직경의 외주부를 가짐에도 기존의 로봇 보다도 낮아지는 장점으로 이어질 수 있다.
Figure PCTKR2022019535-appb-img-000001
여기에서, P는 선단공간의 압력, d는 팁부의 직경, D는 외주부의 직경을 의미한다.
일반적인 성장 로봇은 많은 곡선을 통해 성장함에 따라 성장 곡선의 각도가 누적되고 캡스턴 공식에 의해 꼬리와 몸체 사이의 마찰력이 증가한다. 그러면 결국 로봇은 임계 누적 각도에서 더 이상 성장할 수 없는 문제점이 있다. 그러나, 본 발명에 따른 유연한 성장 로봇은 위 식과 같이 꼬리 장력이 팁부(230)에 의해 결정됨에 따라 꼬리 장력이 작기 때문에 로봇은 높은 임계 적산각을 가질 수 있고, 이전에 성장한 몸체의 곡률에 관계없이 계속 성장할 수 있는 장점이 있다. 이처럼 본 발명에 따른 유연한 성장 로봇은 재료의 탄성력이 내부 압력과 평형을 유지하기 때문에 매우 작은 양의 테일 텐션만 발생함에 따라, 테일 텐션으로 인해 발생하는 불필요한 굽힘 모멘트를 줄일 수 있다. 나아가 로봇이 곡률을 가질 때 테일 텐션에 의해 발생하는 마찰력을 줄여 더 높은 곡률로 길게 자라날 수 있는 장점이 있다.
도 9 및 도 10을 참조하면, 상기 바인(200)을 후퇴시키기 위해서는 상기 팁부(230)에 상당한 크기의 꼬리 장력을 가해야 한다. 하지만 팁부(230)에 하드웨어가 없으면 가해지는 상기 내주부(220)를 통해 가해지는 꼬리 장력이 상기 팁부(230)로 힘이 전달되는 과정에서 몸 전체에 영향을 미치게 된다. 또한 좌굴 없이 후퇴하기 위해서는 팁부에 가까운 부분을 제외하고는 상기 바인(200)의 강성을 유지해야 한다. 이에 지금까지는 강성을 부분적으로 변화시키기 위해서 별도의 메커니즘을 요구하였었다. 본 발명에 따른 상기 바인(200)은 상술한 바와 같이 초탄성 재질로 형성됨에 따라 위 문제를 한번에 해결할 수 있는 장점이 있다. 먼저, 본 발명은 로봇 내부의 선단공간(240)에서 공기를 빼내어 로봇 전체의 압력을 서서히 풀어줄 수 있다. 이것은 팁부(230)에서 팽창 수축의 임계 압력으로 이어진다. 그리고 수축된 팁부(230)는 작은 직경으로 인해 큰 복원력이 발생하지 않는 반면, 외주부(210)는 내주부(220)가 당겨지는 동안 좌굴을 방지하기 위해 직경과 강성이 유지될 수 있다. 이는 좌굴 발생을 방지할 수 있는 장점으로 이어질 수 있다.
유연한 성장 로봇의 페이로드(Payload)는 무거운 물체를 들어올리거나 자체 본체 혹은 팁 마운트를 지지함에 있어서 매우 중요하다. 그리고 이는 일반적으로 굽힘 강성(Bending Stiffness)에 의해 제한된다. 도 11에서 도시된 바와 같이 초탄성 재질의 히스테리시스 특성에 따라 바인(200)은 형상 고정 특성을 가질 수 있다. 모멘트를 받은 상태에서 벌징하여 곡선으로 성장하는 바인(200)은 서로 다른 부분에서 다른 변형률을 가지게 되는데 이때 곡선의 안쪽 변형률보다 곡선의 바깥쪽 변형률이 크게 된다. 이후 모멘트를 제거하면 상기 바인(200)의 히스테리시스의 영향에 의해 각각 기존의 로딩(loading) 경로와 다른 언로딩(unloading) 경로를 따라서 평형 응력에 도달하게 된다. 즉, 각 변형률은 각각 다른 위치에서 내압에 의한 응력과 평형이 되기 때문에 상기 바인(200)은 곡률을 가진 상태에서도 외력없이 평형을 이룰 수 있게 된다. 이에 따라, 상기 바인이 초탄성 재질의 형상 고정 특성은 압력을 유지한 채 외력 없이 휘어진 형상을 유지할 수 있어, 자라난 형상이 고정된다는 장점으로 이어진다. 이는 가해진 모멘트가 제거되어도 형태를 유지함에 따라 다양한 곡률로 성장할 수 있는 장점으로 이어질 수 있다.
도 12 내지 도 14는 본 발명에 따른 다양한 실시예에 따른 조향수단을 도시한 도면으로, 도 12는 본 발명의 제1실시예에 따른 강성조절기 타입의 조향수단을 도시한 도면을, 도 13은 본 발명의 제2실시예에 따른 힘줄 타입의 조향수단을 도시한 도면을, 도 14는 본 발명의 제3실시예에 따른 마운트 타입의 조향수단을 도시한 도면을 각각 나타낸다. 본 발명에 따른 유연한 성장 로봇은 상기 바인(200)의 방향을 제어하는 다양한 형태의 조향수단(500)을 더 포함할 수 있으며, 이하 후술되는 내용에서는 다양한 형태의 조향수단(500)을 예거하여 설명한다.
도 12를 참조하면, 상기 외주부(210)는 둘레 방향을 따라 제1외주부(211) 및 제2외주부(212)를 포함한 복수로 분할될 수 있으며, 각각이 외벽과 내벽, 그리고 외벽과 내벽 사이에 형성된 중공부를 포함할 수 있다. 이때 상기 제1외주부(211)는 제1외벽(211a), 제1내벽(211b) 및 그 사이에 형성된 제1중공부(211c)를 포함하고, 상기 제2외주부(212)는 상기 제2외벽(212a), 제2내벽(212b) 및 그 사이에 형성된 제2중공부(212c)를 포함할 수 있다. 아울러 상기 조향수단(500)은 상기 제1중공부(211c) 및 제2중공부(212c)를 포함한 복수의 중공부를 서로 다른 압력으로 조절하는 강성조절기(510)를 포함할 수 있으며, 상기 강성조절기(510)는 각 외주부(210)의 강성을 조절할 수 있도록 제공될 수 있다. 이때 상기 바인(200)의 선단공간(240)에 기체가 주입되는 경우에 복수의 상기 외주부(210) 중에서 비교적 낮은 압력으로 중공부가 형성된 외주부(210)를 향하도록 방향이 제어될 수 있다. 그리고 상기 제1중공부(211c) 및 제2중공부(212c)를 포함한 복수의 중공부는 서로 간의 압력 차이를 통해 성장각도 또한 제어될 수 있다.
도 13을 참조하면, 상기 조향수단(500)은 상기 바인(200)의 외주부(210)에 삽입되는 복수의 힘줄(520, Tendon)을 포함할 수 있다. 이때 복수의 상기 힘줄(520)은 상기 외주부(210)의 둘레 방향으로 서로 이격 배치될 수 있으며, 상기 힘줄(520)이 함께 성장하도록 하거나 클램프(Clamp)하거나 후퇴시켜 상기 바인(200)의 성장 방향을 조절할 수 있다. 즉, 상기 바인(200)이 성장 시에 복수의 상기 힘줄(520) 중에서 일부가 클램프하거나 후퇴되면 해당 방향으로 바인(200)의 선단이 휘도록 조절할 수 있다.
도 14를 참조하면, 상기 조향수단(500)은 상기 바인(200)의 선단공간(240)에 배치되는 마운트(530)를 포함할 수 있으며, 상기 마운트(530)에는 상기 바인(200)의 내주부(220)가 삽입되는 관통홀(531)이 형성될 수 있다. 그리고 상기 마운트(530)에는 고정부(532)의 일단이 연결될 수 있으며, 상기 고정부(532)의 타단이 상기 바인(200)의 팁부(230), 절곡부(250), 외주부(210) 중 어느 하나의 내측 면에 접촉될 수 있으며, 보다 바람직하게는 상기 고정부(532)의 타단이 스트레칭 영역인 상기 절곡부(250)의 내측 면에 접촉되어 해당 부분의 성장을 제한하여 상기 바인(200)의 방향이 선회될 수 있도록 제어할 수 있다. 상기 고정부(532)는 상기 마운트(530)와는 별개로 사용될 수도 있으며, 테이핑(Taping)될 수 있는 부재 등으로 형성되어 상기 바인(200)의 일측 방향으로의 성장을 제한하도록 탈 부착될 수도 있다. 이때 본 발명의 유연한 성장 로봇은 상기 고정부(532)를 통해 방향이 선회된 이후 고정부(532)가 분리되어도 초탄성 재질의 특성에 의해 형상 고정(Shape Locking)될 수 있는 장점으로 이어질 수 있다.
도 15 및 도 16은 각각 종래기술 및 본 발명에 따른 바인의 중심부를 도시한 개략도이다.
도 15 및 도 16을 참조하면, 본 발명에 따른 유연한 성장 로봇(10)의 바인(200)은 내주부(220)가 초탄성 재질의 탄성력을 가지는 특성에 의해서 원통형의 중심부(221)를 가질 수 있는 특징이 있다. 이는 종래의 성장 로봇(20)의 바인(21)이 내주부(22)의 형상이 중심부(23)와 선단공간(24)의 각각의 압력 PI와 PO가 서로 동일해야 함에 나타나는 우그러진 중심부(23)를 가진 것에 비하여 내부 채널을 보다 원활하게 확보할 수 있는 장점으로 이어질 수 있다. 이에 본 발명에 따른 유연한 성장 로봇(10)은 케이블(610)과 센싱모듈(620)로 구성된 데이터 수집유닛(600)의 배치나 제어가 보다 원활한 장점으로 이어질 수 있다. 여기서 상기 센싱모듈(620)은 상기 케이블(610)과 연결되어 외부 정보를 획득하도록 구성될 수 있다.
도 17 내지 도 19는 본 발명에 따른 다양한 실시예에 따른 커버를 도시한 도면으로, 도 17은 본 발명의 제4실시예에 따른 펼침 타임의 커버를 도시한 도면을, 도 18은 본 발명의 제5실시예에 따른 에버팅 타입의 커버를 도시한 도면을, 도 19는 본 발명의 제6실시예에 따른 동반 성장 타입의 커버를 도시한 도면을 각각 나타낸다. 본 발명에 따른 유연한 성장 로봇은, 초탄성 재질로 구성된 상기 바인(200)을 포함함에 따라 원주 방향으로의 응력에 의한 터짐(Burst) 현상이 발생될 수 있다. 이에 본 발명에 따른 유연한 성장 로봇은 터짐 현상을 방지하기 위해 다양한 형태의 커버(700)를 더 포함할 수 있으며, 이하 후술되는 내용에서는 다양한 형태의 커버(700)을 예거하여 설명한다.
도 17을 참조하면, 본 발명에 따른 커버(700)는 접힌 상태로 스택되되 상기 바인(200)의 외주부(210), 팁부(230) 및 절곡부(250)를 감싸도록 형성된 커버몸체(710)를 포함할 수 있다. 이때 상기 바인(200)이 성장하면 상기 스택된 커버몸체(710)가 펼쳐지되 소정 내경을 가지도록 유지되어 성장한 바인(200)을 지속적으로 감싸도록 연장될 수 있다.
도 18을 참조하면, 본 발명에 따른 커버(700)는 내측으로 접힌 상태로 스택되되 상기 바인(200)의 외주부(210), 팁부(230) 및 절곡부(250)를 감싸도록 형성된 커버몸체(710)를 포함할 수 있다. 그리고 상기 바인(200)이 성장하면 상기 스택된 커버몸체(710)가 에버팅(Everting)되도록 펼쳐져 성장한 바인(200)을 지속적으로 감싸도록 구성될 수 있다.
도 19를 참조하면, 본 발명의 따른 커버(710)는 상기 바인(200)의 외주부(210), 팁부(230) 및 절곡부(250)를 감싸도록 형성된 커버몸체(710)와, 상기 바인(200)의 내주부(220)가 형성한 중심부(221)에 배치된 삽입부(720)를 포함할 수 있다. 이에 상기 바인(200)의 내주부(220)가 에버팅되면 상기 삽입부(720)도 함께 에버팅 됨에 따라 성장한 바인(200)을 지속적으로 감싸도록 구성될 수 있다.
더불어, 본 발명의 제7시예에 따른, 발명의 피더(400)는 바인의 팁부(230)와 연결되어 상기 바인(200)의 일부를 수용하고, 상기 바인(200)의 길이를 조절하는 것으로, 상기 피더(400)는 상기 바인(200)의 끝단 재료를 수용하도록 하여, 상기 바인(200)이 성장함에 따라 사용되는 상기 바인(200)의 끝단을 조절할 수 있는 장치인 것을 특징으로 한다. 상기 피더(400)는 상기 바인(200)의 끝단을 수용할 수 있는 것이면 형태, 재료, 방법 등 제한없이 구성될 수 있다. 도 20을 참조하면, 다른 실시예로서 본 발명의 피더(400)는 외주부(210)의 내측에 이격되어 케이스의 개구 부분 측을 향해 팁부(230)의 타단으로부터 일정 길이(L)로 연장 형성되는 내주부(220)일 수 있다. 보다 상세히 설명하면, 상기 피더(400)는 상기 외주부(210)로부터 내측에 형성되며 상기 팁부(230)로부터 연장 형성되되 상기 케이스 측 방향으로 소정 길이를 가지며 형성되는 상기 내주부(220)인 것을 특징으로 한다. 이때, 상기 내주부(220)는 끝단이 개방 형성된 것을 특징으로 하며, 끝단에 형성된 개방 부분을 통해 상기 바인(200) 내부의 선단공간과 상기 바인(200) 외부의 공간이 연통되는 것을 특징으로 한다. 즉, 도 2는 상기 피더(400)가 케이스 내측에 배치되어 있기 때문에, 상기 내주부(220)가 상기 케이스 내측까지 연장되는 길이로 형성되는 것에 반해, 도 20은 상기 피더(400)가 상기 내주부(220) 자체인 것으로, 이때 상기 내주부(220)는 소정 길이로 형성되어 상기 내주부(220)의 끝단이 상기 외주부(210)의 타측 부분에 위치되며 상기 내주부(220)는 상기 케이스 외부에 배치되게 된다. 이에, 상기 압력조절기(300)에 의해 상기 바인(200)이 타측으로 성장될 때, 선단공간(240)의 압력에 의해 상기 내주부(220)가 상기 외주부(210)로부터 바깥으로 몸을 뒤집으면서 팽창되는 것으로 상기 바인(200)이 성장할 수 있다. 상기 피더(400)가 상기 내주부(220)로 구성됨에 따라, 본 발명의 별도의 다른 구성 없이 바인(200)의 재료로서 구성될 수 있어, 간단한 장치로 구성될 수 있다는 장점이 있다. 이때, 상기 내주부(220)에 의해 형성된 중심부(221)를 따라 연장되는 케이블(610)과, 상기 케이블과 연결되어 외부 정보를 획득하는 센싱모듈(620)을 포함하는 데이터 수집유닛(600)을 구비할 수 있다.
또한, 도 21 내지 23을 참조하면, 본 발명의 제8시예에 따른 피더(400)는 상기 바인(200)의 타단에 위치하고, 상기 팁부(230)로부터 연장되는 연장부(260)가 외면에 끼움 되는 것으로 상기 바인(200)을 수용하는 스택커(410)로 구성될 수 있다. 본 발명의 바인(200)은 초탄성 재질로 형성됨에 따라, 재질의 특성을 이용하여 매우 작은 부피로 수용될 수 있다. 상기 스택커(410)는 상기 스택커(410)의 외면에 상기 바인(200)의 재료를 수용하도록 구성되는 장치인 것으로, 상기 스택커(410)는 일정 길이를 가지며 형성되는 것이 바람직하며, 상기 스택커(410)에 수용되는 상기 연장부(260)의 길이는 상기 스택커(410)의 길이보다 길어, 상기 연장부(260)가 상기 스택커(410)에 접혀 수용될 수 있다. 상기 스택커(410)는 상기 팁부(230)로부터 연장 형성되는 상기 바인(200)의 일부인 상기 연장부(260)에 대해 수용할 수 있는 형태이면 제한없이 구성될 수 있고, 내부가 통공되어 형성되면 통공된 부분을 통해 복수의 센서가 통과될 수 있다. 이때, 상기 스택커(410)는 내부가 통공되는 원통 형상의 툴로 형성될 수 있으며, 상기 로봇이 구비되어야 하는 카메라(800)나, 위치감지 센서 등의 부속품이 상기 스택커(410)의 내부 통공을 통과하며 상기 로봇에 쉽게 장착될 수 있다. 따라서, 본 발명은 상기 스택커(410)로 구성됨에 따라, 유선 카메라(800) 및 센서 등의 장치가 쉽게 장착될 수 있으며, 바인(200) 자체가 곧 내부 채널이 되며, 벌징 전의 직경보다 넓은 직경으로 내부 채널을 형성할 수 있다는 장점이 있다.
도 21 내지 23은 상기 스택커(410)가 상기 연장부(260)를 수용하는 방법에 대한 것으로, 도 21 및 22를 참조하면, 상기 연장부(260)가 상기 스택커(410)의 외면에서, 상기 스택커(410)의 길이방향과 수직한 방향으로 겹겹이 층으로 적층되며 수용될 수 있다. 이에, 도 22에 도시된 바와 같이 상기 선단공간(240)이 팽창함에 따라 적층된 상기 연장부(260)가 한 층씩 풀리며 성장하는 것으로 상기 바인(200)의 길이가 조절될 수 있다. 또한, 도 23을 참조하면, 상기 연장부(260)가 상기 스택커(410)의 외면에 단순 끼움 되며 수용될 수 있다. 이때 도 23의 (a)에 도시된 바와 같이, 상기 스택커(410)는 상기 외주면 밖에 위치하며 상기 연장부(260)의 끝단이 상기 스택커(410)의 타단에 위치하도록 끼움 될 수 있고, 또한 도 23의 (b)에 도시된 바와 같이, 상기 스택커(410)가 상기 외주면의 내측에 위치하며 상기 연장부(260)의 끝단이 상기 스택커(410)의 일단에 위치하도록 끼움 될 수 있다.
도 24 및 25는 실시예 9에 따른 흡착 방법의 조향수단을 도시한 도면을 나타내며, 실시예 9에 따라 본 발명의 조향수단은 바인(200)의 표면 중에서 어느 한 부분을 접착 또는 흡착하는 것으로 성장을 제한하며 방향을 제어하는 조향수단(540)일 수 있다. 상기 조향수단(540)은, 상기 팁부(230)의 표면을 흡착하는 것으로, 상기 조향수단(540)은 상기 팁부(230)의 외면 및 내면 중 적어도 어느 한 면 이상에 부착될 수 있으며, 상기 팁부(230)의 둘레 중 소정 면적을 흡착할 수 있는 장치이면 제한 없이 구성될 수 있다. 일례로, 상기 조향수단(540)은 음압이나, 전기 접착(electroadhesion) 및 테이프 등의 접착 방법(Adbesion Method)의 장치 장치일 수 있으며, 또는 개코 테이프나 외주면 내부에서 풍선 부풀리기 등의 마찰 변조 방법(Friction Modulation Method)의 장치일 수 있다. 도 24를 참조하면, 본 발명의 조향수단(540)이 상기 바인(200)의 외면에 부착되며, 복수의 날개를 가지는 형태로 상기 바인(200)의 끝단에서 전체를 감싸도록 형성되는 흡착 수단으로 형성되어서, 조향하고자 하는 방향 측에 배치된 날개에서 흡착을 발생시킴으로써, 상기 바인(200)이 해당 방향으로 성장이 제한되어 성장 방향이 변경되며 주행할 수 있다. 또한, 도 25를 참조하면, 조향수단(540)은 상기 바인(200)의 내면에 부착되며, 마찰 변조 방법의 수단으로 형성되어, 조향하고자 하는 방향의 부분에 마찰 변조를 발생시킴으로써, 상기 바인(200)이 해당 방향으로의 성장이 제한되며 방향이 전환될 수 있다.
도 26은 실시예 5에 따른 자기력 방법의 조향수단을 도시한 도면을 나타내며, 실시예 10에 따라 본 발명의 조향수단(550)은 바인(200)에 자기력을 작용하여 성장 방향을 제어하는 것을 특징으로 한다. 실시예 10는 상기 바인(200)이 성장 되는 부분에 자기력에 의해서 조향됨에 따라 해당 방향으로 성장 방향이 이동되는 것에 의해 조향되는 것을 특징으로 한다. 도 26을 참고하면, 상기 조향수단은 상기 바인(200)으로부터 소정 거리 이격되어 배치되는 외부 자기장 발생 장치(550)일 수 있다. 상기 외부 자기장 발생 장치(550)는 로봇(10)으로부터 독립되게 구비되는 완전 외부 자석인 것으로, 외부의 공간에서 자유롭게 이동 가능한 것을 특징으로 한다. 이때, 상기 바인(200)의 내부에는 상기 외부 자기장 발생 장치(550)의 자기력을 감지하는 자성체 등의 자기장 감지 수단을 더 포함하고 있는 것이 바람직하다. 따라서, 상기 외부 자기장 발생 장치(550)가 자기장을 발생하면서 이동함에 따라, 상기 바인(200)의 내부에 구비되는 자기장 감지 수단이 상기 외부 자기장 발생 장치(550)가 이동하는 방향을 따라서 이동할 수 있으며, 이에 상기 바인(200)의 성장 방향이 제어될 수 있는 것을 특징으로 한다. 이때, 상기 자기장 감지 수단은 자성체 재질로 형성되는 스택커(410)일 수 있으며, 상기 스택커(410)가 상기 외부 자기장 발생 장치(550)가 발생시키는 자기장의 이동 방향을 따라 이동함으로써 상기 바인(200)이 성장 방향이 제어될 수 있는 것을 특징으로 한다.
또한, 도 27은 실시예 11에 따른 마그네틱 방법의 조향수단을 도시한 도면을 나타내며, 실시예 11에 따라 본 발명의 조향수단(560)은 바인(200)의 외부에 위치하는 자성체(561)를 포함하고, 상기 바인(200)의 표면 중 소정 부분이 상기 자성체(561)와 부착되어 표면적의 성장을 제한함으로써 성장 방향이 제어되는 것을 특징으로 한다. 이때, 상기 바인(200)의 내부에는 상기 자성체(561)와 인력 반응하는 자성 수단이 구비될 수 있다. 상기 자성체(561)는 상기 바인(200)의 둘레를 따라 자유롭게 움직일 수 있으며, 상기 바인(200)의 표면적에 부착된 상태로 외표면을 이동할 수 있다. 이때, 바인(200) 내측에 구비되는 상기 자성 수단도 상기 바인의 내부에서 자유롭게 이동 가능하도록 형성될 수 있다. 상기 자성체(561는 상기 바인(200)의 일부 면적이 성장 제한이 될 수 있도록 상기 바인(200)의 표면적보다 작은 소정 크기로 형성되는 것이 바람직하다. 일례로, 상기 자성체(560)나 상기 자성 수단 중 어느 하나 이상이 영구자석일 수 있으며, 이에 상기 바인(200)이 어느 한 방향으로 성장할 때 둘 중 어느 하나가 바인(200)의 끝단 둘레를 따라 빠르게 돌며 이동할 수 있고, 어느 한 부분에서 멈춤에 따라 상기 자성체(561)가 상기 바인(200)의 어느 위치에 붙어 해당 부분의 성장을 제한하는 것으로, 상기 바인(200)의 성장 방향을 제어할 수 있다. 또한, 상기 조향수단(560)은 필요한 순간에 외부로부터 신호를 제공받아 자기력이 제공되는 장치로도 형성될 수 있다.
본 발명은 조향장치로 구성됨에 따라, 직선 및 곡선 주행이 가능하며, 방향 전환에 부드럽고 자유롭게 구현할 수 있으며, 초탄성 재질의 재료 자체의 쉐이프 락킹 특성으로 인해 로봇이 자라난 부분의 형상을 유지하는데 용이하다는 효과가 있다.
이상과 같이 본 발명에서는 구체적인 구성요소 등과 같은 특정 사항들과 한정된 실시예 도면에 의해 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상술한 각각의 실시예에 한정되는 것이 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 위의 기재로부터 다양한 수정 및 변형이 가능하고, 여러 실시예를 혼용하거나 각 실시예의 일부 구성들을 혼합할 수도 있다.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술되는 특허 청구 범위뿐 아니라 이 특허 청구 범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명의 사상의 범주에 속한다고 할 것이다.
[부호의 설명]
10 : 유연한 성장 로봇 20 : 종래의 성장 로봇
100 : 케이스
200 : 바인
210 : 외주부 211 : 제1외주부
211a : 제1외벽 211b : 제1내벽
211c : 제1중공부 212 : 제2외주부
212a : 제2외벽 212b : 제2내벽
212c : 제2중공부
220 : 내주부 221 : 중심부
230 : 팁부 240 : 선단공간
250 : 절곡부 260 : 연장부
300 : 압력조절기
400 : 피더 410 : 스택커
500, 540, 550, 560 : 조향수단
510 : 강성조절기
511 : 제1강성조절기 512 : 제2강성조절기
520 : 힘줄
530 : 마운트 531 : 관통홀
532 : 고정부
600 : 데이터 수집유닛
610 : 케이블 620 : 센싱모듈
700 : 커버
710 : 커버몸체 720 : 삽입부
본 발명은 성장형 로봇에 관한 것이므로 산업상 이용가능성이 있다.

Claims (20)

  1. 일부가 개구된 케이스;
    상기 케이스의 일측 면에 일단이 고정되는 외주부, 상기 외주부의 타단에서 연장 형성되는 팁부 및 상기 외주부와 팁부에 의해 형성되는 선단공간을 포함하는 바인;
    상기 바인의 팁부와 연결되며, 상기 바인의 길이를 조절하는 피더; 및
    상기 바인의 성장 방향을 제어하는 조향수단;을 포함하고,
    상기 팁부의 직경은 상기 외주부의 직경 보다 작게 형성되며,
    상기 팁부와 외주부의 사이는 구부러져 형성된 것을 특징으로 하는 유연한 성장 로봇.
  2. 제1항에 있어서,
    상기 선단공간의 압력을 조절하는 압력조절기;를 더 포함하는 것을 특징으로 하는 유연한 성장 로봇.
  3. 제2항에 있어서,
    상기 바인은 초탄성 재질로 형성되는 것을 특징으로 하는 유연한 성장 로봇.
  4. 제3항에 있어서,
    상기 바인은 성장 시에 선단공간을 제1압력으로 형성한 후에 상기 제1압력 보다 낮은 제2압력으로 성장 상태를 제어하는 것을 특징으로 하는 유연한 성장 로봇.
  5. 제1항에 있어서,
    상기 바인은 상기 팁부와 외주부 사이에 스트레칭 영역(Stretching Region)을 포함하되,
    상기 바인이 성장하면 상기 스트레칭 영역이 줄어드는 것을 특징으로 하는 유연한 성장 로봇.
  6. 제5항에 있어서,
    상기 바인이 성장하면 상기 팁부 또는 스트레칭 영역이 벌징(Bulging)되어 외주부가 확장되는 것을 특징으로 하는 유연한 성장 로봇.
    제1항에 있어서,
    상기 바인이 성장하면 상기 팁부가 배치된 이버팅 영역이 줄어드는 것을 특징으로 하는 유연한 성장 로봇.
  7. 제1항에 있어서,
    상기 조향수단은,
    상기 바인의 움직임을 제한하는 하나 이상의 고정부, 및,
    상기 팁부의 내측에 형성된 선단공간에 삽입되되 상기 바인의 끝단이 삽입되는 관통홀이 형성된 마운트를 포함하며,
    상기 마운트에 상기 고정부의 일단이 연결되되, 상기 고정부의 타단이 상기 바인에 접촉되어 고정하는 것을 특징으로 하는 유연한 성장 로봇.
  8. 제7항에 있어서,
    상기 팁부와 외주부 사이에 절곡된 절곡부가 형성되되,
    상기 고정부의 타단이 상기 외주부 또는 상기 절곡부에 접촉되는 것을 특징으로 하는 유연한 성장 로봇.
  9. 제7항에 있어서,
    상기 고정부는, 상기 바인의 내면 및 외면 중 적어도 어느 한 면 이상에 접촉되어 상기 바인의 팽창을 제어하는 것을 특징으로 하는 유연한 성장 로봇.
  10. 제1항에 있어서,
    상기 바인의 외주면을 감싸도록 배치되는 커버;를 더 포함하고,
    상기 바인이 성장하면, 접힌 상태로 배치된 상기 커버가 펼쳐지는 것을 특징으로 하는 유연한 성장 로봇.
  11. 제1항에 있어서,
    상기 피더는, 상기 외주부의 내측에 이격되어 상기 케이스의 개구 부분 측을 향해 상기 팁부의 타단으로부터 일정 길이로 연장 형성되는 내주부를 포함하는 것을 특징으로 하는 유연한 성장 로봇.
  12. 제11항에 있어서,
    상기 내주부는 끝단이 개방 형성되어 상기 선단공간과 외부를 연통하는 것을 특징으로 하는 유연한 성장 로봇.
  13. 제12항에 있어서,
    상기 바인의 내주부에 의해 형성된 중심부를 따라 연장되는 케이블과, 상기 케이블과 연결되어 외부 정보를 획득하는 센싱모듈을 포함하는 데이터 수집유닛;을 더 포함하는 유연한 성장 로봇.
  14. 제1항에 있어서,
    상기 피더는,
    상기 바인의 타단에 위치하고, 상기 팁부로부터 연장되는 연장부가 외면에 끼움 되며 상기 바인의 소정 부분을 수용하는 스택커를 포함하는 것을 특징으로 하는 유연한 성장 로봇.
  15. 제14항에 있어서
    상기 스택커는 상기 연장부를 겹겹으로 적층하며 상기 바인을 수용하는 것을 특징으로 하는 유연한 성장 로봇.
  16. 제14항에 있어서,
    상기 스택커는 내부가 통공되는 원통 형상의 툴로 형성되며,
    상기 스택커의 내부를 통과하며 카메라가 배치되는 것을 특징으로 하는 유연한 성장 로봇.
  17. 제1항에 있어서,
    상기 조향수단은,
    상기 바인의 표면 중 소정 부분에 접착 또는 소정 부분을 흡착하여 상기 바인의 일부 표면적의 성장을 제한함으로써, 상기 바인의 성장 방향을 제어하는 것을 특징으로 하는 유연한 성장 로봇.
  18. 제1항에 있어서,
    상기 조향수단은,
    상기 바인에 자기력을 작용하여 바인의 성장 방향을 제어하는 것을 특징으로 하는 유연한 성장 로봇.
  19. 제18항에 있어서,
    상기 조향수단은,
    상기 바인으로부터 소정 거리 이격되어 배치되는 외부 자기장 발생 장치를 포함하는 것을 특징으로 하는 유연한 성장 로봇.
  20. 제1항에 있어서,
    상기 조향수단은,
    바인의 외부에 위치하는 자성체를 포함하고,
    상기 바인의 표면 중 소정 부분이 상기 자성체와 부착되어 표면적의 성장을 제한함으로써, 성장 방향이 제어되는 것을 특징으로 하는 유연한 성장 로봇.
PCT/KR2022/019535 2021-12-03 2022-12-02 초탄성 재질의 유연한 성장 로봇 WO2023101520A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/541,729 2021-12-03
US17/541,729 US11731268B2 (en) 2021-12-03 2021-12-03 Hyper elastic soft growing robot

Publications (1)

Publication Number Publication Date
WO2023101520A1 true WO2023101520A1 (ko) 2023-06-08

Family

ID=86608827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/019535 WO2023101520A1 (ko) 2021-12-03 2022-12-02 초탄성 재질의 유연한 성장 로봇

Country Status (2)

Country Link
US (1) US11731268B2 (ko)
WO (1) WO2023101520A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11788916B2 (en) * 2020-12-11 2023-10-17 The Board Of Trustees Of The Leland Stanford Junior University Distributed sensor networks deployed using soft growing robots

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109702729A (zh) * 2019-01-18 2019-05-03 哈尔滨工业大学 一种基于弹性绳预设拉力的摄像头携带运动装置和方法
US20190217908A1 (en) * 2017-04-03 2019-07-18 The Board Of Trustees Of The Leland Stanford Junior University Robotic Mobility and Construction by Growth
KR20190095653A (ko) * 2018-02-07 2019-08-16 한국기술교육대학교 산학협력단 연장 방향 제어가 가능한 바인로봇
WO2021072295A1 (en) * 2019-10-12 2021-04-15 The Board Of Trustees Of The Leland Stanford Junior University Device to allow retraction of soft growing robots without buckling
CN113103212A (zh) * 2021-04-30 2021-07-13 哈尔滨工业大学 一种自生长柔性臂抓手装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030168068A1 (en) * 2000-09-05 2003-09-11 Poole Anthony George Body cavity liner
EP3058237B1 (en) * 2013-10-18 2020-12-02 President and Fellows of Harvard College Mechanically programmed soft actuators with conforming sleeves
FR3017166B1 (fr) * 2014-02-06 2016-02-05 Warein Actionneur lineaire a structure souple et bras articule comportant un tel actionneur
US10760597B2 (en) * 2015-04-27 2020-09-01 Regents Of The University Of Minnesota Soft robots, soft actuators, and methods for making the same
WO2020060858A1 (en) * 2018-09-19 2020-03-26 The Regents Of The University Of California Soft robotic device with fluid emission for burrowing and cleaning
US11007638B2 (en) * 2018-12-20 2021-05-18 Honda Motor Co., Ltd. Telescoping support robot and methods of use thereof
CN110450149B (zh) * 2019-08-22 2020-11-20 哈尔滨工业大学 一种自生长软体机器人连续转向装置及方法
CN110450138A (zh) * 2019-08-22 2019-11-15 哈尔滨工业大学 一种基于辊轴-辊轮运动方式的自生长软体机器人存储装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190217908A1 (en) * 2017-04-03 2019-07-18 The Board Of Trustees Of The Leland Stanford Junior University Robotic Mobility and Construction by Growth
KR20190095653A (ko) * 2018-02-07 2019-08-16 한국기술교육대학교 산학협력단 연장 방향 제어가 가능한 바인로봇
CN109702729A (zh) * 2019-01-18 2019-05-03 哈尔滨工业大学 一种基于弹性绳预设拉力的摄像头携带运动装置和方法
WO2021072295A1 (en) * 2019-10-12 2021-04-15 The Board Of Trustees Of The Leland Stanford Junior University Device to allow retraction of soft growing robots without buckling
CN113103212A (zh) * 2021-04-30 2021-07-13 哈尔滨工业大学 一种自生长柔性臂抓手装置

Also Published As

Publication number Publication date
US11731268B2 (en) 2023-08-22
US20230173666A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
WO2023101520A1 (ko) 초탄성 재질의 유연한 성장 로봇
CN108943010B (zh) 气控型刚柔耦合模块化软体机械臂
US8020466B2 (en) Umbilical-member processing structure for industrial robot
WO2010076918A1 (en) Micro endoscope with distal end adjustable in angle and curvature
CN101101336B (zh) 按两连续状态辅助一性能互异的异质系统收拉/展放的滑轮及相应设备
WO2019117525A1 (ko) 섬유 장력 조절 장치, 이를 포함하는 섬유강화 복합재 제조 장치 및 그 제조 방법
WO2017171303A1 (ko) 수동 강성 그리퍼
AU2008205444A1 (en) System for the simultaneous introduction of two items into a conduit
JP2003032855A (ja) グロメット
DE69201166D1 (de) Entkupplungsmechanismus für Speisekabel.
WO2020159215A1 (en) Outdoor unit of air conditioner
US6386238B1 (en) Methods and apparatus for detangling coiled hoses and springs
JP2009106067A (ja) ワイヤハーネス用グロメット
JPH02141657A (ja) 管内自走装置
KR101513070B1 (ko) 케이블 포설 로봇
WO2023191167A1 (ko) 커넥터
WO2024117742A1 (ko) 길이 방향 전개형 진공 흡입 컵
WO2022086040A1 (ko) 성장형 소프트로봇의 캡 어셈블리 및 이를 포함하는 성장형 소프트로봇
WO2022169024A1 (ko) 결장 직선화 장치, 이를 포함하는 결장 직선화 시스템 및 결장 직선화 장치 제조 방법
WO2024029970A1 (ko) 픽커
WO2015111834A1 (en) Buckle presenter
WO2016143928A1 (ko) 자석락 장치를 구비한 의지 구조체
JP3540545B2 (ja) 弾性自己収縮チューブの作成方法及び装置
JP3804799B2 (ja) バルーン装着ジグ及びそれを用いたバルーン装着方法
KR20150128146A (ko) 트레이 주행형 케이블 포설 로봇장치 및 주행 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901878

Country of ref document: EP

Kind code of ref document: A1