WO2022156013A1 - 一种用于纤维束张力调控的变杆长刚柔耦合机构 - Google Patents

一种用于纤维束张力调控的变杆长刚柔耦合机构 Download PDF

Info

Publication number
WO2022156013A1
WO2022156013A1 PCT/CN2021/075768 CN2021075768W WO2022156013A1 WO 2022156013 A1 WO2022156013 A1 WO 2022156013A1 CN 2021075768 W CN2021075768 W CN 2021075768W WO 2022156013 A1 WO2022156013 A1 WO 2022156013A1
Authority
WO
WIPO (PCT)
Prior art keywords
tension
roller
fiber bundle
push rod
rod
Prior art date
Application number
PCT/CN2021/075768
Other languages
English (en)
French (fr)
Inventor
张武翔
衣明辉
丁希仑
邵一鑫
邓慧超
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Publication of WO2022156013A1 publication Critical patent/WO2022156013A1/zh
Priority to US18/224,142 priority Critical patent/US20230365375A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H59/00Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators
    • B65H59/10Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators by devices acting on running material and not associated with supply or take-up devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H57/00Guides for filamentary materials; Supports therefor
    • B65H57/14Pulleys, rollers, or rotary bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H59/00Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators
    • B65H59/10Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators by devices acting on running material and not associated with supply or take-up devices
    • B65H59/36Floating elements compensating for irregularities in supply or take-up of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the invention relates to a tension control mechanism in the transmission process of fiber bundles, in particular to a rigid-flexible coupling mechanism with variable rod length used for tension control of fiber bundles.
  • tension fluctuation is one of the important factors that cause fiber abrasion, fluff, broken filaments and even reduce the molding quality of structural products. Because the fiber bundle usually needs to go through a complex transmission process from feeding to forming, and the transmission path is often long, the number of conveying rollers is large, and the tension fluctuation is obvious. become one of the important research directions.
  • most of the common fiber bundle tension control mechanisms are in the form of dance rollers or swing rods.
  • the tension adjustment rollers can only move linearly or swing in a circular arc in a certain direction.
  • the position of the wheel can be adjusted to realize the regulation of tension.
  • the existing single-degree-of-freedom or fixed-rod-length structure fiber bundle tension control mechanism is limited by spatial position and mechanism, the movement trajectory of the adjustment roller is limited, the tension control range is small, and the single-rod structure is unstable, which cannot guarantee the accuracy of the tension.
  • the rigidity of the pure rigid structure is strong, and the precision of tension regulation may be affected by the action inertia of the mechanism, and the precision is insufficient, which limits the constant tension and low-wear transmission of the fiber bundle, and the reliability is low.
  • the present invention proposes a variable rod length rigid-flexible coupling mechanism for fiber bundle tension control.
  • the four-bar mechanism with fixed rod length or the five-bar mechanism with variable rod length can be selected according to the magnitude of the tension fluctuation and the adjustment range, and the position of the tension adjustment roller can be adjusted, and then the tension of the fiber bundle can be adjusted.
  • Fiber bundle constant tension transmission For the length and angle of the rod, the four-bar mechanism with fixed rod length or the five-bar mechanism with variable rod length can be selected according to the magnitude of the tension fluctuation and the adjustment range, and the position of the tension adjustment roller can be adjusted, and then the tension of the fiber bundle can be adjusted. Fiber bundle constant tension transmission.
  • variable rod length rigid-flexible coupling mechanism used for adjusting the tension of fiber bundles of the present invention comprises a front godet roller, a rear godet roller and a tension adjusting roller arranged between the two.
  • the tension adjusting roller is installed on the bracket that can move up and down on the swing frame; at the same time, the swing of the swing frame and the sliding of the tension adjusting roller are controlled by the double drive control mode of the motor and the electric push rod; the end of the body part of the electric push rod It is connected with the servo motor; the output end of the push rod part of the electric push rod is connected with one side of the bracket through the rotating shaft.
  • variable rod length rigid-flexible coupling mechanism of the present invention for adjusting the fiber bundle tension can be selected according to different working conditions. adjust.
  • the tension adjustment mechanism with variable rod length and four rods is used for tension adjustment: when the tension becomes larger, the output shaft of the motor rotates clockwise, which drives the electric push rod to rotate clockwise around the axis of the motor , the angle of the push rod part of the electric push rod changes, which drives the swing frame to rotate counterclockwise around the rotation axis; at the same time, the support drives the tension adjustment roller to move downward, so that the distance between the tension adjustment roller and the front godet and rear godet reduce to achieve the purpose of reducing tension.
  • the servo motor reverses, drives the swing frame to rotate clockwise, the tension adjustment roller moves upward, and the distance from the front godet roller and the rear godet roller increases to realize the increase of fiber bundle tension.
  • the five-bar tension adjustment mechanism with variable rod length is used for tension adjustment: when the tension becomes larger, the output shaft of the motor rotates clockwise to drive the electric push rod around The axis of the motor rotates clockwise; at the same time, the electric push rod drives the push rod part of the electric push rod to shrink, and the angle and length of the push rod part of the electric push rod change, which drives the pendulum rod to rotate counterclockwise around the rotation axis; at the same time, the bracket drives the tension The adjustment roller moves downward, so that the distance between the tension adjustment roller and the front godet and the rear godet is reduced, so as to achieve the purpose of reducing the tension.
  • the servo motor is reversed, the tension adjustment rod is extended, and the swing frame is driven to rotate clockwise. , to increase the fiber bundle tension.
  • the rigid-flexible coupling mechanism with variable rod length used for fiber bundle tension regulation of the present invention can be selected according to different working conditions (tension fluctuation, adjustment range, etc.) Tension control mechanism, the control method is more flexible.
  • variable-rod length rigid-flexible coupling mechanism used in the present invention for adjusting the fiber bundle tension is an RRPR mechanism when a servo motor single-drives a four-rod tension adjusting mechanism with a fixed rod length, the control method is simple, the response speed is fast, and the control can be realized Rapid adjustment of tension by the mechanism.
  • variable rod length rigid-flexible coupling mechanism used for fiber bundle tension control of the present invention adopts servo motor and electric push rod to double-drive the variable rod length five-bar tension control mechanism, which is an RPRPR mechanism, and the movement track range of the tension adjusting roller is wider. , which avoids the large-sized mechanism adopted by traditional dance rollers or swing rods to achieve large-scale tension control, and the space structure is more compact, which can realize the precise adjustment of tension by the control mechanism.
  • variable rod length rigid-flexible coupling mechanism of the present invention is used for the tension control of fiber bundles.
  • the tension adjustment rod, the pendulum rod and the base form a stable triangular structure during the tension control process, which improves the inconsistency of the traditional single rod structure. Stability, helps to improve the precision of tension regulation.
  • variable-rod length-rigid-flexible coupling mechanism of the present invention for adjusting the tension of fiber bundles adopts a adjusting mechanism in which a flexible spring is coupled with a rigid rod.
  • the spring is compressed or pulled, which acts as a buffer and reduces the action of the mechanism.
  • the influence of inertia on the position of the tensioning roller improves the stability of the control system.
  • FIG. 1 is a three-dimensional schematic diagram of the rigid-flexible coupling mechanism of the variable rod length for adjusting the tension of the fiber bundle according to the present invention.
  • FIG. 2 is a schematic front view of the variable rod length rigid-flexible coupling mechanism used for fiber bundle tension regulation according to the present invention.
  • FIG. 3 is a schematic cross-sectional view of the tension adjusting roller of the variable rod length rigid-flexible coupling mechanism used for fiber bundle tension control according to the present invention.
  • FIG. 4 is a schematic diagram of the action of the rigid-flexible coupling mechanism with variable rod length for adjusting the fiber bundle tension according to the present invention when the fixed rod length four-bar mechanism is used for tension adjustment.
  • FIG. 5 is a schematic diagram of the action of a variable rod length rigid-flexible coupling mechanism for adjusting the fiber bundle tension according to the present invention when the variable rod length five-bar mechanism is used for tension adjustment.
  • a variable rod length rigid-flexible coupling mechanism for adjusting the tension of fiber bundles of the present invention comprises a base 1, a front godet 2, a rear godet 3, a servo motor 4, a swing frame 5, a bracket 6, an electric push rod 7,
  • the spring base plate 8 , the spring 9 and the tension adjusting roller 10 are shown in FIG. 1 and FIG. 2 .
  • the base 1 is designed as a platform with a rectangular cross-section; the front and rear godet rollers 2 and 3 are respectively framed by the front godet roller base plate 11 and the rear godet roller base plate 12 at the front and rear positions of the middle of the base 1 .
  • the lower end of the front godet base plate 11 is fixed to the left and right sides of the base 1 by bolts, and the upper end is fixed to the two ends of the front godet shaft respectively.
  • the lower end of the rear godet base plate 12 is fixed to the left and right sides of the base 1 by bolts, and the upper end is respectively fixed to both ends of the rear godet shaft, and the rear godet roller 3 is coaxially mounted on the rear godet shaft through bearings.
  • the servo motor 4 is erected in front of the front godet 2 through the motor mounting base plate 13; the lower end of the motor mounting base plate 13 is fixedly mounted on one side of the base 1 by bolts, and the upper end is fixedly mounted with the servo motor 4, and the output shaft of the servo motor 4 is axially Set in the left and right directions.
  • the swing frame 5 has a left swing bar, a right swing bar and a top beam, and the upper ends of the left swing bar and the right swing bar are respectively connected with both ends of the top beam to form an integrated U-structure frame.
  • the lower ends of the left swing rod and the right swing rod are installed on the base 1 through the swing frame rotating shaft 14, and the positions are located between the front godet roller 2 and the rear godet roller 3, so that the swing frame 5 can swing around the swing frame rotating shaft 14.
  • the position Fixed, angle variable. Guide rails 15 are installed on the opposite sides of the left swing rod and the right swing rod along their respective axial directions for installing the bracket 6 .
  • the bracket 6 is a U-shaped frame structure, and the outer walls of the left and right sides are provided with concave grooves 16, which are respectively connected with the guide rails 15 on the left swing rod and the right swing rod, so that the bracket 6 can slide along the guide rails 15; and the concave grooves 16 There is a certain distance between the ground and the guide rail 15 for installing the tension adjusting roller 10, as shown in FIG. 3 .
  • the tension adjusting roller 10 is installed on the adjusting roller shaft through bearings; the two ends of the adjusting roller shaft are respectively fixed on both sides of the bracket 6 by bolts, and the fixing positions are located at the bottom surface of the concave groove 16 on both sides of the bracket 6, so that the tension adjusting roller 10 can follow the bracket 6. Move up and down along the guide rail 15 .
  • the two sides of the spring base plate 8 are fixedly installed on the left swing rod and the right swing rod in the swing frame 5 by bolts, and the installation position is located below the guide rail 15 .
  • the two ends of the upper surface of the spring base plate 8 are respectively fixed by bolts and the lower ends of two flexible springs 9.
  • the two springs 9 are respectively arranged along the left swing rod and the right swing rod, and the upper ends are fixed by bolts and brackets.
  • the axis of the electric push rod 7 is arranged perpendicular to the output shaft of the servo motor 4 .
  • the end of the body part of the electric push rod 7 is connected with the output shaft of the servo motor 4 through the coupling; the push rod part of the electric push rod 7 is used as the tension adjustment rod 17, and the output end of the tension adjustment rod 17 is connected to the bottom side of the bracket 6 through the rotating shaft connection, so that the adjusting rod can be rotated around the rotating shaft on one side of the bracket 6, the position is fixed, and the angle is variable. Therefore, the rotation of the servo motor 4 drives the electric push rod 7 to rotate along the axis of the servo motor 4 to adjust the angle of the tension adjustment rod 17; The length of the tension adjustment rod 17 is adjusted.
  • the fiber bundle 18 is transported from below the front godet roll 2 to above the tension adjustment roll 10, and then transported to the next stage through the rear godet roll 3 Mechanism; it can be seen that the position of the tensioning roller 10 determines the magnitude of the tension during the transmission of the fiber bundle 18 .
  • the upper and lower and front and rear positions of the tension adjustment roller 10 can be adjusted respectively by the motor and the electric push rod 7, and then by adjusting the three rollers (the front godet roller 2, the tension adjustment roller 10 and the rear godet The relative position between the rollers 3) realizes the regulation of the fiber tension; and the triangular structure is formed by the swing frame 5, the tension adjustment rod 17 and the base 1, which ensures the stability of the tension regulation mechanism during the transmission of the fiber bundle 18, The tension disturbance caused by the instability of the mechanism is avoided, and the precision of tension regulation is improved.
  • roller surfaces of the above-mentioned front godet roller 2, tension adjusting roller 10 and rear godet roller 3 can also be designed as concave structures, which can limit the position of the fiber bundle 18 in the axial direction, so as to prevent the fiber bundle 18 from swinging from side to side during the transmission process of the fiber bundle 18. resulting in tension fluctuations.
  • a fixed rod length four-bar mechanism or a variable rod length five-bar mechanism can be selected according to different working conditions, which can realize the rapid response of tension control or tension control.
  • the purpose of adjusting the arbitrary trajectory of the adjusting roller 10 and increasing the tension adjustment range can meet different tension adjustment requirements, and the adjustment method is flexible and reliable.
  • a tension adjustment mechanism with a fixed rod and four rods is used to adjust the tension.
  • the schematic diagram of the mechanism is shown in Figure 4.
  • the fiber bundle 18 is transported to the dancer roll 10 via the front godet roll 2 and then to the next mechanism via the rear godet roll 3 .
  • the fiber bundles 18 are wound counterclockwise, clockwise and counterclockwise at the front godet roll 2, the tension adjustment roll 10, and the rear godet roll 3, respectively, and the positions of the front and rear godet rolls 3 are fixed.
  • the regulation of the tension of the fiber bundle 18 is realized.
  • the controller outputs a control signal, and the mechanism completes the following active actions: the output shaft of the servo motor 4 rotates clockwise, which drives the electric push rod 7 to rotate clockwise around the axis of the servo motor 4; due to the change in the angle of the tension adjusting rod 17 , drive the swing frame 5 to rotate counterclockwise around the rotating shaft; at the same time, the support 6 drives the tension adjustment roller 10 to move along the guide rail 15 to the direction close to the swing frame rotating shaft 14, and the spring 9 is compressed, so that the tension adjustment roller 10 and the front godet roller 2, The distance between the rear godet rollers 3 is reduced, as shown by the solid line part in FIG.
  • the servo motor 4 is reversed, driving the swing frame 5 to rotate clockwise, the tension adjusting roller 10 is away from the swing frame shaft 14, the spring 9 is stretched, and the front godet roller 2, the rear
  • the increase in the distance of the godet rolls 3 achieves an increase in the tension of the fiber bundle 18 . Since the four-bar tension control mechanism is only driven by a single motor at this time, the response speed of the tension control is fast, and the tension can be adjusted quickly.
  • the controller When the tension increases, the controller outputs a control signal, and the mechanism completes the following active actions: the output shaft of the servo motor 4 rotates clockwise, driving the electric push rod 7 to rotate clockwise around the axis of the servo motor 4, and at the same time, the electric push rod 7 drives the tension adjustment
  • the rod 17 contracts; due to the change in the angle and length of the tension adjustment rod 17, the swing rod is driven to rotate counterclockwise around the rotation axis; at the same time, the bracket 6 drives the tension adjustment roller 10 to move along the guide rail 15 to the direction close to the swing frame rotating shaft 14, so that the tension
  • the distance between the adjusting roller 10 and the front godet roller 2 and the rear godet roller 3 is reduced, as shown by the solid line in FIG.

Abstract

公开了一种用于纤维束张力调控的变杆长刚柔耦合机构。纤维束在传输过程中,依次经过前导丝辊(2)、张力调节辊(10)以及后导丝辊(3),其中前、后导丝辊位置固定,张力调节辊位置可调,通过对张力调节辊位置的调节实现纤维束张力的调控。该机构采用变杆长刚柔耦合机构及伺服电机(4)、电动推杆(7)双驱动控制方式,可以在不同工况条件下选择采用固定杆长四杆机构或变杆长五杆机构对张力进行调控,调控方式更加灵活,增加了纤维束张力调控范围,提高了系统响应速度及调控精度,有效避免了因张力波动造成的纤维束磨损。

Description

一种用于纤维束张力调控的变杆长刚柔耦合机构 技术领域
本发明涉及纤维束传输过程张力调控机构,具体来说,是一种用于纤维束张力调控的变杆长刚柔耦合机构。
背景技术
纤维束传输过程中,张力波动是造成纤维磨损、起毛、断丝甚至降低结构产品成型质量的重要影响因素之一。由于纤维束从放料到成型通常需要经过复杂的传输过程,且传送路径往往较长、传送辊轮数量较多,张力波动明显,因此,如何实现纤维束张力的精确调控、改善产品成型质量已经成为重要研究方向之一。
目前,常见的纤维束张力调控机构大多采用舞蹈辊或摆动杆的结构形式,张力调节辊轮只能沿某一方向做直线运动或圆弧摆动,驱动方式一般采用电机或气缸单一驱动,对辊轮的位置进行调节,从而实现张力的调控。
现有的单自由度或固定杆长结构的纤维束张力调控机构受空间位置以及机构限制,调节辊轮运动轨迹受限,张力调控范围较小,且单杆结构不稳定,无法保证张力的精确调控;同时,纯刚性结构刚度较强,张力调控精度可能受机构动作惯性作用影响,精度不足,限制了纤维束恒张力、低磨损传输,可靠性较低。
发明内容
为了解决上述纤维束传输时张力调控机构的问题,本发明提出一种用于纤维束张力调控的变杆长刚柔耦合机构,采用伺服电机和电动推杆配合双驱动控制方式,通过改变张力调节杆的长度和角度,可以根据张力波动大小及调控范围选择固定杆长的四杆机构或变杆长五杆机构,对张力调节辊论的位置进行调整,进而对纤维束张力进行调控,实现了纤维束恒张力传输。
本发明用于纤维束张力调控的变杆长刚柔耦合机构,包括前导丝辊、后导丝辊与两者之间设置的张力调节辊。
所述张力调节辊通过安装于摆动架上的可上下移动的支架上;同时采用电机、电动推杆双驱动控制方式控制摆动架的摆动及张力调节辊的滑动;其中电动推杆的机体部分末端与伺服电机相连;电动推杆的推杆部分输出端通过转轴与支 架一侧连接。
由此本发明用于纤维束张力调控的变杆长刚柔耦合机构,可根据不同工况选用固定杆长四杆机构或变杆长五杆机构,实现张力调控快速响应或张力调节辊任意轨迹调节。
当张力调控范围较小、要求张力调控快速响应时,采用变杆长四杆张力调控机构进行张力调节:当张力变大时,电机输出轴顺时针转动,带动电动推杆绕电机轴线顺时针旋转,电动推杆的推杆部分角度发生变化,带动摆动架绕转动轴逆时针转动;同时,支架带动张力调节辊向下运动,使得张力调节辊与前导丝辊、后导丝辊之间的距离减小,达到减小张力的目的。反之,当纤维束传输过程中张力减小时,伺服电机反转,带动摆动架顺时针转动,张力调节辊向上运动,与前导丝辊、后导丝辊的距离增加,实现纤维束张力的增大。
当张力调控范围较大、要求张力调节辊位置变化可沿任意轨迹时,采用变杆长五杆张力调控机构进行张力调节:当张力变大时,电机输出轴顺时针转动,带动电动推杆绕电机轴线顺时针旋转;同时,电动推杆驱动电动推杆的推杆部分收缩,电动推杆的推杆部分的角度和长度发生变化,带动摆杆绕转动轴逆时针转动;同时,支架带动张力调节辊向下运动,使得张力调节辊与前导丝辊、后导丝辊之间的距离减小,达到减小张力的目的。反之,当纤维束传输过程中张力减小时,伺服电机反转,张力调节杆伸长,带动摆动架顺时针转动,张力调节辊向上运动架转轴,与前导丝辊、后导丝辊的距离增加,实现纤维束张力的增大。
本发明的优点在于:
1、本发明用于纤维束张力调控的变杆长刚柔耦合机构,可以根据不同工况条件(张力波动大小、调控范围等)选择采用固定杆长四杆机构或变杆长五杆机构的张力调控机构,调控方式更加灵活。
2、本发明用于纤维束张力调控的变杆长刚柔耦合机构,采用伺服电机单驱动固定杆长的四杆张力调控机构时,为RRPR机构,调控方式简单,响应速度快,可实现调控机构对张力的迅速调节。
3、本发明用于纤维束张力调控的变杆长刚柔耦合机构,采用伺服电机、电动推杆双驱动变杆长五杆张力调控机构时,为RPRPR机构,张力调节辊运动轨迹范围更广,避免了传统的舞蹈辊或摆动杆为实现大范围张力调控而采取的大尺寸机构,空间结构更紧凑,可实现调控机构对张力的精准调节。
4、本发明用于纤维束张力调控的变杆长刚柔耦合机构,张力调节杆、摆杆 与基座三者在张力调控过程中形成了稳定的三角结构,改善了传统单杆结构的不稳定性,有助于提高张力调控精度。
5、本发明用于纤维束张力调控的变杆长刚柔耦合机构,采用柔性弹簧与刚性杆件耦合的调控机构,张力调节时弹簧受压或受拉,起到缓冲作用,降低了机构动作惯性作用对张力调节辊位置的影响,提高了调控系统的稳定性。
附图说明
图1是本发明用于纤维束张力调控的变杆长刚柔耦合机构的三维示意图。
图2是本发明用于纤维束张力调控的变杆长刚柔耦合机构的正向示意图。
图3是本发明用于纤维束张力调控的变杆长刚柔耦合机构的张力调节辊剖面示意图。
图4是本发明用于纤维束张力调控的变杆长刚柔耦合机构采用固定杆长四杆机构进行张力调节时机构动作示意图。
图5是本发明一种用于纤维束张力调控的变杆长刚柔耦合机构采用变杆长五杆机构进行张力调节时机构动作示意图。
图中:
1-基座                 2-前导丝辊             3-后导丝辊
4-伺服电机             5-摆动架               6-支架
7-电动推杆             8-弹簧基板             9-弹簧
10-张力调节辊          11-前导丝辊基板        12-后导丝辊基板
13-电机安装基板        14-摆动架转轴          15-导轨
16-凹型槽              17-张力调节杆          18-纤维束
具体实施方式
下面结合附图对本发明作进一步的详细说明。
本发明一种用于纤维束张力调控的变杆长刚柔耦合机构包括基座1、前导丝辊2、后导丝辊3、伺服电机4、摆动架5、支架6、电动推杆7、弹簧基板8、弹簧9与张力调节辊10,如图1、图2所示。
所述基座1设计为矩形横截面平台;基座1中部前后位置分别通过前导丝辊基板11与后导丝辊基板12架设有前导丝辊2与后导丝辊3。前导丝辊基板11下端通过螺栓固定于基座1左右两侧,上端分别与前导丝轴两端固定,前导丝轴上通过轴承同轴安装前导丝辊2。同样,后导丝辊基板12下端通过螺栓固定于基座1左右两侧,上端分别与后导丝轴两端固定,后导丝轴上通过轴承同轴安装 后导丝辊3。
所述伺服电机4通过电机安装基板13架设于前导丝辊2前方;电机安装基板13下端通过螺栓固定安装在基座1一侧,上端固定安装有伺服电机4,且伺服电机4输出轴轴向沿左右方向设置。
所述摆动架5具有左摆杆、右摆杆以及顶梁,且左摆杆与右摆杆的上端别与顶梁两端相接形成一体的U结构框架。其中,左摆杆与右摆杆下端通过摆动架转轴14安装在基座1上,位置位于前导丝辊2与后导丝辊3之间,使摆动架5可绕摆动架转轴14摆动,位置固定,角度可变。上述左摆杆与右摆杆相对侧面上沿各自轴向安装有导轨15,用于安装支架6。
所述支架6为U型框架结构,左右两侧外壁上开设有凹型槽16,分别与左摆杆与右摆杆上的导轨15滑动配合连接,使支架6可沿导轨15滑动;且凹型槽16地面与导轨15间留有一定距离,用于安装张力调节辊10,如图3所示。张力调节辊10通过轴承安装于调节辊轴上;调节辊轴两端通过螺栓分别固定于支架6两侧,固定位置位于支架6两侧凹型槽16底面位置,使张力调节辊10可随支架6沿导轨15上下运动。
所述弹簧基板8两侧通过螺栓固定安装于摆动架5中左摆杆与右摆杆上,且安装位置位于导轨15下方。弹簧基板8上表面两端位置分别通过螺栓与两根柔性弹簧9下端固定,两根弹簧9分别沿左摆杆与右摆杆设置,上端通过螺栓与支架固定。当张力调节辊10及支架6沿导轨15在摆动架5上往复直线运动时,引入柔性弹簧9可以消除纯刚性结构无法解决的惯性作用的影响,对张力调节辊10的上下运动起到缓冲作用。本发明中通过采用双弹簧9连接方式,避免单组弹簧9拉伸或压缩造成支架6受力不平衡、产生扭矩,进而影响张力调控精度。
所述电动推杆7轴线垂直于伺服电机4输出轴设置。电动推杆7的机体部分末端通过联轴器与伺服电机4的输出轴相连;电动推杆7的推杆部分作为张力调节杆17,张力调节杆17的输出端通过转轴与支架6底部一侧连接,实现调节杆可绕转轴在支架6一侧转动,位置固定,角度可变。由此,通过伺服电机4转动带动电动推杆7沿伺服电机4轴线转动,对张力调节杆17的角度进行调节;通过电动推杆7控制张力调节杆17沿电动推杆7轴线方向伸缩,对张力调节杆17的长度进行调节。
通过上述设计的用于纤维束张力调控的变杆长刚柔耦合机构,纤维束18由前导丝辊2下方传输至张力调节辊10的上方,再经由后导丝辊3下方传输至下 一级机构;可见张力调节辊10的位置决定了纤维束18传输过程中张力的大小。因此在纤维传输过程中,通过电机与电动推杆7可分别对张力调节辊10的上下及前后位置进行调节,进而通过调整三个辊轮(前导丝辊2、张力调节辊10与后导丝辊3)之间的相对位置,实现纤维张力的调控;且通过摆动架5、张力调节杆17与基座1三者构成三角结构,保证了在纤维束18传输过程中张力调控机构的稳定,避免因机构不稳定导致引起的张力扰动,提高了张力调控的精度。上述前导丝辊2、张力调节辊10与后导丝辊3的辊轮表面还可设计为内凹结构,对纤维束18起轴向限位作用,避免纤维束18传输过程中由于纤维左右摆动而导致张力波动。
本发明用于纤维束张力调控的变杆长刚柔耦合机构在进行张力调节时,可以根据不同工况选用固定杆长四杆机构或变杆长五杆机构,可以实现张力调控快速响应或张力调节辊10任意轨迹调节、增加张力调控范围的目的,满足不同张力调控要求,调控方式灵活、可靠。
当张力调控范围较小、要求张力调控快速响应时,采用固定杆长四杆张力调控机构进行张力调节,机构动作示意图如图4所示。纤维束18经前导丝辊2传输至张力调节辊10,进而经由后导丝辊3传输至下一机构。纤维束18在前导丝辊2、张力调节辊10、后导丝辊3处分别为逆时针、顺时针及逆时针绕向,且前后导丝辊3位置固定,通过控制张力调节辊10的位置实现对纤维束18张力的调控。纤维束18传输过程中,摆动架5、张力调节辊10、张力调节杆17、电动推杆7的初始位置和状态如图4虚线部分所示。当张力变大时,控制器输出控制信号,机构完成以下主动动作:伺服电机4输出轴顺时针转动,带动电动推杆7绕伺服电机4轴线顺时针旋转;由于张力调节杆17的角度发生变化,带动摆动架5绕转动轴逆时针转动;同时,支架6带动张力调节辊10沿导轨15向靠近摆动架转轴14的方向运动,弹簧9被压缩,使得张力调节辊10与前导丝辊2、后导丝辊3之间的距离减小,如图4中实线部分所示,进而达到减小张力的目的,实现对纤维束18张力的调控。反之,当纤维束18传输过程中张力减小时,伺服电机4反转,带动摆动架5顺时针转动,张力调节辊10远离摆动架转轴14,弹簧9被拉伸,与前导丝辊2、后导丝辊3的距离增加,实现纤维束18张力的增大。由于此时四杆张力调控机构仅受单电机驱动,张力调控响应速度快,可实现张力迅速调节。
当张力调控范围较大、要求张力调节辊10位置变化可沿任意轨迹时,采用 变杆长五杆张力调控机构进行张力调节,机构动作如图5所示。纤维束18传输过程中,前导丝辊2、张力调节辊10、张力调节杆17、电动推杆7的初始位置和状态如图5虚线部分所示。当张力变大时,控制器输出控制信号,机构完成以下主动动作:伺服电机4输出轴顺时针转动,带动电动推杆7绕伺服电机4轴线顺时针旋转,同时,电动推杆7驱动张力调节杆17收缩;由于张力调节杆17的角度和长度发生变化,带动摆杆绕转动轴逆时针转动;同时,支架6带动张力调节辊10沿导轨15向靠近摆动架转轴14的方向运动,使得张力调节辊10与前导丝辊2、后导丝辊3之间的距离减小,如图4中实线部分所示,进而达到减小张力的目的,实现对纤维束18张力的调控。反之,当纤维束18传输过程中张力减小时,伺服电机4反转,张力调节杆17伸长,带动摆动架5顺时针转动,张力调节辊10远离摆动架转轴14,与前导丝辊2、后导丝辊3的距离增加,实现纤维束18张力的增大。在张力调节辊10沿导轨15往复运动时,支架6与弹簧基板8之间的柔性弹簧9受压缩或拉伸,为机构运动提供缓冲作用,避免了由于刚性结构运动导致的震动影响了张力调控的精度,实现了刚柔耦合机构对张力稳定、精准地调控。

Claims (5)

  1. 一种用于纤维束张力调控的变杆长刚柔耦合机构,包括前导丝辊、后导丝辊与两者之间设置的张力调节辊;其特征在于:张力调节辊通过安装于摆动架上的可上下移动的支架上;同时采用电机、电动推杆双驱动控制方式控制摆动架的摆动及张力调节辊的滑动;电动推杆的机体部分末端与伺服电机相连;电动推杆的推杆部分输出端通过转轴与支架一侧连接。
  2. 如权利要求1所述一种用于纤维束张力调控的变杆长刚柔耦合机构,其特征在于:摆动架两侧安装滑轨与支架间滑动配合连接,支架上安装张力调节辊,实现张力调节辊的上下滑动。
  3. 如权利要求1所述一种用于纤维束张力调控的变杆长刚柔耦合机构,其特征在于:可摆动框架上位于张力调节辊下方安装有弹簧基板,弹簧基板与张力调节辊间通过弹簧相连,对张力调节辊的上下运动起到缓冲作用。
  4. 如权利要求3所述一种用于纤维束张力调控的变杆长刚柔耦合机构,其特征在于:弹簧为两根分别设置于摆动架两侧。
  5. 如权利要求1所述一种用于纤维束张力调控的变杆长刚柔耦合机构,其特征在于:根据不同工况选用固定杆长四杆机构或变杆长五杆机构,实现张力调控快速响应或张力调节辊任意轨迹调节;
    当张力调控范围较小、要求张力调控快速响应时,采用变杆长四杆张力调控机构进行张力调节:当张力变大时,电机输出轴顺时针转动,带动电动推杆绕电机轴线顺时针旋转,电动推杆的推杆部分角度发生变化,带动摆动架绕转动轴逆时针转动;同时,支架带动张力调节辊向下运动,使得张力调节辊与前导丝辊、后导丝辊之间的距离减小,达到减小张力的目的;反之,当纤维束传输过程中张力减小时,伺服电机反转,带动摆动架顺时针转动,张力调节辊向上运动,与前导丝辊、后导丝辊的距离增加,实现纤维束张力的增大;
    当张力调控范围较大、要求张力调节辊位置变化可沿任意轨迹时,采用变杆长五杆张力调控机构进行张力调节:当张力变大时,电机输出轴顺时针转动,带动电动推杆绕电机轴线顺时针旋转,同时,电动推杆驱动电动推杆的推杆部分收缩,电动推杆的推杆部分的角度和长度发生变化,带动摆杆绕转动轴逆时针转动;同时,支架带动张力调节辊向下运动,使得张力调节辊与前导丝辊、后导丝辊之间的距离减小,达到减小张力的目的;反之,当纤维束传输过程中张力减小时, 伺服电机反转,张力调节杆伸长,带动摆动架顺时针转动,张力调节辊向上运动架转轴,与前导丝辊、后导丝辊的距离增加,实现纤维束张力的增大。
PCT/CN2021/075768 2021-01-22 2021-02-07 一种用于纤维束张力调控的变杆长刚柔耦合机构 WO2022156013A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/224,142 US20230365375A1 (en) 2021-01-22 2023-07-20 Rigid-flexible coupling mechanism with variable rod length for fibre bundle tension control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110088240.1 2021-01-22
CN202110088240.1A CN112850363B (zh) 2021-01-22 2021-01-22 一种用于纤维束张力调控的变杆长刚柔耦合机构

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/224,142 Continuation US20230365375A1 (en) 2021-01-22 2023-07-20 Rigid-flexible coupling mechanism with variable rod length for fibre bundle tension control

Publications (1)

Publication Number Publication Date
WO2022156013A1 true WO2022156013A1 (zh) 2022-07-28

Family

ID=76007969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075768 WO2022156013A1 (zh) 2021-01-22 2021-02-07 一种用于纤维束张力调控的变杆长刚柔耦合机构

Country Status (3)

Country Link
US (1) US20230365375A1 (zh)
CN (1) CN112850363B (zh)
WO (1) WO2022156013A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115180820A (zh) * 2022-08-09 2022-10-14 广州鑫朗耀科技有限公司 一种光纤拉制设备
CN115367529A (zh) * 2022-09-06 2022-11-22 灵宝宝鑫电子科技有限公司 一种铜箔表面处理机的张力调整组件及调整方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108589006A (zh) * 2018-05-03 2018-09-28 晋江市恒威机械制造有限公司 一种具有自适应送纱功能的针织大圆机
CN108792786A (zh) * 2018-06-13 2018-11-13 盛奇石 一种毛条拉紧收卷机构
WO2019117525A1 (ko) * 2017-12-11 2019-06-20 (주)엘지하우시스 섬유 장력 조절 장치, 이를 포함하는 섬유강화 복합재 제조 장치 및 그 제조 방법
CN209052204U (zh) * 2018-11-01 2019-07-02 杭州临安森源电缆有限公司 一种电缆张力平衡调节装置
CN209065198U (zh) * 2018-10-26 2019-07-05 浙江恒远化纤集团有限公司 一种化纤生产用丝束张力调节装置
CN209383183U (zh) * 2018-12-12 2019-09-13 鹤壁海昌专用设备有限公司 一种送线缓冲装置
CN210735838U (zh) * 2019-11-07 2020-06-12 常州安诚线缆机械有限公司 一种基于可滑动配重块的摆臂张力架
CN212051823U (zh) * 2020-04-09 2020-12-01 吴江福爱梁纺织有限公司 一种固定型纺织用针织机过线装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187504A (ja) * 1993-12-27 1995-07-25 Fujikura Ltd 線条体の張力調整装置
DE10210911A1 (de) * 2002-03-04 2003-09-18 Picanol Nv Vorrichtung zum Erfassen und/oder Einstellen einer Zugkraft in einem Faden
JP5426323B2 (ja) * 2009-11-05 2014-02-26 株式会社ミツバ テンション装置
CN101804928B (zh) * 2010-02-25 2012-05-23 北京航空航天大学 缠绕机纤维上胶设备张力控制装置及其控制方法
CN104875908B (zh) * 2015-02-11 2017-01-25 北京航空航天大学 一种可展机构绳驱动被动张紧装置
CN208308113U (zh) * 2018-06-04 2019-01-01 绍兴特斯林网业有限公司 一种用于倒丝机上的出丝张力调节装置
CN209988892U (zh) * 2019-05-11 2020-01-24 广东坚达聚纤科技实业有限公司 一种用于化纤生产的张力缓冲装置
CN210635548U (zh) * 2019-06-05 2020-05-29 苏州领头羊纺织科技有限公司 一种纺织机械用纱线张力调节结构
CN210936478U (zh) * 2019-10-18 2020-07-07 宿迁市中塑实业有限公司 一种用于拉丝机的张力调节装置
CN210735836U (zh) * 2019-11-07 2020-06-12 常州安诚线缆机械有限公司 一种便于调节张力的摆臂张力架
CN212374609U (zh) * 2019-12-31 2021-01-19 江苏火凤凰线缆系统技术股份有限公司 一种电线张力缓冲架
CN112141818A (zh) * 2020-10-23 2020-12-29 江苏国富氢能技术装备股份有限公司 一种多线束碳纤维展丝张力控制装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019117525A1 (ko) * 2017-12-11 2019-06-20 (주)엘지하우시스 섬유 장력 조절 장치, 이를 포함하는 섬유강화 복합재 제조 장치 및 그 제조 방법
CN108589006A (zh) * 2018-05-03 2018-09-28 晋江市恒威机械制造有限公司 一种具有自适应送纱功能的针织大圆机
CN108792786A (zh) * 2018-06-13 2018-11-13 盛奇石 一种毛条拉紧收卷机构
CN209065198U (zh) * 2018-10-26 2019-07-05 浙江恒远化纤集团有限公司 一种化纤生产用丝束张力调节装置
CN209052204U (zh) * 2018-11-01 2019-07-02 杭州临安森源电缆有限公司 一种电缆张力平衡调节装置
CN209383183U (zh) * 2018-12-12 2019-09-13 鹤壁海昌专用设备有限公司 一种送线缓冲装置
CN210735838U (zh) * 2019-11-07 2020-06-12 常州安诚线缆机械有限公司 一种基于可滑动配重块的摆臂张力架
CN212051823U (zh) * 2020-04-09 2020-12-01 吴江福爱梁纺织有限公司 一种固定型纺织用针织机过线装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115180820A (zh) * 2022-08-09 2022-10-14 广州鑫朗耀科技有限公司 一种光纤拉制设备
CN115180820B (zh) * 2022-08-09 2023-02-14 广州鑫朗耀科技有限公司 一种光纤拉制设备
CN115367529A (zh) * 2022-09-06 2022-11-22 灵宝宝鑫电子科技有限公司 一种铜箔表面处理机的张力调整组件及调整方法

Also Published As

Publication number Publication date
US20230365375A1 (en) 2023-11-16
CN112850363A (zh) 2021-05-28
CN112850363B (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
WO2022156013A1 (zh) 一种用于纤维束张力调控的变杆长刚柔耦合机构
US9155403B2 (en) Child motion apparatus
JP2907182B2 (ja) ダンサローラ装置
CN103579046B (zh) 放置设备的放置头的运动学保持系统
WO2011126987A1 (en) Differential impulse conveyor with improved drive
JP4886318B2 (ja) アクチュエータ
CN211338333U (zh) 一种多极减振伺服张力器
JP4366503B2 (ja) 糸状部材の供給装置及び開繊装置
JP2706551B2 (ja) 織 機
US6267228B1 (en) Conveyor belt tracking and tensioning system
CN101065815A (zh) 一种用于无线轴线圈绕制机上的排线设备
JP2634041B2 (ja) 連続移動ウェブを停止位置にあるステーションで加工するための供給装置
US3421706A (en) Rotary funnels employed for winding fibre slivers in crossed reels
JPH05138556A (ja) ヘツド部駆動機構
RU201031U1 (ru) Разгрузочное устройство шахтной зерносушилки
JP6803882B2 (ja) 同時二軸延伸機及び延伸システム
JP6803883B2 (ja) 同時二軸延伸機及び延伸システム
US7216829B2 (en) Device for controlling the bearing pressure of a textile bobbin on a support roller or drive roller
CN1547051A (zh) 二维连杆式两板结构转动精密调整架
CN219666174U (zh) 排线总成、线锯单元以及线切割机
JP2007203339A (ja) フィードバックテンション装置
JP3008347B1 (ja) ヘリコプター玩具のエルロン用サーボ取付構造
JP2683907B2 (ja) 撚糸機用パーンの成形方向
CN111498560B (zh) 无跳动臂纸路张力控制系统
CN102605519A (zh) 一种剑杆织机活动后梁的积极驱动机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920403

Country of ref document: EP

Kind code of ref document: A1