WO2019093628A1 - 불연속 일방향 배향 섬유강화 복합재의 제조방법, 불연속 일방향 배향 섬유강화 복합재 및 샌드위치 구조체 - Google Patents

불연속 일방향 배향 섬유강화 복합재의 제조방법, 불연속 일방향 배향 섬유강화 복합재 및 샌드위치 구조체 Download PDF

Info

Publication number
WO2019093628A1
WO2019093628A1 PCT/KR2018/009463 KR2018009463W WO2019093628A1 WO 2019093628 A1 WO2019093628 A1 WO 2019093628A1 KR 2018009463 W KR2018009463 W KR 2018009463W WO 2019093628 A1 WO2019093628 A1 WO 2019093628A1
Authority
WO
WIPO (PCT)
Prior art keywords
short fibers
composite material
channels
fiber
skin layer
Prior art date
Application number
PCT/KR2018/009463
Other languages
English (en)
French (fr)
Inventor
안승현
한경석
임성찬
김희준
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180005682A external-priority patent/KR102202854B1/ko
Priority claimed from KR1020180094883A external-priority patent/KR102307984B1/ko
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Priority to EP18875897.3A priority Critical patent/EP3708346A4/en
Priority to US16/762,167 priority patent/US11421092B2/en
Publication of WO2019093628A1 publication Critical patent/WO2019093628A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/12Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat
    • B29C70/14Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers

Definitions

  • the present invention relates to a method for producing a discontinuous unidirectionally oriented fiber-reinforced composite material, a discontinuous unidirectionally oriented fiber-reinforced composite material and a sandwich structure.
  • the continuous fiber reinforced composite material has an excellent mechanical strength, but has a drawback that it is difficult to mold a part having a complicated design because of low elongation.
  • the fiber-reinforced composites having a random arrangement have a disadvantage in that the moldability is excellent but the mechanical strength is relatively lowered.
  • Dislocated unidirectionally oriented fiber-reinforced composite which is a composite in which short fibers are arranged discontinuously in one direction, is a material capable of improving moldability while having high mechanical strength. Recently, It is attracting attention as a plan.
  • ADF discontinuous unidirectionally oriented fiber-reinforced composites
  • the method of cutting the continuous fiber reinforcing material in the subsequent step is difficult to apply mainly to the recycled reinforcing fiber in the form of a short fiber, and there is a limit to improvement in the formability.
  • the present invention seeks to provide a method for producing a discontinuous unidirectionally oriented fiber-reinforced composite material (ADF) by utilizing reinforcing fibers in the form of short fibers.
  • ADF unidirectionally oriented fiber-reinforced composite material
  • the present invention also provides a discontinuous unidirectionally oriented fiber-reinforced composite material (ADF) obtained from the discontinuous unidirectionally oriented fiber-reinforced composite material (ADF).
  • ADF discontinuous unidirectionally oriented fiber-reinforced composite material
  • the present invention also provides a sandwich structure comprising a discontinuous unidirectionally oriented fiber-reinforced composite material (ADF) obtained from the discontinuous unidirectionally oriented fiber-reinforced composite material (ADF).
  • ADF discontinuous unidirectionally oriented fiber-reinforced composite material
  • a method of producing a discontinuous unidirectionally oriented fiber-reinforced composite material includes discontinuous unidirectional orientation of short fibers on a polymer substrate using an airlaid method.
  • the method of manufacturing a discontinuous unidirectionally oriented fiber-reinforced composite material includes the steps of applying air to short fibers, injecting the short fibers into a plurality of channels, and injecting the short fibers discharged from the plurality of channels into the plurality of channels And orienting the polymer base material disposed in the lower portion in one direction.
  • the plurality of channels each include a hollow having an area of the discharge port that is smaller than an area of the discharge port and has slopes extending from the discharge port to the discharge port.
  • the discontinuous unidirectionally oriented fiber-reinforced composite material is obtained from the above production method of the discontinuous unidirectionally oriented fiber-reinforced composite material and comprises a polymer base material and discontinuous unidirectionally oriented single fibers on the polymer base material.
  • the staple fibers have a ratio of oriented at an angle within a range of ⁇ 14 ° with respect to the unidirectional alignment direction of the staple fibers of 92% or more.
  • the discontinuous unidirectionally oriented fiber-reinforced composite material (ADF) satisfies the following formula (1).
  • the 0 ° specimen tensile strength is a tensile strength in a direction parallel to the unidirectional alignment direction of short fibers
  • the 90 [deg.] Specimen tensile strength is the tensile strength in the direction perpendicular to the unidirectional orientation direction of the short fibers.
  • the sandwich structure includes a core layer interposed between a first skin layer and a second skin layer, and at least one of the first skin layer and the second skin layer includes the discontinuous unidirectionally oriented fiber-reinforced composite material (ADF) do.
  • ADF fiber-reinforced composite material
  • the present invention can provide a method of producing a discontinuous unidirectionally oriented fiber-reinforced composite material (ADF) by utilizing reinforcing fibers in the form of short fibers and ADF obtained therefrom.
  • ADF unidirectionally oriented fiber-reinforced composite material
  • the sandwich structure according to the present invention has a high structural rigidity equivalent to that of the sandwich structure to which the continuous fiber-reinforced composite material is applied, but has a higher degree of design freedom than the sandwich structure.
  • ADF unidirectionally oriented fiber-reinforced composite material
  • Fig. 2 schematically shows an example of a discontinuous unidirectionally oriented fiber-reinforced composite material (ADF) produced by airlaid method.
  • ADF unidirectionally oriented fiber-reinforced composite material
  • 3 is a schematic cross-sectional view of the sandwich structure.
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS The features and advantages of the present invention will become more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which: FIG. BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
  • first, second, etc. are used to describe various components, it goes without saying that these components are not limited by these terms. These terms are used only to distinguish one element from another, and it goes without saying that the first element may be the second element unless specifically stated otherwise.
  • a and / or B means A, B, or A and B unless otherwise indicated, and " C to D” C means more than C and D or less.
  • spatially relative “below”, “beneath”, “lower”, “above”, “upper” May be used to readily describe a device or a relationship of components to other devices or components. Spatially relative terms should be understood to include, in addition to the orientation shown in the drawings, terms that include different orientations of the device during use or operation.
  • a method for producing a discontinuous unidirectionally oriented fiber-reinforced composite material includes discontinuous unidirectional orientation of short fibers on a polymer substrate using an airlaid method.
  • FIG. 1 schematically shows an example of a manufacturing method of the ADF 10 using the airlaid method.
  • FIG. 2 schematically shows an example of a discontinuous unidirectionally oriented fiber-reinforced composite (ADF) 10 manufactured by the airlaid method.
  • ADF unidirectionally oriented fiber-reinforced composite
  • the method of manufacturing the ADF 10 includes the steps of introducing short fibers 1 into the storage space hs inside the hopper and applying air to the short fibers 1 to form short fibers 1 ) Into a plurality of channels (C1, C2).
  • the manufacturing method of the ADF 10 is a method of manufacturing at least some of the short fibers 1 of the short fibers 1 charged into the plurality of channels C1 and C2 from the hopper via the plurality of channels C1 and C2 And dropping the short fibers 1 discharged from the hopper onto the polymer substrate P to discontinuously and unidirectionally orient the polymer on the polymer substrate P.
  • the hopper comprises a plurality of channels (C1, C2) in communication with a storage space (hs) and a storage space (hs), wherein the plurality of channels (C1, hs.
  • the plurality of channels C1 and C2 each have a width W2 smaller than the width W1 of the inlet and include a hollow having slopes extending from the inlet to the outlet.
  • the width W1 of the inlet may be larger than the long axis of the short fibers 1 and the width W2 of the outlet may be smaller than the diameter or short axis of the short fibers 1 Respectively.
  • the short fibers 1 may have a minor axis length of 6 to 40 mu m and a major axis length of 3 to 70 mm.
  • the width W1 of the inlet may be 3 to 100 mm
  • the width W2 of the outlet may be 40 to 200 m.
  • the short fibers 1 When the air is applied to the short fibers 1 in the storage space hs, the short fibers 1 can be floating in the air in an uncontrolled orientation in the storage space hs have. At least a portion of the short fibers 1 can be introduced into the hollow of the plurality of channels C1 and C2 and the plurality of channels C1 and C2 May be aligned along the oblique direction of the hollow oblique faces in the hollow. Thereafter, the short fibers 1 are discharged from the hopper in a state in which the long axis is aligned along the oblique direction of the hollow slopes, and are added onto the polymer base material P disposed at the bottom.
  • the polymer base material P is disposed on the conveyor belt and moves along the moving direction of the conveyor belt and the short fibers 1 discharged from the hopper are added on the polymer base material P with a time difference, 1) can be discontinuously unidirectionally oriented on the polymer substrate (P).
  • the unidirectional alignment direction of the short fibers 1 may be parallel to the longitudinal direction of the polymer base material P or may be parallel to the width direction of the polymer material P and may be in the longitudinal direction or width direction of the polymer material P As shown in FIG. For example, in Fig. 1, it is shown that the major axis of the short fibers 1 is discontinuously unidirectionally oriented along the length direction of the polymer base material P or the moving direction of the conveyor belt.
  • Examples of methods for evenly arranging the short fibers 1 on the polymer substrate P include a method of dropping the short fibers 1 in the hollow of the plurality of channels C1 and C2, A method of injecting compressed air in the hollow of the first and second channels C1 and C2, a method of sucking hollow air in the plurality of channels C1 and C2, or a combination thereof.
  • the plurality of channels C1 and C2 may include first channels C1 and second channels C2.
  • the first channels C1 and the second channels C2 are divided according to the positions of the plurality of channels C1 and C2 and among the plurality of channels C1 and C2, May be the first channels C1 and those disposed at the outskirts of the first channels C1 may be the second channels C2.
  • Both the first channels C1 and the second channels C2 may be in the form of an open tube with the hollows fully open.
  • the short fibers 1 introduced into the plurality of channels C1 and C2 through the inlet port are discharged from the hopper through the discharge hole through the hollow having the inclined surface, Can be larger than the hollow inclination of the two channels (C2).
  • the short fibers 1 injected into the second channels C2 are discharged from the hopper through the discharge port through the hollow having the inclined surfaces of the second channels C2 so that the length
  • the short fibers 1 charged into the first channels C1 fall to the polymer substrate P in a state of being laid at an angle of about A °
  • the major axis of the polymer substrate P is approximately B ° (where B ° is an acute angle, , For example, A [deg.] Is 45 [deg.] And B [deg.] Is 70 [deg.]) At a level substantially parallel to the gravitational direction.
  • (1) may be further laid down, which may reduce the processability of the ADF manufacturing process, and in some cases, the orientation of some short fibers (1) 1).
  • the first channels C1 may be in the form of a closed tube in which at least a part of the hollow is clogged
  • the second channels C2 may be in the form of an open tube in which at least a part of the hollow is not clogged.
  • the short fibers 1 may have a minor axis length of 6 to 40 ⁇ and a major axis length of 3 to 70 mm.
  • the short fibers 1 may be, for example, but not limited to, glass fibers, carbon fibers, aramid fibers, polypropylene fibers, polyethylene terephthalate fibers, polybutylene terephthalate fibers, polyethylene fibers or natural fibers Do not.
  • the polymer base material P can improve the shock absorbing performance and elongation of the ADF 10.
  • the polymer substrate (P) may be either a thermoplastic resin or a thermosetting resin.
  • Various types of thermoplastic resins or thermosetting resins may be selected depending on the kind of the article and the required performance.
  • the polymer substrate (P) may be a thermoplastic resin, such as a polypropylene (PP) resin, a polyethylene terephthalate (PET) resin, a polyethylene resin, a polyamide (PA) resin, , And melamine resin.
  • the ADF 10 having different weights can be manufactured according to the moving speed of the conveyor belt.
  • the speed of the conveyor belt may be, for example, from 2 m / min to 20 m / min.
  • the weight of the ADF 10 may be from 20 g / m 2 to 200 g / m 2 .
  • the ADF 10 comprises a polymer base P and short fibers 1 discontinuously oriented unidirectionally on the polymer base P.
  • the fact that the short fibers 1 are oriented discontinuously means that the short fibers 1 are arranged apart from each other.
  • the ADF 10 has a high unidirectional orientation of the short fibers 1.
  • the unidirectional orientation of the short fibers 1 is defined as the long axis of the short fibers 1 oriented at an angle within +/- 14 degrees with respect to the unidirectional alignment direction of the short fibers 1, And has a unidirectional orientation of 92% or more.
  • the unidirectional alignment direction of the short fibers 1 may be parallel to the longitudinal direction of the polymer substrate P or may be parallel to the width direction of the polymer substrate P, Or may be an oblique direction in the width direction.
  • 'Reinforcement required direction' refers to the direction in which a reinforced composite material is applied to a vehicle or aircraft, or when a vehicle or aircraft is moving or moving after it has been installed, taking into account the external force or load externally applied. And a predetermined direction in which rigidity needs to be supplemented.
  • a reinforcing demand direction can be determined by the restraint position and the installation conditions when the article to which the reinforcing composite material is applied is mounted on the vehicle or an aircraft or the like, and most importantly, a direction in which strength and rigidity need to be supplemented it means.
  • the reinforcing composite material may be a laminate of a plurality of ADFs 10.
  • the laminate of the plurality of ADFs 10 has the first ADF 10 in which the short fibers 1 are unidirectionally oriented in the first direction having an angle of +
  • the short fibers 1 may comprise a unidirectionally orientated second ADF 20 in a second direction having an angle of.
  • the angle [theta] may be between 1 [deg.] and 44 [deg.].
  • the unidirectional orientation direction of the short fibers 1 may have an angle of ⁇ 0 ° with respect to the reinforcing required direction.
  • the major axis of the short fibers 1 is discontinuously unidirectionally oriented along the length direction of the polymer base material P.
  • the short fibers 1 may be spaced apart from each other by a distance L along the length direction of the polymer base material P and may be spaced along the width direction of the polymer base material P May be spaced apart from each other.
  • the ADF 10 satisfies the following formula (1).
  • the 0 ° specimen tensile strength is a tensile strength in a direction parallel to the unidirectional alignment direction of the short fibers
  • the 90 ° specimen tensile strength is a tensile strength in a direction perpendicular to the one- It is strength.
  • the short fibers 1 are 100% unidirectionally oriented.
  • the short fibers 1 are unidirectionally oriented It means that it is not.
  • the ADF 10 has a unidirectional orientation with a high value of 0.95 in the above formula (1).
  • the sandwich structure is composed of skin layers having high tensile strength and a core layer interposed therebetween.
  • the sandwich structure can be lightweight with high structural rigidity, and can be used as a high rigidity composite material for automobiles It is attracting attention.
  • the sandwich structure may be used, for example, as a bumper beam for automobiles, a seat back frame, or the like.
  • the continuous fiber reinforced composite material has a very high tensile strength in one direction, but it has disadvantages in that it is difficult to mold a complicated design part because the reinforcing fibers are continuously unidirectionally arranged.
  • the sandwich structure 100 includes a first skin layer S1, a second skin layer S2, and a core layer (C).
  • the core layer C is disposed between the first skin layer S1 and the second skin layer S2.
  • the core layer (C) comprises a porous material.
  • the first skin layer S1 and the second skin layer S2 include the discontinuous unidirectionally oriented fiber-reinforced composite material (ADF) (Fig. 2) 10 of Fig.
  • ADF discontinuous unidirectionally oriented fiber-reinforced composite material
  • the first skin layer S1 includes the first staple fiber 1 and the polymer base material P.
  • the second skin layer S2 includes the second staple fibers 2 and the polymer base material P.
  • the core layer (C) has a lower specific gravity and structural rigidity than the first skin layer (S1) and the second skin layer (S2).
  • the specific gravity and structural rigidity This low porosity material is included.
  • the first skin layer S1 and the second skin layer S2 may be composed of a single layer or a multilayer structure.
  • the first skin layer S1 and the second skin layer S2 are formed so that the uniformity of the rigidity and the specific energy absorption rate are exerted on the external force applied to the upper and lower portions of the sandwich structure 100,
  • the first skin layer S1 and the second skin layer S2 may be arranged in the same number with the core layer C interposed therebetween.
  • the first skin layer S1 and the second skin layer S2 can be arranged symmetrically with each other with the core layer C therebetween.
  • the sandwich structure 100 can have a uniform stiffness and a specific energy absorption rate with respect to an external force applied in both the upper and lower portions.
  • the first staple fiber 1 and the second staple fiber 2 may be staggered from each other in order to improve the stiffness, elongation and specific energy absorption rate of the sandwich structure 100.
  • the first staple fibers 1 of the first skin layer S1 may be unidirectionally oriented in the first direction and the second staple fibers 2 of the second skin layer S2 may be oriented in one direction It can be unidirectionally oriented in two directions.
  • the first staple fiber 1 may have an angle of + 1 ° to + 44 ° with respect to the stiffening direction
  • the second staple fiber 2 may have an angle of -1 ° to -44 Deg.
  • the unidirectional alignment direction (first direction) of the first staple fibers 1 and the unidirectional alignment direction (second direction) of the second staple fibers 2 may be approximately 30 ° to 90 ° have.
  • the sandwich structure 100 may further include an adhesive (not shown).
  • the adhesive (not shown) can be coated on the skin layers S and the core layer C to improve the bonding force between the respective layers of the sandwich structure 100, whereby the rigidity of the sandwich structure 100 Can be further improved.
  • the adhesive agent (not shown) is applied to the skin layers S and the core layer 12 through a composite molding process such as Resin Transfer Molding (RTM), Wet Compression Molding (WCM), Prepreg Compression Molding (PCM), Hot Press, (C). ≪ / RTI >
  • RTM Resin Transfer Molding
  • WCM Wet Compression Molding
  • PCM Prepreg Compression Molding
  • C Hot Press
  • the composite material forming step is a step in which the core layer C is sandwiched between the skin layers S and then an adhesive agent (not shown) is injected to bond the skin layers S and the core layer C with an adhesive And then the skin layers S and the core layer C can be integrated with each other.
  • porous material of the core layer (C) will be described.
  • the porous material include porous fiber-reinforced thermoplastic plastics, thermoplastic resin foam, and the like.
  • the porous fiber-reinforced thermoplastics include a reinforcing fiber mat and a thermoplastic polymer resin impregnated in the reinforcing fiber mat.
  • the porous fiber-reinforced thermoplastics can provide a high elongation core layer (C) through which the sandwich structure 100 can have high moldability or high design freedom.
  • the porosity or porosity of the porous fiber-reinforced thermoplastic can be determined according to the required strength and rigidity of the product to which the sandwich structure 100 is applied.
  • the porosity of the porous fiber-reinforced thermoplastics may range from 40% by volume to 80% by volume.
  • the porous fiber-reinforced thermoplastics have an open cell structure and maintain the flow of an adhesive (not shown) between the first staple fiber 1 and the second staple fiber 2 during the molding process of the sandwich structure 100 And it is filled with an adhesive (not shown) after the molding is completed, thereby forming a closed cell structure.
  • the reinforcing fiber can be classified into long fiber-reinforced fiber, short fiber-reinforced fiber, and continuous fiber-reinforced fiber depending on the form.
  • the reinforcing fiber mat may be obtained from reinforcing fibers of at least one of long fiber-reinforced fiber, short fiber-reinforced fiber, and continuous fiber-reinforced fiber.
  • the reinforcing fiber may be classified into glass fiber, carbon fiber, aramid fiber, polypropylene fiber, polyethylene terephthalate fiber, polybutylene terephthalate fiber, polyethylene fiber, natural fiber and the like depending on the material.
  • glass fiber, carbon fiber, aramid fiber, polypropylene fiber, polyethylene terephthalate fiber, polybutylene terephthalate fiber, polyethylene fiber and natural fiber at least one of glass fiber, carbon fiber, aramid fiber, polypropylene fiber, polyethylene terephthalate fiber, polybutylene terephthalate fiber, polyethylene fiber and natural fiber.
  • thermoplastic polymer resin examples include a polypropylene (PP) resin, a polyethylene terephthalate (PET) resin, a polyethylene (PE) resin, and a polyamide (PA) resin.
  • PP polypropylene
  • PET polyethylene terephthalate
  • PE polyethylene
  • PA polyamide
  • thermoplastic resin foam examples include polyolefin foam such as polyethylene foam and polypropylene foam, polystyrene foam and polyester foam.
  • the ADF 10 includes the polymer base material P and the short fibers 1 which are discontinuously and unidirectionally oriented on the polymer base material P.
  • the ADF 10 has a high unidirectional orientation of the short fibers 1.
  • the unidirectional orientation of the short fibers 1 is defined as the long axis of the short fibers 1 oriented at an angle within +/- 14 degrees with respect to the unidirectional alignment direction of the short fibers 1, And has a unidirectional orientation of 92% or more.
  • the unidirectional alignment direction of the short fibers 1 may be parallel to the longitudinal direction of the polymer substrate P or may be parallel to the width direction of the polymer substrate P, Or may be an oblique direction in the width direction.
  • the major axis of the short fibers 1 is discontinuously unidirectionally oriented along the length direction of the polymer base material P.
  • the short fibers 1 may be spaced apart from each other by a distance L along the length direction of the polymer base material P and may be spaced along the width direction of the polymer base material P May be spaced apart from each other.
  • the ADF 10 satisfies the following formula (1).
  • the 0 ° specimen tensile strength is a tensile strength in a direction parallel to the unidirectional alignment direction of the short fibers
  • the 90 ° specimen tensile strength is a tensile strength in a direction perpendicular to the one- It is strength.
  • the short fibers 1 are 100% unidirectionally oriented.
  • the short fibers 1 are unidirectionally oriented It means that it is not.
  • the ADF 10 has a unidirectional orientation with a high value of 0.95 in the above formula (1).
  • the ADF 10 can exhibit a tensile strength equivalent to that of the continuous fiber reinforced composite material because the short fibers 1 are oriented in one direction substantially parallel to each other with the short fibers 1 being spaced apart from each other, It is possible to provide the skin layers S of the elongation to provide a high moldability or a high degree of design freedom.
  • the sandwich structure 100 is lightweight as compared with the conventional sandwich structure to which the metal plate is applied, has a high structural rigidity equivalent to that of the conventional sandwich structure to which the continuous fiber reinforced composite material is applied, and has excellent design freedom.
  • the sandwich structure 100 may have a flexure strain greater than 5.2% as measured according to ASTM D790.
  • the sandwich structure 100 may have a flexural strength of greater than 202 MPa as measured in accordance with ASTM D790.
  • the sandwich structure 100 may have a flexural modulus measured according to ASTM D790 of greater than 14.7 GPa.
  • Air was added to the short carbon fibers dispersed in the air in the hopper, and the short carbon fibers passing through the plurality of channels were placed on the conveyor belt at the bottom of the hopper and added to the moving polymer substrate , And ADF.
  • Length of long axis of short carbon fiber 6 mm
  • ADF was obtained in the same manner as in Example 1, except that the hopper whose channel gradient was changed as follows.
  • Discontinuous fiber was obtained in the same manner as in Example 1 using a hopper not using a channel.
  • ADF was obtained through the Wet-laid method (H. Yu et al., Composites Part A: Applied Science and Manufacturing Vol. 65 (2014), p.
  • ADF was obtained through the Dry-laid method (Takushi Miyake et al., Advanced Manufacturing: Polymer & Composites Science (2016)).
  • Example 1 Using the ADFs obtained in Example 1 and Comparative Example 1, one-directional orientation and orientation tensile effect of staple fibers in each ADF were obtained.
  • Table 1 experimental results are summarized. The orientation tensile effect was obtained through the above formula (1).
  • a control sandwich structure was prepared in the same manner as in Example 2, except that the ADFs obtained in Comparative Example 1 were used as the first skin layer and the second skin layer instead of the two ADFs obtained in Example 1.
  • a control sandwich structure was prepared in the same manner as in Example 2, except that the ADFs obtained in Comparative Example 2 were used as the first skin layer and the second skin layer instead of the two ADFs obtained in Example 1.
  • a control sandwich structure was prepared in the same manner as in Example 2, except that a polyurethane foam was disposed between the two ADFs obtained in Example 1.
  • the flexural strength, flexural modulus and flexure strain of the sandwich structures obtained in Example 2 and Comparative Examples 5 to 8 were measured.
  • the measurement standard was ASTM D790
  • the test piece was 50 ⁇ 150 ⁇ 3 mm
  • the span length was 100 mm
  • the test speed was 5 mm / min. Table 2 summarizes the results.
  • Example 2 showed a flexural deformation of about 300% or more as compared with Comparative Example 5, while having a flexural strength equal to that of Comparative Example 5 in which a continuous fiber-reinforced thermoplastic resin was applied as a skin layer.
  • Example 2 showed higher levels of flexural strength and flexural deformation than Comparative Examples 6 and 7. It is analyzed that the ADF used in the skin layers applied in Example 2 shows a high unidirectional orientation.
  • Example 2 showed a flexural deformation of about 180% or more as compared with Comparative Example 8 in which a polyurethane foam was used as a core layer. Is analyzed as a result of the high elongation of the core layer itself used in Example 2.

Abstract

불연속 일방향 배향 섬유강화 복합재의 제조방법, 불연속 일방향 배향 섬유강화 복합재 및 샌드위치 구조체가 제공된다. 상기 불연속 일방향 배향 섬유강화 복합재의 제조방법은 에어레이드법을 이용하여 고분자 기재 상에 단섬유들을 불연속적으로 일방향 배향하는 것을 포함한다.

Description

불연속 일방향 배향 섬유강화 복합재의 제조방법, 불연속 일방향 배향 섬유강화 복합재 및 샌드위치 구조체
본 발명은 불연속 일방향 배향 섬유강화 복합재의 제조방법, 불연속 일방향 배향 섬유강화 복합재 및 샌드위치 구조체에 관한 것이다.
연속섬유강화 복합재는 우수한 기계적 강도를 가지지만, 연신율이 낮아 복잡한 디자인을 가지는 부품 성형이 어려운 단점이 있다. 반면에, 랜덤 배열의 섬유강화 복합재는 성형성은 우수하지만 기계적 강도가 상대적으로 저하되는 단점이 있다.
단섬유가 불연속적으로 일방향으로 배열된 복합재인 불연속 일방향 배향 섬유강화 복합재(ADF, Aligned Discontinuous Fiber)는 높은 기계적 강도를 가지면서도, 성형성 향상이 가능한 소재로서, 최근 재활용 탄소섬유 및 유리섬유의 고성능화 방안으로 주목받고 있다.
기존의 불연속 일방향 배향 섬유강화 복합재(ADF)는 주로 연속섬유 보강재를 후공정에서 절단하는 스트레치 브로큰(stretch broken) 방식 또는 슬리팅(slitting) 방식의 탑-다운(top-down) 공정에 의해 제조되었다.
그러나, 연속섬유 보강재를 후공정에서 절단하는 방식은, 주로 단섬유 형태의 재활용 보강섬유에는 적용이 어렵고, 성형성 개선에 한계가 있다.
본 발명은, 단섬유 형태의 보강섬유를 활용하여, 불연속 일방향 배향 섬유강화 복합재(ADF)를 제조하는 방법을 제공하고자 한다.
또한, 본 발명은, 상기 불연속 일방향 배향 섬유강화 복합재(ADF)로부터 얻어진 불연속 일방향 배향 섬유강화 복합재(ADF)를 제공하고자 한다.
또한, 본 발명은 상기 불연속 일방향 배향 섬유강화 복합재(ADF)로부터 얻어진 불연속 일방향 배향 섬유강화 복합재(ADF)를 포함하는 샌드위치 구조체를 제공하고자 한다.
그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
불연속 일방향 배향 섬유강화 복합재(ADF)의 제조방법은 에어레이드법을 이용하여 고분자 기재 상에 단섬유들을 불연속적으로 일방향 배향하는 것을 포함한다.
상기 불연속 일방향 배향 섬유강화 복합재의 제조방법은, 단섬유들에 바람을 가하여, 상기 단섬유들을 복수 개의 채널들로 투입하는 것 및 상기 복수 개의 채널들로부터 배출된 상기 단섬유들을 상기 복수 개의 채널들의 하부에 배치된 고분자 기재 상에 일방향으로 배향하는 것을 포함한다. 상기 복수 개의 채널들은 각각투입구의 면적에 비해 배출구의 면적이 작으며, 상기 투입구에서 상기 배출구로 이어진 경사면들을 가진 중공을 포함한다.
불연속 일방향 배향 섬유강화 복합재(ADF)는 상기 불연속 일방향 배향 섬유강화 복합재의 제조방법으로부터 얻어진 것이며, 고분자 기재 및 상기 고분자 기재 상에 불연속적으로 일방향 배향된 단섬유들을 포함한다. 상기 단섬유들은, 상기 단섬유들의 일방향 배향방향에 대해 장축이 ±14° 이내의 각도로 배향된 비율이 92% 이상이다.
상기 불연속 일방향 배향 섬유강화 복합재(ADF)는, 하기 식 (1)을 만족한다.
Figure PCTKR2018009463-appb-I000001
식 (1)
상기 식 (1) 에서,
상기 0° 시편 인장강도는 단섬유들의 일방향 배향방향과 평행한 방향에서의 인장강도이며,
상기 90° 시편 인장강도는 단섬유들의 일방향 배향방향과 수직한 방향에서의 인장강도이다.
샌드위치 구조체는 제1 스킨층과 제2 스킨층의 사이에 개재된 코어층을 포함하며, 상기 제1 스킨층 및 상기 제2 스킨층 중 적어도 하나는 상기 불연속 일방향 배향 섬유강화 복합재(ADF)를 포함한다.
본 발명은, 단섬유 형태의 보강섬유를 활용하여, 불연속 일방향 배향 섬유강화 복합재(ADF)를 제조하는 방법 및 이로부터 얻어진 ADF를 제공할 수 있다.
본 발명에 따른 샌드위치 구조체는 상기 ADF를 포함함으로써, 연속섬유강화 복합재가 적용된 샌드위치 구조체와 동등 수준의 높은 구조 강성을 가지면서도, 그에 비해 디자인 자유도가 우수하다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
도 1은 에어레이드법을 이용한 불연속 일방향 배향 섬유강화 복합재(ADF)의 제조방법의 일 예를 모식적으로 도시한다.
도 2는 에어레이드법을 이용하여 제조된 불연속 일방향 배향 섬유강화 복합재(ADF)의 일 예를 모식적으로 도시한다.
도 3은 샌드위치 구조체의 모식적인 단면도이다.
발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되는 실시형태들과 실험예들을 참조하면 명확해질 것이다. 첨부된 도면은 본 명세서에 개시된 기술의 사상을 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 그 기술의 사상이 제한되는 것으로 해석되어서는 아니됨을 유의해야 한다.
또한, 발명은 이하에서 개시되는 내용에 한정되는 것이 아니라 다양한 형태로 구현될 수 있으며, 이하에서 개시되는 내용은 발명의 개시가 완전하도록 하며, 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이고, 발명은 청구항의 범주에 의해 정의될 뿐이다.
관련된 공지 기술에 대한 구체적인 설명이 기술의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략할 수 있다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 도면에서 층 및 영역들의 크기 및 상대적인 크기는 설명의 명료성을 위해 과장된 것일 수 있다.
비록 제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것으로, 특별히 반대되는 기재가 없는 한, 제1 구성요소는 제2 구성요소일 수도 있음은 물론이다.
명세서 전체에서, 특별히 반대되는 기재가 없는 한, 각 구성요소는 단수일 수도 있고 복수일 수도 있다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함하는(including)", "가진(having)" 이라고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
명세서 전체에서, "A 및/또는 B" 라고 할 때, 이는 특별한 반대되는 기재가 없는 한, A, B 또는 A 및 B 를 의미하며, "C 내지 D" 라고 할 때, 이는 특별한 반대되는 기재가 없는 한, C 이상이고 D 이하인 것을 의미한다.
공간적으로 상대적인 용어인 "아래(below)", "아래(beneath)", "하부(lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 소자 또는 구성 요소들과 다른 소자 또는 구성 요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작시 소자의 서로 다른 방향을 포함하는 용어로 이해되어야 한다.
이하, 불연속 일방향 배향 섬유강화 복합재(ADF)의 제조방법을 설명한다. 불연속 일방향 배향 섬유강화 복합재(ADF)의 제조방법은 에어레이드법을 이용하여 고분자 기재 상에 단섬유들을 불연속적으로 일방향 배향하는 것을 포함한다.
도 1은 에어레이드법을 이용한 ADF(10)의 제조방법의 일 예를 모식적으로 도시한다. 도 2에는, 에어레이드법을 이용하여 제조된 불연속 일방향 배향 섬유강화 복합재(ADF) (10)의 일 예가 모식적으로 도시되어 있다.
도 1을 참조하면, ADF(10)의 제조방법은 호퍼 내부의 저장공간(hs)에 단섬유들(1)을 투입하고 단섬유들(1)에 바람(Air)을 가하여 단섬유들(1)의 적어도 일부를 복수 개의 채널들(C1, C2)내로 투입하는 것을 포함한다. ADF(10)의 제조방법은 복수 개의 채널들(C1, C2)내로 투입된 단섬유들(1) 중 적어도 일부의 단섬유들(1)을 복수 개의 채널들(C1, C2)을 경유하여 호퍼로부터 배출하고 호퍼로부터 배출된 단섬유들(1)을 고분자 기재(P) 상에 낙하시켜 고분자 기재(P) 상에 불연속적으로 일방향 배향하는 것을 포함한다.
호퍼는 저장공간(hs) 및 저장공간(hs)과 연통된 복수 개의 채널들(C1, C2)을 포함하며, 복수 개의 채널들(C1, C2)는 저장공간(hs)의 하부에서 저장공간(hs)과 연통된다.
복수 개의 채널들(C1, C2)은 각각 투입구의 폭(W1)에 비해 배출구의 폭(W2)이 작으며, 투입구에서 배출구로 이어진 경사면들을 가진 중공을 포함한다. 복수 개의 채널들(C1, C2)은 각각 투입구의 폭(W1)이 단섬유들(1)의 장축에 비해 클 수 있으며, 배출구의 폭(W2)이 단섬유들(1)의 직경 또는 단축에 비해 크다. 예를 들어, 단섬유들(1)은 단축의 길이가 6 ㎛ 내지 40 ㎛ 이고, 장축의 길이가 3 mm 내지 70 mm 인 것이 사용될 수 있다. 이 경우, 투입구의 폭(W1)은 3 mm 내지 100 mm일 수 있으며, 배출구의 폭(W2)은 40 ㎛ 내지 200 ㎛ 일 수 있다.
저장공간(hs) 내의 단섬유들(1)에 바람(Air)을 가한 때, 단섬유들(1)은 저장공간(hs) 내에서 배향방향이 특정되지 않은 상태로 무질서하게 공기 중에 떠다닐 수 있다. 단섬유들(1)에 바람(Air)을 가한 때, 단섬유들(1)의 적어도 일부는 복수 개의 채널들(C1, C2)의 중공으로 유입될 수 있으며, 복수 개의 채널들(C1, C2) 내로 유입된 단섬유들(1)은 중공 내에서 장축이 중공의 경사면들의 경사방향을 따라 정렬될 수 있다. 이후, 단섬유들(1)은 장축이 중공의 경사면들의 경사방향을 따라 정렬된 상태로 호퍼로부터 배출되어 하부에 배치된 고분자 기재(P) 상에 첨가된다.
고분자 기재(P)는 콘베이어 벨트 상에 배치되며 콘베이어 벨트의 이동방향을 따라 이동하며, 호퍼로부터 배출되는 단섬유들(1)은 시간차를 두고 고분자 기재(P)상에 첨가되므로, 단섬유들(1)은 고분자 기재(P) 상에서 불연속적으로 일방향 배향될 수 있다.
단섬유들(1)의 일방향 배향방향은 고분자 기재(P)의 길이방향에 평행할 수도 있고, 고분자 기재(P)의 폭방향에 평행할 수도 있으며, 고분자 기재(P)의 길이방향 또는 폭방향에 비스듬할 수도 있다. 예를 들어, 도 1에는 단섬유들(1)의 장축이 고분자 기재(P)의 길이방향 또는 콘베이어 벨트의 이동방향을 따라 불연속적으로 일방향 배향된 것이 도시되어 있다.
단섬유들(1)을 고분자 기재(P) 상에 고르게 배열하기 위한 방법의 예로는, 복수 개의 채널들(C1, C2)의 중공에서 단섬유들(1)을 자유낙하시키는 방법, 복수 개의 채널들(C1, C2)의 중공으로 압축 공기를 분사하는 방법, 복수 개의 채널들(C1, C2)의 중공의 공기를 흡입(Suction)하는 방법, 또는 이들의 조합 등을 들 수 있다.
복수 개의 채널들(C1, C2)은 제1 채널들(C1)과 제2 채널들(C2)을 포함할 수 있다. 제1 채널들(C1)과 제2 채널들(C2)은, 복수 개의 채널들(C1, C2)의 위치에 따라 구분되며, 복수 개의 채널들(C1, C2) 중에서, 가운데 영역에 위치한 것들은, 제1 채널들(C1)일 수 있고, 제1 채널들(C1)의 외곽에 배치된 것들은, 제2 채널들(C2)일 수 있다.
제1 채널들(C1)과 제2 채널들(C2)은 모두 중공이 완전히 개방된 개방관 형태일 수 있다. 투입구를 통해 복수 개의 채널들(C1, C2)로 투입된 단섬유들(1)은 경사면을 가진 중공을 경유하여 배출구를 통과하여 호퍼로부터 배출되는데, 제1 채널들(C1)의 중공의 경사도는 제2 채널들(C2)의 중공의 경사도에 비해 클 수 있다.
제2 채널들(C2)로 투입된 단섬유들(1)은, 제2 채널들(C2)의 경사면을 가진 중공을 경유하여 배출구를 통과하여 호퍼로부터 배출될 때, 고분자 기재(P)에 대해 장축이 대략 A° (이 때, A°는 예각) 정도로 비스듬하게 눕혀진 상태로 고분자 기재(P)로 낙하되는 반면에, 제1 채널들(C1)로 투입된 단섬유들(1)은, 제1 채널들(C1)의 경사면을 가진 중공을 경유하여 배출구를 통과하여 호퍼로부터 배출될 때, 고분자 기재(P)에 대해 장축이 대략 B° (이 때, B°는 예각이며, A° 에 비해 큼, 예를 들어, A° 는 45°, B° 는 70°) 정도로 중력방향과 실질적으로 평행인 수준으로 고분자 기재(P)로 낙하될 수 있다.
이 경우, 제1 채널들(C1)로 투입된 단섬유들(1)의 장축이 고분자 기재(P)의일면에 실질적으로 수평이 되도록 하기 위해서는, 롤러 등으로 고분자 기재(P)에 세워진 단섬유들(1)을 눕히는 추가 공정이 더 필요할 수 있는데, 이로 인해, ADF 제조방법의 공정성이 저하될 수 있으며, 경우에 따라서는, 일부 단섬유들(1)의 배향방향이 다른 일부의 단섬유들(1)의 배향방향과 달라질 수 있다.
한편, 다른 예에서는, 제1 채널들(C1)이 중공의 적어도 일부가 막힌 밀폐관 형태일 수 있고, 제2 채널들(C2)이 중공의 적어도 일부가 막히지 않은 개방관 형태일 수 있다. 제1 채널들(C1)을 밀폐관으로 설계하는 것에 의해, 제1 채널들(C1)을 경유하여 고분자 기재(P)로 투입되는 단섬유들(1)의 장축이 고분자 기재(P)의 일면에 실질적으로 수직인 수준으로 첨가되어, 다시 말하면, 실질적으로 중력방향과 평행한 수준으로 첨가되지 않도록 할 수 있다. 또한, 제2 채널들(C2)을 경유하여, 고분자 기재(P)로 첨가되는 단섬유들(1)이, 낙하된 직후, 어떠한 추가 작업없이, 중력에 의해, 단섬유들(1)의 장축이 고분자 기재(P)의 일면에 실질적으로 평행하게 배향되도록 할 수 있다.
단섬유들(1)은 단축의 길이가 6 ㎛ 내지 40 ㎛ 이고, 장축의 길이가 3 mm 내지 70 mm 인 것이 사용될 수 있다. 단섬유들(1)은, 예를 들어, 유리 섬유, 탄소 섬유, 아라미드 섬유, 폴리프로필렌 섬유, 폴리에틸렌테레프탈레이트 섬유, 폴리부틸렌테레프탈레이트 섬유, 폴리에틸렌 섬유 또는 천연 섬유 등일 수 있으나, 이들 만으로 제한되지 않는다.
고분자 기재(P)는 ADF(10)의 충격 흡수 성능 및 신율을 향상시킬 수 있다. 예를 들어, 고분자 기재(P)는 열가소성 수지 또는 열경화성 수지 중 어느 하나일 수 있다. 물품의 종류 및 요구되는 성능에 따라 다양한 종류의 열가소성 수지 또는 열경화성 수지가 선택될 수 있다. 예를 들어, 고분자 기재(P)는 열가소성 수지로서, 폴리프로필렌(PP) 수지, 폴리에틸렌테레프탈레이트(PET) 수지, 폴리에틸렌(PE)수지, 폴리아미드(PA) 수지, 에폭시 수지, 페놀 수지, 요소 수지, 멜라민 수지 중 적어도 하나일 수 있다.
한편, 콘베이어 벨트의 이동속도에 따라 중량이 상이한 ADF(10)가 제조될 수 있다. 콘베이어 벨트의 속도는, 예를 들어, 2 m/min 내지 20 m/min 일 수 있다. ADF (10)의 중량은 20 g/m2 내지 200 g/m2 일 수 있다.
도 2를 참조하면, ADF(10)는 고분자 기재(P)와 고분자 기재(P) 상에서 불연속적으로 일방향 배향된 단섬유들(1)을 포함한다. 단섬유들(1)이 불연속적으로 배향된다는 것은 단섬유들(1)이 서로 이격되게 배열된다는 것을 의미한다. ADF(10)는 단섬유들(1)의 일방향 배향성이 높다. 단섬유들(1)의 일방향 배향성은, 단섬유들(1)의 일방향 배향방향에 대해 ±14도 이내의 각도로 단섬유들(1)의 장축이 배향된 것으로 정의되며, ADF(10)는 92% 이상의 일방향 배향성을 보인다.
단섬유들(1)의 일방향 배향방향은 고분자 기재(P)의 길이방향에 평행한 방향일 수도 있고, 고분자 기재(P)의 폭방향에 평행한 방향일 수도 있으며, 고분자 기재(P)의 길이방향 또는 폭방향에 비스듬한 방향일 수도 있다.
'보강 요구 방향(Reinforcement required direction)'이란 보강 복합재를 적용한 물품이 차량 또는 항공기 등에 장착될 때, 혹은 장착 이후 차량 또는 항공기 등이 가동 및 운동할 때, 외부에서 가해지는 외력 또는 하중을 고려하여 강도 및 강성이 보완될 필요가 있는 소정의 방향을 의미한다. 이러한 보강 요구 방향은 상기 보강 복합재가 적용된 물품이 차량 또는 항공기 등의 부품으로 이에 장착될 때의 구속 위치, 설치 조건 등에 의해 결정될 수 있으며, 가장 주요하게 강도 및 강성이 보완될 필요가 있는 일 방향을 의미한다.
상기 보강 복합재는 복수 개의 ADF(10)들의 적층체일 수 있다. 복수 개의 ADF(10)들의 적층체는 보강 요구 방향에 대해 +θ° 의 각도를 갖는 제1 방향으로 단섬유들(1)이 일방향 배향된 제1 ADF(10)와 보강 요구 방향에 대해 -θ° 의 각도를 갖는 제2 방향으로 단섬유들(1)이 일방향 배향된 제2 ADF(20)를 포함할 수 있다. θ° 는 1° 내지 44° 일 수 있다.
다시 말하면, 단섬유들(1)의 일방향 배향방향은 보강 요구 방향에 대해 ±θ° 를 가질 수 있다.
도 2에는 단섬유들(1)의 장축이 고분자 기재(P)의 길이방향을 따라 불연속적으로 일방향 배향된 것이 도시되어 있다. 도 2에 도시된 것처럼, 단섬유들(1)은 고분자 기재(P)의 길이방향을 따라 간격(L)을 두고 이격되게 배열될 수 있으며, 고분자 기재(P)의 폭 방향을 따라 간격(WD)을 두고 서로 이격되게 배열될 수 있다.
한편, ADF(10)는 하기 식 (1)을 만족한다.
Figure PCTKR2018009463-appb-I000002
식 (1)
상기 식 (1) 에서, 상기 0° 시편 인장강도는 단섬유들의 일방향 배향방향과 평행한 방향에서의 인장강도이며, 상기 90° 시편 인장강도는 단섬유들의 일방향 배향방향과 수직한 방향에서의 인장강도이다.
상기 식 (1)의 결과값이 1.00 인 때, 단섬유들(1)이 100% 일방향 배향된 것을 의미하며, 상기 식 (1)의 결과값이 0.50 이하이면 단섬유들(1)이 일방향 배향되지 않았음을 의미한다. ADF(10)는 상기 식 (1)의 결과값이 0.95 로 높은 일방향 배향성을 가진다.
샌드위치 구조체는 인장강도가 높은 스킨층들(skin layers)과, 이들 사이에 개재된 코어층(core layer)를 포함하여 구성되며, 높은 구조적 강성을 가지면서도 경량화가 가능하여, 자동차용 고강성 복합재로 주목받고 있다. 샌드위치 구조체는, 예를 들어, 자동차용 범퍼 빔(bumper beam), 시트 백 프래임(seat back frame) 등으로 사용될 수 있다.
일반적으로, 높은 인장강도를 확보하기 위해, 금속판이 스킨층에 사용되어 왔으며, 경량화에 대한 요구로 근래에는 연속섬유강화 복합재의 적용에 관한 연구가 이루어지고 있다.
연속섬유강화 복합재는 단방향으로의 인장강도가 매우 우수하지만, 보강섬유들이 연속적으로 단방향 배열되어 있는 까닭에, 복잡한 디자인의 부품의 성형이 어려운 단점이 있다.
도 3에는 샌드위치 구조체(100)의 모식적인 단면도가 도시되어 있다. 도 3을 참조하면, 샌드위치 구조체(100)는 제1 스킨층(S1), 제2 스킨층(S2) 및 코어층(C)을 포함한다. 코어층(C)은 제1 스킨층(S1)과 제2 스킨층(S2)의 사이에 배치된다. 코어층(C)은 다공성 물질을 포함한다.
제1 스킨층(S1)과 제2 스킨층(S2)는 도 2의 불연속 일방향 배향 섬유강화 복합재(ADF)(도 2의 10)를 포함한다. 다시 말하면, 제1 스킨층(S1)은 제1 단섬유(1)와 고분자 기재(P)를 포함한다. 제2 스킨층(S2)은 제2 단섬유(2)와 고분자 기재(P)를 포함한다.
코어층(C)은 제1 스킨층(S1) 및 제2 스킨층(S2)에 비해 비중과 구조 강성이 낮다. 예를 들어, 제1 스킨층(S1) 및 제2 스킨층(S2)이 ADF(도 2의 10)로 이루어진 경우, 코어층(C)의 ADF(도 2의 10)에 비해 비중과 구조 강성이 낮은 다공성 물질을 포함한다.
제1 스킨층(S1)과 제2 스킨층(S2)은, 단층으로 구성될 수도 있고 다층으로 구성될 수도 있다. 제1 스킨층(S1)과 제2 스킨층(S2)이 각각 다층으로 구성된 때, 샌드위치 구조체(100)의 상부와 하부에서 가해지는 외력에 대해, 균일한 강성, 비에너지 흡수율이 발휘되도록, 제1 스킨층(S1)과 제2 스킨층(S2)은, 코어층(C)을 사이에 두고 동수(同數)로 배치될 수 있다.
다시 말하면, 코어층(C)을 사이에 두고, 제1 스킨층(S1)과 제2 스킨층(S2)은 서로 대칭되게 배치될 수 있다. 이렇게 함으로써, 샌드위치 구조체(100)가 상부와 하부 모두에서 가해지는 외력에 대해 균일한 강성, 비에너지 흡수율을 가질 수 있다.
샌드위치 구조체(100)의 강성, 신율과 비에너지 흡수율을 향상시키기 위해서, 제1 단섬유(1)와 제2 단섬유(2)는 서로 엇갈리게 배향될 수 있다. 제1 스킨층(S1)의 제1 단섬유(1)는 제1 방향으로 일방향 배향될 수 있고, 제2 스킨층(S2)의 제2 단섬유(2)는 제1 방향과 평행하지 않은 제2 방향으로 일방향 배향될 수 있다. 예를 들어, 제1 단섬유(1)는 보강 요구 방향에 대해 +1° 내지 +44° 의 각도를 가질 수 있으며, 제2 단섬유(2)는 보강 요구 방향에 대해 -1° 내지 -44° 의 각도를 가질 수 있다. 예를 들어, 제1 단섬유(1)의 일방향 배향방향(제1 방향)과 제2 단섬유(2)의 일방향 배향방향(제2 방향)은, 교차각이 대략 30° 내지 90° 일 수 있다.
한편, 샌드위치 구조체(100)는 접착제(미도시)를 더 포함할 수 있다. 접착제(미도시)는, 스킨층들(S) 및 코어층(C)에 코팅되어, 샌드위치 구조체(100)의 각 층들 간의 결합력을 향상시킬 수 있으며, 이를 통해, 샌드위치 구조체(100)의 강성이 더욱 향상될 수 있다.
접착제(미도시)는, RTM(Resin Transfer Molding), WCM(Wet Compression Molding), PCM(Prepreg Compression Molding), 핫 프레스(Hot Press) 등과 같은 복합재 성형 공정을 통해 스킨층들(S) 및 코어층(C)에 함침될 수 있다.
복합재 성형 공정은, 코어층(C)을 스킨층들(S)의 사이에 개재시킨 뒤, 접착제(미도시)를 주입하여, 스킨층들(S) 및 코어층(C)에 접착제(미도시)를 함침시키고 경화하는 과정을 포함하며, 이를 통해, 스킨층들(S) 및 코어층(C)이 일체화될 수 있다.
이하, 코어층(C)의 다공성 물질에 대해 설명하기로 한다. 다공성 물질의 예로, 다공성 섬유강화 열가소성 플라스틱, 열가소성 수지 폼 등을 들 수 있다.
다공성 섬유강화 열가소성 플라스틱은 보강섬유 매트와 상기 보강섬유 매트에 함침된 열가소성 고분자 수지를 포함한다. 다공성 섬유강화 열가소성 플라스틱은 고신율의 코어층(C)을 제공할 수 있으며, 이를 통해, 샌드위치 구조체(100)는 높은 성형성 또는 높은 디자인 자유도를 가질 수 있다.
다공성 섬유강화 열가소성 플라스틱의 공극률 또는 기공율은, 샌드위치 구조체(100)가 적용되는 제품의 요구 강도 및 강성에 따라 정해질 수 있다. 비제한적인 예에서, 다공성 섬유강화 열가소성 플라스틱의 기공율은 40 부피% 내지 80 부피%일 수 있다.
다공성 섬유강화 열가소성 플라스틱은 오픈셀 구조로 되어 있고, 샌드위치 구조체(100)의 성형 공정 시, 제1 단섬유(1)와 제2 단섬유(2)의 사이에서 접착제(미도시)의 흐름을 유지시켜주는 유로의 역할을 할 수 있으며, 성형 완료 후 접착제(미도시)로 충진되어 클로즈셀 구조가 된다.
보강섬유는, 형태에 따라 장섬유 보강섬유, 단섬유 보강섬유, 연속섬유 보강섬유로 분류될 수 있다. 보강섬유 매트는 장섬유 보강섬유, 단섬유 보강섬유, 및 연속섬유 보강섬유 중 적어도 하나의 보강섬유로부터 얻어진 것일 수 있다.
또한, 보강섬유는, 재질에 따라 유리섬유, 탄소섬유, 아라미드 섬유, 폴리프로필렌 섬유, 폴리에틸렌테레프탈레이트 섬유, 폴리부틸렌테레프탈레이트 섬유, 폴리에틸렌 섬유, 천연 섬유 등으로 분류될 수 있으며, 보강섬유 매트는, 예를 들어, 유리섬유, 탄소섬유, 아라미드 섬유, 폴리프로필렌 섬유, 폴리에틸렌테레프탈레이트 섬유, 폴리부틸렌테레프탈레이트 섬유, 폴리에틸렌 섬유, 천연 섬유 중 적어도 하나를 포함할 수 있다.
열가소성 고분자 수지의 비제한적인 예로는, 폴리프로필렌(PP) 수지, 폴리에틸렌테레프탈레이트(PET) 수지, 폴리에틸렌(PE)수지, 폴리아미드(PA) 수지 등을 들 수 있다.
한편, 열가소성 수지 폼의 비제한적인 예로는, 폴리에틸렌 폼, 폴리프로필렌 폼 등과 같은 폴리올레핀 폼, 폴리스티렌 폼, 폴리에스터 폼 등을 들 수 있다.
이하, 도 2를 참조하여, ADF(10)에 대해 설명하기로 한다. ADF(10)는 고분자 기재(P)와 고분자 기재(P) 상에서 불연속적으로 일방향 배향된 단섬유들(1)을 포함한다. ADF(10)는 단섬유들(1)의 일방향 배향성이 높다. 단섬유들(1)의 일방향 배향성은, 단섬유들(1)의 일방향 배향방향에 대해 ±14도 이내의 각도로 단섬유들(1)의 장축이 배향된 것으로 정의되며, ADF(10)는 92% 이상의 일방향 배향성을 보인다.
단섬유들(1)의 일방향 배향방향은 고분자 기재(P)의 길이방향에 평행한 방향일 수도 있고, 고분자 기재(P)의 폭방향에 평행한 방향일 수도 있으며, 고분자 기재(P)의 길이방향 또는 폭방향에 비스듬한 방향일 수도 있다.
도 2에는 단섬유들(1)의 장축이 고분자 기재(P)의 길이방향을 따라 불연속적으로 일방향 배향된 것이 도시되어 있다. 도 2에 도시된 것처럼, 단섬유들(1)은 고분자 기재(P)의 길이방향을 따라 간격(L)을 두고 이격되게 배열될 수 있으며, 고분자 기재(P)의 폭 방향을 따라 간격(WD)을 두고 서로 이격되게 배열될 수 있다.
한편, ADF(10)는 하기 식 (1)을 만족한다.
Figure PCTKR2018009463-appb-I000003
식 (1)
상기 식 (1) 에서, 상기 0° 시편 인장강도는 단섬유들의 일방향 배향방향과 평행한 방향에서의 인장강도이며, 상기 90° 시편 인장강도는 단섬유들의 일방향 배향방향과 수직한 방향에서의 인장강도이다.
상기 식 (1)의 결과값이 1.00 인 때, 단섬유들(1)이 100% 일방향 배향된 것을 의미하며, 상기 식 (1)의 결과값이 0.50 이하이면 단섬유들(1)이 일방향 배향되지 않았음을 의미한다. ADF(10)는 상기 식 (1)의 결과값이 0.95 로 높은 일방향 배향성을 가진다.
ADF(10)는 단섬유들(1)이 서로 이격된 채로 실질적으로 평행하게 일방향 배향되어 있으므로, 연속섬유강화 복합재와 동등한 수준의 인장강도를 발휘할 수 있으며, 이와 동시에, 샌드위치 구조체(100)에 고신율의 스킨층들(S)을 제공하여, 높은 성형성 또는 높은 디자인 자유도를 제공할 수 있다.
샌드위치 구조체(100)는 금속판이 적용된 기존의 샌드위치 구조체에 비해 경량이고, 연속섬유강화 복합재가 적용된 기존의 샌드위치 구조체와 동등 수준의 높은 구조 강성을 가지면서도, 그에 비해 디자인 자유도가 우수하다.
상기 샌드위치 구조체(100)는, ASTM D790 에 따라 측정된 굴곡 변형(Flexure Strain)이 5.2% 초과일 수 있다.
상기 샌드위치 구조체(100)는, ASTM D790 에 따라 측정된 굴곡 강도가 202 MPa 초과일 수 있다.
상기 샌드위치 구조체(100)는, ASTM D790 에 따라 측정된 굴곡 탄성률이 14.7 GPa 초과일 수 있다.
실시예 1
호퍼 내에서 공기 중에 분산된 탄소 단섬유들에 공기를 가하여, 복수 개의 채널들로 투입하였고, 복수 개의 채널들을 통과한 탄소 단섬유들을 호퍼 하부에서 콘베이어 벨트 상에 배치되어 이동 중인 고분자 기재에 첨가하여, ADF를 얻었다.
* 채널의 투입구의 폭: 50 mm
* 채널의 배출구의 폭: 80 ㎛
* 채널의 경사도: 45°
* 탄소 단섬유의 직경: 10 ㎛
* 탄소 단섬유의 장축의 길이: 6 mm
* 고분자 기재 : 폴리프로필렌
* 탄소섬유 고분자 기재 조성비 : 탄소섬유 60 퍼센트 중량비 고분자 기재
40퍼센트 중량비
비교예 1
다음과 같이 채널의 경사도가 변경된 호퍼를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 ADF를 얻었다.
* 채널의 경사도: 90°
비교예 2
채널을 사용하지 않은 호퍼를 사용하여 실시예 1과 동일한 방법으로 Discontinuous Fiber를 얻었다.
비교예 3
Wet-laid 법(H. Yu et. al. Composites Part A: Applied Science and Manufacturing Vol. 65 (2014), p 175) 을 통해 ADF를 얻었다.
비교예 4
Dry-laid 법(Takushi Miyake et. Al. Advanced Manufacturing: Polymer & Composites science (2016)) 을 통해 ADF를 얻었다.
실험예 1
실시예 1과 비교예 1에서 얻어진 ADF 들을 이용하여, 각 ADF 내의 단섬유들의 일방향 배향성과 배향 인장 효과를 얻었다. 표 1에는, 실험결과가 정리되어 있다. 배향 인장 효과는 상기 식 (1) 을 통해 얻었다.
구분 일방향 배향성% 배향 인장 효과
실시예 1 92 0.95
비교예 1 81 0.84
비교예 2 48 0.65
비교예 3 95 0.91
비교예 4 70 0.80
실시예 2
실시예 1에서 얻은 2장의 ADF의 사이에, 단면의 직경이 17㎛인 유리 섬유 60 중량%가, 폴리프로필렌 수지 매트릭스(matrix) 40 중량%에 함침되어 있고, 단일 방향의 배향성을 갖는 섬유강화 플라스틱을 배치한 뒤, 복합재 성형 공정을 통해, 접착제를 함침시키고, 경화하여, 실험군 샌드위치 구조체를 제작하였다. 실험군 샌드위치 구조체에서, 제1 스킨층 내의 제1 단섬유와 제2 스킨층 내의 제2 단섬유 간의 교차각(crossing angle)은 90° 이였다.
비교예 5
실시예 1에서 얻은 2장의 ADF 대신에, 단면의 직경이 17㎛인 유리 섬유 60 중량%가 폴리프로필렌 수지 매트릭스(matrix) 40 중량%에 함침되어 있고 단일 방향의 배향성을 갖는 연속섬유강화 복합재들을, 제1 스킨층 및 제2 스킨층으로 사용한 것을 제외하고는, 실시예 2와 같은 방법으로, 대조군 샌드위치 구조체를 제작하였다.
비교예 6
실시예 1에서 얻은 2장의 ADF 대신에, 비교예 1에서 얻어진 ADF 들을, 제1 스킨층 및 제2 스킨층으로 사용한 것을 제외하고는, 실시예 2와 같은 방법으로, 대조군 샌드위치 구조체를 제작하였다.
비교예 7
실시예 1에서 얻은 2장의 ADF 대신에, 비교예 2에서 얻어진 ADF 들을, 제1 스킨층 및 제2 스킨층으로 사용한 것을 제외하고는, 실시예 2와 같은 방법으로, 대조군 샌드위치 구조체를 제작하였다.
비교예 8
실시예 1에서 얻은 2장의 ADF 의 사이에, 폴리우레탄 폼을 배치시킨 것을 제외하고는, 실시예 2와 같은 방법으로, 대조군 샌드위치 구조체를 제작하였다.
실험예 2
실시예 2, 비교예 5 내지 8에서 얻은 샌드위치 구조체들을 이용하여, 굴곡 강도, 굴곡 탄성율 그리고 굴곡 변형(Flexure Strain)을 측정하였다. 측정 기준은 ASTM D790으로 시험편은 50 × 150 × 3 mm, Span 길이는 100mm, 시험 속도는 5mm/min으로 하였다. 표 2에는 그 결과가 정리되어 있다.
구분 굴곡 강도 (MPa) 굴곡 탄성률 (GPa) 굴곡 변형 (%)
실시예 2 223 15.4 6.0
비교예 5 238 15.6 1.9
비교예 6 195 12.3 5.2
비교예 7 113 5.5 4.8
비교예 8 202 14.7 3.3
실시예 2는 연속섬유 강화 열가소성 수지를 스킨층으로 적용한 비교예 5와 동등 수준의 굴곡 강도를 가지면서도, 비교예 5에 비해 대략 300% 이상의 수준의 굴곡 변형을 보였다.
실시예 2는 비교예 6 및 7에 비해 높은 수준의 굴곡 강도 및 굴곡 변형을 보였다. 실시예 2에 적용된 스킨층들에 사용된 ADF가 높은 일방향 배향성을 보이기 때문인 것으로 분석된다.
실시예 2는 폴리우레탄 폼을 코어층으로 적용한 비교예 8에 비해, 대략 180% 이상의 수준의 굴곡 변형을 보였다. 실시예 2에 사용된 코어층 자체의 높은 신율에 기인한 결과로 분석된다.
상기한 실험결과를 통해, ADF 스킨층들과 다공성 섬유강화 복합재 코어층을 포함하는 실시예에 따른 샌드위치 구조체가 높은 굴곡 강성을 가지면서도 성형 자유도의 면에서 비교예에 따른 샌드위치 구조체 대비 유리한 효과를 가짐을 알 수 있었다.
이상 첨부된 도면을 참조하여 실시예들을 설명하였으나, 발명은 상기 실시예들에 한정되는 것이 아니라 각 실시예에 개시된 내용들을 조합하여 서로 다른 다양한 형태로 제조될 수 있으며, 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (13)

  1. 에어레이드법을 이용하여 고분자 기재 상에 단섬유들을 불연속적으로 일방향 배향하는 불연속 일방향 배향 섬유강화 복합재의 제조 방법.
  2. 제1 항에 있어서,
    단섬유들에 바람을 가하여, 상기 단섬유들을 복수 개의 채널들 내로 투입하는 것 및
    상기 복수 개의 채널들로부터 배출된 상기 단섬유들을 상기 복수 개의 채널들의 하부에 배치된 고분자 기재 상에 일방향으로 배향하는 것을 포함하며,
    상기 복수 개의 채널들은 각각 투입구의 면적에 비해 배출구의 면적이 작으며, 상기 투입구에서 상기 배출구로 이어진 경사면들을 가진 중공을 포함하는,
    불연속 일방향 배향 섬유강화 복합재의 제조방법.
  3. 제2 항에 있어서,
    상기 투입구의 폭은 상기 단섬유들의 장축에 비해 크고,
    상기 배출구의 폭은 상기 단섬유들의 직경에 비해 큰,
    불연속 일방향 배향 섬유강화 복합재의 제조방법.
  4. 제2 항에 있어서,
    상기 단섬유들의 단축의 길이는, 6 ㎛ 내지 40 ㎛ 이고,
    상기 단섬유들의 장축의 길이는, 3 mm 내지 70 mm 인,
    불연속 일방향 배향 섬유강화 복합재의 제조방법.
  5. 제4 항에 있어서,
    상기 투입구의 폭은, 24 mm 이상이며,
    상기 배출구의 폭은, 40 ㎛ 내지 100 ㎛ 인,
    불연속 일방향 배향 섬유강화 복합재의 제조방법.
  6. 제2 항에 있어서,
    상기 복수 개의 채널들 중, 제1 채널들은 상기 중공의 적어도 일부가 밀폐관이고, 제2 채널들은 상기 중공이 개방된 개방관이며,
    상기 제1 채널들의 외곽에 상기 제2 채널들이 배치된,
    불연속 일방향 배향 섬유강화 복합재의 제조방법.
  7. 고분자 기재; 및
    상기 고분자 기재 상에 불연속적으로 일방향 배향되며, 배향 방향에 대해 장축이 ±14° 이내의 각도로 배향된 비율이 92% 이상인 단섬유들;을 포함하고,
    하기 식 (1)을 만족하는, 불연속 일방향 배향 섬유 강화 복합재:
    Figure PCTKR2018009463-appb-I000004
    식 (1)
    상기 식 (1) 에서,
    상기 0° 시편 인장강도는 단섬유들의 일방향 배향방향과 평행한 방향에서의 인장강도이며,
    상기 90° 시편 인장강도는 단섬유들의 일방향 배향방향과 수직한 방향에서의 인장강도이다.
  8. 제1 스킨층;
    제2 스킨층; 및
    상기 제1 스킨층과 상기 제2 스킨층의 사이에 배치된 코어층; 을 포함하며,
    상기 제1 스킨층 및 상기 제2 스킨층 중 적어도 하나는 제7 항에 따른 불연속 일방향 배향 섬유 강화 복합재를 포함하는 샌드위치 구조체.
  9. 제8 항에 있어서,
    상기 코어층은 다공성 물질로 구성된,
    샌드위치 구조체.
  10. 제9 항에 있어서,
    상기 다공성 물질은,
    보강섬유 매트와 상기 보강섬유 매트에 함침된 열가소성 고분자 수지를 포함하는 다공성 섬유강화 열가소성 플라스틱인,
    샌드위치 구조체.
  11. 제8 항에 있어서,
    상기 제1 스킨층의 상기 단섬유들의 배향방향과 상기 제2 스킨층의 상기 단섬유들의 배향방향이 서로 엇갈린,
    샌드위치 구조체.
  12. 제8 항에 있어서,
    ASTM D790 에 따라 측정된 굴곡 변형(Flexure Strain)이 5.2% 초과인,
    샌드위치 구조체.
  13. 제12 항에 있어서,
    ASTM D790 에 따라 측정된 굴곡 강도가 202 MPa 초과이며,
    ASTM D790 에 따라 측정된 굴곡 탄성률이 14.7 GPa 초과인,
    샌드위치 구조체.
PCT/KR2018/009463 2017-11-07 2018-08-17 불연속 일방향 배향 섬유강화 복합재의 제조방법, 불연속 일방향 배향 섬유강화 복합재 및 샌드위치 구조체 WO2019093628A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18875897.3A EP3708346A4 (en) 2017-11-07 2018-08-17 METHOD FOR MANUFACTURING A COMPOSITE MATERIAL WITH REINFORCEMENT BY UNIDIRECTIONAL, DISCONTINUOUS FIBERS, COMPOSITE MATERIAL WITH REINFORCEMENT BY UNIDIRECTIONAL, DISCONTINUOUS FIBERS
US16/762,167 US11421092B2 (en) 2017-11-07 2018-08-17 Method for preparing unidirectionally aligned discontinuous fiber reinforcement composite material, unidirectionally aligned discontinuous fiber reinforcement composite material, and sandwich structure

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2017-0147332 2017-11-07
KR20170147332 2017-11-07
KR10-2018-0005682 2018-01-16
KR1020180005682A KR102202854B1 (ko) 2018-01-16 2018-01-16 우수한 성형성과 높은 구조 강성을 가진 샌드위치 구조체
KR1020180094883A KR102307984B1 (ko) 2017-11-07 2018-08-14 불연속 일방향 배향 섬유강화 복합재의 제조방법 및 불연속 일방향 배향 섬유강화 복합재
KR10-2018-0094883 2018-08-14

Publications (1)

Publication Number Publication Date
WO2019093628A1 true WO2019093628A1 (ko) 2019-05-16

Family

ID=66437998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009463 WO2019093628A1 (ko) 2017-11-07 2018-08-17 불연속 일방향 배향 섬유강화 복합재의 제조방법, 불연속 일방향 배향 섬유강화 복합재 및 샌드위치 구조체

Country Status (1)

Country Link
WO (1) WO2019093628A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115142291A (zh) * 2022-07-26 2022-10-04 宁波卓翔科技有限公司 一种纤维加强云母纸的制备方法、云母板的制备方法以及云母板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070100134A (ko) * 2006-04-05 2007-10-10 아즈델, 인코포레이티드 강화 스킨을 포함하는 경량 복합재 열가소성 시트
US20070269645A1 (en) * 2006-04-05 2007-11-22 Venkat Raghavendran Lightweight thermoplastic composite including reinforcing skins
KR20090113820A (ko) * 2007-02-02 2009-11-02 도레이 카부시키가이샤 프리프레그 기재, 적층 기재, 섬유강화 플라스틱, 프리프레그 기재의 제조 방법, 및 섬유강화 플라스틱의 제조 방법
US20160089853A1 (en) * 2014-09-30 2016-03-31 The Boeing Company Filament Network for a Composite Structure
WO2016208731A1 (ja) * 2015-06-24 2016-12-29 三菱レイヨン株式会社 繊維強化樹脂材料、成形品、繊維強化樹脂材料の製造方法及び製造装置、並びに繊維束群の検査装置
WO2017145883A1 (ja) * 2016-02-25 2017-08-31 東レ株式会社 不連続繊維強化複合材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070100134A (ko) * 2006-04-05 2007-10-10 아즈델, 인코포레이티드 강화 스킨을 포함하는 경량 복합재 열가소성 시트
US20070269645A1 (en) * 2006-04-05 2007-11-22 Venkat Raghavendran Lightweight thermoplastic composite including reinforcing skins
KR20090113820A (ko) * 2007-02-02 2009-11-02 도레이 카부시키가이샤 프리프레그 기재, 적층 기재, 섬유강화 플라스틱, 프리프레그 기재의 제조 방법, 및 섬유강화 플라스틱의 제조 방법
US20160089853A1 (en) * 2014-09-30 2016-03-31 The Boeing Company Filament Network for a Composite Structure
WO2016208731A1 (ja) * 2015-06-24 2016-12-29 三菱レイヨン株式会社 繊維強化樹脂材料、成形品、繊維強化樹脂材料の製造方法及び製造装置、並びに繊維束群の検査装置
WO2017145883A1 (ja) * 2016-02-25 2017-08-31 東レ株式会社 不連続繊維強化複合材料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
H. YU, COMPOSITES PART A: APPLIED SCIENCE AND MANUFACTURING, 2014, pages 175
See also references of EP3708346A4 *
TAKUSHI MIYAKE, ADVANCED MANUFACTURING: POLYMER & COMPOSITES SCIENCE, 2016

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115142291A (zh) * 2022-07-26 2022-10-04 宁波卓翔科技有限公司 一种纤维加强云母纸的制备方法、云母板的制备方法以及云母板

Similar Documents

Publication Publication Date Title
WO2017122941A1 (ko) 헤드 유닛의 이동과, 형성 가능한 플라스틱 재료의 텐션 및 온도를 제어하는 트랜스포머
WO2018056723A1 (ko) 보강 복합재 및 이를 포함하는 물품
WO2017057827A1 (ko) 폴리에스테르 수지 발포층과 섬유층을 포함하는 자동차 내외장재
WO2013133557A1 (ko) 점착 테이프 및 그 제조방법
WO2018194287A1 (ko) 차량용 백빔 및 이를 포함하는 차량
WO2014104730A1 (ko) 연속 탄소섬유 강화 열가소성 프리프레그의 제조 방법
WO2015016518A1 (ko) 연속섬유 보강 수지 복합재 및 그 성형품
WO2012008740A2 (en) Thermoplastic organic fiber, method for preparing the same, fiber composite board using the same and method for preparing the board
WO2015174758A1 (ko) 장섬유 보강 플라스틱 복합재 및 장섬유 보강 플라스틱 복합재의 제조 방법
WO2017204558A1 (ko) 보강 복합재 및 이를 포함하는 물품
WO2017183756A1 (ko) 고성능 피로저항 및 고단열 특성을 가지는 유리강화섬유 발포수지 폼을 적용한 운송체용 구조체 및 그 제조방법
WO2019093628A1 (ko) 불연속 일방향 배향 섬유강화 복합재의 제조방법, 불연속 일방향 배향 섬유강화 복합재 및 샌드위치 구조체
WO2014054868A1 (ko) 복합재료의 함침성 향상을 위한 기능성 필름 및 이를 이용한 복합재료의 제조방법
WO2012096506A2 (ko) 함침성이 우수한 고강도 복합시트 제조 장치 및 이를 이용한 고강도 복합시트 제조 방법
WO2012070918A2 (ko) 압출-사출-발포 연속성형 공법을 이용한 언더커버의 제조방법
WO2018135917A1 (ko) 충격흡수용 복합시트
WO2013154256A1 (ko) 친환경 고강도 수지 복합재
WO2021045322A1 (ko) 실리콘 커버를 포함하는 인체에 무해한 고탄성 항균 매트
EP3708346A1 (en) Method for preparing unidirectionally aligned discontinuous fiber reinforcement composite material, unidirectionally aligned discontinuous fiber reinforcement composite material, and sandwich structure
WO2018056554A1 (ko) 샌드위치 패널용 심재, 샌드위치 패널 및 샌드위치 패널의 제조방법
WO2018044007A1 (ko) 섬유 강화 복합재 및 이를 이용한 자동차용 내·외장재
WO2018182177A1 (ko) 강성 및 흡음성이 향상된 부직포와 이의 제조방법 및, 강성 및 흡음성이 향상된 부직포를 포함한 자동차 언더커버
WO2022014869A1 (ko) 3차원 구조체와 이의 제조 방법
WO2017111441A1 (ko) 섬유 강화 복합재용 조성물, 섬유 강화 복합재 및 섬유 강화 복합재의 제조방법
WO2016148549A1 (ko) 샌드위치 패널 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018875897

Country of ref document: EP

Effective date: 20200608