WO2018135917A1 - 충격흡수용 복합시트 - Google Patents

충격흡수용 복합시트 Download PDF

Info

Publication number
WO2018135917A1
WO2018135917A1 PCT/KR2018/000956 KR2018000956W WO2018135917A1 WO 2018135917 A1 WO2018135917 A1 WO 2018135917A1 KR 2018000956 W KR2018000956 W KR 2018000956W WO 2018135917 A1 WO2018135917 A1 WO 2018135917A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
composite sheet
shock absorbing
foam
conductive layer
Prior art date
Application number
PCT/KR2018/000956
Other languages
English (en)
French (fr)
Inventor
박종현
류종호
이재규
정성헌
Original Assignee
일진머티리얼즈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일진머티리얼즈 주식회사 filed Critical 일진머티리얼즈 주식회사
Publication of WO2018135917A1 publication Critical patent/WO2018135917A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/046Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0242Acrylic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0278Polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness

Definitions

  • the present invention relates to a shock-absorbing composite sheet, and more particularly, to a composite sheet for shock absorbing that can be omitted in the interlayer adhesive in the composite sheet is provided in a thin, at the same time improved heat dissipation and shock absorption performance.
  • Electronic devices such as mobile phones, hard disk drives (HDDs), televisions and liquid crystal displays are made up of precise mechanical components and electronic devices. Also, in recent years, electronic devices and electronic components tend to be thinned and simplified.
  • thinned and simplified electronic devices are easily broken or broken when a physical shock is applied from the outside.
  • the thinner and simplified electronic devices have a smaller space for mounting the electronic devices, so that the electronic devices are integrated, and thus the amount of heat generated per unit volume is greatly increased.
  • contaminants such as dust introduced from the outside may interfere with the air flow in the electronic device, causing overheating of the electronic device, thereby reducing the life of the electronic device.
  • Another object of the present invention is to provide a shock absorbing composite sheet having improved process efficiency and reduced production cost by directly providing a shock absorbing layer to a heat conductive layer without using an interlayer adhesive in the composite sheet.
  • an embodiment of the present invention comprises a first thermal conductive layer; And a shock absorbing layer provided directly on one or both surfaces of the first heat conductive layer, wherein the shock absorbing layer includes a shock absorbing composite sheet including a polymer foam.
  • the shock absorbing layer may be provided on one surface of the first heat conductive layer, and an acrylic adhesive layer and a film layer may be sequentially provided on the outer surface of the shock absorbing layer.
  • An acrylic adhesive layer and a film layer may be sequentially provided on the other surface opposite to one surface of the first thermal conductive layer.
  • the other surface of the first thermal conductive layer may be further provided with a shock absorbing layer between the first thermal conductive layer and the acrylic adhesive layer.
  • the other surface of the first heat conductive layer may further include an adhesive layer and a second heat conductive layer sequentially.
  • the outer surface of the second heat conductive layer may be provided with an acrylic adhesive layer and a film layer sequentially.
  • a shock absorbing layer may be further provided between the outer surface of the second heat conductive layer and the acrylic adhesive layer.
  • the polymer foam is acrylic foam, polyurethane foam, polyethylene foam, polyolefin foam, polyvinyl chloride foam, polycarbonate foam, polyimide foam, polyetherimide foam, polyamide foam, polyester foam, polyvinylidene chloride foam, poly At least one selected from the group consisting of methyl methacrylate foam and polyisocyanate foam.
  • the polymer foam may be a polyurethane foam or an acrylic foam.
  • the polymer foam may have a density of about 0.2 g / cm 3 to about 0.8 g / cm 3 .
  • the tensile strength of the polymer foam may be about 1 kgf / cm 2 to about 15 kgf / cm 2 .
  • the tensile strength of the polymer foam may be about 2.5 kgf / cm 2 to about 12.5 kgf / cm 2 .
  • the polymer foam may have a thickness of about 50 ⁇ m to about 250 ⁇ m.
  • the polymer foam may have a thickness of about 80 ⁇ m to about 150 ⁇ m.
  • the first or second thermal conductive layer may be any one or more selected from copper, aluminum, plated copper, a mixture of copper and polymer, and plated aluminum.
  • the plating treatment may be performed by using at least one metal of nickel, tin, cobalt, chromium, gold, and silver.
  • the first or second thermal conductive layer may have a thickness of about 8 ⁇ m to about 150 ⁇ m.
  • the shock absorbing layer may have a shock absorption rate of about 5% to about 50%, and a recovery rate of about 50% to about 100%.
  • the composite sheet may have an impact absorption rate of about 1% to about 30%, and a recovery rate of about 50% to about 100%.
  • the total thickness of the shock absorbing metal sheet may be about 80 ⁇ m to about 300 ⁇ m, and the impact absorbing layer may be about 50 ⁇ m to about 250 ⁇ m.
  • the present invention may provide a shock absorbing composite sheet having improved heat dissipation performance by providing the shock absorbing layer and the heat conductive layer in direct contact with each other so that a separate layer is not provided between the shock absorbing layer and the heat conductive layer.
  • the shock absorbing layer directly on the thermal conductive layer without using the interlayer adhesive in the composite sheet, it is possible to provide a shock absorbing composite sheet having improved process efficiency and reduced production cost.
  • FIG. 1A is a schematic cross-sectional view of a structure in which an impact absorbing layer is directly provided on one surface of a thermal conductive layer according to an embodiment of the present invention.
  • Figure 1b is a schematic cross-sectional view showing a shock absorbing layer directly provided on both sides of the thermal conductive layer according to an embodiment of the present invention.
  • Figure 1c is a perspective view schematically showing the overall configuration of the composite sheet for shock absorption according to an embodiment of the present invention.
  • Figure 2 is a view showing a cross-sectional view of the composite sheet for shock absorption according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view schematically showing a state in which a plurality of acrylic adhesive layers and a film layer is provided according to another embodiment of the present invention.
  • FIG. 4 is a cross-sectional view schematically illustrating a state in which an impact absorbing layer is directly provided on both surfaces of a first heat conductive layer according to another embodiment of the present invention.
  • FIG. 5 is a cross-sectional view schematically illustrating a state in which a plurality of heat conductive layers are provided according to another embodiment of the present invention.
  • FIG. 6 is a cross-sectional view schematically illustrating a state in which a plurality of thermal conductive layers, acrylic adhesive layers, and film layers are provided according to another embodiment of the present invention.
  • FIG. 7 is a cross-sectional view schematically illustrating a state in which a plurality of shock absorbing layers, an acrylic adhesive layer, and a film layer are provided directly on a heat conductive layer and a heat conductive layer according to another embodiment of the present invention.
  • Shock absorbing composite sheet of the present invention is a first thermal conductive layer; And an impact absorbing layer provided directly on one or both surfaces of the first heat conductive layer, wherein the impact absorbing layer comprises a polymer foam.
  • FIG. 1A is a schematic cross-sectional view of a structure in which an impact absorbing layer is directly provided on one surface of a thermal conductive layer according to an embodiment of the present invention.
  • Figure 1b is a cross-sectional view schematically showing a state in which the shock absorbing layer is directly provided on both sides of the thermal conductive layer according to an embodiment of the present invention.
  • a shock absorbing composite sheet according to an embodiment of the present invention includes a first heat conductive layer 111 and a shock absorbing layer 121, and the shock absorbing layer 121 is formed of a thermal conductive layer. Directly provided on one side or both sides may include a polymer foam.
  • the first thermal conductive layer 111 is at least one selected from copper, aluminum, plated copper, a polymer and a mixture of copper, and specifically, may be copper or copper foil.
  • the plated copper may be plated using at least one metal of nickel, tin, cobalt, chromium, gold, and silver.
  • the copper foil may use any conventional copper foil known in the art without limitation, and may include all copper foils manufactured by, for example, a rolling method and an electrolytic method. More specifically, although it is an electrolytic copper foil, it is not limited to an illustration.
  • the first thermal conductive layer 111 may have a thickness of about 8 ⁇ m to about 150 ⁇ m. Within the thickness range of the first heat conductive layer 111, the defects caused by the curl and wrinkles of the heat conductive layer are further reduced, thereby further improving workability, and increasing the amount of winding during roll-to-roll operation to increase yield. Can improve the punching process workability. In addition, within the thickness range of the first thermal conductive layer 111, it is more advantageous to apply to the composite sheet, it can be more excellent in the expandability of the use.
  • the heat conductive layer has a thickness of about 35 ⁇ m to about 70 ⁇ m, for example, 35 ⁇ m, 36 ⁇ m, 37 ⁇ m, 38 ⁇ m, 39 ⁇ m, 40 ⁇ m, 41 ⁇ m, 42 ⁇ m, 43 ⁇ m, 44 ⁇ m , 45 ⁇ m, 46 ⁇ m, 47 ⁇ m, 48 ⁇ m, 49 ⁇ m, 50 ⁇ m, 51 ⁇ m, 52 ⁇ m, 53 ⁇ m, 54 ⁇ m, 55 ⁇ m, 56 ⁇ m, 57 ⁇ m, 58 ⁇ m, 59 ⁇ m, 60 ⁇ m, 61 Micrometers, 62 ⁇ m, 63 ⁇ m, 64 ⁇ m, 65 ⁇ m, 66 ⁇ m, 67 ⁇ m, 68 ⁇ m, 69 ⁇ m, 70 ⁇ m.
  • the first shock absorbing layer 121 may include a polymer foam, and the polymer foam may be an acrylic foam, a polyurethane foam, a polyethylene foam, a polyolefin foam, a polyvinyl chloride foam, a polycarbonate foam, a polyimide foam, or a polyetherimide It may be at least one selected from the group consisting of foams, polyamide foams, polyester foams, polyvinylidene chloride foams, polymethyl methacrylate foams and polyisocyanate foams, specifically, may be a polyurethane foam or an acrylic foam.
  • the polymer foam may be an acrylic foam, a polyurethane foam, a polyethylene foam, a polyolefin foam, a polyvinyl chloride foam, a polycarbonate foam, a polyimide foam, or a polyetherimide It may be at least one selected from the group consisting of foams, polyamide foams, polyester foams, polyvinylidene chloride foams, polymethyl
  • the polymer foam may have a density of about 0.2 g / cm 3 to about 0.8 g / cm 3 .
  • the density of the polymer foam is, for example, 0.2 g / cm 3 , 0.3 g / cm 3 , 0.4 g / cm 3 , 0.5 g / cm 3 , 0.6 g / cm 3 , 0.7 g / cm 3 , 0.8 g / cm Can be three .
  • the tensile strength of the polymer foam may be about 1 kgf / cm 2 to about 15 kgf / cm 2 .
  • the strength of the shock absorbing layer is further improved to improve the effect of preventing breakage and tearing due to external force, the degree of solidification of the shock absorbing layer is lowered, and the shock absorption is excellent to protect the substrate. It may be more advantageous.
  • the tensile strength of the polymer foam is about 2.5 kgf / cm 2 to about 12.5 kgf / cm 2 , for example 2.5 kgf / cm 2 , 3 kgf / cm 2 , 3.5 kgf / cm 2 , 4 kgf / cm 2 , 4.5 kgf / cm 2 , 5 kgf / cm 2 , 5.5 kgf / cm 2 , 6 kgf / cm 2 , 6.5 kgf / cm 2 , 7 kgf / cm 2 , 7.5 kgf / cm 2 , 8 kgf / cm 2 , 8.5 kgf / cm 2 , 9 kgf / cm 2 , 9.5 kgf / cm 2 , 10 kgf / cm 2 , 10.5 kgf / cm 2 , 11 kgf / cm 2 , 11.5 kgf / cm 2 , 12 kgf / cm 2 , 12.5 kgf / cm 2 .
  • the polymer foam may have a thickness of about 50 ⁇ m to about 250 ⁇ m. Within the thickness range of the polymer foam, the impact absorption rate that the polymer foam can provide is further improved and the effect of protecting the substrate is further improved, and the heat dissipation performance can be improved without excessively increasing the thickness of the composite sheet. .
  • the impact absorbing layer has a thickness of about 80 ⁇ m to about 150 ⁇ m, about 80 ⁇ m to about 100 ⁇ m, for example 80 ⁇ m, 81 ⁇ m, 82 ⁇ m, 83 ⁇ m, 84 ⁇ m, 85 ⁇ m, 86 ⁇ m, 87 It can be ⁇ m, 88 ⁇ m, 89 ⁇ m, 90 ⁇ m, 91 ⁇ m, 92 ⁇ m, 93 ⁇ m, 94 ⁇ m, 95 ⁇ m, 96 ⁇ m, 97 ⁇ m, 98 ⁇ m, 99 ⁇ m, 100 ⁇ m.
  • the polymer foam is formed of a large number of small bubbles in the polymer material, and relatively lighter than the polymer material, it has a good flexibility and impact resistance can be widely applied as a packaging material, a buffer material and a lightweight structural material.
  • the manufacturing method of the polymer foam may be a chemical method and a physical method, and the chemical method is a method of producing a foam by mixing the polymer resin and the blowing agent well, and then decomposing the blowing agent to generate a gas by appropriate operation, The method is a method for producing a foam by expanding under reduced pressure after penetrating the blowing agent into the resin. Chemical methods can be applied primarily to the production of polyurethane foams and polyolefin foams, and physical methods can be applied mainly to the production of polystyrene foams and polyolefin foams.
  • organic foaming agents such as CFC, propane, butane and inorganic foaming agents such as carbon dioxide and nitrogen may be used, but the use of inorganic foaming agents such as carbon dioxide is increasing in consideration of air pollution.
  • the shock absorbing layer 121 may be directly provided on the first heat conductive layer 111 without a separate adhesive, an adhesive, or the like, and may be provided only on one surface of the first heat conductive layer 111 provided in a sheet form. Both sides may be provided.
  • the shock absorbing layer and the heat conducting layer are made of materials of different materials, and the surface of the shock absorbing layer and the heat conducting layer are not easily bonded between the shock absorbing layer and the heat conducting layer through a connection member such as an adhesive.
  • the method of laminating is generally used.
  • the composite sheet made of the impact absorbing layer, the heat conducting layer, and the adhesive interposed therebetween reduces the shock absorbency and the heat dissipation performance of the composite sheet by the thickness of the adhesive, and unnecessarily increases the thickness of the composite sheet. Therefore, when the composite sheet is applied to an electric or electronic device having a limited thickness, there is a problem in that the structure of the component must be additionally designed to compensate for the shock absorbency and the heat dissipation performance which are reduced by the thickness of the adhesive.
  • the composite sheet for shock absorbing according to the present invention may firmly attach the shock absorbing layer 121 and the heat conductive layer 111 even though the adhesive is omitted between the shock absorbing layer 121 and the first heat conductive layer 111. Therefore, it is possible to prevent the impact absorbency and the heat dissipation performance of the conventional adhesive from being lowered, and the composite sheet can be made thinner by omitting the adhesive.
  • the shock absorbing layer 121 is directly provided on one surface or both surfaces of the first heat conductive layer 111, the shock absorbing performance or the heat radiation performance due to the use of the adhesive may be prevented from being lowered. In addition, since the shock absorbing layer 121 is directly provided on the first heat conductive layer 111, there is no adhesive between the shock absorbing layer 121 and the first heat conductive layer 111, thereby reducing the thickness of the composite sheet. It works.
  • the shock absorbing layer 121 may have a shock absorption rate of about 5% to about 50%, and a recovery rate of about 50% to about 100%. Within the range of the shock absorption rate of the shock absorbing layer 121, the protective effect on the substrate may be more excellent, and the effect of preventing breakage such as cracking may be further improved.
  • the composite sheet having the shock absorbing layer 121 may have a shock absorption rate of about 1% to about 30%, and a recovery rate of about 50% to about 100%. Impact absorption rate of the composite sheet Within the range of impact absorption rate, the composite sheet is more advantageous to be applied to electronic devices, etc., the protective effect on the material having the composite sheet is improved to further improve the resistance to breakage, breaking Can be.
  • the total thickness of the shock absorbing composite sheet may be about 80 ⁇ m to about 300 ⁇ m, the shock absorbing layer may be about 50 ⁇ m to about 250 ⁇ m. Within the entire thickness range of the composite sheet for shock absorbing, the composite sheet may be improved in the protective effect on the substrate to further improve the resistance to breakage, breaking.
  • Figure 1c is a perspective view schematically showing the overall configuration of the composite sheet for shock absorption according to an embodiment of the present invention.
  • Figure 2 is a view showing a cross-sectional view of the composite sheet for shock absorption according to an embodiment of the present invention.
  • the composite sheet for shock absorption according to the present invention may further include an acrylic adhesive layer 130 and a film layer 140 on one or both surfaces sequentially.
  • the film layer 140 may be a cellulose film such as a triacetyl cellulose (TAC) film, a polyester film such as a polyethylene terephthalate (PET) film, a polycarbonate film, a polyether sulfone film, an acrylic film, a polyethylene film, a poly A polyolefin film such as a propylene film, a polyolefin film including a cyclo-based or norbornene structure, or an ethylene-propylene copolymer film may be used, but is not limited thereto. More specifically, a release film having a release force of about 10 gf / in may be used to facilitate release.
  • FIG 3 is a cross-sectional view schematically showing a state in which a plurality of acrylic adhesive layers and a film layer is provided according to another embodiment of the present invention.
  • the shock absorbing layer 121 is directly provided on one surface of the first heat conductive layer 111, and the shock absorbing layer 121 is provided.
  • the acrylic adhesive layer 130 and the film layer 140 are respectively provided on the other surfaces of the first heat conductive layer 111 and the first heat conductive layer 111.
  • FIG. 4 is a cross-sectional view schematically illustrating a state in which an impact absorbing layer is directly provided on both surfaces of a first heat conductive layer according to another embodiment of the present invention.
  • the shock absorbing layer 121 is directly provided on both surfaces of the first heat conductive layer 111, and the first heat conductive layer 111 is provided.
  • the acrylic adhesive layers 130a and 130b and the film layers 140a and 140b are sequentially provided on the other surfaces of the shock absorbing layer 121 directly provided on both sides of the N-type.
  • FIG. 5 is a cross-sectional view schematically illustrating a state in which a plurality of heat conductive layers are provided according to another embodiment of the present invention.
  • the shock absorbing layer 121 is directly provided on one surface of the first heat conductive layer 111, and the shock absorbing layer 121 is formed.
  • the acrylic adhesive layer 130a and the film layer 140a are sequentially provided on the upper surface, and further include an adhesive layer 150 and a second thermal conductive layer 112 on the other surface of the first thermal conductive layer 111.
  • the first heat conductive layer 111 and the second heat conductive layer 112 may use the same metal or different metals.
  • FIG. 6 is a cross-sectional view schematically illustrating a state in which a plurality of thermal conductive layers, acrylic adhesive layers, and film layers are provided according to another embodiment of the present invention.
  • the shock absorbing layer 121 is directly provided on one surface of the first heat conductive layer 111, and the shock absorbing layer 121 is formed.
  • An acrylic adhesive layer 130a and a film layer 140a are sequentially provided on the upper surface, and the adhesive layer 150, the second thermal conductive layer 112, and the acrylic adhesive layer (sequentially) are formed on the other surface of the first thermal conductive layer 111. 130b) and a film layer 140b.
  • the first heat conductive layer 111 and the second heat conductive layer 112 may use the same metal or different metals.
  • FIG. 7 is a cross-sectional view schematically illustrating a state in which a plurality of shock absorbing layers, an acrylic adhesive layer, and a film layer are provided directly on a heat conductive layer and a heat conductive layer according to another embodiment of the present invention.
  • the shock absorbing layer 121 is directly provided on one surface of the first heat conductive layer 111, and the shock absorbing layer 121 is provided.
  • An acrylic adhesive layer 130a and a film layer 140a are sequentially provided on the upper surface, and the adhesive layer 150, the second thermal conductive layer 112, and the second thermal conductive layer are sequentially formed on the other surface of the first thermal conductive layer 111.
  • the shock absorbing layer 121, the acrylic adhesive layer 130b, and the film layer 140b provided directly on the layer 112 are provided.
  • a copper foil formed in a layered layer having a thickness of 35 ⁇ m was prepared as a heat conductive layer.
  • a mixture of a polyurethane resin and a blowing agent was applied onto the copper foil thus prepared, and then foamed by standing at a temperature of 200 ° C. to form a polyurethane foam layer having a thickness of 105 ⁇ m as an impact absorbing layer.
  • the acrylic adhesive layer which is an acrylic adhesive, was applied to the polyurethane foam layer by 10 ⁇ m transfer coating and dried at 160 ° C. for 3 minutes.
  • the coating method was performed using a comma coater, and the composite sheet having a total thickness of 150 ⁇ m was applied.
  • the acrylic adhesive layer may be provided to bond neighboring materials as a kind of pressure-sensitive adhesive layer using acrylic without mixing the blowing agent, and means a material having no bubbles or the like inside the acrylic foam.
  • Example 1 was prepared such that the copper foil and the polyurethane foam were in direct contact without the media of an adhesive, and the numerical values of each layer for Example 1 proceeded as described in Table 1.
  • Example 1 As shown in Table 1, it manufactured like Example 1 except having used the copper foil of 40 micrometers in thickness, and forming the polyurethane foam layer in 100 micrometers.
  • Example 1 As shown in Table 1, it manufactured like Example 1 except having used the copper foil of 45 micrometers in thickness, and forming the polyurethane foam layer in 95 micrometers.
  • Example 2 As shown in Table 2, it manufactured like Example 1 except having used the copper foil whose thickness is 35 micrometers, and adding the foaming agent in acrylic resin, and forming the acrylic foam layer to 105 micrometers.
  • Example 2 As shown in Table 2, it manufactured like Example 1 except having used the copper foil whose thickness is 40 micrometers, and forming the acryl foam layer at 100 micrometers.
  • Example 2 As shown in Table 2, it produced like Example 1 except having used the copper foil whose thickness is 45 micrometers, and forming the acryl foam layer in 95 micrometers.
  • Example 1 As shown in Table 1, it was prepared in the same manner as in Example 1 except that an adhesive layer having a thickness of 10 ⁇ m was formed on a copper foil having a thickness of 35 ⁇ m and the polyurethane foam layer was adhered.
  • Example 1 As shown in Table 1, it manufactured like Example 1 except having formed the copper foil and polyurethane foam layer which are 70 micrometers in thickness in 70 micrometers.
  • a composite sheet was prepared by coating an acrylic adhesive layer on a copper foil not provided with a polyurethane foam.
  • a composite sheet was prepared by coating an acrylic adhesive layer on a copper foil having no adhesive layer and an acrylic foam layer.
  • Example 2 As shown in Table 2, it manufactured similarly to Example 4 except having formed the adhesive layer on the copper foil with a thickness of 35 micrometers, and adhering the acrylic foam layer and the acrylic adhesive layer which are 95 micrometers.
  • Example 2 it was manufactured in the same manner as in Example 4 except that the acrylic foam layer and the acrylic adhesive layer having a thickness of 70 ⁇ m except for the adhesive layer was bonded to the copper foil having a thickness of 70 ⁇ m.
  • the impact test is carried out using a Dupont type impact tester. After raising the composite sheet specimen horizontally and contacting the radial punch, increase the weight of the weight until the layers of the composite sheet specimen are separated by observing while dropping 100g weight from 50mm to 500mm in height. . The weight of 150g is dropped from 350mm to 500mm in height, the weight of 200g is from 400mm to 500mm, and the weight of 300g and 400g is dropped from 350mm to 500mm in height. Recorded. Then, the impact amount (mJ) was derived using the weight and height of the weight.
  • the specimens are cut to a size of 50 mm x 50 mm in accordance with ASTM D3574 test conditions and placed into compression jigs and compressed by 50% of the thickness of the foam using a flat gauge. 22 hours in an oven at 70 °C. Decompress and check for unrecovered thickness. Test the specimen from the center in the width direction of the lot. After calculating the compressive strain through the following formula 2, and substituted into the formula 3 to calculate the recovery rate.
  • Compression Strain (%) [(t 0 -t 1 ) / (t 0 -gauge thickness)] ⁇ 100
  • Equation 2 t 0 represents the initial thickness before the compression test of the specimen, t 1 represents the thickness after the compression test of the specimen.
  • Equation 4 the length before the V1 test, V2 is the length after the test.
  • Equation 5 F0 is the shock absorption amount in the absence of foam, F1 is the shock absorption amount in the foam inserted state.
  • Tensile strength was measured using a universal testing machine (product name AGS-X, manufacturer SHIMADZU) according to ASTM D3574.
  • Example 1 2.32 99.51 0.187 ⁇ 3 ⁇ 1 103 15.93
  • Example 2 2.19 99.43 0.18 ⁇ 3 ⁇ 1 111 14.70
  • Example 3 2.03 99.64 0.172 ⁇ 3 ⁇ 1 125 13.85
  • Comparative Example 1 2.17 99.71 0.165 ⁇ 3 ⁇ 1 100 13.60
  • Comparative Example 2 1.78 99.3 0.142 ⁇ 3 ⁇ 1 185 7.44 Comparative Example 3 Not measurable Not measurable 0.049 Not measurable ⁇ 1 295 0.19
  • Example 4 3.29 99.52 0.239 ⁇ 3 ⁇ 1 106 18.32
  • Example 5 3.21 99.29 0.225 ⁇ 3 ⁇ 1 113 17.49
  • Example 6 3.06 99.18 0.218 ⁇ 3 ⁇ 1 125 16.65
  • Comparative Example 4 Not measurable Not measurable 0.035 Not measurable ⁇ 1 295 0.22
  • Comparative Example 5 3.02 99.3 0.201 ⁇ 3 ⁇ 1 98 16.38
  • Comparative Example 6 2.4 99.1 0.189 ⁇ 3 ⁇ 1 182 14.44
  • Example 4 10.75 ⁇ 3 19.39
  • Example 5 10.47 ⁇ 3 18.42
  • Comparative Example 1 which is a composite sheet including an adhesive layer
  • the thickness of the adhesive layer was 10 ⁇ m, and the specific gravity occupying in the composite sheet was not large.
  • the results showed a lower value than in Example 1, it was confirmed that the adhesion strength is also not high.
  • the copper foil has a thickness of 70 ⁇ m, which is relatively excellent in terms of conductivity, whereas the thickness of the shock absorbing layer is increased to 70 ⁇ m, so that the recovery rate, compressive strength, impact absorption rate test, and DuPont impact test are Low values were shown.
  • Comparative Example 3 does not have a shock absorbing layer, it is impossible to measure the compressive strength, the recovery rate, the compression set, the tensile strength of the shock absorbing layer, the compression set of the shock absorbing layer and the impact absorbing rate for the shock absorbing layer.
  • the impact absorption rate of the composite sheet exhibits a lower value than the impact absorption layer, which is because the composite sheet is for the overall impact absorption rate with a copper foil compared with the case provided with only the shock absorption layer alone.
  • the result is that the impact absorption is further reduced by the copper foil. That is, as the thickness of the copper foil increases, it was confirmed that the impact absorption rate of the entire composite sheet was relatively decreased.
  • Tables 5 to 6 show the results of confirming the polymer release layer that is the shock absorbing layer using the acrylic foam layer. In the absence of both the adhesive layer and the acrylic foam layer as in Comparative Example 4, the results for the impact absorbing layer (tensile strength, compression set, etc.) could not be confirmed.
  • Example 4 to Example 6 although there was no adhesive layer that can have a function of a buffer for impact, etc., it was confirmed that the result has a better result than the case provided with both the adhesive layer and the shock absorbing layer as in Comparative Example 5.

Landscapes

  • Laminated Bodies (AREA)

Abstract

본 발명은 제1열전도층; 및 상기 제1열전도층의 일면 또는 양면에 직접 구비되는 충격흡수층;을 포함하고, 상기 충격흡수층은 고분자 발포체를 포함하는 충격흡수용 복합시트에 관한 것이다. 본 발명에 따르면, 충격흡수층을 열전도층에 직접 구비함으로써, 방열성능이 개선된 충격흡수용 복합시트를 제공할 수 있다.

Description

충격흡수용 복합시트
본 발명은 충격흡수용 복합시트에 관한 것으로, 보다 상세하게는 복합시트 내 층간 접착제를 생략할 수 있어 박형으로 구비됨과 동시에, 방열 및 충격흡수 성능이 향상된 충격흡수용 복합시트에 관한 것이다.
핸드폰, 하드디스크 드라이브(HDD), 텔레비전 및 액정디스플레이와 같은 전자기기들은 정밀한 기계부품 및 전자소자로 이루어져 있다. 또한, 최근 전자 기기 및 전자 부품은 박형화 및 단순화되는 경향이 있다.
이와 같은 최근의 추세에 따라서 박형화 및 단순화된 전자기기들은 외부로부터 물리적 충격이 가해지면 쉽게 고장나거나 파손될 우려가 있다. 또한, 박형화 및 단순화된 전자기기들은 전자소자를 실장할 수 있는 공간이 협소하여 전자소자가 집적화되며 이에 단위체적당 발열량이 크게 증대되었다. 또한, 외부로부터 유입된 먼지와 같은 오염물질은 전자기기 내의 공기흐름을 방해하여 전자소자의 과열을 유발하고, 이에 따라 전자기기의 수명을 단축시키는 요인이 된다.
종래에는 일반적으로 접착제 등을 이용하여 충격흡수제와 금속시트를 합지한 제품들이 사용되어 왔다. 이러한 공법으로 제조된 제품들의 경우 금속시트와 충격흡수제 사이에 구비되는 접착제의 두께만큼 충격흡수성능 또는 방열성능이 감소되며, 접착제 사용으로 인해 손실된 충격흡수성능 및 방열성능을 충족시키기 위해부품의 구조를 다시 설계해야 하는 문제가 있다.
본 발명의 목적은 충격흡수층을 열전도층에 직접 구비함으로써, 방열성능이 향상된 충격흡수용 복합시트를 제공하기 위한 것이다.
또한, 본 발명의 다른 목적은 복합시트 내 층간 접착제 사용 없이 충격흡수층을 열전도층에 직접 구비시킴으로써 공정효율이 향상되고 생산비가 절감된 충격흡수용 복합시트를 제공하기 위한 것이다.
본 발명의 일측면에 따르면, 본 발명의 실시예는 제1열전도층; 및 상기 제1열전도층의 일면 또는 양면에 직접 구비되는 충격흡수층;을 포함하고, 상기 충격흡수층은 고분자 발포체를 포함하는 충격흡수용 복합시트를 포함한다.
상기 충격흡수층은 상기 제1열전도층의 일면에 구비되고, 상기 충격흡수층의 외면에는 순차적으로 아크릴점착층 및 필름층이 구비될 수 있다.
상기 제1열전도층의 일면의 반대면인 타면에는 순차적으로 아크릴점착층 및 필름층이 구비될 수 있다.
상기 제1열전도층의 타면에는 상기 제1열전도층과 상기 아크릴점착층 사이에 충격흡수층이 더 구비될 수 있다.
상기 제1열전도층의 타면에는 순차적으로 접착층 및 제2열전도층을 더 구비할 수 있다.
상기 제2열전도층의 외면에는 순차적으로 아크릴점착층 및 필름층이 구비될 수 있다.
상기 제2열전도층의 외면과 상기 아크릴점착층 사이에는 충격흡수층이 더 구비될 수 있다.
상기 고분자 발포체는 아크릴계 발포체, 폴리우레탄 발포체, 폴리에틸렌 발포체, 폴리올레핀 발포체, 폴리비닐클로라이드 발포체, 폴리카보네이트 발포체, 폴리이미드 발포체, 폴리에테르이미드 발포체, 폴리아미드 발포체, 폴리에스테르 발포체, 폴리비닐리덴 클로라이드 발포체, 폴리메틸메타크릴레이트 발포체 및 폴리이소시아네이트 발포체로 이루어진 군으로부터 선택된 어느 하나 이상일 수 있다.
상기 고분자 발포체는 폴리우레탄 발포체 또는 아크릴계 발포체일 수 있다.
상기 고분자 발포체의 밀도는 약 0.2 g/cm3 내지 약 0.8 g/cm3일 수 있다.
상기 고분자 발포체의 인장강도는 약 1 kgf/cm2 내지 약 15 kgf/cm2일 수 있다.
상기 고분자 발포체의 인장강도는 약 2.5 kgf/cm2 내지 약 12.5 kgf/cm2일 수 있다.
상기 고분자 발포체의 두께는 약 50 ㎛ 내지 약 250 ㎛일 수 있다.
상기 고분자 발포체의 두께는 약 80 ㎛ 내지 약 150 ㎛일 수 있다.
상기 제1 또는 제2 열전도층은 구리, 알루미늄, 도금처리 된 구리, 구리와 폴리머의 혼합재 및 도금처리 된 알루미늄 중 선택된 어느 하나 이상일 수 있다.
상기 도금처리는 니켈, 주석, 코발트, 크롬, 금, 은 중 적어도 어느 하나 이상의 금속을 이용하여 도금처리 할 수 있다.
상기 제1 또는 제2 열전도층의 두께는 약 8 ㎛ 내지 약 150 ㎛일 수 있다.
상기 충격흡수층은 충격흡수율이 약 5 % 내지 약 50 %이고, 복원율은 약 50 % 내지 약 100 %일 수 있다.
상기 복합시트는 충격흡수율이 약 1 % 내지 약 30 %이고, 복원율은 약 50 % 내지 약 100 %일 수 있다.
상기 충격흡수용 금속시트의 전체 두께는 약 80 ㎛ 내지 약 300 ㎛이고, 충격흡수층은 약 50 ㎛ 내지 약 250 ㎛일 수 있다.
본 발명은 충격흡수층과 열전도층 사이에 별도의 층이 구비되지 않도록 상기 충격흡수층과 열전도층이 서로 직접 접촉하도록 구비시킴으로써, 방열성능이 향상된 충격흡수용 복합시트를 제공할 수 있다.
또한, 본 발명에 따르면 복합시트 내 층간 접착제 사용 없이 충격흡수층을 열전도층에 직접 구비시킴으로써 공정효율이 향상되고 생산비가 절감된 충격흡수용 복합시트를 제공할 수 있다.
도 1a는 본 발명의 일 실시예에 따라 열전도층의 일면에 충격흡수층이 직접 구비된 모습을 개략적으로 나타낸 단면도이다.
도 1b는 본 발명의 일 실시예에 따라 열전도층의 양면에 충격흡수층이 직접 구비된 모습을 개략적으로 나타낸 단면도이다.
도 1c는 본 발명의 일 실시예에 의한 충격흡수용 복합시트의 전체 구성을 개략적으로 나타낸 사시도이다.
도 2는 본 발명의 일 실시예에 의한 충격흡수용 복합시트의 단면도를 나타낸 도면이다.
도 3은 본 발명의 또 다른 일 실시예에 따라 아크릴점착층 및 필름층이 복수개 구비된 모습을 개략적으로 나타낸 단면도이다.
도 4는 본 발명의 또 다른 일 실시예에 따라 충격흡수층이 제1열전도층의 양면에 직접 구비된 모습을 개략적으로 나타낸 단면도이다.
도 5는 본 발명의 또 다른 일 실시예에 따라 열전도층이 복수개 구비된 모습을 개략적으로 나타낸 단면도이다.
도 6은 본 발명의 또 다른 일 실시예에 따라 열전도층 및 아크릴점착층, 필름층이 복수개 구비된 모습을 개략적으로 나타낸 단면도이다.
도 7은 본 발명의 또 다른 일 실시예에 따라 열전도층, 열전도층에 직접 구비된 충격흡수층과 아크릴점착층 및 필름층이 복수개 구비된 모습을 개략적으로 나타낸 단면도이다.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 이하의 설명에서 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐 아니라 그 중간에 다른 매체를 사이에 두고 연결되어 있는 경우도 포함한다. 또한, 도면에서 본 발명과 관계없는 부분은 본 발명의 설명을 명확하게 하기 위하여 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다.
본 명세서에서 "상부"와 "하부"는 도면을 기준으로 정의한 것으로서, 시 관점에 따라 "상부"가 "하부"로 "하부"가 "상부"로 변경될 수 있고, "위(on)" 또는 "상(on)"으로 지칭되는 것은 바로 위뿐만 아니라 중간에 다른 구조를 개재한 경우도 포함할 수 있다. 반면, "직접 위(directly on)", "바로 위" 또는 "직접적으로 구비" 또는 "직접적으로 접하여 구비"로 지칭되는 것은 중간에 다른 구조를 개재하지 않은 것을 의미한다.
본 발명의 충격흡수용 복합시트는 제1열전도층; 및 상기 제1열전도층의 일면 또는 양면에 직접 구비되는 충격흡수층;을 포함하고, 상기 충격흡수층은 고분자 발포체를 포함한다. 이를 통해, 복합시트 내 층간 접착제 사용 없이 충격흡수층을 열전도층에 직접 구비시킴으로써 방열성능이 향상되고 공정효율이 향상되고 생산비가 절감된 충격흡수용 복합시트를 제공한다.
이하, 첨부된 도면들을 참고하여 본 발명에 대해 설명하도록 한다.
도 1a는 본 발명의 일 실시예에 따라 열전도층의 일면에 충격흡수층이 직접 구비된 모습을 개략적으로 나타낸 단면도이다. 또한, 도 1b는 본 발명의 일 실시예에 따라 열전도층의 양면에 충격흡수층이 직접 구비된 모습을 개략적으로 나타낸 단면도이다.
도 1a 및 도 1b를 참고하면, 본 발명의 일 실시예에 따른 충격흡수용 복합시트는 제1열전도층(111) 및 충격흡수층(121)을 포함하고, 상기 충격흡수층(121)은 열전도층의 일면 또는 양면에 직접 구비되되 고분자 발포체를 포함할 수 있다.
상기 제1열전도층(111)은 구리, 알루미늄, 도금처리 된 구리, 폴리머 및 구리의 혼합재 중 선택된 어느 하나 이상이며, 구체적으로는 구리 또는 동박일 수 있다. 상기 도금처리 된 구리는 니켈, 주석, 코발트, 크롬, 금, 은 중 적어도 어느 하나 이상의 금속을 이용하여 도금처리 할 수 있다. 상기 동박은 당 분야에서 알려진 통상적인 동박을 제한 없이 사용할 수 있으며, 일 예로 압연법 및 전해법으로 제조되는 모든 동박을 포함할 수 있다. 보다 구체적으로는 전해동박이지만, 예시에 한정되는 것은 아니다.
상기 제1열전도층(111)의 두께는 약 8 ㎛ 내지 약 150 ㎛일 수 있다. 상기 제1열전도층(111)의 두께 범위 내에서, 열전도층의 컬(curl), 주름 발생에 의한 불량을 더욱 저감하고, 이에 의해 작업성을 더욱 향상시키며, 롤투롤 작업 시 감김량을 높여 수율을 향상시키고, 타발 공정 작업성을 향상시킬 수 있다. 또한, 상기 제1열전도층(111)의 두께 범위 내에서, 복합시트에 적용하기에 더욱 유리하여, 용도의 확장성이 더욱 우수할 수 있다. 더욱 구체적으로 상기 열전도층의 두께는 약 35 ㎛ 내지 약 70 ㎛, 예를 들면, 35 ㎛, 36 ㎛, 37 ㎛, 38 ㎛, 39 ㎛, 40 ㎛, 41 ㎛, 42 ㎛, 43 ㎛, 44 ㎛, 45 ㎛, 46 ㎛, 47 ㎛, 48 ㎛, 49 ㎛, 50 ㎛, 51 ㎛, 52 ㎛, 53 ㎛, 54 ㎛, 55 ㎛, 56 ㎛, 57 ㎛, 58 ㎛, 59 ㎛, 60 ㎛, 61 ㎛, 62 ㎛, 63 ㎛, 64 ㎛, 65 ㎛, 66 ㎛, 67 ㎛, 68 ㎛, 69 ㎛, 70 ㎛일 수 있다.
상기 제1충격흡수층(121)은 고분자 발포체를 포함할 수 있으며, 상기 고분자 발포체는 아크릴계 발포체, 폴리우레탄 발포체, 폴리에틸렌 발포체, 폴리올레핀 발포체, 폴리비닐클로라이드 발포체, 폴리카보네이트 발포체, 폴리이미드 발포체, 폴리에테르이미드 발포체, 폴리아미드 발포체, 폴리에스테르 발포체, 폴리비닐리덴 클로라이드 발포체, 폴리메틸메타크릴레이트 발포체 및 폴리이소시아네이트 발포체로 이루어진 군으로부터 선택된 어느 하나 이상일 수 있으며, 구체적으로는 폴리우레탄 발포체 또는 아크릴계 발포체일 수 있다.
또한, 상기 고분자 발포체의 밀도는 약 0.2 g/cm3 내지 약 0.8 g/cm3일 수 있다. 상기 고분자 발포체의 밀도 범위 내에서, 충격흡수층의 강도 및 내구성이 더욱 향상되고, 부착 후 재작업성이 우수하며, 충격 흡수층의 고형화 정도가 낮아지고 충격흡수율이 향상되어 기재(substrate)를 보호하기 더욱 유리할 수 있다. 상기 고분자 발포체의 밀도는 예를 들면, 0.2 g/cm3, 0.3 g/cm3, 0.4 g/cm3, 0.5 g/cm3, 0.6 g/cm3, 0.7 g/cm3, 0.8 g/cm3일 수 있다.
상기 고분자 발포체의 인장강도는 약 1 kgf/cm2 내지 약 15 kgf/cm2 일 수 있다. 상기 고분자 발포체의 인장강도 범위 내에서, 충격흡수층의 강도가 더욱 향상되어 외력에 의한 파손 및 찢어짐을 방지하는 효과가 향상되고, 충격 흡수층의 고형화 정도가 낮아지고 충격흡수율이 우수하여 기재를 보호하기에 더욱 유리할 수 있다. 더욱 구체적으로는 상기 고분자 발포체의 인장강도는 약 2.5 kgf/cm2 내지 약 12.5 kgf/cm2, 예를 들면 2.5 kgf/cm2, 3 kgf/cm2, 3.5 kgf/cm2, 4 kgf/cm2, 4.5 kgf/cm2, 5 kgf/cm2, 5.5 kgf/cm2, 6 kgf/cm2, 6.5 kgf/cm2, 7 kgf/cm2, 7.5 kgf/cm2, 8 kgf/cm2, 8.5 kgf/cm2, 9 kgf/cm2, 9.5 kgf/cm2, 10 kgf/cm2, 10.5 kgf/cm2, 11 kgf/cm2, 11.5 kgf/cm2, 12 kgf/cm2, 12.5 kgf/cm2 일 수 있다.
상기 고분자 발포체의 두께는 약 50 ㎛ 내지 약 250 ㎛일 수 있다. 상기 고분자 발포체의 두께 범위 내에서, 상기 고분자 발포체가 제공할 수 있는 충격흡수율이 더욱 향상되고 기재를 보호하는 효과를 더욱 높이고, 복합시트의 두께를 과도하게 높이지 않으면서도 방열성능을 향상시킬 수 있다. 보다 구체적으로 상기 충격흡수층의 두께는 약 80 ㎛ 내지 약 150 ㎛, 약 80 ㎛ 내지 약 100 ㎛, 예를 들면 80 ㎛, 81 ㎛, 82 ㎛, 83 ㎛, 84 ㎛, 85 ㎛, 86 ㎛, 87 ㎛, 88 ㎛, 89 ㎛, 90 ㎛, 91 ㎛, 92 ㎛, 93 ㎛, 94 ㎛, 95 ㎛, 96 ㎛, 97 ㎛, 98 ㎛, 99 ㎛, 100 ㎛일 수 있다.
상기 고분자 발포체는 고분자 물질의 내부에 많은 수의 작은 기포를 형성시킨 것으로, 고분자 물질에 비하여 상대적으로 경량화되고, 유연성 및 내충격성이 좋아서 포장재, 완충재 및 경량구조재 등으로 널리 적용될 수 있다. 상기 고분자 발포체의 제조방법은 화학적 방법과 물리적 방법을 둘 수 있는데, 화학적 방법은 고분자 수지와 발포제를 잘 혼합한 후, 적절한 조작을 하여 발포제를 분해하여 기체를 발생시켜 발포체를 제조하는 방법이며, 물리적 방법은 발포제를 수지내에 침투시킨 후에 감압 팽창하여서 발포체를 제조하는 방법이다. 화학적 방법은 주로 폴리우레탄 발포체와 폴리올레핀 발포체를 제조하는 데 적용할 수 있고, 물리적 방법은 주로 폴리스티렌 발포체와 폴리올레핀 발포체를 제조하는 데 적용될 수 있다.
고분자 발포체 제조에 있어서, 환경오염의 문제가 대두되면서 화학적 방법보다는 물리적 방법을 이용하여 합성수지 발포입자를 제조하는 방법이 널리 채용되게 되었다. 물리적 방법의 발포제로는 CFC, 프로판, 부탄 등 유기발포제와 이산화탄소, 질소 등의 무기발포제가 사용될 수 있으나 대기오염 등을 고려하여 이산화탄소와 같은 무기발포제의 사용이 증가하는 추세이다.
상기 충격흡수층(121)은 제1열전도층(111)에 별도의 접착제, 점착제 등과 같은 연결부재없이 직접 구비될 수 있으며, 시트형으로 구비된 상기 제1열전도층(111)의 일면에만 구비되거나, 혹은 양면에 모두 구비될 수 있다.
종래의 경우에는 충격흡수층과 열전도층는 서로 다른 재질의 물질로 이루어져 있고, 이들 사이의 표면의 접합이 용이하지 않아 상기 충격흡수층과 열전도층 사이에는 접착제 등과 같은 연결부재를 개재하여 상기 충격흡수층과 열전도층을 합지하는 방법이 일반적으로 사용된다. 상기 충격흡수층과 열전도층 및 이들 사이에 개재되는 접착제로 이루어지는 복합시트는, 상기 접착제의 두께만큼 상기 복합시트의 충격흡수성 및 방열성능을 저하시키고, 복합시트의 두께를 불필요하게 증가시킨다. 따라서, 두께가 한정되어 있는 전기, 전자기기에 상기 복합시트를 적용하는 경우에는 상기 접착제의 두께만큼 감소되는 충격흡수성 및 방열성능을 보충하기 위하여 부품의 구조를 추가적으로 설계해야 하는 문제가 있다.
본 발명에 따른 충격흡수용 복합시트는 충격흡수층(121)과 제1열전도층(111) 사이에 접착제를 생략함에도 충격흡수층(121)과 열전도층(111)을 견고하게 부착시킬 수 있다. 따라서, 종래 접착제의 사용으로 인한 충격흡수성 및 방열성능이 저하되는 것을 방지할 수 있으며, 상기 접착제의 생략에 의하여 복합시트를 보다 박형화할 수 있다.
충격흡수층(121)이 제1열전도층(111)의 일면 또는 양면에 직접 구비되어 있어, 접착제 사용으로 인한 충격흡수성능 또는 방열성능이 저하되는 것을 방지할 수 있다. 또한, 상기 충격흡수층(121)이 제1열전도층(111)에 직접 구비되어 있어 충격흡수층(121)과 제1열전도층(111) 사이에 접착제가 존재하지 않아 복합시트의 두께를 감소시킬 수 있는 효과가 있다.
상기 충격흡수층(121)은 충격흡수율이 약 5 % 내지 약 50 %이고, 복원율은 약 50 % 내지 약 100 %일 수 있다. 상기 충격흡수층(121)의 충격흡수율 범위 내에서 기재에 대한 보호 효과가 더욱 우수하고, 깨짐과 같은 파손을 방지하는 효과가 더욱 향상될 수 있다.
상기 충격흡수층(121)을 구비한 복합시트는 충격흡수율이 약 1 % 내지 약 30 %이고, 복원율은 약 50 % 내지 약 100 %일 수 있다. 상기 복합시트의 충격흡수율 충격흡수율 범위 내에서, 상기 복합시트는 전자기기 등에 적용되기에 더욱 유리하며, 상기 복합시트를 구비한 소재에 대한 보호 효과가 향상되어 파손, 깨짐에 대한 저항력이 더욱 향상될 수 있다.
또한, 상기 충격흡수용 복합시트의 전체 두께는 약 80 ㎛ 내지 약 300 ㎛이고, 충격흡수층은 약 50 ㎛ 내지 약 250 ㎛일 수 있다. 상기 충격흡수용 복합시트의 전체 두께 범위 내에서, 상기 복합시트는 기재에 대한 보호 효과가 향상되어 파손, 깨짐에 대한 저항력이 더욱 향상될 수 있다.
도 1c는 본 발명의 일 실시예에 의한 충격흡수용 복합시트의 전체 구성을 개략적으로 나타낸 사시도이다. 또한, 도 2는 본 발명의 일 실시예에 의한 충격흡수용 복합시트의 단면도를 나타낸 도면이다.
도 1c 및 도 2를 참조하면, 본 발명에 따른 충격흡수용 복합시트는 일면 또는 양면에 순차적으로 아크릴점착층(130) 및 필름층(140)을 더 포함할 수 있다. 상기 필름층(140)은 TAC(Triacetyl cellulose) 필름 등과 같은 셀룰로오스 필름, 폴리에틸렌테레프탈레이트(PET, Polyethylene terephthalate) 필름 등과 같은 폴리에스테르 필름, 폴리카보네이트 필름, 폴리에테르설폰 필름, 아크릴 필름, 폴리에틸렌 필름, 폴리프로필렌 필름, 시클로계나 노보르넨 구조를 포함하는 폴리 올레핀 필름 또는 에틸렌-프로필렌 공중합체 필름 등의 폴리 올레핀계 필름 등을 사용할 수 있으나 이에, 제한되는 것은 아니다. 보다 구체적으로는 이형을 쉽게 할 수 있도록 이형력이 10gf/in 정도인 이형용 PET 필름을 사용할 수 있다.
도 3은 본 발명의 또 다른 일 실시예에 따라 아크릴점착층 및 필름층이 복수개 구비된 모습을 개략적으로 나타낸 단면도이다.
도 3을 참조하면, 본 발명의 다른 실시예에 따른 충격흡수용 복합시트(100a)는 충격흡수층(121)이 상기 제1열전도층(111)의 일면에 직접 구비되고, 상기 충격흡수층(121)과 상기 제1열전도층(111)의 타면에 각각 아크릴점착층(130) 및 필름층(140)이 구비되어 있다.
도 4는 본 발명의 또 다른 일 실시예에 따라 충격흡수층이 제1열전도층의 양면에 직접 구비된 모습을 개략적으로 나타낸 단면도이다.
도 4를 참조하면, 본 발명의 다른 실시예에 따른 충격흡수용 복합시트(100b)는 제1열전도층(111)의 양면에 충격흡수층(121)이 직접 구비되어 있으며 상기 제1열전도층(111)의 양면에 직접 구비된 충격흡수층(121)의 타면에 순차적으로 아크릴점착층(130a, 130b) 및 필름층(140a, 140b)이 구비되어 있다.
도 5는 본 발명의 또 다른 일 실시예에 따라 열전도층이 복수개 구비된 모습을 개략적으로 나타낸 단면도이다.
도 5를 참조하면, 본 발명의 다른 실시예에 따른 충격흡수용 복합시트(100c)는 제1열전도층(111)의 일면에 충격흡수층(121)이 직접 구비되고, 상기 충격흡수층(121)의 상면에는 순차적으로 아크릴점착층(130a) 및 필름층(140a)이 구비되며, 상기 제1열전도층(111)의 타면에 순차적으로 접착층(150) 및 제2열전도층(112)을 더 포함한다. 상기 제1열전도층(111) 및 제2열전도층(112)는 동일한 금속을 사용하거나, 서로 다른 금속을 사용할 수 있다.
도 6은 본 발명의 또 다른 일 실시예에 따라 열전도층 및 아크릴점착층, 필름층이 복수개 구비된 모습을 개략적으로 나타낸 단면도이다.
도 6을 참조하면, 본 발명의 다른 실시예에 따른 충격흡수용 복합시트(100d)는 제1열전도층(111)의 일면에 충격흡수층(121)이 직접 구비되고, 상기 충격흡수층(121)의 상면에 순차적으로 아크릴점착층(130a) 및 필름층(140a)이 구비되며, 상기 제1열전도층(111)의 타면에 순차적으로 접착층(150), 제2열전도층(112), 아크릴점착층(130b), 필름층(140b)이 구비되어 있다. 상기 제1열전도층(111) 및 제2열전도층(112)는 동일한 금속을 사용하거나, 서로 다른 금속을 사용할 수 있다.
도 7은 본 발명의 또 다른 일 실시예에 따라 열전도층, 열전도층에 직접 구비된 충격흡수층과 아크릴점착층 및 필름층이 복수개 구비된 모습을 개략적으로 나타낸 단면도이다.
도 7을 참조하면, 본 발명의 다른 실시예에 따른 충격흡수용 복합시트(100e)는 제1열전도층(111)의 일면에 충격흡수층(121)이 직접 구비되고, 상기 충격흡수층(121)의 상면에 순차적으로 아크릴점착층(130a) 및 필름층(140a)이 구비되며, 상기 제1열전도층(111)의 타면에 순차적으로 접착층(150), 제2열전도층(112), 상기 제2열전도층(112)에 직접 구비된 충격흡수층(121), 아크릴점착층(130b) 및 필름층(140b)이 구비된다.
이하 본 발명의 실시예 및 비교예를 기재한다. 그러나, 하기 실시예들은 본 발명의 바람직한 일 실시예일뿐 본 발명의 권리 범위가 하기 실시예들에 의하여 제한되는 것은 아니다.
실시예 1
<충격흡수용 복합시트의 제조>
열전도층으로 두께가 35 ㎛이고 층상으로 형성된 동박을 준비하였다. 이와 같이 준비된 동박 상에 폴리우레탄 수지와 발포제의 혼합물을 도포한 후 200 ℃의 온도에서 방치함으로써 발포시켜 두께가 105 ㎛인 폴리우레탄 발포층을 충격흡수층으로서 형성시켰다. 이후, 아크릴계 점착제인 아크릴점착층을 폴리우레탄 발포층에 10 ㎛ 전사 코팅하여 160 ℃에서 3분간 건조하여 적용하였고, 이때 코팅 방법은 콤마 코터를 사용하여 진행하였으며, 총 두께가 150 ㎛인 복합시트를 제조하였다. 여기에서, 아크릴점착층은 발포제를 섞지않고 아크릴을 이용한 감압점착층의 일종으로 이웃하는 물질을 접합시키기 위하여 구비될 수 있으며, 아크릴 발포체와 같이 내부에 기포 등이 구비되지 않은 물질을 의미한다.
실시예 1은 동박과 폴리우레탄 발포체가 접착제의 매개 없이 직접 접촉하도록 제조하였으며, 실시예 1에 대한 각 층의 수치는 표 1에 기재된 바와 같이 진행하였다.
실시예 2
표 1에 기재된 바와 같이, 두께가 40㎛인 동박을 사용하고, 폴리우레탄 발포층을 100㎛로 형성시킨 것을 제외하고 실시예 1과 동일하게 제조하였다.
실시예 3
표 1에 기재된 바와 같이, 두께가 45㎛인 동박을 사용하고, 폴리우레탄 발포층을 95㎛로 형성시킨 것을 제외하고 실시예 1과 동일하게 제조하였다.
실시예 4
표 2에 기재된 바와 같이, 두께가 35㎛인 동박을 사용하고, 아크릴 수지 중에 발포제를 추가하여 아크릴 발포층을 105㎛로 형성시킨 것을 제외하고 실시예 1과 동일하게 제조하였다.
실시예 5
표 2에 기재된 바와 같이, 두께가 40㎛인 동박을 사용하고, 아크릴 발포층을 100㎛로 형성시킨 것을 제외하고 실시예 1과 동일하게 제조하였다.
실시예 6
표 2에 기재된 바와 같이, 두께가 45㎛인 동박을 사용하고, 아크릴 발포층을 95㎛로 형성시킨 것을 제외하고 실시예 1과 동일하게 제조하였다.
비교예 1
표 1에 기재된 바와 같이, 두께가 35㎛인 동박에 두께가 10㎛인 접착층을 형성시키고 폴리우레탄 발포층을 접착시킨 것을 제외하고 실시예 1과 동일하게 제조하였다.
비교예 2
표 1에 기재된 바와 같이, 두께가 70㎛인 동박 및 폴리우레탄 발포층을 70㎛로 형성시킨 것을 제외하고 실시예 1과 동일하게 제조하였다.
비교예 3
표 1에 기재된 바와 같이, 폴리우레탄 발포체를 구비시키지 않은 동박에 아크릴점착층을 코팅하여 복합시트를 제조하였다.
비교예 4
표 2에 기재된 바와 같이, 접착층 및 아크릴 발포층를 구비시키지 않은 동박에 아크릴점착층을 코팅하여 복합시트를 제조하였다.
비교예 5
표 2에 기재된 바와 같이, 두께가 35㎛인 동박에 접착층을 형성하고, 95㎛인 아크릴 발포층 및 아크릴점착층을 접착시킨 것을 제외하고 실시예 4와 동일하게 제조하였다.
비교예 6
표 2에 기재된 바와 같이, 두께가 70㎛인 동박에 접착층을 제외하고 70㎛인 아크릴 발포층 및 아크릴점착층을 접착시킨 것을 제외하고 실시예 4와 동일하게 제조하였다.
  동박층(㎛)  접착층(㎛)  폴리우레탄 발포층(㎛) 아크릴점착층(㎛) 총 두께
실시예 1 35 0 105 10 150㎛
실시예 2 40 0 100 10 150㎛
실시예 3 45 0 95 10 150㎛
비교예 1 35 10 95 10 150㎛
비교예 2 70 0 70 10 150㎛
비교예 3 35 - - 10 45㎛
  동박층(㎛)  접착층(㎛)  아크릴 발포층(㎛) 아크릴점착층(㎛) 총 두께
실시예 4 35 0 105 10 150㎛
실시예 5 40 0 100 10 150㎛
실시예 6 45 0 95 10 150㎛
비교예 4 35 0 0 10 45㎛
비교예 5 35 10 95 10 150㎛
비교예 6 70 0 70 10 150㎛
상기와 같이 제조된 실시예 1 내지 실시예 6 및 비교예 1 내지 비교예 6의 복합시트의 물성을 하기의 물성평가방법으로 평가하고, 그 결과를 하기 표 3 내지 표 6에 표시하였다.
물성평가방법
1) 압축강도(kg/cm2)
JIS K6254에 따라 발포층의 발포 방향에 대하여 수직으로 복합시트 전체 두께의 25%를 압축하는데 필요한 압축힘을 측정한 후 하기 식 1을 통해 압축강도를 측정하였다.
[식 1]
압축강도(kgf/cm2) = 압축힘 / 단면적
2) 충격 강도 (듀폰 충격 실험(Dupont impact) mJ)
듀폰 충격 시험기(Dupont type impact tester)를 이용하여 충격시험을 실시한다. 복합시트 시편을 수평으로 높고 반지름 형상의 펀치를 접한 후, 100g의 추를 높이 50㎜부터 500㎜까지 순차적으로 올려 낙하시키면서 관측하여 복합시트 시편의 층이 갈라지게되는 때까지 추의 무게를 증량한다. 150g의 추는 높이 350㎜ ~ 500㎜, 200g의 추는 높이 400㎜ ~ 500㎜, 300g 및 400g의 추는 높이 350㎜ ~ 500㎜에서 낙하시키고, 시편의층이 갈라지게 되는 때의 추의 무게 및 높이를 기록하였다. 이어서, 추의 무게 및 높이를 이용해 충격량(mJ)을 도출하였다.
3) 복원률(%) 및 압축변형률(Compression set, %)
ASTM D3574 시험 조건 따라 시편을 50 mm x 50 mm 의 크기로 잘라 압축 지그(zig)에 넣고 판 게이지(flat gauge)를 이용하여 폼(foam) 두께의 50%만큼 압축한다. 70 ℃ 오븐(oven)에 22 시간 넣어둔다. 압축을 해제 하고 회복되지 않은 두께를 확인한다. 로트(Lot) 별 폭 방향으로 중앙에서 시편을 채취하여 시험한다. 하기 식 2를 통해 압축 변형률을 구한 후, 이를 식 3에 대입하여 복원률을 산출하였다.
[식 2]
압축변형률 (%)= [(t0 - t1)/(t0 - 게이지 두께)] × 100
상기 식 2에서, t0는 시편의 압축변형 시험 전 최초 두께를 나타내고, t1는 시편의 압축변형 시험 후 두께를 나타낸다.
[식 3]
복원률 (%) = (100 - 식 2에서 계산된 압축변형률)
4) 치수안정성(%)
시편을 0℃, 50℃ 조건에서 각각 방치한 후 방치 전후의 시편의 길이를 각각 측정하고, 하기 식 4에 따라 치수 안정성을 산출하였다.
[식 4]
치수안정성 (%) = {(V2 - V1) / V1 } × 100
상기 식 4에서, V1 시험 전 길이, V2는 시험 후 길이이다.
5) 열전도도(W/mK)
열전도율 측정기(TPS 2500, HOT DISK社)를 이용하여 ISO 22007-2의 방법으로 측정하였다.
6) 충격흡수율 측정방법
- 충격흡수율 측정조건: 0.2 J(높이 : 45cm, 볼무게 : 45g 자유낙하)
- 실험방법 :
준비된 (PMMA+Acrylic) set를 충격흡수 센서 에 올려 놓는다.
폼(Foam)이 삽입 되지 않은 상태에서 볼을 떨어트려 충격흡수량이 얼마인지 측정한다. 준비된 (PMMA+Foam+Acrylic) set를 충격흡수 센서(sensor)에 올려 놓는다. 폼(Foam)이 삽입된 상태에서 볼을 떨어트려 충격흡수량이 얼마인지 측정한다. 제품당 30회의 시험을 하되 충격량 값이 10 % 이상 차이가 나지 않는 Min/Max값을 제외하여 평균값을 하기 식 5로 계산한다.
[식 5]
충격흡수율 (%) = { (F0 - F1) / F0 } X 100
상기 식 5에서, F0은 foam이 없는 상태의 충격흡수량, F1은 foam이 삽입된 상태의 충격흡수량을 의미한다.
7) 충격흡수층의 인장강도 (kgf/cm2)
ASTM D3574에 따라 만능시험기 (제품명AGS-X, 제조사 SHIMADZU)를 이용하여 인장강도를 측정하였다.
<물성평가결과>
압축강도(kg/cm2) 복원률(%) 충격강도(mJ) 압축변형률 (%) 치수안정성(%) 열전도도(W/mK) 복합시트의 충격흡수율(%)
실시예 1 2.32 99.51 0.187 < 3 < 1 103 15.93
실시예 2 2.19 99.43 0.18 < 3 < 1 111 14.70
실시예 3 2.03 99.64 0.172 < 3 < 1 125 13.85
비교예 1 2.17 99.71 0.165 < 3 < 1 100 13.60
비교예 2 1.78 99.3 0.142 < 3 < 1 185 7.44
비교예 3 측정불가 측정불가 0.049 측정불가 < 1 295 0.19
충격흡수층의 인장강도 (kgf/cm2) 충격흡수층의 압축 변형률 (%) 충격흡수층의충격흡수율 (%)
실시예 1 5.37 < 3 16.72
실시예 2 5.13 < 3 15.03
실시예 3 4.70 < 3 14.17
비교예 1 4.63 < 3 14.10
비교예 2 3.79 < 3 8.37
비교예 3 측정불가 측정불가 측정불가
압축강도(kg/cm2) 복원률(%) 충격강도(mJ) 압축변형률 (%) 치수안정성(%) 열전도도(W/mK) 복합시트의충격흡수율(%)
실시예 4 3.29 99.52 0.239 < 3 < 1 106 18.32
실시예 5 3.21 99.29 0.225 < 3 < 1 113 17.49
실시예 6 3.06 99.18 0.218 < 3 < 1 125 16.65
비교예 4 측정불가 측정불가 0.035 측정불가 < 1 295 0.22
비교예 5 3.02 99.3 0.201 < 3 < 1 98 16.38
비교예 6 2.4 99.1 0.189 < 3 < 1 182 14.44
충격흡수층의인장강도 (kgf/cm2) 충격흡수층의압축변형률 (%) 충격흡수층의충격흡수율 (%)
실시예 4 10.75 < 3 19.39
실시예 5 10.47 < 3 18.42
실시예 6 10.04 < 3 17.3
비교예 4 측정불가 측정불가 측정불가
비교예 5 10.04 < 3 17.3
비교예 6 8.89 < 3 15.57
표 3 및 표 4를 참조하면, 접착층을 포함하는 복합시트인 비교예 1의 경우, 접착층의 두께가 10㎛로 복합시트 내에 차지하는 비중이 크지 않지만, 접착층이 구비됨으로써, 충격흡수율 테스트 및 듀폰 충격 실험 결과가 실시예1 대비 낮은 수치를 나타내었고, 부착 강도도 역시 높지 않음을 확인할 수 있었다.
비교예 2의 경우, 동박이 70㎛로 두께가 증가되어 상대적으로 전도도의 측면에서는 우수한 특징을 갖는 반면, 충격흡수층이 70㎛로 두께가 증가됨으로써 복원율, 압축강도, 충격흡수율 실험 및 듀폰 충격 실험에서 낮은 수치를 나타내었다.
비교예 3은 충격흡수층을 구비하고 있지 않아 압축강도, 복원율, Compression set, 충격흡수층의 인장강도, 충격흡수층의 Compression set 및 충격흡수층에 대한 충격흡수율의 측정이 불가하였다.
실시예 1 내지 실시예 3의 경우, 동박만 사용하여 제조한 복합시트(비교예 3)에 비해, 열전도도는 낮지만, 충격흡수 실험인 낙하테스트 실험과 듀폰 충격 실험 결과에서 비교예 3에 비해 더 좋은 결과를 나타내고 있으며, 압축 강도 및 복원율에서도 우수한 결과를 가짐을 확인할 수 있다.
즉, 실시예 1 내지 실시예 3의 경우, 충격흡수층의 인장강도, 충격흡수층에 대한 충격흡수율, 복합시트에 대한 충격흡수율이 각각이 비교예 1 내지 비교예 3과 비교하였을 때 모두 우수하게 나타나는 것을 확인할 수 있으며, 특히 충격흡수층의 인장강도가 현저히 낮은 비교예 2 및 비교예 3의 경우에는 충격흡수층에 대한 충격흡수율과 복합시트에 대한 충격흡수율 모두 실시예 1 내지 실시예 3에 비하여 매우 낮은 것으로 나타났다.
실시예 1 내지 실시예 3은 충격 등에 대한 버퍼의 기능을 구비할 수 있는 접착층이 생략됨에도 불구하고, 비교예 1과 같이 접착층 및 충격흡수층을 모두 구비한 경우보다 우수한 결과를 갖음을 확인할 수 있었다.
표 3을 참조하면, 복합시트의 충격흡수율이 충격흡수층보다 낮은 값을 나타냄을 확인할 수 있었는데, 이는 복합시트에는 동박을 구비한 전체 충격흡수율에 대한 것이므로 충격흡수층 단독으로만 구비된 경우와 비교할 때 상기 동박에 의하여 충격흡수율이 보다 감소한 결과이다. 즉, 동박의 두께가 증가할수록 전체 복합시트의 충격흡수율은 상대적으로 감소됨을 확인할 수 있었다.
표 5 내지 표 6은 충격흡수층인 고분자 발표층을 아크릴 발포층을 이용하여 확인한 결과이다. 비교예 4와 같이 접착층 및 아크릴 발포층이 모두 없는 경우에는 충격흡수층에 대한 결과(인장강도, compression set 등)에 대한 결과를 확인할 수 없었다.
실시예 4 내지 실시예 6은 충격 등에 대한 버퍼의 기능을 구비할 수 있는 접착층이 없음에도 불구하고, 비교예 5와 같이 접착층 및 충격흡수층을 모두 구비한 경우보다 우수한 결과를 갖음을 확인할 수 있었다.
본 실시예에 따른 실시예 4 내지 실시예 6의 경우에는 비교예 5에 비하여 접착증을 생략함에도 불구하고 보다 우수한 결과를 가짐을 확인할 수 있었다.
표 6을 참조하면, 표 4와 유사하게 복합시트의 충격흡수율이 충격흡수층보다 낮은 값을 확인할 수 있었고, 이는 동박에 의한 영향임을 확인할 수 있었다. 즉, 충격흡수층의 종류와 무관하게 충격흡수율에 대한 동박의 경향성은 유사하게 나타남을 확인할 수 있었다.
본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구의 범위에 의하여 나타내어지며, 특허청구의 범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
(부호의 설명)
100, 100a, 100b, 100c, 100d, 100e : 복합시트
111 : 제1열전도층
112 : 제2열전도층
121 : 충격흡수층
130 : 아크릴점착층
140 : 필름층
150 : 접착층(Adhesive Layer)

Claims (20)

  1. 제1열전도층; 및
    상기 제1열전도층의 일면 또는 양면에 직접 구비되는 충격흡수층;을 포함하고,
    상기 충격흡수층은 고분자 발포체를 포함하는 충격흡수용 복합시트.
  2. 제 1항에 있어서,
    상기 충격흡수층은 상기 제1열전도층의 일면에 구비되고,
    상기 충격흡수층의 외면에는 순차적으로 아크릴점착층 및 필름층이 구비되는 충격흡수용 복합시트.
  3. 제 2항에 있어서,
    상기 제1열전도층의 일면의 반대면인 타면에는 순차적으로 아크릴점착층 및 필름층이 구비되는 충격흡수용 복합시트.
  4. 제 3항에 있어서,
    상기 제1열전도층의 타면에는 상기 제1열전도층과 상기 아크릴점착층 사이에 충격흡수층이 더 구비되는 충격흡수용 복합시트.
  5. 제 2항에 있어서,
    상기 제1열전도층의 타면에는 순차적으로 아크릴점착층 및 제2열전도층을 더 구비되는 충격흡수용 복합시트.
  6. 제 5항에 있어서,
    상기 제2열전도층의 외면에는 순차적으로 아크릴점착층 및 필름층이 구비되는 충격흡수용 복합시트.
  7. 제 6항에 있어서,
    상기 제2열전도층의 외면과 상기 아크릴점착층 사이에는 충격흡수층이 더 구비되는 충격흡수용 복합시트.
  8. 제 1항에 있어서,
    상기 고분자 발포체는 아크릴계 발포체, 폴리우레탄 발포체, 폴리에틸렌 발포체, 폴리올레핀 발포체, 폴리비닐클로라이드 발포체, 폴리카보네이트 발포체, 폴리이미드 발포체, 폴리에테르이미드 발포체, 폴리아미드 발포체, 폴리에스테르 발포체, 폴리비닐리덴 클로라이드 발포체, 폴리메틸메타크릴레이트 발포체 및 폴리이소시아네이트 발포체로 이루어진 군으로부터 선택된 어느 하나 이상인 충격흡수용 복합시트.
  9. 제 8항에 있어서,
    상기 고분자 발포체는 폴리우레탄 발포체 또는 아크릴계 발포체인 충격흡수용 복합시트.
  10. 제 1항에 있어서,
    상기 고분자 발포체의 밀도는 약 0.2 g/cm3 내지 약 0.8 g/cm3인 충격흡수용 복합시트.
  11. 제 1항에 있어서,
    상기 고분자 발포체의 인장강도는 약 1 kgf/cm2 내지 약 15 kgf/cm2인 충격흡수용 복합시트.
  12. 제 1항에 있어서,
    상기 고분자 발포체의 인장강도는 약 2.5 kgf/cm2 내지 약 12.5 kgf/cm2인 충격흡수용 복합시트.
  13. 제 1항에 있어서,
    상기 고분자 발포체의 두께는 약 50 ㎛ 내지 약 250 ㎛인 충격흡수용 복합시트.
  14. 제 13항에 있어서,
    상기 고분자 발포체의 두께는 약 80 ㎛ 내지 약 150 ㎛인 충격흡수용 복합시트.
  15. 제 1항 내지 제14항 중 어느 한 항에 있어서,
    상기 제1 또는 제2 열전도층은 구리, 알루미늄, 도금처리 된 구리, 구리와 폴리머의 혼합재 및 도금처리 된 알루미늄 중 선택된 어느 하나 이상인 충격흡수용 복합시트.
  16. 제 15항에 있어서,
    상기 도금처리는 니켈, 주석, 코발트, 크롬, 금 및 은 중 적어도 어느 하나 이상의 금속을 이용하여 도금처리 하는 충격흡수용 복합시트.
  17. 제 15항에 있어서,
    상기 제1 또는 제2 열전도층의 두께는 약 8 ㎛ 내지 약 150 ㎛인 충격흡수용 복합시트.
  18. 제 1항에 있어서,
    상기 충격흡수층은 충격흡수율이 약 5 % 내지 약 50 %이고, 복원율은 약 50 % 내지 약 100 %인 충격흡수용 복합시트.
  19. 제 1항에 있어서,
    상기 충격흡수용 복합시트는 충격흡수율이 약 1 % 내지 약 30 %이고, 복원율은 약 50 % 내지 약 100 %인 충격흡수용 복합시트.
  20. 제 1항에 있어서,
    상기 충격흡수용 복합시트의 전체 두께는 약 80 ㎛ 내지 약 300 ㎛이고, 충격흡수층은 약 50 ㎛ 내지 약 250 ㎛인 충격흡수용 복합시트.
PCT/KR2018/000956 2017-01-23 2018-01-22 충격흡수용 복합시트 WO2018135917A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0010120 2017-01-23
KR1020170010120A KR20180086558A (ko) 2017-01-23 2017-01-23 충격흡수용 복합시트

Publications (1)

Publication Number Publication Date
WO2018135917A1 true WO2018135917A1 (ko) 2018-07-26

Family

ID=62908236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000956 WO2018135917A1 (ko) 2017-01-23 2018-01-22 충격흡수용 복합시트

Country Status (2)

Country Link
KR (1) KR20180086558A (ko)
WO (1) WO2018135917A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114395155A (zh) * 2022-01-10 2022-04-26 苏州赛伍应用技术股份有限公司 一种化学发泡高回弹丙烯酸泡棉及其制备方法
WO2024056790A1 (en) * 2022-09-14 2024-03-21 Basf Se Component for absorbing energy and a process for producing the component

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102639989B1 (ko) 2018-12-28 2024-02-22 엘지디스플레이 주식회사 플렉서블 표시장치
KR102600530B1 (ko) * 2020-03-31 2023-11-09 주식회사 아이엠씨 방열 폼 테이프

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279892A (ja) * 1997-03-31 1998-10-20 Minnesota Mining & Mfg Co <3M> 接着フォームテープ及びそれを使用した接着方法
KR20050113937A (ko) * 2004-05-31 2005-12-05 주식회사 엘지화학 점착 방열시트
KR20110025541A (ko) * 2009-09-04 2011-03-10 정은권 안전 표시용 폼 테이프
JP2015110319A (ja) * 2013-10-29 2015-06-18 日東電工株式会社 積層体
KR20160126188A (ko) * 2015-04-23 2016-11-02 주식회사 엠피코 전자파 차폐 및 열방출용 다기능성 복합시트 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279892A (ja) * 1997-03-31 1998-10-20 Minnesota Mining & Mfg Co <3M> 接着フォームテープ及びそれを使用した接着方法
KR20050113937A (ko) * 2004-05-31 2005-12-05 주식회사 엘지화학 점착 방열시트
KR20110025541A (ko) * 2009-09-04 2011-03-10 정은권 안전 표시용 폼 테이프
JP2015110319A (ja) * 2013-10-29 2015-06-18 日東電工株式会社 積層体
KR20160126188A (ko) * 2015-04-23 2016-11-02 주식회사 엠피코 전자파 차폐 및 열방출용 다기능성 복합시트 및 이의 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114395155A (zh) * 2022-01-10 2022-04-26 苏州赛伍应用技术股份有限公司 一种化学发泡高回弹丙烯酸泡棉及其制备方法
WO2024056790A1 (en) * 2022-09-14 2024-03-21 Basf Se Component for absorbing energy and a process for producing the component

Also Published As

Publication number Publication date
KR20180086558A (ko) 2018-08-01

Similar Documents

Publication Publication Date Title
WO2018135917A1 (ko) 충격흡수용 복합시트
WO2018135916A1 (ko) 충격흡수용 복합시트
WO2018021623A1 (en) Complex sheet for wireless charging and method for fabricating the same
WO2014204165A9 (ko) 편광판 및 이를 포함하는 디스플레이 장치
WO2018004091A1 (ko) 점착필름, 이를 포함하는 광학부재 및 이를 포함하는 광학표시장치
WO2014178639A1 (ko) 연성인쇄회로기판 및 그 제조 방법
WO2010038963A4 (ko) 계층화 구조물 제조 장치
WO2018030701A1 (ko) 광학표시장치의 보호 필름, 이를 포함하는 광학 부재 및 이를 포함하는 광학표시장치
WO2017111254A1 (ko) 전자파 차폐 필름 및 이의 제조방법
WO2017099320A1 (ko) 디스플레이 패널을 보호하는 커버 윈도우, 이를 사용한 디스플레이 장치 및 커버 윈도우 제조 방법
WO2017014402A1 (ko) 디스플레이용 양면 점착 테이프 및 제조방법
WO2019066543A1 (ko) 인조 흑연 분말을 이용한 열전도성 박막의 제조방법
WO2018135865A1 (ko) Oled 패널 하부 보호필름 및 이를 포함하는 유기발광표시장치
WO2014166359A1 (zh) 电子产品保护套
WO2014204197A1 (en) Transfer film, method for transferring the same and electronic device cross-reference to related applications
WO2021167299A1 (en) Electronic device
WO2020141925A1 (ko) 방열 시트 제조방법
WO2018117564A1 (ko) 금속 복합시트
WO2021045322A1 (ko) 실리콘 커버를 포함하는 인체에 무해한 고탄성 항균 매트
WO2022108055A1 (ko) 전자 장치
WO2022108330A1 (ko) 전기자동차 배터리팩 보호커버용 샌드위치 패널, 이의 제조방법 및 이를 포함하는 전기자동차 배터리팩 보호커버
WO2019182399A1 (ko) 웨이퍼 레벨용 백사이드 점착테이프 및 이의 제조방법
WO2018080232A1 (ko) 고분자 폼 점착 테이프 및 이를 포함하는 압력 감응형 터치 패널
KR101802951B1 (ko) 충격 흡수용 금속 테이프
WO2016018030A1 (ko) 필름 터치 센서 및 그의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18742265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18742265

Country of ref document: EP

Kind code of ref document: A1