WO2022108330A1 - 전기자동차 배터리팩 보호커버용 샌드위치 패널, 이의 제조방법 및 이를 포함하는 전기자동차 배터리팩 보호커버 - Google Patents

전기자동차 배터리팩 보호커버용 샌드위치 패널, 이의 제조방법 및 이를 포함하는 전기자동차 배터리팩 보호커버 Download PDF

Info

Publication number
WO2022108330A1
WO2022108330A1 PCT/KR2021/016890 KR2021016890W WO2022108330A1 WO 2022108330 A1 WO2022108330 A1 WO 2022108330A1 KR 2021016890 W KR2021016890 W KR 2021016890W WO 2022108330 A1 WO2022108330 A1 WO 2022108330A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
protective cover
electric vehicle
sandwich panel
core layer
Prior art date
Application number
PCT/KR2021/016890
Other languages
English (en)
French (fr)
Inventor
안승현
이명
김원
노상현
유다영
최현진
오애리
Original Assignee
(주)엘엑스하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210157031A external-priority patent/KR20220067513A/ko
Application filed by (주)엘엑스하우시스 filed Critical (주)엘엑스하우시스
Priority to EP21895098.8A priority Critical patent/EP4250451A1/en
Priority to CN202180090916.9A priority patent/CN117203835A/zh
Priority to US18/037,351 priority patent/US20230405968A1/en
Publication of WO2022108330A1 publication Critical patent/WO2022108330A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/229Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/231Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • H01M50/273Lids or covers for the racks or secondary casings characterised by the material
    • H01M50/282Lids or covers for the racks or secondary casings characterised by the material having a layered structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • B32B2262/144Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/07Parts immersed or impregnated in a matrix
    • B32B2305/076Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/737Dimensions, e.g. volume or area
    • B32B2307/7375Linear, e.g. length, distance or width
    • B32B2307/7376Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sandwich panel for an electric vehicle battery pack protective cover, a manufacturing method thereof, and an electric vehicle battery pack protective cover comprising the same.
  • the battery pack protective cover which is a part that protects the battery pack, which is a key component in an electric vehicle, is installed on the upper or lower part of the battery pack housing and corresponds to an essential configuration for protecting the battery pack from external impact and moisture penetration.
  • the protective cover of the electric vehicle battery pack is currently used metal materials such as steel, titanium, aluminum, or a fiber-reinforced composite material of thermoplastic and thermosetting properties.
  • metal protective covers have the disadvantages of high thermal conductivity and high weight, and fiber-reinforced composites have low thermal conductivity and are lightweight materials but are difficult to manufacture with thin thickness, making it difficult to secure battery space compared to metal materials, and flame retardant performance. It had the disadvantage of having to include a separate flame-retardant layer in order to secure it.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2017-0140111, Sandwich panel and manufacturing method thereof
  • the present inventors have a sandwich for an electric vehicle battery pack protective cover that can lighten the material of the battery pack protective cover as a part included in a vehicle, have excellent flame retardancy, and secure mechanical properties
  • the panel was studied to complete the present invention.
  • an object of the present invention is to apply a core layer and a skin layer comprising a core material of a nonwoven fiber aggregate structure including 'thermoplastic resin and flame retardant fiber' instead of a conventional metal material or fiber-reinforced composite material when manufacturing a sandwich panel
  • An object of the present invention is to provide a sandwich panel for an electric vehicle battery pack protective cover, which is lightweight and has excellent flame retardancy, and excellent mechanical properties, a manufacturing method thereof, and an electric vehicle battery pack protective cover comprising the same.
  • a core layer having a nonwoven fiber aggregate structure having a nonwoven fiber aggregate structure; a skin layer laminated on at least one surface of the core layer; and an adhesive layer for adhering the core layer and the skin layer, wherein the core layer includes a thermoplastic resin and a flame retardant fiber, and provides a sandwich panel for a protective cover for an electric vehicle battery pack.
  • the core layer may include 30% by weight or more of flame retardant fibers based on the total weight of the core layer.
  • the core layer may include 50% by weight or more of flame-retardant fibers based on the total weight of the core layer.
  • the core layer may include 60% by weight or more of flame retardant fibers based on the total weight of the core layer.
  • the core layer may include 70% by weight or less of flame retardant fibers based on the total weight of the core layer.
  • the core layer may further include a phosphorus-based flame retardant.
  • the thermoplastic resin is polyethylene, polypropylene, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyamide, polyphenylene sulfide, and combinations thereof. It may be selected from the group consisting of.
  • the flame-retardant fiber may be selected from the group consisting of glass fiber, flame-retardant polyethylene terephthalate (flame-retardant PET), flame-retardant polypropylene (flame-retardant PP), and combinations thereof.
  • the glass fiber is C-glass (C-Glass), E-glass (E-Glass), S-glass (S-Glass), glass wool (Glass-Wool) and these It may be selected from the group consisting of combinations.
  • the skin layer is selected from the group consisting of aluminum, iron, stainless steel (SUS), magnesium, electro-galvanized steel sheet (EGI), hot-dip galvanized steel sheet (GI), and combinations thereof.
  • SUS stainless steel
  • EPI electro-galvanized steel sheet
  • GI hot-dip galvanized steel sheet
  • the adhesive layer may include one selected from the group consisting of an olefin-based adhesive, a urethane-based adhesive, an acrylic adhesive, an epoxy-based adhesive, and combinations thereof.
  • It provides an electric vehicle battery pack protective cover, including a sandwich panel for the electric vehicle battery pack protective cover.
  • the sandwich panel for a protective cover for an electric vehicle battery pack of the present invention has excellent formability because the material is lightweight and thin through a nonwoven fiber assembly structure, and flame retardant fibers are included in the core material even if a separate functional layer is not applied. As well as securing performance, it has excellent mechanical properties, electromagnetic wave shielding and insulation effects.
  • FIG. 1 is a schematic diagram of a sandwich panel according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a flame-retardant function and a non-combustible function according to a sandwich panel according to a preferred embodiment of the present invention.
  • FIG. 3 is a photograph of a thickness expansion rate test result of a sandwich panel according to an embodiment of the present invention.
  • a core layer of a nonwoven fiber aggregate structure to include a thermoplastic resin (PP, PET and PA, etc.) and a flame retardant fiber (glass fiber, flame retardant PET, etc.) within the core of the nonwoven fabric as shown in FIG.
  • Electric vehicle battery pack effective in electromagnetic wave shielding by reducing the weight and improving formability, flame-retardant performance, and heat insulation performance It has come to manufacture a sandwich panel for a protective cover.
  • a sandwich panel for a protective cover for an electric vehicle battery pack includes a core layer having a nonwoven fiber aggregate structure; a skin layer laminated on at least one surface of the core layer; and an adhesive layer bonding the core layer and the skin layer to each other, wherein the core layer includes a thermoplastic resin and a flame-retardant fiber.
  • the sandwich panel for a protective cover for an electric vehicle battery pack according to the present invention includes a core layer having a nonwoven fiber aggregate structure, and the core layer may include two or more nonwoven fiber aggregates.
  • the 'nonwoven fiber aggregate structure' is a structure including two or more nonwoven fiber aggregates
  • the 'nonwoven fiber aggregate' refers to a nonwoven fiber on a web or a sheet by bonding with an adhesive or , refers to an adhesion using a thermoplastic fiber
  • the core layer according to the present invention has a non-woven fiber aggregate in which the fibers are entangled with each other, all or part of the fibers are fused by a binder, and thus, there is a natural The pores are included, the air permeability is improved, and weight reduction can be improved.
  • the fibers have natural pores formed while being entangled with each other, unlike the case where pores are artificially formed by an additive such as a foaming agent, it is a non-foaming core, so manufacturing costs can be reduced and the foaming process can be omitted. Efficiency can also be increased. Through the structure of the nonwoven fiber aggregate, moldability and processability may be improved compared to conventional thermoplastic or thermosetting foamed resins.
  • the core layer includes a thermoplastic resin and a flame retardant fiber.
  • the thermoplastic resin may be a resin capable of deforming a shape by applying heat again after molding by applying heat.
  • the elongation may be excellent and the moldability may be excellent.
  • it in addition to molding by applying heat again in the state of the plate, it has excellent formability during cold forming, and has the advantage of lower raw material cost compared to thermosetting resins.
  • the thermoplastic resin may be selected from the group consisting of polyethylene, polypropylene, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyamide, polyphenylene sulfide, and combinations thereof, preferably Preferably, it may be selected from the group consisting of polypropylene, polyethylene terephthalate, polyamide, and combinations thereof.
  • the core layer may include 30% by weight or more, 35% by weight or more, 40% by weight or more, 50% by weight or more of the thermoplastic resin based on the total weight of the core layer, and 70% by weight or less, 65% by weight or less, 60% by weight or less , or 50% by weight or less of the thermoplastic resin.
  • the weight ratio of the thermoplastic resin is satisfied, the nonwoven fiber assembly is manufactured based on the thermoplastic resin to secure the formability of the core layer and mechanical properties as a core material, while reducing the weight of the panel, and flame retardant suitable as a battery cover material performance can be ensured.
  • the flame-retardant fiber may be a fiber having excellent durability without burning even if the fiber catches fire, or a processed fiber processed to have such a property.
  • the flame-retardant fiber may be selected from the group consisting of glass fiber, flame-retardant polyethylene terephthalate (flame-retardant PET), flame-retardant polypropylene (flame-retardant PP), and combinations thereof, preferably glass fiber. Since the flame-retardant fiber is included in the core layer, shrinkage or melting of the core layer may have insignificant effects even after ignition in case of fire, and excellent flame-retardant performance that does not burn well may be secured.
  • the glass fiber may be selected from the group consisting of C-Glass, E-Glass, S-Glass, Glass-Wool, and combinations thereof. , preferably E-glass (E-Glass).
  • the core layer may include 30% by weight or more, 40% by weight or more, 50% by weight or more, 60% by weight or more of the flame retardant fiber based on the total weight of the core layer, and 70% by weight or less, 60% by weight or less, or less than by weight , or 60% by weight or less of flame retardant fibers.
  • the core layer may further include a phosphorus-based flame retardant.
  • a phosphorus-based flame retardant By including the phosphorus-based flame retardant, there is an effect of implementing excellent flame retardancy and stability against heat.
  • the core layer may include 5 wt% or more, 10 wt% or more, 15 wt% or more, 20 wt% or more of a phosphorus-based flame retardant based on the total weight of the core layer, and 30 wt% or less, 25 wt% or less, 20 wt% or less , 15% by weight or less of a phosphorus-based flame retardant.
  • the phosphorus-based flame retardant is phosphate ester, phosphate (phosphate), phosphonate (phosphonate), phosphinate (phosphinate), phosphine oxide (phosphine oxide), phosphazene (phosphazene), phosphoric acid (Phosphoric Acid) and these It may be selected from the group consisting of combinations.
  • the core layer may further include a filler such as carbon fiber, polymer fiber, wood fiber, natural fiber, and the like.
  • a filler such as carbon fiber, polymer fiber, wood fiber, natural fiber, and the like.
  • additives such as impact modifiers, heat stabilizers, antioxidants, water repellents, and antistatic agents may be further included.
  • the sandwich panel for a protective cover for an electric vehicle battery pack according to the present invention includes a skin layer laminated on at least one surface of the core layer.
  • the skin layer may be formed of a metal material, preferably from the group consisting of aluminum, iron, stainless steel (SUS), magnesium, electro-galvanized steel sheet (EGI), hot-dip galvanized steel sheet (GI), and combinations thereof. may be selected.
  • a skin layer including an electric galvanized steel sheet (EGI) may be applied to a sandwich panel for a protective cover for an electric vehicle battery pack.
  • a skin layer containing aluminum may be applied to a sandwich panel for a protective cover for an electric vehicle battery pack.
  • any one of a photocuring method, a thermosetting method, and a thermocompression bonding method may be used.
  • a sandwich panel may be manufactured by thermosetting or thermocompression bonding a laminate including a skin layer, a core layer, and an adhesive.
  • the thermal curing may be performed at 110 to 240° C. for approximately 1 minute to 1 hour, and curing may also be performed at room temperature for approximately 1 to 10 hours.
  • the thickness of the skin layer may be 0.1 to 2 mm.
  • the skin layer of the conventional sandwich panel had a problem in that the thickness of the skin layer had to be thick due to the low mechanical strength of the core material, thereby increasing the weight of the sandwich panel.
  • the thickness of the skin layer is within the above range, but the mechanical properties are not rapidly reduced, and thus the weight can be reduced.
  • the sandwich panel for a protective cover for an electric vehicle battery pack according to the present invention includes an adhesive layer for adhering the core layer and the skin layer.
  • the adhesive layer is applied between the core layer and the skin layer to adhere the core layer and the skin layer.
  • the adhesive layer is preferably applied with a uniform thickness in consideration of the viscosity.
  • a sandwich panel may be manufactured by laminating the core layer and the skin layer and then curing, or the core layer and the skin layer may be laminated and then thermocompressed to manufacture a sandwich panel.
  • the adhesive penetrates into the core layer during curing or thermocompression bonding, there is an effect of improving the adhesion between the skin layer and the core layer by mechanical bonding as well as chemical bonding with the components constituting the core layer.
  • the chemical bonding means that the adhesive becomes a covalent bond with the upper surface and the lower surface of the core layer, a hydrogen bond, a van der Waals bond, an ionic bond, and the like.
  • the mechanical bonding refers to a form in which the rings are physically hung as if they were hung with each other while the adhesive permeated into the core layer. This form is also called mechanical interlocking. Due to the natural pores contained in the core layer, the adhesive permeates the upper and lower surfaces of the core layer.
  • the adhesive constituting the adhesive layer may include one selected from the group consisting of an olefin-based adhesive, a urethane-based adhesive, an acrylic adhesive, an epoxy-based adhesive, and combinations thereof.
  • the olefin-based adhesive may be at least one selected from the group consisting of polyethylene, polypropylene, and amorphous polyalphaolefin adhesives.
  • the urethane-based adhesive may be used without limitation as long as it is an adhesive including a urethane structure (-NH-CO-O-).
  • the acrylic adhesive may include at least one of a polymethyl methacrylate adhesive, a hydroxyl group-containing polyacrylate adhesive, and a carboxy group-containing polyacrylate adhesive.
  • the epoxy adhesive includes at least one of bisphenol-A type epoxy adhesive, bisphenol-F type epoxy adhesive, novolak epoxy adhesive, linear aliphatic epoxy resins, and cycloaliphatic epoxy resins. may include
  • the adhesive may include a photocurable adhesive, a hot melt adhesive, or a thermosetting adhesive, and any one of a photocuring method and a thermosetting method may be used.
  • a sandwich panel can be manufactured by thermosetting a laminate including a skin layer, a core layer, and an adhesive. The thermal curing may be performed at 110 to 240° C. for approximately 1 minute to 1 hour, and curing may also be performed at room temperature for approximately 1 to 10 hours.
  • the adhesive layer may be applied to a thickness of about 20 to 300 ⁇ m, but is not limited thereto.
  • any one method selected from among a die coating method, a gravure coating method, a knife coating method, and a spray coating method may be used.
  • electromagnetic shielding effectiveness is a measure of the ability of a material or material to block electromagnetic waves, and the electromagnetic shielding ability of the sandwich panel is experimentally measured as electromagnetic interference shielding effect (EMI SE).
  • Silver is decibel [dB], based on ASTM D4935-10 (Standard test method for measuring the electromagnetic shielding effectiveness of Planar Materials) measurement standard, and is defined as in Equation 1 below.
  • the sandwich panel for the electric vehicle battery pack protective cover has an electromagnetic shielding ability measured as electromagnetic interference shielding effect (EMI SE) of 81 to 120 dB, preferably 81 to 110 dB, more preferably 81 with respect to a frequency of 0.03 to 1.5 GHz. to 100 dB.
  • EMI SE electromagnetic interference shielding effect
  • the sandwich panel for a protective cover for an electric vehicle battery pack according to the present invention has a flame retardant performance.
  • the sandwich panel of the present invention may include fibers using a thermoplastic resin such as PP and flame retardant fibers such as glass fibers in a core material.
  • a thermoplastic resin such as PP
  • flame retardant fibers such as glass fibers in a core material.
  • the PP resin is melted at a high temperature and expanded in the thickness direction of the core material due to the elasticity of the glass fiber. After that, a non-combustible layer is formed by the glass fiber and the carbonized PP, and the propagation of the flame is suppressed by the heat insulating effect.
  • the thickness of the panel is increased, so that structural rigidity is improved, and the occurrence of warpage can be suppressed.
  • the flame-retardant performance of the sandwich panel for a protective cover for an electric vehicle battery pack according to the present invention can be known by checking the thickness expansion rate according to heating.
  • the thickness expansion rate (after expansion) When measuring thickness/initial thickness), it may be 150% or more, 200% or more, 250% or more, or 300% or more, and there is no upper limit, but may be up to 1000%.
  • the thickness expansion rate of the sandwich panel for a protective cover for an electric vehicle battery pack according to the present invention satisfies the above range, there is an effect that the propagation of the flame is suppressed by the thermal insulation effect.
  • a combustion test may be performed.
  • the combustion test when a flame is applied in the vertical direction of the product, the UL94 Vertical Burning Test may be performed to evaluate the combustion aspect and the degree of flame to the surroundings.
  • the combustion time t1 of the specimen is measured, and when the combustion is finished after the first contacting, the combustion time t2 and sparking time t3 of the specimen are measured after contacting again for 10 seconds. do. Also, the combustion pattern (whether or not the cotton wool ignites due to dripping, and whether or not it burns up to the clamp (indicated by 125mm)) is recorded.
  • the individual afterflame time (individual afterflame time, t1 or t2) is 10 seconds or less, and the total afterflame time for any condition set (t1 + t2 for 5 samples) is 50 seconds or less, Afterflame plus afterglow time for each Individual specimen after the second flame application, t2+t3) is less than 30 seconds, and Burning up to the holding clamp
  • cotton ignition does not occur due to dripping, it is evaluated as V-0 grade, and in this case, it can be evaluated as having secured flame retardant performance that can be used as a sandwich panel for battery pack protection cover for electric vehicles. have.
  • the sandwich panel for a protective cover for an electric vehicle battery pack according to the present invention is formed by sequentially stacking the skin layer 20, the core layer 10, and the skin layer 20, and the core layer 10 and the skin layer ( 20) by applying an adhesive layer (not shown) between them. After the above components are laminated, the curing and pressing steps may be performed, but the present invention is not limited thereto.
  • the method for manufacturing a sandwich panel for a protective cover for an electric vehicle battery pack comprises the steps of: a) mixing a fiber containing a thermoplastic resin and a flame retardant fiber; b) manufacturing a core layer by performing carding on the mixed fibers, and then bonding the interface to each other through a needle punching process; c) forming an adhesive layer on at least one surface of the core layer; and d) forming a skin layer on the adhesive layer.
  • Step a) is a step of mixing the fiber and the flame-retardant fiber containing the thermoplastic resin, and may be mixed after preparing the thermoplastic resin and the flame-retardant fiber in order to prepare a nonwoven fiber assembly.
  • thermoplastic resin Specifically, 30 wt% or more, 35 wt% or more, 40 wt% or more, 50 wt% or more, or 70 wt% or less, 65 wt% or less, 60 wt% or less, or to contain 50% by weight or less of the thermoplastic resin,
  • thermoplastic resin mixed in the production of the nonwoven fiber assembly is polyethylene, polypropylene, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyamide, polyphenylene sulfide, and combinations thereof. It may be selected from the group consisting of, preferably, polypropylene, polyethylene terephthalate, polyamide, and may be selected from the group consisting of combinations thereof.
  • the flame-retardant fiber to be mixed at the time of manufacturing the non-woven fiber assembly may be selected from the group consisting of glass fiber, flame-retardant polyethylene terephthalate (flame-retardant PET), flame-retardant polypropylene (flame-retardant PP), and combinations thereof.
  • it may be glass fiber.
  • the glass fiber may be selected from the group consisting of C-Glass, E-Glass, S-Glass, Glass-Wool, and combinations thereof. , preferably E-glass (E-Glass).
  • Step b) may be a step of manufacturing a core layer by performing carding on the mixed fibers and then bonding the interface to each other through a needle punching process.
  • the carding process may be used without particular limitation as long as it is a method used in the industry.
  • the number of punches per minute is 300 to 1000 times per minute for the mixed nonwoven fiber assembly, the movement speed of the nonwoven fiber assembly is 1 to 8 m/min, and the punching density is 100 to 500 punches/cm 2 ,
  • the needle punching process may be performed, and more preferably, the number of punches per minute is 400 to 700 times per minute, the movement speed of the nonwoven fiber assembly is 1.5 to 6 m/min, and the punching density is 200 to 400 punches/cm 2 to proceed with the needle punching process.
  • the number of punches per minute is less than 300, there is a problem in that the degree of binding between the nonwoven fiber aggregates is lowered, and if the number of punchings per minute is more than 1000 times, there is a problem in that the nonwoven fiber aggregate is broken.
  • the moving speed of the nonwoven fiber aggregate is slower than 1 m/min, there is a problem in that the production speed is too slow, and if it is faster than 8 m/min, there is a problem in that it is not easy to control the punching density.
  • the needle punching process may be performed two or more times. When the needle punching process is performed two or more times, it is possible to increase the binding force of the interlayer fibers, which is effective in preventing delamination.
  • the physical bonding force by needle punching is improved, and physical properties such as tensile strength of the core layer are improved, and through this, the shear stiffness of the finally manufactured sandwich panel for battery pack protective cover for electric vehicle.
  • the strength and the degree of deflection can be improved.
  • the needle punching process of the above conditions is performed to produce a nonwoven fiber aggregate (nonwoven fabric) having a basis weight of 300 to 1800 gsm. have.
  • the manufactured nonwoven fiber aggregate (nonwoven fabric) is mounted on a plurality of unwinding devices, and then moved to a hot press. At this time, after mounting 1 to 10 manufactured nonwoven fiber aggregates in a plurality of unwinding devices according to the number, it may be moved to a hot press for manufacturing the core layer.
  • a plurality of nonwoven fiber aggregates are used by using a plurality of unwinding devices in this way, since the thickness of each nonwoven fiber aggregate becomes thin, the length of the nonwoven fiber aggregate wound around one unwinding device becomes longer. Therefore, since it is possible to reduce the number of times of use of the softener for connecting the nonwoven fiber aggregates continuously input during the continuous process, there is an advantage that the process can be simplified.
  • a plurality of nonwoven fiber aggregates (nonwoven fabrics) moved by the hot press are heated and pressed under a temperature condition of 130 to 240° C. and a pressure condition of 1 to 10 MPa to prepare a core layer having a nonwoven fiber aggregate structure.
  • the heating press is not particularly limited as long as it is commonly used in the industry, and as a specific example, a double belt press or the like may be used.
  • the method for manufacturing a sandwich panel for a protective cover for an electric vehicle battery pack includes the steps of performing the needle punching process of step b), followed by preheating at a temperature of 130 to 240° C. for 1 to 10 minutes; may further include.
  • Step c) may be a step of forming an adhesive layer on at least one surface of the core layer.
  • the adhesive layer may include one selected from the group consisting of an olefin-based adhesive, a urethane-based adhesive, an acrylic adhesive, an epoxy-based adhesive, and combinations thereof.
  • the olefin-based adhesive may be at least one selected from the group consisting of polyethylene, polypropylene, and amorphous polyalphaolefin adhesives.
  • the urethane-based adhesive may be used without limitation as long as it is an adhesive including a urethane structure (-NH-CO-O-).
  • the acrylic adhesive may include at least one of a polymethyl methacrylate adhesive, a hydroxyl group-containing polyacrylate adhesive, and a carboxy group-containing polyacrylate adhesive.
  • the epoxy adhesive includes at least one of bisphenol-A type epoxy adhesive, bisphenol-F type epoxy adhesive, novolak epoxy adhesive, linear aliphatic epoxy resins, and cycloaliphatic epoxy resins. may include
  • the adhesive may include a photocurable adhesive, a hot melt adhesive, or a thermosetting adhesive, and any one of a photocuring method and a thermosetting method may be used.
  • a sandwich panel can be manufactured by thermosetting a laminate including a skin layer, a core layer, and an adhesive.
  • the adhesive layer may be applied to a thickness of about 20 to 300 ⁇ m, but is not limited thereto.
  • any one method selected from among a die coating method, a gravure coating method, a knife coating method, and a spray coating method may be used.
  • Step d) may include forming a skin layer on the adhesive layer.
  • the skin layer may be made of a metallic material, and preferably selected from the group consisting of aluminum, iron, stainless steel (SUS), magnesium, electrogalvanized steel sheet (EGI), hot-dip galvanized steel sheet (GI), and combinations thereof.
  • the thickness of the skin layer may be 0.1 to 2 mm.
  • the skin layer of the conventional sandwich panel had a problem in that the thickness of the skin layer had to be thick due to the low mechanical strength of the core material, thereby increasing the weight of the sandwich panel.
  • the thickness of the skin layer is within the above range, but the mechanical properties are not rapidly reduced, and thus the weight can be reduced.
  • any one of a photocuring method, a thermosetting method, and a thermocompression bonding method may be used.
  • a laminate including a skin layer, a core layer, and an adhesive a sandwich panel for a protective cover for an electric vehicle battery pack can be finally manufactured.
  • the thermal curing may be performed at 110 to 240° C. for approximately 1 minute to 1 hour, and curing may be performed at room temperature for approximately 1 to 10 hours.
  • the electric vehicle battery pack protective cover according to the present invention includes a sandwich panel for the electric vehicle battery pack protective cover.
  • the sandwich panel for a protective cover for an electric vehicle battery pack according to the present invention is lightweight and has excellent formability, including a nonwoven fiber aggregate structure, and has secured flame retardancy performance by introducing flame retardant fibers, excellent thermal insulation performance and metal
  • it can be used as a protective cover for electric vehicle battery packs by replacing conventional metal composites or thermoplastic and thermosetting fiber-reinforced composites.
  • Polypropylene (PP) fiber (GH new material, fineness of 15 denier) and glass fiber E-Glass (Owen Corning, SE4121) were mixed in a weight ratio of 70:30.
  • the number of punches per minute is 500 times, the movement speed of the nonwoven fiber assembly is 2 m/min, and the punching density is 200 punches/cm 2
  • the needle punching process is repeated. Physical recombination was formed between the nonwoven fiber aggregates.
  • the non-woven fiber aggregate bonded by needle punching was preheated for 3 minutes after entering the preheating chamber having a chamber temperature of 210°C.
  • the nonwoven fiber aggregate was transferred to a double belt press at a speed of 5 m/min.
  • the heating temperature of the double belt press was 200° C. and the pressure was 5 Bar, and after heating/pressurizing for 10 minutes, cold pressing was performed at 25° C. for 6 minutes at 5 bar to prepare a 1.2 mm core layer.
  • a polyolefin adhesive (Samsung Gratech, KS010C) was applied to a thickness of 50 ⁇ m to form an adhesive layer, and then an aluminum plate (Namsun Aluminum, 5052H32) having a thickness of 0.4 mm was laminated on the adhesive layer, followed by lamination After heat lamination was performed at 130 ° C. for 6 minutes at 5 bar, the resultant was cooled to 5 bar at 25 ° C. for 4 minutes to finally prepare a 2.0 mm thick sandwich panel for an electric vehicle battery pack protective cover.
  • a sandwich panel was prepared in the same manner as in Example 1, except that polypropylene (PP) fiber (GH new material, fineness 15 denier) and glass fiber E-Glass (Owen Corning, SE4121) were mixed in a weight ratio of 50:50. prepared.
  • a sandwich panel was prepared in the same manner as in Example 1, except that polypropylene (PP) fiber (GH new material, fineness 15 denier) and glass fiber E-Glass (Owen Corning, SE4121) were mixed in a weight ratio of 40:60. prepared.
  • a sandwich panel was prepared in the same manner as in Example 1, except that polypropylene (PP) fiber (GH new material, fineness 15 denier) and glass fiber E-Glass (Owen Corning, SE4121) were mixed in a weight ratio of 30:70. prepared.
  • a sandwich panel for a protective cover for an electric vehicle battery pack was manufactured in the same manner as in Example 1, except for coating the surface of the prepared core layer by spraying a phosphorus-based flame retardant with a spray gun.
  • a sandwich panel was manufactured in the same manner as in Example 1, except that polypropylene (PP) fibers (GH new material, fineness of 15 denier) and PET fibers (Ocean, Super-A) were mixed in a weight ratio of 40:60.
  • PP polypropylene
  • GH new material fineness of 15 denier
  • PET fibers Olean, Super-A
  • Example 2 Example 3
  • Example 4 Example 5 Comparative Example 1 Material unit weight (kg/m2) 3.0 3.0 3.0 3.0 3.2 3.0 Part weight (kg) 7.6 7.6 7.6 7.6 8.1 7.6
  • Example 2 Example 3
  • Example 4 Example 5 Comparative Example 1
  • Maximum load (N) 107 148 141 70 160 121 Deflection (mm) 1.8 1.0 1.2 8.0 1.0 1.5
  • the glass fiber content had a maximum stiffness value of 40 to 60 wt%.
  • the thickness and thickness expansion rate after expansion after holding for 5 minutes in a 200 degree preheated oven was measured and compared in Table 4 below.
  • a photograph was taken after the thickness expansion rate test of Example 3 and shown in FIG. 2 .
  • the thickness expansion rate was calculated as (thickness after expansion/initial thickness).
  • Example 2 Example 3
  • Example 4 Example 5 Comparative Example 1 Thickness after expansion (mm) 3.6 4.5 6.0 6.1 5.2 1.8 Thickness Expansion (%) 180 225 300 305 265 90
  • the specimen size was cut to 125 mm in width x 13 mm in length x 2 mm in height, and the flammability was improved according to the UL94 vertical burning test. It was measured and compared in Table 5 below. Specifically, individual combustion time, total combustion time for each pretreatment condition, combustion and spark formation after secondary contacting, combustion up to clamp (125mm mark), and whether or not the cotton wool ignited by dripping were measured, and the grades in Table 5 below was set according to the criteria in Table 6 below.
  • Example 2 Example 3
  • Example 4 Example 5 Comparative Example 1 Individual burn time (sec) 125 10 0 19 0 140 Total burn time (seconds) 624 22 0 81 0 624 Sparkling time (seconds) 125 0 0 19 0 140 125mm Combustion Yes No No No No Yes cotton wool ignition Yes No No No No No Yes Rating out of grade V-0 V-0 V-1 V-0 out of grade
  • Example 2 Example 3
  • Example 4 Example 5 Comparative Example 1 THR1) (600 seconds, MJ/m 2 ) 16 1.5 0.8 0.3 0.2 24 Peak HRR2) (time over 200 kW/m 2 in seconds) 0 0 0 0 0 0 12 Rating Flame Retardant (Class 3) Semi-Non-flammable (Level 2) Semi-nonflammable (2nd grade) Semi-Non-flammable (Level 2) Semi-Non-flammable (Level 2) Flame Retardant (Class 3)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

본 발명은, 부직 섬유 집합체 구조인 코어층; 상기 코어층의 일면 이상에 적층된 스킨층; 및 상기 코어층과 스킨층을 접착하는 접착층;을 포함하고, 상기 코어층은 열가소성 수지 및 난연성 섬유를 포함하는, 전기자동차 배터리팩 보호커버용 샌드위치 패널, 이의 제조방법 및 전기자동차 배터리팩 보호커버에 관한 것이다.

Description

전기자동차 배터리팩 보호커버용 샌드위치 패널, 이의 제조방법 및 이를 포함하는 전기자동차 배터리팩 보호커버
본 발명은 전기자동차 배터리팩 보호커버용 샌드위치 패널, 이의 제조방법 및 이를 포함하는 전기자동차 배터리팩 보호커버에 관한 것이다.
자동차로부터 배출되는 대기 오염원의 문제를 줄이는 대안으로 지속적으로 주목받아온 전기자동차는 최근 배터리 효율 및 용량의 개선으로 내연기관 자동차를 점차 대체해가며 그 수요가 증가해가고 있다. 전기자동차에서 핵심이 되는 구성인 배터리팩을 보호하는 부품인 배터리팩 보호커버는, 배터리팩 하우징의 상부 또는 하부에 장착되어 배터리팩을 외부 충격 및 수분 침투로부터 보호하기 위한 필수 구성에 해당된다.
전기자동차 배터리팩의 보호커버는 현재 스틸, 티타늄, 알루미늄 등의 금속 소재 또는 열가소성, 열경화성의 섬유강화 복합재가 사용되고 있다. 다만, 금속 소재의 보호커버는 열전도도와 중량이 높은 단점을 지니며, 섬유강화 복합재는 열전도도가 낮으면서도 경량화된 소재이나 얇은 두께로 제조하기 어려워 금속 소재 대비 배터리 공간의 확보가 어렵고, 난연 성능을 확보하기 위해서는 별도의 난연층을 포함해야 한다는 단점을 가지고 있었다.
상기 문제점을 극복하기 위하여, 소재가 경량이면서도 난연 성능이 개선될 뿐만 아니라 기계적 물성도 유지할 수 있는 전기자동차의 배터리팩 보호커버에 대한 연구개발이 필요한 실정이다.
(특허문헌 1) 대한민국 공개특허공보 제10-2017-0140111호, 샌드위치 패널 및 그의 제조방법
본 발명자들은 상기 문제를 해결하기 위하여, 자동차에 포함되는 일 부품으로써 배터리팩 보호커버의 소재를 경량화 할 수 있으면서도, 난연 효과가 우수하고, 기계적 물성을 확보할 수 있는 전기자동차 배터리팩 보호커버용 샌드위치 패널을 연구하여 본 발명을 완성시켰다.
따라서, 본 발명의 목적은 샌드위치 패널 제조 시에 종래의 금속 소재나 섬유강화 복합재 대신에 '열가소성 수지 및 난연성 섬유'를 포함하는 부직 섬유 집합체 구조의 심재를 포함하는 코어층 및 스킨층을 적용하여, 경량이면서도 난연 성능이 우수하고, 기계적 물성이 우수한 전기자동차 배터리팩 보호커버용 샌드위치 패널, 이의 제조방법 및 이를 포함하는 전기자동차 배터리팩 보호커버를 제공하는 것이다.
본 발명의 제1측면에 따르면,
부직 섬유 집합체 구조인 코어층; 상기 코어층의 일면 이상에 적층된 스킨층; 및 상기 코어층과 스킨층을 접착하는 접착층;을 포함하고, 상기 코어층은 열가소성 수지 및 난연성 섬유를 포함하는, 전기자동차 배터리팩 보호커버용 샌드위치 패널을 제공한다.
본 발명의 일 구체 예에 있어서, 상기 코어층은 코어층 총 중량 기준 30 중량% 이상의 난연성 섬유를 포함할 수 있다.
본 발명의 일 구체 예에 있어서, 상기 코어층은 코어층 총 중량 기준 50 중량% 이상의 난연성 섬유를 포함할 수 있다.
본 발명의 일 구체 예에 있어서, 상기 코어층은 코어층 총 중량 기준 60 중량% 이상의 난연성 섬유를 포함할 수 있다.
본 발명의 일 구체 예에 있어서, 상기 코어층은 코어층 총 중량 기준 70 중량% 이하의 난연성 섬유를 포함할 수 있다.
본 발명의 일 구체 예에 있어서, 상기 코어층은 인계 난연제를 더 포함할 수 있다.
본 발명의 일 구체 예에 있어서, 상기 열가소성 수지는 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트, 폴리트리메틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, 폴리아미드, 폴리페닐렌설파이드 및 이들의 조합으로 이루어진 군으로부터 선택된 것일 수 있다.
본 발명의 일 구체 예에 있어서, 상기 난연성 섬유는 유리 섬유(Glass Fiber), 난연 폴리에틸렌테레프탈레이트(난연 PET), 난연 폴리프로필렌(난연 PP) 및 이들의 조합으로 이루어진 군으로부터 선택된 것일 수 있다.
본 발명의 일 구체 예에 있어서, 상기 유리 섬유는 C-글라스(C-Glass), E-글라스(E-Glass), S-글라스(S-Glass), 글라스울(Glass-Wool) 및 이들의 조합으로 이루어진 군으로부터 선택된 것일 수 있다.
본 발명의 일 구체 예에 있어서, 상기 스킨층은 알루미늄, 철, 스테인레스강(SUS), 마그네슘, 전기아연도금강판(EGI), 용융아연도금강판(GI) 및 이들의 조합으로 이루어진 군으로부터 선택된 것일 수 있다.
본 발명의 일 구체 예에 있어서, 상기 접착층은 올레핀계 접착제, 우레탄계 접착제, 아크릴계 접착제, 에폭시계 접착제 및 이들의 조합으로 이루어진 군으로부터 선택된 것을 포함할 수 있다.
본 발명의 제2 측면에 따르면,
a) 열가소성 수지를 포함하는 섬유 및 난연성 섬유를 혼합하는 단계; b) 상기 혼합된 섬유에 카딩을 진행한 후, 그 계면을 니들펀칭 공정으로 상호 접합시켜 코어층을 제조하는 단계; c) 상기 코어층 일면 이상에 접착층을 형성하는 단계; 및 d) 상기 접착층 상에 스킨층을 형성하는 단계;를 포함하는, 전기자동차 배터리팩 보호커버용 샌드위치 패널의 제조방법을 제공한다.
본 발명의 제3 측면에 따르면,
상기 전기자동차 배터리팩 보호커버용 샌드위치 패널을 포함하는, 전기자동차 배터리팩 보호커버를 제공한다.
본 발명의 전기자동차 배터리팩 보호커버용 샌드위치 패널은, 부직 섬유 집합체 구조를 통해 소재가 경량이면서도 얇은 두께를 가져 성형성이 우수하고, 별도의 기능층을 적용하지 않더라도 심재 내 난연성 섬유가 포함되어 난연성능이 확보됨은 물론 기계적 물성과 전자파 차폐 및 단열 효과가 우수하다.
도 1은 본 발명의 바람직한 실시예에 따른 샌드위치 패널을 개략적으로 도식화한 것이다.
도 2는 본 발명의 바람직한 실시예에 따른 샌드위치 패널에 따른 난연 기능 및 불연성 기능을 개략적으로 도식화한 것이다.
도 3은 본 발명의 실시예에 따른 샌드위치 패널의 두께 팽창률 시험 결과를 촬영한 사진이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 전기자동차 배터리팩 보호커버용 샌드위치 패널에 관하여 상세히 설명하면 다음과 같다.
본 발명자들의 실험 결과, 종래의 전기자동차 배터리팩 보호커버의 경우, 금속소재 또는 열가소성, 열경화성의 섬유강화 복합재가 사용되어 왔다. 다만, 배터리팩 보호커버로 금속소재를 사용하는 경우에는 열전도도와 중량이 높다는 단점이 있었으며, 섬유강화 복합재는 열전도도가 낮고 경량화된 소재이나 얇은 두께로 제조하기 어려운 점에서 배터리 공간 확보의 어려움이 있었다.
그러나 본 발명자들은, 도 1과 같이 부직포 심내 내에 열가소성 수지(PP, PET 및 PA 등)와 난연성 섬유(글라스 파이버, 난연 PET 등)를 포함하도록 부직 섬유 집합체 구조의 코어층을 설계하여 복합재 대비 소재를 경량화하고, 성형성, 난연 성능 및 단열 성능을 개선시킴은 물론, 여기에 접착층을 도포한 후, 그 위에 샌드위치 패널의 스킨층(EGI, Al 등) 구조를 형성하여 전자파 차폐에 효과적인 전기자동차 배터리팩 보호커버용 샌드위치 패널을 제조하기에 이르렀다.
전기자동차 배터리팩 보호커버용 샌드위치 패널
본 발명에 따른 전기자동차 배터리팩 보호커버용 샌드위치 패널은 부직 섬유 집합체 구조인 코어층; 상기 코어층의 일면 이상에 적층된 스킨층; 및 상기 코어층과 스킨층을 접착하는 접착층;을 포함하고, 상기 코어층은 열가소성 수지 및 난연성 섬유를 포함한다.
본 발명에 따른 전기자동차 배터리팩 보호커버용 샌드위치 패널은, 부직 섬유 집합체 구조인 코어층을 포함하며, 상기 코어층은 둘 이상의 부직 섬유 집합체를 포함할 수 있다.
본 발명에 있어서 '부직 섬유 집합체 구조'는 둘 이상의 부직 섬유 집합체를 포함하는 구조이고, '부직 섬유 집합체'라 함은, 웹(Web)상 또는 시트(Sheet)상의 부직 섬유를 접착제로 접착시키거나, 열가소성 섬유를 이용하여 접착시킨 것을 말하며, 본 발명에 따른 코어층은 섬유가 서로 엉켜 있는 부직 섬유 집합체를 가지고 있기 때문에, 섬유의 전부 또는 일부는 바인더에 의하여 융착되고, 따라서 상기 코어층 내에는 자연 기공이 포함되어, 통기성이 양호해지고, 경량화를 향상시킬 수 있다. 즉, 섬유들이 서로 엉키면서 형성된 자연 기공을 가지기 때문에, 발포제와 같은 첨가제에 의해 인위적으로 기공을 형성하는 경우와 달리 비발포성 코어이므로, 제조비용을 절감할 수 있으며, 발포 공정을 생략할 수 있어 공정 효율도 높일 수 있다. 상기 부직 섬유 집합체 구조를 통하여 종래의 열가소성 또는 열경화성 발포 수지에 대비하여 성형성 및 가공성이 향상될 수 있다.
본 발명에 따른 전기자동차 배터리팩 보호커버용 샌드위치 패널에서, 상기 코어층은 열가소성 수지 및 난연성 섬유를 포함한다.
상기 열가소성 수지(thermoplastic resin)는 열을 가하여 성형한 뒤에도 다시 열을 가하면 형태를 변형시킬 수 있는 수지일 수 있다. 열경화성 수지 대비 코어층 내 열가소성 수지를 포함함으로써, 신율이 우수하여 성형성이 우수할 수 있다. 또한 판재 상태에서 다시 열을 가하여 성형하는 것뿐만 아니라 냉간 성형 시에도 성형성이 우수하며, 열경화성 수지 대비 원재료 가격이 낮은 장점이 있다.
상기 열가소성 수지는 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트, 폴리트리메틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, 폴리아미드, 폴리페닐렌설파이드 및 이들의 조합으로 이루어진 군으로부터 선택된 것일 수 있고, 바람직하게는 폴리프로필렌, 폴리에틸렌테레프탈레이트, 폴리아미드 및 이들의 조합으로 이루어진 군으로부터 선택된 것일 수 있다.
상기 코어층은 코어층 총 중량 기준 30 중량% 이상, 35 중량% 이상, 40 중량% 이상, 50 중량% 이상의 열가소성 수지를 포함할 수 있으며, 70 중량% 이하, 65 중량% 이하, 60 중량% 이하, 또는 50 중량% 이하의 열가소성 수지를 포함할 수 있다. 상기 열가소성 수지의 중량비를 만족하는 경우, 열가소성 수지를 기초로 부직 섬유 집합체를 제조하여 코어층의 성형성 및 심재로써 기계적 물성을 확보하면서 패널을 경량화 할 수 있는 효과가 있고, 배터리 커버소재로써 적합한 난연성능을 확보할 수 있다.
상기 난연성 섬유는 섬유에 불이 붙어도 타지 않고 견디는 성질이 우수한 섬유 또는 그러한 성질을 갖도록 가공된 가공섬유일 수 있다.
상기 난연성 섬유는 유리 섬유(Glass Fiber), 난연 폴리에틸렌테레프탈레이트(난연 PET), 난연 폴리프로필렌(난연 PP) 및 이들의 조합으로 이루어진 군으로부터 선택된 것일 수 있고, 바람직하게는 유리 섬유일 수 있다. 상기 코어층에 난연성 섬유가 포함됨으로써, 화재 발생시 발화 이후에도 코어층의 수축이나 용융이 미미한 효과를 가질 수 있으며, 불에 잘 타지 않는 우수한 난연 성능을 확보할 수 있다.
상기 유리섬유는 C-글라스(C-Glass), E-글라스(E-Glass), S-글라스(S-Glass), 글라스울(Glass-Wool) 및 이들의 조합으로 이루어진 군으로부터 선택된 것일 수 있고, 바람직하게는 E-글라스(E-Glass)일 수 있다.
상기 코어층은 코어층 총 중량 기준 30 중량% 이상, 40 중량% 이상, 50 중량% 이상, 60 중량% 이상의 난연성 섬유를 포함할 수 있고, 70 중량% 이하, 60 중량% 이하, 또는 중량% 이하, 또는 60 중량% 이하의 난연성 섬유를 포함할 수 있다. 상기 난연성 섬유의 중량비를 만족하는 경우, 준불연 성능 또는 난연 성능의 확보를 통해서 배터리팩의 발화가 일어나더라도 화재의 확산을 지연시키거나 방지할 수 있는 효과가 있다.
상기 코어층은 인계 난연제를 더 포함할 수 있다. 상기 인계 난연제를 포함함으로써 우수한 난연성 및 열에 대한 안정성을 구현할 수 있는 효과가 있다. 상기 코어층은 코어층 총 중량 기준 5 중량% 이상, 10 중량% 이상, 15 중량% 이상, 20 중량% 이상의 인계 난연제를 포함할 수 있고, 30 중량% 이하, 25 중량% 이하, 20 중량% 이하, 15 중량% 이하의 인계 난연제를 포함할 수 있다.
상기 인계 난연제는 인산에스테르, 포스페이트(phosphate), 포스포네이트 (phosphonate), 포스피네이트 (phosphinate), 포스핀옥사이드(phosphine oxide), 포스파젠 (phosphazene), 포스포릭 산(Phosphoric Acid) 및 이들의 조합으로 이루어진 군으로부터 선택된 것일 수 있다.
또한 상기 코어층은 탄소 섬유, 고분자 섬유, 목질 섬유, 천연 섬유 등과 같은 충진제를 더 포함할 수 있다. 이 외에도 충격보강제, 열안정제, 산화방지제, 발수제, 대전방지제 등의 첨가제를 더 포함할 수 있다.
본 발명에 따른 전기자동차 배터리팩 보호커버용 샌드위치 패널은, 상기 코어층의 일면 이상에 적층된 스킨층을 포함한다.
상기 스킨층은 금속 재질로 형성될 수 있으며, 바람직하게는 알루미늄, 철, 스테인레스강(SUS), 마그네슘, 전기아연도금강판(EGI), 용융아연도금강판(GI) 및 이들의 조합으로 이루어진 군으로부터 선택된 것 일 수 있다. 일례로, 우수한 성형성 및 굴곡강성을 가지기 위해, 전기아연도금강판(EGI)을 포함하는 스킨층을 전기자동차 배터리팩 보호커버용 샌드위치 패널에 적용할 수 있다. 또한, 경량화를 위하여 알루미늄을 포함하는 스킨층을 전기자동차 배터리팩 보호커버용 샌드위치 패널에 적용할 수 있다.
접착층 상에 스킨층을 형성하기 위하여, 광경화 방법, 열경화 방법 및 열압착 방법 중 어느 하나를 이용할 수 있다. 예를 들어, 스킨층, 코어층, 접착제가 포함된 적층물을 열경화시키거나 열압착함으로써, 샌드위치 패널을 제조할 수 있다.
상기 열경화는 110~240℃에서 대략 1분 내지 1시간 동안 수행될 수 있으며, 상온에서도 대략 1~10시간 동안 경화가 수행될 수도 있다.
상기 스킨층의 두께는 0.1 내지 2mm 일 수 있다. 종래의 샌드위치 패널의 스킨층은 심재의 기계적 강도가 떨어지는 관계로, 스킨층의 두께가 두꺼워야만 했으며, 이로 인하여 샌드위치 패널의 중량이 증가하게 되는 문제가 있었으나, 본 발명에 따른 전기자동차 배터리팩 보호커버용 샌드위치 패널은 스킨층의 두께를 상기의 범위로 가지면서도 기계적 물성을 급격히 저하시키지 않아, 경량화를 할 수 있게 된다.
본 발명에 따른 전기자동차 배터리팩 보호커버용 샌드위치 패널은, 상기 코어층과 스킨층을 접착하는 접착층을 포함한다.
상기 접착층은 상기 코어층과 스킨층 사이에 도포되어, 코어층과 스킨층을 접착하는 것이다. 상기 접착층은 점도를 고려하여 균일한 두께로 도포하는 것이 바람직하다. 본 발명에서는 코어층과 스킨층을 적층한 후, 경화시켜 샌드위치 패널을 제조할 수 있고, 또는 코어층과 스킨층을 적층한 후, 이를 열 압착하여 샌드위치 패널을 제조할 수 있다. 이때, 경화 또는 열압착하는 과정에서 접착제가 코어층으로 파고 들어가면서, 코어층을 이루는 성분들과의 화학적 결합뿐만 아니라, 기계적 결합에 의해 스킨층과 코어층의 접착력이 향상되는 효과가 있다. 상기 화학적 결합은 접착제가 코어층의 상부면, 하부면과의 공유 결합, 수소결합, 반데르발스 결합, 이온 결합 등이 되는 것을 의미한다.
상기 기계적 결합은 접착제가 코어층에 스며들어가면서 고리가 서로 걸려 있는 것처럼 물리적으로 걸려 있는 형태를 의미한다. 이러한 형태를 Mechanical interlocking이라고도 한다. 코어층에 포함된 자연 기공에 의해, 접착제가 코어층 의 상부면과 하부면에 스며든다.
상기 접착층을 이루는 접착제는 올레핀계 접착제, 우레탄계 접착제, 아크릴계 접착제, 에폭시계 접착제 및 이들의 조합으로 이루어진 군으로부터 선택된 것을 포함할 수 있다. 상기 올레핀계 접착제는 폴리에틸렌, 폴리프로필렌 및 비정질 폴리알파올레핀 접착제로 이루어지는 군에서 선택되는 1종 이상을 사용할 수 있다. 상기 우레탄계 접착제는 우레탄 구조(-NH-CO-O-)를 포함하는 접착제라면 제한 없이 사용할 수 있다. 상기 아크릴계 접착제는 폴리메틸메타크릴레이트 접착제, 히드록시기 함유 폴리아크릴레이트 접착제 및 카르복시기 함유 폴리아크릴레이트 접착제 중 1종 이상을 포함할 수 있다. 상기 에폭시계 접착제는 비스페놀-A형 에폭시 접착제, 비스페놀-F형 에폭시 접착제, 노볼락 에폭시 접착제, 선형 지방족 에폭시 접착제 (Linear aliphatic epoxy resins) 및 고리형 지방족 에폭시 접착제(cycloaliphatic epoxy resins) 중 1종 이상을 포함할 수 있다.
또한, 상기 접착제는 광경화성 접착제, 핫멜트형 접착제 또는 열경화성 접착제를 포함할 수 있고, 광경화 방법 및 열경화 방법 중 어느 하나를 이용할 수 있다. 예를 들어, 스킨층, 코어층, 접착제가 포함된 적층물을 열경화시킴으로써, 샌드위치 패널을 제조할 수 있다. 상기 열경화는 110~240℃에서 대략 1분 내지 1시간 동안 수행될 수 있으며, 상온에서도 대략 1~10시간 동안 경화가 수행될 수도 있다.
상기 접착층은 대략 20~300㎛의 두께로 도포될 수 있으나, 이에 제한되는 것은 아니다.
상기 접착층을 상기 스킨층의 일면에 도포하는 방법은 다이 코팅법, 그라비아 코팅법, 나이프 코팅법 또는 스프레이 코팅법 중 선택된 어느 하나의 방법을 이용할 수 있다.
본 명세서 상에서 전자파 차폐 효과(Electromagnetic Shielding Effectiveness, EMI SE)는 전자기파를 차단하는 재료 또는 소재의 능력을 측정한 것으로, 실험적으로, 전자기 간섭 차폐 효과(EMI SE)로서 측정되는 상기 샌드위치 패널의 전자기 차폐 능력은 데시벨 [dB]로, ASTM D4935-10(Standard test method for measuring the electromagnetic shielding effectiveness of Planar Materials) 측정 규격에 의거하며, 하기 수학식 1과 같이 정의된다.
Figure PCTKR2021016890-appb-M000001
(P1: 차폐 재료가 존재할 때의 수신 전력 / P2: 차폐 재료가 존재하지 않을 때의 수신 전력)
상기 전기자동차 배터리팩 보호커버용 샌드위치 패널은 주파수 0.03 내지 1.5 GHz에 대하여 전자기 간섭 차폐 효과(EMI SE)로서 측정되는 전자기 차폐 능력이 81 내지 120dB, 바람직하게는 81 내지 110 dB, 더 바람직하게는 81 내지 100dB 일 수 있다. 상기 범위를 만족하는 경우, 별도의 기능층 적용 없이도 전자파 차폐 효과가 우수한 전기자동차 배터리팩 보호커버용 샌드위치 패널을 제조할 수 있다.
본 발명에 따른 전기자동차 배터리팩 보호커버용 샌드위치 패널은 난연 성능을 가진다. 도 2의 상부에 나타낸 바와 같이, 본 발명의 샌드위치 패널은 심재 내에 PP와 같은 열가소성 수지를 이용한 섬유와 유리 섬유와 같은 난연성 섬유를 포함할 수 있다. 도 2의 중단에 나타낸 바와 같이, 이러한 샌드위치 패널의 외부에 화재가 발생하게 되면, 높은 온도에서 PP수지 용융되면서 유리섬유 탄성에 의해 심재 두께 방향으로 팽창하게 된다. 이 후, 유리 섬유와 탄화 PP에 의하여 불연층이 형성되고, 이에 따른 단열 효과에 의하여 화염의 전파가 억제된다. 결국, 패널의 두께가 증가하게 되어, 구조 강성이 향상되고, 휨 현상의 발생이 억제될 수 있다.
본 발명에 따른 전기자동차 배터리팩 보호커버용 샌드위치 패널의 난연 성능은 가열에 따른 두께 팽창률의 확인을 통하여 알 수 있다. 구체적으로 본 발명에 따른 전기자동차 배터리팩 보호커버용 샌드위치 패널을 높은 온도에서 PP수지 용융되면서 유리섬유 탄성에 의해 심재 두께 방향으로 팽창하게 됨에 따라서, 200℃ 오븐에서 5분 유지 후의 두께 팽창률(팽창 후 두께/초기 두께)을 측정해 보면, 150% 이상, 200% 이상, 250% 이상, 또는 300% 이상일 수 있으며, 상한은 특별히 없지만 최대 1000%일 수 있다. 본 발명에 따른 전기자동차 배터리팩 보호커버용 샌드위치 패널의 두께 팽창률이 상기 범위를 만족하는 경우, 단열 효과에 의하여 화염의 전파가 억제되는 효과가 있다.
상기 전기자동차 배터리팩 보호커버용 샌드위치 패널의 난연 성능을 평가하기 위하여, 연소 시험을 진행할 수 있다. 상기 연소 시험은, 제품의 수직 방향으로 불꽃을 가했을 때, 연소 양상 및 주위로의 화염 정도를 평가하기 위하여 UL94 Vertical Burning Test를 진행할 수 있다.
구체적으로, 20mm 길이의 불꽃을 10초간 시편에 접염 후, 시편의 연소 시간 t1을 측정하고, 1차 접염 후 연소가 종료되면 다시 10초간 접염 후 시편의 연소 시간 t2 및 불똥이 맺힌 시간 t3을 측정한다. 또한 연소양상(적하에 의한 탈지면 발화 여부, 클램프(125mm 표시)까지 연소여부)를 기록한다. 이후, 개별 연소시간(Individual afterflame time, t1 또는 t2)이 10초 이하이고, 전처리 조건 별 전체 연소 시간(Total afterflame time for any condition set, 5개의 표본에 대한 t1+t2)이 50초 이하이며, 2차 접염 후의 연소 및 불똥이 맺힌 시간(Afterflame plus afterglow time for each Individual specimen after the second flame application, t2+t3)이 30초 이하이고, 클램프(125mm표시)까지 연소(Burning up to the holding clamp)되지 않으며, 적하에 의한 탈지면의 발화(Cotton Ignition)가 일어나지 않는 경우는 V-0 등급으로 평가되며, 이 경우 전기자동차 배터리팩 보호커버용 샌드위치 패널로 사용될 수 있는 난연 성능을 확보한 것으로 평가될 수 있다.
전기자동차 배터리팩 보호커버용 샌드위치 패널의 제조방법
본 발명에 따른 전기자동차 배터리팩 보호커버용 샌드위치 패널은 상기 스킨층(20), 코어층(10), 스킨층(20)이 순차적으로 적층되어 형성되며, 상기 코어층(10)과 스킨층(20) 사이에 접착층(미도시)을 도포하여 제조된다. 상기의 구성들이 적층된 이후, 경화 및 압착단계가 수행될 수 있으나, 이에 제한되는 것은 아니다.
구체적으로, 본 발명에 따른 전기자동차 배터리팩 보호커버용 샌드위치 패널의 제조방법은, a) 열가소성 수지를 포함하는 섬유 및 난연성 섬유를 혼합하는 단계; b) 상기 혼합된 섬유에 카딩을 진행한 후, 그 계면을 니들펀칭 공정으로 상호 접합시켜 코어층을 제조하는 단계; c) 상기 코어층 일면 이상에 접착층을 형성하는 단계; 및 d) 상기 접착층 상에 스킨층을 형성하는 단계;를 포함한다.
상기 a) 단계는 열가소성 수지를 포함하는 섬유 및 난연성 섬유를 혼합하는 단계로, 부직 섬유 집합체를 제조하기 위하여 열가소성 수지 및 난연성 섬유를 준비한 후 혼합할 수 있다.
구체적으로, 부직 섬유 집합체 총 중량 기준 30 중량% 이상, 35 중량% 이상, 40 중량% 이상, 50 중량% 이상의 열가소성 수지를 포함하거나, 70 중량% 이하, 65 중량% 이하, 60 중량% 이하, 또는 50 중량% 이하의 열가소성 수지를 포함하도록 하고,
부직 섬유 집합체 총 중량 기준 30 중량% 이상, 40 중량% 이상, 50 중량% 이상, 60 중량% 이상의 난연성 섬유를 포함하거나, 70 중량% 이하, 60 중량% 이하, 또는 중량% 이하, 또는 60 중량% 이하의 난연성 섬유를 포함하도록 혼합하여 부직 섬유 집합체를 제조할 수 있다.
상기 부직 섬유 집합체 제조 시에 혼합하는 상기 열가소성 수지는 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트, 폴리트리메틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, 폴리아미드, 폴리페닐렌설파이드 및 이들의 조합으로 이루어진 군으로부터 선택된 것일 수 있고, 바람직하게는 폴리프로필렌, 폴리에틸렌테레프탈레이트, 폴리아미드 및 이들의 조합으로 이루어진 군으로부터 선택된 것일 수 있다.
또한 상기 부직 섬유 집합체 제조 시에 혼합하는 상기 난연성 섬유는 유리 섬유(Glass Fiber), 난연 폴리에틸렌테레프탈레이트(난연 PET), 난연 폴리프로필렌(난연 PP) 및 이들의 조합으로 이루어진 군으로부터 선택된 것일 수 있고, 바람직하게는 유리 섬유일 수 있다. 상기 유리섬유는 C-글라스(C-Glass), E-글라스(E-Glass), S-글라스(S-Glass), 글라스울(Glass-Wool) 및 이들의 조합으로 이루어진 군으로부터 선택된 것일 수 있고, 바람직하게는 E-글라스(E-Glass)일 수 있다.
상기 b) 단계는 상기 혼합된 섬유에 카딩을 진행한 후, 그 계면을 니들펀칭 공정으로 상호 접합시켜 코어층을 제조하는 단계일 수 있다.
상기 카딩 공정은 당해 업계에서 사용하는 방법이라면 특별한 제한 없이 사용할 수 있다.
상기 니들펀칭 공정은, 상기 혼합된 부직 섬유 집합체에 분당 펀칭 횟수를 300 내지 1000회로, 부직 섬유 집합체의 이동속도를 1 내지 8 m/min로, 펀칭 밀도를 100 내지 500 punches/cm2 로 하여, 니들펀칭 공정을 진행할 수 있으며, 보다 바람직하게는 상기 부직 섬유 집합체에 분당 펀칭 횟수를 400 내지 700회로, 부직 섬유 집합체의 이동속도를 1.5 내지 6 m/min으로, 펀칭 밀도를 200 내지 400 punches/cm2 로 하여 니들펀칭 공정을 진행할 수 있다.
상기 분당 펀칭 횟수가 300회 보다 적으면 부직 섬유 집합체 간의 결착 정도가 떨어지는 문제가 있고, 1000회 보다 많으면 부직 섬유 집합체의 파단이 발생하는 문제가 있다. 또한, 상기 부직 섬유 집합체의 이동속도가 1 m/min 보다 느리면 생산 속도가 너무 느려지는 문제가 있고, 8 m/min 보다 빠르면 펀칭 밀도의 조절이 용이하지 않은 문제가 있다. 또한, 상기 펀칭 밀도가 100 punches/cm2 보다 적으면 부직 섬유 집합체 간의 결착 정도가 떨어지는 문제가 있고,500 punches/cm2 보다 많으면 부직 섬유 집합체의 파단이 발생하는 문제가 있다.
상기 니들펀칭 공정은 2회 이상 실시할 수 있다. 니들 펀칭 공정을 2회 이상 실시하게 되면, 층간 섬유들의 결착력을 증가시킬 수 있어, 층간 박리를 방지하는데 효과적이다.
상기 범위의 니들펀칭 공정을 수행함에 따라서, 니들펀칭에 의한 물리적 결합력이 향상되어, 코어층의 인장 강도와 같은 물성이 향상되며, 이를 통하여 최종 제조된 전기자동차 배터리팩 보호커버용 샌드위치 패널의 전단 강성 강도와 처짐 정도가 향상될 수 있다.
구체적으로, 상기 열가소성 수지에 난연성 섬유를 혼합 한 후 카딩기를 사용하여 카딩을 진행한 후, 상기 조건의 니들펀칭 공정을 수행하여 300 내지 1800 gsm의 평량의 부직섬유 집합체(부직포)를 제조할 수 있다.
이 후, 상기 제조된 부직 섬유 집합체(부직포)를 복수의 언와인딩 장치에 장착한 후, 가열 프레스로 이동시킨다. 이때, 제조된 부직 섬유 집합체 1 내지 10장을 개수에 맞게 복수의 언와인딩 장치에 장착한 후, 코어층 제조를 위한 가열 프레스로 이동시킬 수 있다. 이렇게 복수의 언와인딩 장치를 사용하여 복수의 부직 섬유 집합체를 사용하게 되면, 각각의 부직 섬유 집합체의 두께가 얇아지기 때문에, 하나의 언와인딩 장치에 권취되는 부직 섬유 집합체의 길이가 길어지게 된다. 따라서 연속적인 공정 중에 연속적으로 투입되는 부직 섬유 집합체 사이를 이어주기 위한 연폭기의 사용 횟수를 줄일 수 있기 때문에, 공정을 단순화 시킬 수 있다는 장점이 있다.
이 후, 상기 가열 프레스로 이동된 복수의 부직 섬유 집합체(부직포)를 130 내지 240℃의 온도조건 및 1 내지 10 MPa의 압력조건에서 가열 및 가압하여 부직 섬유 집합체 구조의 코어층을 제조한다. 상기 가열 프레스는, 통상 업계에서 사용하는 것이라면 특별한 제한은 없으며, 구체적인 일례로 더블 벨트 프레스(Double Belt Press) 등을 사용할 수 있다.
또한, 본 발명에 따른 상기 전기자동차 배터리팩 보호커버용 샌드위치 패널의 제조방법은, 상기 b) 단계의 니들펀칭 공정을 진행한 후, 130 내지 240℃의 온도 조건에서 1 내지 10분간 예열하는 단계;를 더 포함할 수 있다.
상기 c) 단계는 상기 코어층 일면 이상에 접착층을 형성하는 단계일 수 있다.
상기 접착층은 올레핀계 접착제, 우레탄계 접착제, 아크릴계 접착제, 에폭시계 접착제 및 이들의 조합으로 이루어진 군으로부터 선택된 것을 포함할 수 있다. 상기 올레핀계 접착제는 폴리에틸렌, 폴리프로필렌 및 비정질 폴리알파올레핀 접착제로 이루어지는 군에서 선택되는 1종 이상을 사용할 수 있다. 상기 우레탄계 접착제는 우레탄 구조(-NH-CO-O-)를 포함하는 접착제라면 제한 없이 사용할 수 있다. 상기 아크릴계 접착제는 폴리메틸메타크릴레이트 접착제, 히드록시기 함유 폴리아크릴레이트 접착제 및 카르복시기 함유 폴리아크릴레이트 접착제 중 1종 이상을 포함할 수 있다. 상기 에폭시계 접착제는 비스페놀-A형 에폭시 접착제, 비스페놀-F형 에폭시 접착제, 노볼락 에폭시 접착제, 선형 지방족 에폭시 접착제 (Linear aliphatic epoxy resins) 및 고리형 지방족 에폭시 접착제(cycloaliphatic epoxy resins) 중 1종 이상을 포함할 수 있다.
또한, 상기 접착제는 광경화성 접착제, 핫멜트형 접착제 또는 열경화성 접착제를 포함할 수 있고, 광경화 방법 및 열경화 방법 중 어느 하나를 이용할 수 있다. 예를 들어, 스킨층, 코어층, 접착제가 포함된 적층물을 열경화시킴으로써, 샌드위치 패널을 제조할 수 있다.
상기 접착층은 대략 20~300㎛의 두께로 도포될 수 있으나, 이에 제한되는 것은 아니다.
상기 접착층을 상기 스킨층의 일면에 도포하는 방법은 다이 코팅법, 그라비아 코팅법, 나이프 코팅법 또는 스프레이 코팅법 중 선택된 어느 하나의 방법을 이용할 수 있다.
상기 d) 단계는 상기 접착층 상에 스킨층을 형성하는 단계를 포함할 수 있다.
상기 스킨층은 금속 재질일 수 있으며, 바람직하게는 알루미늄, 철, 스테인레스강(SUS), 마그네슘, 전기아연도금강판(EGI), 용융아연도금강판(GI) 및 이들의 조합으로 이루어진 군으로부터 선택된 것 일 수 있다. 상기 스킨층의 두께는 0.1 내지 2mm 일 수 있다. 종래의 샌드위치 패널의 스킨층은 심재의 기계적 강도가 떨어지는 관계로, 스킨층의 두께가 두꺼워야만 했으며, 이로 인하여 샌드위치 패널의 중량이 증가하게 되는 문제가 있었으나, 본 발명에 따른 전기자동차 배터리팩 보호커버용 샌드위치 패널은 스킨층의 두께를 상기의 범위로 가지면서도 기계적 물성을 급격히 저하시키지 않아, 경량화를 할 수 있게 된다.
상기 접착층 상에 스킨층을 형성하기 위하여, 광경화 방법, 열경화 방법 및 열압착 방법 중 어느 하나를 이용할 수 있다. 예를 들어, 스킨층, 코어층, 접착제가 포함된 적층물을 열경화시키거나 열압착함으로써, 최종적으로 전기자동차 배터리팩 보호커버용 샌드위치 패널을 제조할 수 있다. 상기 열경화는 110~240℃에서 대략 1분 내지 1시간 동안 수행될 수 있으며, 상온에서도 대략 1~10시간 동안 경화가 수행될 수도 있다.
본 발명에 따른 전기자동차 배터리팩 보호커버는 상기 전기자동차 배터리팩 보호커버용 샌드위치 패널을 포함한다.
전술한 바와 같이, 본 발명에 따른 전기자동차 배터리팩 보호커버용 샌드위치 패널은 부직 섬유 집합체 구조를 포함하여 경량이면서도 성형성이 우수하고, 난연성 섬유의 도입으로 난연 성능을 확보하였으며, 우수한 단열성능 및 금속 기반의 스킨층을 통하여 전자파 차폐 성능이 우수한 점에서, 기존의 금속 복합재 또는 열가소성, 열경화성의 섬유강화 복합재를 대체하여 전기자동차 배터리팩 보호커버 용도로 사용될 수 있다.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
전기자동차 배터리팩 보호커버용 샌드위치 패널의 제조: 실시예 1 내지 5 및 비교예 1
[실시예 1]
폴리프로필렌(PP) 섬유(GH 신소재, 섬도 15 데니어) 및 유리섬유인 E-Glass(오웬스코닝, SE4121)를 70:30의 중량비로 혼합하였다.
상기 섬유에 대하여 혼합 이후, 카딩기를 사용하여 카딩을 진행한 후, 분당 펀칭 횟수를 500회, 부직 섬유 집합체의 이동속도를 2 m/min, 펀칭 밀도를 200 punches/cm2 로 하는 니들펀칭 공정을 통해 800 gsm의 평량을 가지는 부직 섬유 집합체(부직포)를 제조하였다.
상기 부직 섬유 집합체를 2개의 언와인딩 장치에 장착한 후, 분당 펀칭 횟수를 500회, 부직 섬유 집합체의 이동속도를 2 m/min, 펀칭 밀도를 200 punches/cm2 로 하는 니들펀칭 공정을 반복시켜 부직 섬유 집합체 간에 물리적 재 결속을 형성시켰다.
니들펀칭으로 결합된 상기 부직 섬유 집합체를 챔버 내 온도가 210℃인 예열 챔버에 진입시킨 후 3분간 예열시켰다.
이후 상기 부직 섬유 집합체를 5 m/분의 속도로 더블 벨트 프레스(Double Belt Press)에 이송시켰다. 이 때 더블 벨트 프레스의 가열온도는 200℃, 압력은 5 Bar이었으며, 10분간 가열/가압처리한 후, 25℃에서 6분간 5bar로 콜드 프레스하여 1.2mm의 코어층을 제조하였다.
상기 코어층의 양면에, 폴리올레핀 접착제(삼성그라텍, KS010C)를 50μm 두께로 도포하여 접착층을 형성한 후, 0.4mm 두께의 알루미늄판(남선알미늄, 5052H32)을 상기 접착층 상에 적층한 후, 적층된 결과물을 130℃ 온도에서 6분간 5bar로 히트 라미네이션을 진행한 후, 25℃에서 4분간 5bar로 냉각하여 최종적으로 2.0mm 두께의 전기자동차 배터리팩 보호커버용 샌드위치 패널을 제조하였다.
[실시예 2]
폴리프로필렌(PP) 섬유(GH 신소재, 섬도 15 데니어) 및 유리섬유인 E-Glass(오웬스코닝, SE4121)를 50:50의 중량비로 혼합한 것을 제외하고는 실시예 1과 동일한 방법으로 샌드위치 패널을 제조하였다.
[실시예 3]
폴리프로필렌(PP) 섬유(GH 신소재, 섬도 15 데니어) 및 유리섬유인 E-Glass(오웬스코닝, SE4121)를 40:60의 중량비로 혼합한 것을 제외하고는 실시예 1과 동일한 방법으로 샌드위치 패널을 제조하였다.
[실시예 4]
폴리프로필렌(PP) 섬유(GH 신소재, 섬도 15 데니어) 및 유리섬유인 E-Glass(오웬스코닝, SE4121)를 30:70의 중량비로 혼합한 것을 제외하고는 실시예 1과 동일한 방법으로 샌드위치 패널을 제조하였다.
[실시예 5]
폴리프로필렌(PP) 섬유(GH 신소재, 섬도 15 데니어), 유리섬유인 E-Glass(오웬스코닝, SE4121)를 같은 중량비로 혼합한 후, 카딩기를 사용하여 카딩을 진행한 후, 분당 펀칭 횟수를 500회, 부직 섬유 집합체의 이동속도를 2 m/min, 펀칭 밀도를 200 punches/cm2 로 하는 니들펀칭 공정을 통해 1000 gsm의 평량을 가지는 부직 섬유 집합체(부직포)를 제조한 후, 제조된 부직포 표면에 인계 난연제 (유니버샬켐텍, MX-2270)를 스프레이 건으로 분사하여 코팅하여, 폴리프로필렌(PP) 섬유: 유리섬유: 인계 난연제가 40:40:20의 중량비로 혼합되도록 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 샌드위치 패널을 제조하였다.
제조된 코어층 표면에 인계 난연제를 스프레이 건으로 분사하여 코팅하는 것을 제외하고는, 실시예 1과 동일한 방법으로 전기자동차 배터리팩 보호커버용 샌드위치 패널을 제조하였다.
[비교예 1]
폴리프로필렌(PP) 섬유(GH 신소재, 섬도 15 데니어) 및 PET 섬유 (대양, Super-A)를 40:60의 중량비로 혼합한 것을 제외하고는 실시예 1과 동일한 방법으로 샌드위치 패널을 제조하였다.
실험예 1: 패널 중량 비교 시험
상기 실시예 1 내지 실시예 5 및 비교예 1을 통해 제조된 전기자동차 배터리팩 보호커버용 샌드위치 패널에 대하여, ASTM D3776 규격으로 패널 중량을 측정하여 하기 표 1과 같이 비교하였다.
구분 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 비교예 1
소재 단위 중량 (kg/m2) 3.0 3.0 3.0 3.0 3.2 3.0
부품 중량 (kg) 7.6 7.6 7.6 7.6 8.1 7.6
상기 표 1을 통하여, 동일한 중량으로 샘플이 제조되었음을 확인하였다.
실험예 2: 굴곡 성능 비교
상기 실시예 1 내지 실시예 5 및 비교예 1을 통해 제조된 전기자동차 배터리팩 보호커버용 샌드위치 패널에 대하여, 최대 하중 및 굴곡 강성을 측정하여 하기 표 2에 비교하였다.
(1) 최대 하중 측정: ASTM C393 3점 굽힘 시험 (시편 크기 200*50 mm, 측정 속도 6 mm/min, Span 150 mm)
(2) 굴곡 강성 측정: 하중 인가 후 처짐량 측정 (시편 크기 250*75 mm, 인가 하중 1.8 kg, Span 200 mm)
구분 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 비교예 1
최대 하중 (N) 107 148 141 70 160 121
처짐량 (mm) 1.8 1.0 1.2 8.0 1.0 1.5
상기 표 2를 통하여, 유리섬유 함량이 40~60 wt%에서 최대 강성값을 가짐을 알 수 있었다.
실험예 3: 열전도율 비교
상기 실시예 1 내지 실시예 5 및 비교예 1을 통해 제조된 전기자동차 배터리팩 보호커버용 샌드위치 패널에 대하여, 평판 열류계법을 사용하여 접촉식으로 열전도율을 측정하여 하기 표 3에 비교하였다.
구분 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 비교예 1
열전도율 (W/m·K) 0.049 0.047 0.044 0.043 0.050 0.055
상기 표 3을 통하여, 유리섬유 함량이 증가할수록 열전도율은 감소하였으며, 실시예 5와 같이 난연제를 코팅하거나, 비교예 1과 같이 유리섬유 대신 PET 섬유를 적용하는 경우 심재의 기공율이 감소하여 열전도율이 상승함을 확인하였다.
실험예 4: 두께 팽창률 비교
상기 실시예 1 내지 실시예 5 및 비교예 1을 통해 제조된 전기자동차 배터리팩 보호커버용 샌드위치 패널에 대하여, 200도 예열오븐에서 5분 유지 후 팽창 후 두께 및 두께 팽창률(초기 두께: 2.0mmT)을 측정하여 하기 표 4에 비교하였다. 또한 실시예 3의 두께 팽창률 시험 후 사진을 촬영하여 도 2에 나타냈다. 상기 두께 팽창률은 (팽창 후 두께/초기 두께)로 계산하였다.
구분 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 비교예 1
팽창 후 두께 (mm) 3.6 4.5 6.0 6.1 5.2 1.8
두께 팽창률(%) 180 225 300 305 265 90
상기 표 4 및 도 3을 통하여, 유리섬유 함량이 증가할수록 두께 팽창률이 증가하며, 비교예 1과 같이 유리섬유 대신 PET 섬유 적용 시 두께 팽창이 발생하지 않음을 확인하였다.
실험예 5: 연소성 시험 결과 비교
상기 실시예 1 내지 실시예 5 및 비교예 1을 통해 제조된 전기자동차 배터리팩 보호커버용 샌드위치 패널에 대하여, 시편 크기 가로 125mm x 세로 13mm x 높이 2mm 로 자른 후, UL94 vertical burning test에 따라서 연소성을 측정하여 하기 표 5에 비교하였다. 구체적으로, 개별 연소시간, 전처리 조건 별 전체 연소 시간, 2차 접염 후의 연소 및 불똥이 맺힌 시간, 클램프(125mm표시)까지 연소여부 및 적하에 의한 탈지면의 발화여부를 측정하였으며, 하기 표 5의 등급은 하기 표 6의 기준에 따라 설정하였다.
구분 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 비교예 1
개별 연소 시간 (초) 125 10 0 19 0 140
전체 연소 시간 (초) 624 22 0 81 0 624
불똥 맺힌 시간 (초) 125 0 0 19 0 140
125mm 연소 Yes No No No No Yes
탈지면 발화 Yes No No No No Yes
등급 등급 외 V-0 V-0 V-1 V-0 등급 외
Figure PCTKR2021016890-appb-T000001
상기 표 5를 통하여, 실시예 1 내지 5의 샌드위치 패널의 난연 효과가 비교예 1에 비하여 뛰어나다는 것을 알 수 있었다. 또한, 실시예들 중에서도 유리섬유의 함량이 상대적으로 높을수록 난연 효과가 더 뛰어났지만 유리섬유의 함량이 너무 높아지면 난연 효과가 떨어지는 것을 알 수 있었다. 또한, 유리 섬유를 적정량으로 포함하는 실시예 3과 인계 난연제를 추가로 포함하는 실시예 5의 난연 효과가 가장 뛰어나다는 것을 알 수 있었다.
실험예 6: 준불연 시험 결과 비교
상기 실시예 1 내지 실시예 5 및 비교예 1을 통해 제조된 전기자동차 배터리팩 보호커버용 샌드위치 패널에 대하여, ISO 5660-1 (시편 크기 100*100 mm)에 따른 준불연 시험을 진행하여, 그 결과를 하기 표 7에 나타내었다. THR 8 MJ/m2 이하이고, Peak HRR 10초 이내인 경우 준불연 등급으로 설정하였다.
구분 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 비교예 1
THR1)
(600초, MJ/m2)
16 1.5 0.8 0.3 0.2 24
Peak HRR2)(200kW/m2 초과 시간, 초) 0 0 0 0 0 12
등급 난연 (3등급) 준불연 (2등급) 준불연(2등급) 준불연 (2등급) 준불연 (2등급) 난연 (3등급)
상기 표 7을 통하여, 실시예 1 내지 5의 샌드위치 패널의 준불연성이 비교예 1에 비하여 뛰어나다는 것을 알 수 있었다. 또한, 실시예들 중에서도 유리섬유의 함량이 상대적으로 높을수록 준불연성이 더 뛰어났지만 유리섬유의 함량이 너무 높아지면 준불연 효과가 떨어지는 것을 알 수 있었다. 또한, 유리 섬유를 적정량으로 포함하는 실시예 3과 인계 난연제를 추가로 포함하는 실시예 5의 준불연성이 가장 뛰어나다는 것을 알 수 있었다.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것이며, 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.

Claims (14)

  1. 부직 섬유 집합체 구조인 코어층;
    상기 코어층의 일면 이상에 적층된 스킨층; 및
    상기 코어층과 스킨층을 접착하는 접착층;을 포함하고,
    상기 코어층은 열가소성 수지 및 난연성 섬유를 포함하는, 전기자동차 배터리팩 보호커버용 샌드위치 패널.
  2. 제1항에 있어서,
    상기 코어층은 코어층 총 중량 기준
    30 중량% 이상의 난연성 섬유를 포함하는, 전기자동차 배터리팩 보호커버용 샌드위치 패널.
  3. 제1항에 있어서,
    상기 코어층은 코어층 총 중량 기준
    50 중량% 이상의 난연성 섬유를 포함하는, 전기자동차 배터리팩 보호커버용 샌드위치 패널.
  4. 제1항에 있어서,
    상기 코어층은 코어층 총 중량 기준
    60 중량% 이상의 난연성 섬유를 포함하는, 전기자동차 배터리팩 보호커버용 샌드위치 패널.
  5. 제1항에 있어서,
    상기 코어층은 코어층 총 중량 기준
    70 중량% 이하의 난연성 섬유를 포함하는, 전기자동차 배터리팩 보호커버용 샌드위치 패널.
  6. 제1항에 있어서,
    상기 코어층은 인계 난연제를 더 포함하는, 전기자동차 배터리팩 보호커버용 샌드위치 패널.
  7. 제1항에 있어서,
    상기 열가소성 수지는 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트, 폴리트리메틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, 폴리아미드, 폴리페닐렌설파이드 및 이들의 조합으로 이루어진 군으로부터 선택된 것인, 전기자동차 배터리팩 보호커버용 샌드위치 패널.
  8. 제1항에 있어서,
    상기 난연성 섬유는 유리 섬유(Glass Fiber), 난연 폴리에틸렌테레프탈레이트(난연 PET), 난연 폴리프로필렌(난연 PP) 및 이들의 조합으로 이루어진 군으로부터 선택된 것인, 전기자동차 배터리팩 보호커버용 샌드위치 패널.
  9. 제8항에 있어서,
    상기 유리 섬유는 C-글라스(C-Glass), E-글라스(E-Glass), S-글라스(S-Glass), 글라스울(Glass-Wool) 및 이들의 조합으로 이루어진 군으로부터 선택된 것인, 전기자동차 배터리팩 보호커버용 샌드위치 패널.
  10. 제1항에 있어서,
    상기 스킨층은 알루미늄, 철, 스테인레스강(SUS), 마그네슘, 전기아연도금강판(EGI), 용융아연도금강판(GI) 및 이들의 조합으로 이루어진 군으로부터 선택된 것인, 전기자동차 배터리팩 보호커버용 샌드위치 패널.
  11. 제1항에 있어서,
    상기 접착층은 올레핀계 접착제, 우레탄계 접착제, 아크릴계 접착제, 에폭시계 접착제 및 이들의 조합으로 이루어진 군으로부터 선택된 것을 포함하는, 전기자동차 배터리팩 보호커버용 샌드위치 패널.
  12. 제1항에 있어서,
    상기 샌드위치 패널은 200℃ 오븐에서 5분 유지 후의 두께 팽창률(팽창 후 두께/초기 두께)이 150% 이상인 것을 특징으로 하는, 전기자동차 배터리팩 보호커버용 샌드위치 패널.
  13. a) 열가소성 수지를 포함하는 섬유 및 난연성 섬유를 혼합하는 단계;
    b) 상기 혼합된 섬유에 카딩을 진행한 후, 그 계면을 니들펀칭 공정으로 상호 접합시켜 코어층을 제조하는 단계;
    c) 상기 코어층 일면 이상에 접착층을 형성하는 단계; 및
    d) 상기 접착층 상에 스킨층을 형성하는 단계;를 포함하는, 제1항의 전기자동차 배터리팩 보호커버용 샌드위치 패널의 제조방법.
  14. 제1항 내지 제12항 중 어느 한 항의 전기자동차 배터리팩 보호커버용 샌드위치 패널을 포함하는, 전기자동차 배터리팩 보호커버.
PCT/KR2021/016890 2020-11-17 2021-11-17 전기자동차 배터리팩 보호커버용 샌드위치 패널, 이의 제조방법 및 이를 포함하는 전기자동차 배터리팩 보호커버 WO2022108330A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21895098.8A EP4250451A1 (en) 2020-11-17 2021-11-17 Sandwich panel for protective cover of battery pack for electric vehicle, manufacturing method therefor, and protective cover of electric vehicle battery pack comprising same
CN202180090916.9A CN117203835A (zh) 2020-11-17 2021-11-17 电动车辆的电池组的保护盖的夹层板、该夹层板的制造方法以及包括该夹层板的电动车辆的电池组的保护盖
US18/037,351 US20230405968A1 (en) 2020-11-17 2021-11-17 Sandwich panel for protective cover of battery pack for electric vehicle, manufacturing method therefor, and protective cover of electric vehicle battery pack comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0153881 2020-11-17
KR20200153881 2020-11-17
KR1020210157031A KR20220067513A (ko) 2020-11-17 2021-11-15 전기자동차 배터리팩 보호커버용 샌드위치 패널, 이의 제조방법 및 이를 포함하는 전기자동차 배터리팩 보호커버
KR10-2021-0157031 2021-11-15

Publications (1)

Publication Number Publication Date
WO2022108330A1 true WO2022108330A1 (ko) 2022-05-27

Family

ID=81709375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016890 WO2022108330A1 (ko) 2020-11-17 2021-11-17 전기자동차 배터리팩 보호커버용 샌드위치 패널, 이의 제조방법 및 이를 포함하는 전기자동차 배터리팩 보호커버

Country Status (3)

Country Link
US (1) US20230405968A1 (ko)
EP (1) EP4250451A1 (ko)
WO (1) WO2022108330A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4333177A3 (de) * 2022-09-01 2024-03-27 ThyssenKrupp Steel Europe AG Batteriekastendeckel aus thermisch isolierendem stahlsandwichmaterial
EP4353471A1 (de) * 2022-10-11 2024-04-17 Cuylits Holding GmbH Brandschutzvorrichtung mit verbundsystem, verbundsystem und batterie-pack mit brandschutzvorrichtung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170112571A (ko) * 2016-03-31 2017-10-12 도레이케미칼 주식회사 흡음성, 수분흡수성 및 보온성이 우수한 섬유집합체, 이를 포함하는 부직포 및 이의 제조방법
KR20170140111A (ko) 2016-06-10 2017-12-20 (주)엘지하우시스 샌드위치 패널 및 그의 제조방법
KR20190104791A (ko) * 2018-03-02 2019-09-11 (주)엘지하우시스 샌드위치 패널 및 그의 제조방법
KR20200029735A (ko) * 2018-09-11 2020-03-19 (주)엘지하우시스 배터리팩 케이스용 복합소재
KR20200029736A (ko) * 2018-09-11 2020-03-19 (주)엘지하우시스 배터리팩 케이스용 복합소재
KR20200043682A (ko) * 2018-10-18 2020-04-28 (주)엘지하우시스 배터리팩 케이스용 복합소재

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170112571A (ko) * 2016-03-31 2017-10-12 도레이케미칼 주식회사 흡음성, 수분흡수성 및 보온성이 우수한 섬유집합체, 이를 포함하는 부직포 및 이의 제조방법
KR20170140111A (ko) 2016-06-10 2017-12-20 (주)엘지하우시스 샌드위치 패널 및 그의 제조방법
KR20190104791A (ko) * 2018-03-02 2019-09-11 (주)엘지하우시스 샌드위치 패널 및 그의 제조방법
KR20200029735A (ko) * 2018-09-11 2020-03-19 (주)엘지하우시스 배터리팩 케이스용 복합소재
KR20200029736A (ko) * 2018-09-11 2020-03-19 (주)엘지하우시스 배터리팩 케이스용 복합소재
KR20200043682A (ko) * 2018-10-18 2020-04-28 (주)엘지하우시스 배터리팩 케이스용 복합소재

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4333177A3 (de) * 2022-09-01 2024-03-27 ThyssenKrupp Steel Europe AG Batteriekastendeckel aus thermisch isolierendem stahlsandwichmaterial
EP4353471A1 (de) * 2022-10-11 2024-04-17 Cuylits Holding GmbH Brandschutzvorrichtung mit verbundsystem, verbundsystem und batterie-pack mit brandschutzvorrichtung

Also Published As

Publication number Publication date
EP4250451A1 (en) 2023-09-27
US20230405968A1 (en) 2023-12-21

Similar Documents

Publication Publication Date Title
WO2022108330A1 (ko) 전기자동차 배터리팩 보호커버용 샌드위치 패널, 이의 제조방법 및 이를 포함하는 전기자동차 배터리팩 보호커버
WO2018021623A1 (en) Complex sheet for wireless charging and method for fabricating the same
WO2017200190A1 (ko) 샌드위치 패널 및 그 제조 방법
WO2011108856A9 (ko) 닫힌셀의 팽창 퍼라이트를 이용한 보온재
WO2015147449A1 (ko) 전자기파 차폐시트, 및 이의 제조방법
WO2017003146A1 (ko) 차량용 언더바디 커버 및 이를 제조하는 방법
WO2019035697A1 (ko) Emi 차폐필름
WO2012047012A2 (ko) 열경화성 수지를 이용한 팽창 퍼라이트 단열재, 이의 제조방법 및 이를 이용한 제품
US11607861B2 (en) Materials for fire protection
WO2017069558A1 (ko) 다공성 단일 수지 섬유 복합재 및 다공성 단일 수지 섬유 복합재를 제조하는 방법
WO2010114276A2 (ko) 아라미드 복합재 및 그 제조방법
WO2018135916A1 (ko) 충격흡수용 복합시트
WO2017051963A1 (ko) 탄소섬유를 이용한 탄소섬유전극 및 이의 제조방법
WO2018048276A1 (ko) 다공성 섬유강화 복합재 및 이를 제조하는 방법
WO2022265394A1 (ko) 고분자 발포체 및 폴리이미드를 포함하는 완충 복합 시트 및 이의 제조방법
KR20220067513A (ko) 전기자동차 배터리팩 보호커버용 샌드위치 패널, 이의 제조방법 및 이를 포함하는 전기자동차 배터리팩 보호커버
WO2021075817A1 (ko) 성형체, 이를 사용하는 샌드위치 패널, 성형체의 제조방법 및 샌드위치 패널의 제조방법
WO2018221987A1 (ko) 에어로겔 시트 및 이를 포함하는 단열 재료
JPH06123141A (ja) 耐火パネル
WO2017213478A1 (ko) 샌드위치 패널 및 그의 제조방법
WO2018056554A1 (ko) 샌드위치 패널용 심재, 샌드위치 패널 및 샌드위치 패널의 제조방법
CN117203835A (zh) 电动车辆的电池组的保护盖的夹层板、该夹层板的制造方法以及包括该夹层板的电动车辆的电池组的保护盖
WO2021112535A1 (ko) 성형체, 이를 사용하는 샌드위치 패널 및 이의 제조방법
WO2017213479A1 (ko) 성형체 및 그의 제조방법
US20240117153A1 (en) Sandwich panel for automobile, manufacturing method thereof, and upper cover for automobile battery pack comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21895098

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18037351

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021895098

Country of ref document: EP

Effective date: 20230619

WWE Wipo information: entry into national phase

Ref document number: 202180090916.9

Country of ref document: CN