WO2022265394A1 - 고분자 발포체 및 폴리이미드를 포함하는 완충 복합 시트 및 이의 제조방법 - Google Patents

고분자 발포체 및 폴리이미드를 포함하는 완충 복합 시트 및 이의 제조방법 Download PDF

Info

Publication number
WO2022265394A1
WO2022265394A1 PCT/KR2022/008480 KR2022008480W WO2022265394A1 WO 2022265394 A1 WO2022265394 A1 WO 2022265394A1 KR 2022008480 W KR2022008480 W KR 2022008480W WO 2022265394 A1 WO2022265394 A1 WO 2022265394A1
Authority
WO
WIPO (PCT)
Prior art keywords
dianhydride
bis
secondary battery
composite sheet
polymer foam
Prior art date
Application number
PCT/KR2022/008480
Other languages
English (en)
French (fr)
Inventor
유한태
조성일
Original Assignee
피아이첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 피아이첨단소재 주식회사 filed Critical 피아이첨단소재 주식회사
Publication of WO2022265394A1 publication Critical patent/WO2022265394A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0221Vinyl resin
    • B32B2266/0228Aromatic vinyl resin, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0278Polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0285Condensation resins of aldehydes, e.g. with phenols, ureas, melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a buffer composite sheet comprising a polymer foam and polyimide and a method for manufacturing the same.
  • Secondary batteries which are highly applicable to each product group and have electrical characteristics such as high energy density, are used not only in portable devices but also in electric vehicles (EVs) or hybrid electric vehicles (HEVs) driven by an electrical driving source. It is universally applied. These secondary batteries are attracting attention as a new energy source for improving eco-friendliness and energy efficiency in that they do not generate any by-products due to the use of energy as well as the primary advantage of dramatically reducing the use of fossil fuels.
  • EVs electric vehicles
  • HEVs hybrid electric vehicles
  • a battery pack may be configured by connecting a plurality of battery cells in series.
  • a battery pack may be configured by connecting a plurality of battery cells in parallel according to a charge/discharge capacity required for the battery pack. Accordingly, the number of battery cells included in the battery pack may be variously set according to a required output voltage or charge/discharge capacity.
  • a battery module composed of at least one battery cell is first configured, and other components are added using the at least one battery module to form a battery pack. How to configure is common.
  • a battery module or the like When a battery module or the like is configured with a plurality of battery cells provided as secondary batteries, an internal electrolyte may be decomposed and gas may be generated as a side reaction of repetitive charging and discharging. At this time, a phenomenon in which the external shape of a secondary battery cell is deformed by the generated gas is referred to as a cell swelling phenomenon.
  • a conventional battery module controls cell swelling of a battery cell by inserting a buffer pad having compressibility between a plurality of battery cells to control such cell swelling.
  • the buffer pad is generally provided with a polyurethane material having excellent vibration absorption and excellent resilience against compression.
  • the present inventors have completed the present invention by manufacturing a composite sheet of a flame retardant material and a foam in order to solve the above problems occurring in the battery module.
  • One object of the present invention is a polymer foam layer; and a polyimide layer laminated on one side or both sides of the polymer foam layer.
  • Another object of the present invention is a polymer foam layer; and a polyimide layer laminated on one side or both sides of the polymer foam layer to provide a composite sheet for a buffer pad for a secondary battery module.
  • Another object of the present invention is a module case forming an exterior; a plurality of secondary battery cells accommodated in the module case; and a plurality of composite sheets disposed between the plurality of secondary battery cells, compressed during expansion of the plurality of secondary battery cells, and capable of controlling the temperature of the plurality of secondary battery cells.
  • the composite sheet includes a polymer foam layer; and a polyimide layer laminated on one side or both sides of the polymer foam layer to provide a secondary battery module, which is a composite sheet.
  • One aspect of the present invention is a polymer foam layer
  • a composite sheet comprising a polyimide layer laminated on one or both surfaces of a polymer foam layer is provided.
  • the composite sheet according to the present invention exhibits excellent impact resistance, provides improved structural stability against external pressure through the polyimide layer having excellent mechanical rigidity, and exhibits excellent effects in terms of controlling cell swelling and implementing flame retardancy.
  • One aspect of the present invention is a polymer foam layer; and a polyimide layer laminated on one side or both sides of the polymer foam layer to provide a composite sheet for a buffer pad for a secondary battery module.
  • One aspect of the present invention is a module case forming an exterior; a plurality of secondary battery cells accommodated in the module case; and a plurality of composite sheets disposed between the plurality of secondary battery cells, compressed during expansion of the plurality of secondary battery cells, and capable of controlling the temperature of the plurality of secondary battery cells.
  • the composite sheet includes a polymer foam layer; and a polyimide layer laminated on one side or both sides of the polymer foam layer, and a composite sheet including a secondary battery module.
  • the polymer foam layer ; and a polyimide layer laminated on one side or both sides of the polymer foam layer.
  • FIG. 1 is a polymer foam layer according to an embodiment of the present invention; and a polyimide layer laminated on one surface of the polymer foam layer.
  • a structure in which a polyimide layer 112 is laminated on one surface of a polymer foam layer 111 may be formed.
  • Figure 2 is a polymer foam layer according to an embodiment of the present invention; and a polyimide layer laminated on both sides of the polymer foam layer.
  • a polyimide layer 212 may be laminated on both sides of a polymer foam layer 211 .
  • the composite sheet exhibits excellent properties for heat resistance and flame retardancy and exhibits excellent effects in terms of module reliability when applied to secondary batteries.
  • UL94 flame retardancy measurement and the like may be performed. "The test conforming to the UL94 standard can be performed in accordance with the UL94 flame retardancy test standard for plastic materials published by Underwriters Laboratories (Experimental Examples 1 and 2).
  • UL 94 V Vertical Burning Test
  • UL 94 VTM Thin Material Vertical Burning Test
  • UL 94HB Horizontal Burning Test
  • UL 94 HBF Horizontal Burning Foamed Material Test
  • the composite sheet according to the present invention can exhibit excellent flame retardancy.
  • the composite sheet according to the present invention includes a polymeric foam layer.
  • the polymer foam layer can act as a buffer member, and preferably has impact resistance and compression resistance.
  • the polymer foam layer is any one selected from expanded polystyrene foam, extruded polystyrene sheet foam (XPS foam), polyethylene foam, polyurethane foam, water-based flexible foam and urea foam. It may consist of one or more.
  • the foam may have a structure in which a plurality of different polymer foams are laminated in order to simultaneously exhibit excellent impact resistance and compression resistance.
  • the density may not significantly increase the weight of the secondary battery due to its low density, and may not be a significant obstacle in achieving weight reduction of the battery module.
  • the polymer foam may be a polyurethane foam having high strength, low specific gravity, light weight, and excellent buffering effect.
  • the polyurethane foam is generally prepared from polyol and polyfunctional polyisocyanate, and in the case of polyurethane foam, it may be manufactured as soft polyurethane foam or hard polyurethane foam depending on the characteristics of manufacturing raw materials.
  • the polymer foam layer may have a thickness of 10 ⁇ m to 50,000 ⁇ m. If the thickness of the polymer foam layer is less than 10 ⁇ m, it is not preferable because it does not effectively dissipate the force for external impact or swelling or does not sufficiently secure rigidity against compression. In this case, the volume-to-capacity of the battery may be reduced, which is undesirable.
  • the composite sheet according to the present invention includes a polyimide layer laminated on one or both sides of a polymer foam layer.
  • Polyimide has particularly excellent mechanical strength and heat resistance, so it has a flame retardant effect to secure safety in case of fire or explosion when applied between secondary battery cells, and greatly improves the effect of shattering of the polymer foam layer as a buffer material during the module manufacturing process.
  • the types of dianhydride monomer and diamine monomer usable for its formation are not particularly limited, and various monomers commonly used in the polyimide preparation field may be used.
  • the dianhydride monomer may be appropriately selected according to a desired level of flame retardancy, heat resistance or mechanical properties.
  • dianhydride monomer pyromellitic dianhydride (PMDA), 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 1,2,5, 6-naphthalenetetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride (BPDA), benzophenonetetracarboxylic dianhydride (BTDA), 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 3,4 ,9,10-perylenetetracarboxylic acid dianhydride, bis(3,4-dicarboxyphenyl)propane dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, 1,1-bis( 3,4-dicarboxyphenyl)ethane dianhydride, bis(2,3-dicarboxyphenyl)
  • PMDA Pyromellitic dianhydride
  • BPDA biphenyltetracarboxylic dianhydride
  • ODPA oxydiphthalic dianhydride
  • BTDA benzophenonetetracarboxylic dianhydride
  • BPADA '-bisphenol A dianhydride
  • BPDA biphenyltetracarboxylic dianhydride
  • BPADA 4,4'-bisphenol A dianhydride
  • Diamine included in the diamine monomer may be appropriately selected according to a desired level of flame retardancy, heat resistance, or mechanical properties.
  • examples of the diamine monomer include 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP), oxydianiline (ODA), 1,3-bis(4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene (TPE-R), 1,3-bis(3-aminophenoxy)benzene, 1,4-bis(3-aminophenoxy)benzene, p-phenyl Rendiamine (PPD), m-phenylenediamine, 4,4'-diaminodiphenylpropane, 4,4'-methylenedianiline (MDA), 3,3'-methylenedianiline, dimethylbenzidine, 3,3 '-dichlorobenzidine, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone,
  • the diamine monomer is p-phenylenediamine (PPD), oxydianiline (ODA), 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP), 4,4'-methylene It may be at least one selected from the group consisting of dianiline (MDA), 1,3-bis (4-aminophenoxy) benzene (TPE-R) and 4,4'-methylene bis (2-methylcyclohexylamine) .
  • PPD p-phenylenediamine
  • ODA oxydianiline
  • BAPP 2,2-bis [4- (4-aminophenoxy) phenyl] propane
  • BAPP 2,2-bis [4- (4-aminophenoxy) phenyl] propane
  • BAPP 2,2-bis [4- (4-aminophenoxy) phenyl] propane
  • MDA dianiline
  • TPE-R 1,3-bis (4-aminophenoxy) benzene
  • TPE-R 1,3
  • the polyimide according to the present invention may preferably further include a flame retardant for improving flame retardancy.
  • a flame retardant for improving flame retardancy triphenyl phosphate, tricredyl phosphate, trixylenyl phosphate, triethyl phosphate, credyl diphenyl phosphate, xylenyl diphenyl phosphate, credyl bis (2,6-xylenyl) Phosphate, 2-ethylhexylphosphate, dimethylmethylphosphate, resorcinolbis (diphenol A bis(dicredyl)phosphate, diethyl-N,N-bis(2-hydroxyethyl)aminomethylphosphate, diethylphos Phosphate, phenylphosphinate, diphenylphosphinate, organic phosphine oxide, phosphate amide, phosphorus-based flame retardants such as red phosphorus, ammonium polyphosphate, tria
  • the thickness of the polyimide layer may be 5 ⁇ m to 400 ⁇ m. Specifically, it may be 10 to 200 ⁇ m, more specifically 10 to 150 ⁇ m, and even more specifically 10 to 120 ⁇ m. If the thickness of the polyimide layer is less than 5 ⁇ m, it is not preferable because it does not secure sufficient flame retardancy, does not effectively disperse the force for external impact or swelling, or does not sufficiently secure rigidity against compression. Conversely, when the thickness exceeds 400 ⁇ m, the capacity versus volume of the battery may decrease, which is undesirable.
  • the thickness ratio of the polyimide layer and the polymer foam layer is 1:10 to 4:5, preferably 1:50 to 2:5, more preferably 1:50 to 3:10, and more Preferably, it may be 1:50 to 6:25. If the thickness ratio of the polymer foam layer and the polyimide layer exceeds 1:10 to 4:5, flame retardancy may not be secured, durability against swelling may decrease, or the volume-to-volume capacity of the battery may decrease.
  • the mid layer should have an appropriate thickness ratio.
  • the polyimide film of the present invention can be manufactured by a conventional method known in the art as follows.
  • the diamine monomer component is excessively mixed in the second composition, and the first and second compositions are mixed to obtain total diamine monomers used in these reactions and a method of polymerizing the component and the dianhydride monomer component so that they are substantially equimolar.
  • a polyamic acid solution is obtained by reacting the above-described dianhydride monomer and diamine monomer components in an organic solvent.
  • the solvent is generally an amide-based solvent, such as an aprotic solvent, such as N,N'-dimethylformamide, N,N'-dimethylacetamide, N-methyl-pyrrolidone, or Combinations of these may be used.
  • an aprotic solvent such as N,N'-dimethylformamide, N,N'-dimethylacetamide, N-methyl-pyrrolidone, or Combinations of these may be used.
  • dianhydride monomer and diamine monomer components can be introduced in the form of powder, lump, or solution. At the beginning of the reaction, they are added in the form of powder to proceed with the reaction, and then added in the form of a solution to adjust the polymerization viscosity. It is desirable to do
  • the obtained polyamic acid solution may be mixed with an imidization catalyst and a dehydrating agent and applied to a support.
  • the catalyst used examples include tertiary amines (eg, isoquinoline, ⁇ -picoline, pyridine, etc.), and examples of the dehydrating agent include anhydrous acid, but are not limited thereto.
  • the support used in the above may include a glass plate, an aluminum foil, a circulating stainless belt or a stainless drum, but is not limited thereto.
  • the layer applied on the support is gelled on the support by drying air and heat treatment.
  • the gelled film layer is separated from the support and heat treated to complete drying and imidization.
  • An appropriate dianhydride solution is added to the polyamic acid prepared in this way, and stirred to a final viscosity of 100,000 to 120,000 cP.
  • a flame retardant preferably a phosphorus-based flame retardant, such as triphenyl phosphate (TPP), is added to the final polyamic acid prepared in this way along with a catalyst and a dehydrating agent, and then the polyimide layer is formed using an applicator.
  • TPP triphenyl phosphate
  • the composite sheet for a buffer pad for a secondary battery module according to the present invention serves as a pad for a buffer action in a secondary battery module to control cell swelling to prevent cell or module damage due to cell expansion.
  • the polymer foam layer which is a material containing a soft elastic material, has excellent vibration absorption and repulsive force due to compression, it is possible to provide a secondary battery module having excellent dimensional stability even if cell swelling occurs. there is.
  • the polyimide layer and the polymer foam layer are effectively adhered even without a separate adhesive between the layers, and each layer is adhered without falling off even after combustion, resulting in a secondary battery module with excellent structural stability.
  • the composite sheet for a buffer pad for a secondary battery module of the present invention can be manufactured in the following process:
  • the dianhydride monomer, the diamine monomer, the polyimide layer, and the polymer foam layer are as described above.
  • the polymer foam precursor solution may be a urethane composition
  • the urethane composition may be a urethane precursor solution including isocyanate, polyol, and a foaming agent capable of forming polyurethane foam by curing treatment.
  • the surface treatment may be further performed by irradiating ultraviolet (UV) after step (c), and UV curing is performed through UV treatment to cure the uncured polymer foam precursor solution and to reduce the unevenness of the surface. It can be controlled, and the adhesion between the polyimide layer and the polymer foam layer can be improved.
  • UV ultraviolet
  • the module case a plurality of secondary battery cells accommodated in the module case; and a plurality of composite sheets disposed between the plurality of secondary battery cells, compressed during expansion of the plurality of secondary battery cells, and capable of controlling the temperature of the plurality of secondary battery cells.
  • the composite sheet includes a polymer foam layer; and a polyimide layer laminated on one side or both sides of the polymer foam layer, and a composite sheet including a secondary battery module.
  • FIG. 3 schematically shows a secondary battery module 300 according to one embodiment of the present invention.
  • a module case 311 a secondary battery cell 313 , and a composite sheet 312 may be included.
  • the cell means one unit secondary battery composed of an electrode assembly and an exterior material.
  • the module case 311 forms an external appearance of the secondary battery module 300 and can accommodate a plurality of secondary battery cells 313 and a plurality of composite sheets (buffer pads) 312 described later.
  • the secondary battery cell 313 may be provided as a pouch-type secondary battery, and may be provided in plurality and electrically connected to each other.
  • the plurality of battery cells 313 may be mutually stacked in a vertical direction within the module case 311 .
  • the composite sheet 312 is for controlling cell swelling of the plurality of secondary battery cells 313, and may be provided in plural or disposed between the plurality of secondary battery cells 313.
  • the plurality of composite sheets 312 are compressed during cell swelling of the plurality of secondary battery cells 313, that is, during expansion of the plurality of secondary battery cells 313, to control cell swelling, thereby forming a plurality of cells. Damage to the secondary battery cells 313 or the module case 311 due to the expansion of the number of battery cells 313 can be prevented.
  • FIG. 4 schematically illustrates a portion 400 of a secondary battery module according to an embodiment of the present invention.
  • a portion 411 of a module case, a swelling secondary battery cell 413 and a composite sheet 412 can be identified.
  • the composite sheet 412 according to the present invention not only provides resilience to compression through a buffering action, but also exhibits excellent flame retardant effects.
  • the uppermost and lowermost composite sheets 312 disposed in the module case 311 may be placed in contact with the inner wall of the facing module case 311. Accordingly, force or vibration generated by expansion of the plurality of secondary battery cells 313 may be effectively prevented from being transmitted to the module case 311 .
  • the size of the module case can be adjusted to have an appropriate size in consideration of the number of accommodated secondary battery cells, the number of adhesive members, and output efficiency per unit volume.
  • the module case may have a size of about 200 mm to about 600 mm in width, a length (height on the module) of about 50 mm to about 250 mm, and a height (cell thickness axis) of about 30 mm to about 400 mm. there is. Holes may be formed in the lower plate, the side wall and/or the upper plate of the module case.
  • the number of battery cells accommodated in the inner space of the module case may be 3 to 40. Specifically, the number of battery cells accommodated in the inner space of the battery module case may be 5 or more, 10 or more, or 15 or more, and about 35 or less, about 30 or less, or about 25 or less may be accommodated. Depending on the purpose of using each cell unit or two cell units or three cell units or more, the composite sheet may be disposed between the cells or between the module case and the cell.
  • the thickness of the secondary battery cell is not particularly limited, but may have a range of 5.0 mm to 15.0 mm considering the output efficiency of the secondary battery module. Other examples may range from about 7.5 mm to about 15.0 mm, from about 5.0 mm to 12.0 mm, from about 7.5 mm to 12.0 mm, or from about 8.0 mm to 10.0 mm.
  • the area of one end of the battery cell may be in the range of about 100 cm 2 to 1,000 cm 2 . In another example, it may be about 120 cm 2 or more, 140 cm 2 or more, 160 cm 2 or more, 180 cm 2 or more, or 200 cm 2 or more, about 900 cm 2 or less, 800 cm 2 or less, 700 cm 2 or less, 600 cm 2 or less or about 500 cm 2 or less.
  • the battery cell may have a weight in the range of 100 gf to 5,000 gf. In another example, it may be about 200 gf or more, 400 gf or more, 600 gf or more, 800 gf or more, or about 1,000 gf or more, and about 1,800 gf or less, 1,600 gf or less, 1,400 gf or less, or about 1,200 g or less.
  • the composite sheet according to the present invention exhibits excellent impact resistance in a secondary battery module, provides improved structural stability against external pressure through a polyimide layer having excellent mechanical rigidity, and implements flame retardancy along with cell swelling control, thereby improving the performance of secondary battery modules. It has excellent advantages in terms of resolving vulnerabilities.
  • FIG. 1 shows one embodiment of a composite sheet according to the present invention.
  • FIG. 2 shows one embodiment of a composite sheet according to the present invention.
  • FIG 3 shows an exemplary module case that may be applied in the present application.
  • FIG. 4 illustrates a buffering effect by a composite sheet during swelling of a secondary battery.
  • VTM evaluation method for evaluating flame retardancy of a film.
  • FIG. 6 shows an HB evaluation method for evaluating the flame retardancy of a composite sheet.
  • FIG. 7 is a photograph showing a composite sheet after burning according to HB evaluation.
  • Pyromellitic dianhydride (90 mol% to 100 mol%) as a dianhydride monomer and 4,4'-oxydianiline as a diamine monomer ( 100 mol%) was mixed and polymerized while raising the temperature of the reactor to 40 ° C. under a nitrogen atmosphere to prepare a polyamic acid solution.
  • a composition for preparing a polyimide film To the prepared polyamic acid solution, 3.5 mol of acetic anhydride and 1.1 mol of isoquinoline per 1 mol of amic acid groups were added to obtain a composition for preparing a polyimide film, and the composition was cast on a SUS plate (100SA, Sandvik Co.) using a doctor blade and dried at 90 °C for 4 minutes to prepare a gel film. After separating the gel film from the SUS plate, heat treatment was performed at 250 to 380 ° C. for 14 minutes to prepare a polyimide film having an average thickness of 12.5 ⁇ m.
  • Preparation Example 1-2 Polyimide film having a thickness of 25 ⁇ m
  • a polyimide film was manufactured in the same manner as in Preparation Example 1-1, except that the polyimide film was manufactured by controlling the thickness to be 25 ⁇ m.
  • a polyimide film was manufactured in the same manner as in Preparation Example 1-1, except that the polyimide film was manufactured by controlling the thickness to be 50 ⁇ m.
  • a polyimide film was manufactured in the same manner as in Preparation Example 1-1, except that the polyimide film was manufactured by controlling the thickness to be 75 ⁇ m.
  • Preparation Example 1-5 Polyimide film having a thickness of 100 ⁇ m
  • a polyimide film was manufactured in the same manner as in Preparation Example 1-1, except that the polyimide film was manufactured by controlling the thickness to be 100 ⁇ m.
  • a foamed urethane composition was used by injecting air bubbles into a solution containing a polyol base foaming solution.
  • Polyurethane was coated or coated on the polyimide film, and heat treatment and post-processing were performed to prepare a composite sheet.
  • the urethane composition of Preparation Example 2 was foamed on the surface (one side or both sides) of the polyimide film prepared in Preparation Example 1-1, thermally cured at a temperature of 110 ° C. for 1 minute, and then the final surface was treated with UV to 500 A composite sheet comprising a um thick layer of urethane foam was prepared.
  • a composite sheet was prepared in the same manner as in Example 1-1, except that the polyimide film prepared in Preparation Example 1-2 was used instead of the polyimide film of Preparation Example 1-1 in Example 1-1. did
  • a composite sheet was prepared in the same manner as in Example 1-1, except that the polyimide film prepared in Preparation Example 1-3 was used instead of the polyimide film of Preparation Example 1-1 in Example 1-1. did
  • a composite sheet was prepared in the same manner as in Example 1-1, except that the polyimide film prepared in Preparation Example 1-4 was used instead of the polyimide film of Preparation Example 1-1 in Example 1-1. did
  • a composite sheet was prepared in the same manner as in Example 1-1, except that the polyimide film prepared in Preparation Example 1-5 was used instead of the polyimide film of Preparation Example 1-1 in Example 1-1. did
  • Table 1 below shows the composition and thickness of composite sheets prepared according to Examples 1-1 to 1-5.
  • Example 1-1 Preparation Example 2 Preparation Example 1-1 12.5 500 Example 1-2 Preparation Example 2 Preparation Example 1-2 25 500 Example 1-3 Preparation Example 2 Preparation Example 1-3 50 500 Example 1-4 Preparation Example 2 Preparation Example 1-4 75 500 Example 1-5 Preparation Example 2 Preparation Example 1-5 100 500
  • a 50 ⁇ m thick PET film manufactured by Kolon Co., Ltd. was used.
  • a 100 ⁇ m thick PET film manufactured by Kolon Co., Ltd. was used.
  • VTM Thin Material Vertical Burning Test
  • the prepared film specimen (200 x 50 mm) was rolled into a 13 mm diameter mandrel, the upper part was taped, fixed using a clamp, and the specimen was folded twice for 3 seconds, and then the product was burnt.
  • the aspect and degree of flame propagation to the surroundings were evaluated (FIG. 6), and the rating was confirmed based on the following judgment conditions.
  • the polyimide films showed an excellent flame retardant grade of VTM-0, but the PET film showed a VTM-2 flame retardant grade.
  • the polyimide film of the present invention did not generate a flame after ignition, but the PET film for a buffer pad generated a flame, and the falling material also ignited cotton during combustion, indicating that the flame retardant performance was lower than that of the polyimide film.
  • a horizontal burning test (HB) evaluation was performed to measure the flame propagation speed for the purpose of confirming the flame propagation pattern in the horizontal direction.
  • Example 1-2 (Film thickness: 25 um) Examples 1-3 (Film thickness: 50 um) Example 1-4 (Film thickness: 75 um) Example 1-5 (Film thickness: 100 um) Comparative Example 2-1 (Film thickness: 50 um) Comparative Example 2-2 (film thickness: 100 um) Burning time (s) 26 34 50 0 15 18 Burning speed (mm/min) 173 132 90 0 300 250
  • the composite sheet coated with the polyimide film of the present invention has a longer burning time than the composite sheet coated with the PET film and burns It turns out to be slower.
  • the composite sheet of Example 1-2 coated with a 25 um polyimide film had a longer burning time and a lower burning rate than the composite sheet of Comparative Example 2-1 coated with a thicker 50 um PET film. .
  • the composite sheet of the present invention was found to have excellent structural stability as it was found that the polyimide film layer and the polymer foam layer were stably bonded even after burning.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 고분자 발포체 층; 및 고분자 발포체 층의 일면 또는 양면에 적층된 폴리이미드 층을 포함하는 복합 시트를 제공에 관한 것이다. 본 발명에 따른 복합 시트는 이차 전지 모듈에서 우수한 내충격성을 발휘하고 기계적 강성이 우수한 폴리이미드 층을 통해 외부 압력에 대한 향상된 구조적 안정성을 제공하며 셀 스웰링 제어와 함께 난연을 구현함으로써 이차 전지 모듈의 취약점을 해소하는 점에서 우수한 장점을 가진다.

Description

고분자 발포체 및 폴리이미드를 포함하는 완충 복합 시트 및 이의 제조방법
본 발명은 고분자 발포체(foam) 및 폴리이미드를 포함하는 완충 복합 시트 및 이의 제조방법에 관한 것이다.
제품 군에 따른 적용 용이성이 높고, 높은 에너지 밀도 등의 전기적 특성을 가지는 이차 전지는 휴대용 기기뿐만 아니라 전기적 구동원에 의하여 구동하는 전기차량(EV, Electric Vehicle) 또는 하이브리드 차량(HEV, Hybrid Electric Vehicle) 등에 보편적으로 응용되고 있다. 이러한 이차 전지는 화석 연료의 사용을 획기적으로 감소시킬 수 있다는 일차적인 장점뿐만 아니라 에너지의 사용에 따른 부산물이 전혀 발생되지 않는다는 점에서 친환경 및 에너지 효율성 제고를 위한 새로운 에너지원으로 주목받고 있다.
현재 널리 사용되는 이차 전지의 종류에는 리튬 이온 전지, 리튬 인산철 전지, 리튬 폴리머 전지, 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지 등이 있다. 이러한 단위 이차 전지 셀, 즉, 단위 배터리 셀의 작동 전압은 약 2.5V ~ 4.2V이다. 따라서, 이보다 더 높은 출력 전압이 요구될 경우, 복수 개의 배터리 셀을 직렬로 연결하여 배터리 팩을 구성하기도 한다. 또한, 배터리 팩에 요구되는 충방전 용량에 따라 다수의 배터리 셀을 병렬 연결하여 배터리 팩을 구성하기도 한다. 따라서, 상기 배터리 팩에 포함되는 배터리 셀의 개수는 요구되는 출력 전압 또는 충방전 용량에 따라 다양하게 설정될 수 있다.
한편, 복수 개의 배터리 셀을 직렬/병렬로 연결하여 배터리 팩을 구성할 경우, 적어도 하나의 배터리 셀로 이루어지는 배터리 모듈을 먼저 구성하고, 이러한 적어도 하나의 배터리 모듈을 이용하여 기타 구성요소를 추가하여 배터리 팩을 구성하는 방법이 일반적이다.
이차 전지로 구비되는 복수 개의 배터리 셀들로 배터리 모듈 등을 구성할 경우, 반복적인 충전 및 방전의 부반응으로 내부 전해질이 분해되어 가스가 발생할 수 있다. 이때, 발생한 가스에 의해 이차전지 셀의 외형이 변형되는 현상을 셀 스웰링 현상이라고 한다.
종래 배터리 모듈은, 이러한 셀 스웰링 제어를 위해 복수 개의 배터리 셀들 사이에 압축성을 갖는 완충 패드를 삽입하여 배터리 셀의 셀 스웰링을 제어한다. 이때, 완충 패드는 일반적으로 진동에 대한 흡수성 및 압축에 대한 우수한 반발력을 갖는 폴리우레탄 재질로 구비된다.
그러므로, 최근의 슬림화 트렌드에 따른 보다 컴팩트한 구조로 셀 스웰링 제어와 함께 난연 효율을 나타낼 수 있는 배터리 모듈을 제공하기 위한 신규의 구성이 요구되는 실정이다.
이에, 본 발명자들은 위와 같은 배터리 모듈에서 발생하는 문제점을 해소하고자 난연소재와 발포체(Foam)의 복합시트를 제조함으로써 본 발명을 완성하였다.
본 발명의 하나의 목적은 고분자 발포체 층; 및 고분자 발포체 층의 일면 또는 양면에 적층된 폴리이미드 층을 포함하는 복합 시트를 제공하는 것이다.
본 발명의 다른 하나의 목적은 고분자 발포체 층; 및 고분자 발포체 층의 일면 또는 양면에 적층된 폴리이미드 층을 포함하는 이차전지 모듈 완충 패드용 복합 시트를 제공하는 것이다.
본 발명의 다른 하나의 목적은 외관을 형성하는 모듈 케이스; 상기 모듈 케이스 내에 수용되는 복수 개의 이차 전지 셀들; 및 상기 복수 개의 이차 전지 셀들 사이에 배치되고, 상기 복수 개의 이차 전지 셀들의 팽창 시 압축되며 상기 복수 개의 이차 전지 셀들의 온도를 제어할 수 있는 복수 개의 복합 시트들;을 포함하는 이차 전지 모듈에 관한 것으로, 상기 복합 시트는 고분자 발포체 층; 및 고분자 발포체 층의 일면 또는 양면에 적층된 폴리이미드 층을 포함하는 복합 시트인, 이차 전지 모듈을 제공하는 것이다.
본 발명의 일 양상은 고분자 발포체 층; 및
고분자 발포체 층의 일면 또는 양면에 적층된 폴리이미드 층을 포함하는 복합 시트를 제공한다.
본 발명에 따른 복합 시트는 우수한 내충격성을 발휘하고 기계적 강성이 우수한 폴리이미드 층을 통해 외부 압력에 대한 향상된 구조적 안정성을 제공하며 셀 스웰링 제어와 함께 난연성을 구현하는 점에서 우수한 효과를 나타낸다.
본 발명의 일 양상은 고분자 발포체 층; 및 고분자 발포체 층의 일면 또는 양면에 적층된 폴리이미드 층을 포함하는 이차전지 모듈 완충 패드용 복합 시트를 제공한다.
본 발명의 일 양상은 외관을 형성하는 모듈 케이스; 상기 모듈 케이스 내에 수용되는 복수 개의 이차 전지 셀들; 및 상기 복수 개의 이차 전지 셀들 사이에 배치되고, 상기 복수 개의 이차 전지 셀들의 팽창 시 압축되며 상기 복수 개의 이차 전지 셀들의 온도를 제어할 수 있는 복수 개의 복합 시트들;을 포함하는 이차 전지 모듈에 관한 것으로, 상기 복합 시트는 고분자 발포체 층; 및 고분자 발포체 층의 일면 또는 양면에 적층된 폴리이미드 층을 포함하는 복합 시트인, 이차 전지 모듈을 제공한다.
상기 발명의 구현을 위한 구체적인 내용을 아래와 같이 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 하나의 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 존재할 수 있음을 이해하여야 한다.
본 명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 양, 농도, 또는 다른 값 또는 파라미터가 범위, 바람직한 범위 또는 바람직한 상한 값 및 바람직한 하한 값의 열거로서 주어지는 경우, 범위가 별도로 개시되는 지에 상관없이 임의의 한 쌍의 임의의 위쪽 범위 한계치 또는 바람직한 값 및 임의의 아래쪽 범위 한계치 또는 바람직한 값으로 형성된 모든 범위를 구체적으로 개시하는 것으로 이해되어야 한다.
수치 값의 범위가 본 명세서에서 언급될 경우, 달리 기술되지 않는다면, 그 범위는 그 종점 및 그 범위 내의 모본 발명의 범주는 범위를 정의할 때 언급되는 특정 값으로 한정되지 않는 것으로 의도된다.
명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.
'~상에', '~상부에', '~하부에', '~옆에' 등으로 두 부분의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 두 부분 사이에 하나 이상의 다른 부분이 위치할 수 있다.
도면을 설명함에 있어 '상', '상부', '상면', '하', '하부', '하면' 등과 같은 위치 관계는 도면을 기준으로 기재된 것일뿐, 절대적인 위치 관계를 나타내는 것은 아니다. 즉, 관찰하는 위치에 따라, '상부'와 '하부' 또는 '상면'과 '하면'의 위치가 서로 변경될 수 있다.
복합 시트
본 발명의 일 실시양태에 따르면, 고분자 발포체 층; 및 고분자 발포체 층의 일면 또는 양면에 적층된 폴리이미드 층을 포함하는 복합 시트를 제공한다.
도 1은 본 발명의 일 구현예에 따른 고분자 발포체 층; 및 고분자 발포체 층의 일면에 적층된 폴리이미드 층을 포함하는 복합 시트(100)를 개략적으로 도시한다. 도 1을 참조하면, 고분자 발포체 층(111)의 일면에 폴리이미드 층(112)이 적층된 구조를 가질 수 있다.
도 2는 본 발명의 일 구현예에 따른 고분자 발포체 층; 및 고분자 발포체 층의 양면에 적층된 폴리이미드 층을 포함하는 복합 시트(200)를 개략적으로 도시한다. 도 2를 참조하면, 고분자 발포체 층(211)의 양면에 폴리이미드 층(212)이 적층된 구조를 가질 수 있다.
본 발명에 따르면, 복합 시트는 내열성 및 난연성에 대해 우수한 특성을 나타내며 이차 전지 적용시 모듈 신뢰성 측면에서 우수한 효과를 나타낸다.
난연성 측졍을 위하여 UL94 난연도 측정 등이 이루어질 수 있다. 「UL94 규격에 준하는 시험은 언더라이터 래보래토리사(Underwriters Laboratories) 발행의 플라스틱 재료의 난연성 시험 규격 UL94을 따를 수 있다(실험예 1 및 2).
예를 들어, UL 94 V(Vertical Burning Test), UL 94 VTM(Thin Material Vertical Burning Test), UL 94HB(Horizontal Burning Test), UL 94 HBF (Horizontal Burning Foamed Material Test) 등이 이용될 수 있다.
위 test 등을 통하여 확인한 결과, 본 발명에 따른 복합시트는 우수한 난연성을 나타낼 수 있다.
고분자 발포체 층
본 발명에 따른 복합 시트는 고분자 발포체 층을 포함한다.
고분자 발포체 층은 완충 부재로서 작용할 수 있으며, 내충격성 및 내압착성을 확보하고 있는 것이 바람직하다.
고분자 발포체 층은 EPS 발포체(Expanded Polystyrene foam), XPS 발포체 (Extruded Polystyrene Sheet foam), 폴리에틸렌 발포체 (polyethylene foam), 폴리우레탄 발포체 (Polyurethane Foam), 수성 연질 발포체 및 우레아 발포체 (Urea Foam) 중 선택되는 어느 하나 이상으로 구성될 수 있다.
필요에 따라, 우수한 내충격성 및 내압착성 효과를 동시에 발휘하기 위하여 발포체는 서로 다른 복수의 고분자 발포체가 적층되어 있는 구조로 이루어질 수 있다.
위 고분자 발포체의 경우, 밀도가 낮아 이차 전지의 무게를 크게 증가시키지 않을 수 있고 배터리 모듈의 경량화를 달성하는데 큰 장애가 되지 않을 수 있다.
바람직하게 상기 고분자 발포체는 강도가 크고 비중이 작고 가벼우며 완충 효과가 우수한 폴리우레탄 발포체일 수 있다. 상기 폴리우레탄 발포체는 일반적으로 폴리올과 다관능성 폴리 이소시아네이트로부터 제조되며, 폴리우레탄 발포체의 경우 제조 원료들의 특성에 따라 연질 폴리우레탄 발포체와 경질 폴리우레탄 발포체로 제조될 수 있다.
상기 고분자 발포체 층의 두께는 10 μm 내지 50,000 μm 일 수 있다. 만약, 상기 고분자 발포체 층의 두께가 10 μm 보다 얇은 경우 외부 충격이나 스웰링에 대한 힘을 효과적으로 분산시키지 못하거나 압착에 대한 강성을 충분히 확보하지 못하는 바 바람직하지 못하고, 이와 반대로, 50,000 μm를 초과하는 경우 전지의 부피 대비 용량이 감소될 수 있는 바 바람직하지 못하다.
폴리이미드 층
본 발명에 따른 복합 시트는 고분자 발포체 층의 일면 또는 양면에 적층된 폴리이미드 층을 포함한다.
폴리이미드는 기계적 강성과 내열성이 특히 우수하여 이차 전지 셀 간에 적용시 화재 및 폭발 발생시 안전성을 확보하기 위한 난연 효과를 가지며 모듈 제조 공정 중에 완충재로의 고분자 발포체 층의 부스러짐 현상 등에 대한 개선 효과를 크게 나타낼 수 있다.
폴리이미드 층의 제조를 위해서 이의 형성에 사용 가능한 이무수물 단량체와 디아민 단량체의 종류는 특별히 한정되지 않으며, 폴리이미드 제조 분야에서 통상적으로 이용되는 다양한 단량체가 사용될 수 있다.
이무수물 단량체는 소망하는 수준의 난연성, 내열성 또는 기계적 물성 등에 따라 적절히 선택될 수 있다.
이무수물 단량체로 피로멜리트산 이무수물(PMDA), 2,3,6,7-나프탈렌테트라카르복시산 이무수물, 3,3',4,4'-비페닐테트라카르복시산 이무수물, 1,2,5,6-나프탈렌테트라카르복시산 이무수물, 비페닐테트라카르복실산이무수물(BPDA), 벤조페논테트라카르복시산 이무수물 (BTDA), 2,2-비스(3,4-디카르복시페닐)프로판 이무수물, 3,4,9,10-페릴렌테트라카르복시산 이무수물, 비스(3,4-디카르복시페닐)프로판 이무수물, 1,1-비스(2,3-디카르복시페닐)에탄 이무수물, 1,1-비스(3,4-디카르복시페닐)에탄 이무수물, 비스(2,3-디카르복시페닐)메탄 이무수물, 비스(3,4-디카르복시페닐)에탄 이무수물, 옥시디프탈산 이무수물 (ODPA), 비스(3,4-디카르복시페닐)설폰 이무수물, p-페닐렌비스(트리멜리트산모노에스테르산 무수물), 에틸렌비스(트리멜리트산모노에스테르산 무수물), 비스페놀A 비스(트리멜리트산모노에스테르산 무수물), 4,4'-비스페놀 A 이무수물(BPADA) 또는 이들의 유도체, 또는 이들의 조합이 사용될 수 있다. 바람직하게는 이무수물 단량체로 피로멜리트산 이무수물(PMDA), 비페닐테트라카르복실산이무수물(BPDA), 옥시디프탈산 이무수물 (ODPA), 및 벤조페논테트라카르복시산 이무수물 (BTDA) 및 4,4'-비스페놀 A 디안하이드라이드(BPADA)으로 이루어진 군으로부터 선택된 어느 하나 이상일 수 있으며, 더 바람직하게는 비페닐테트라카르복실산이무수물(BPDA) 및 4,4'-비스페놀 A 디안하이드라이드(BPADA) 중 어느 하나 이상일 수 있다.
디아민 단량체에 포함되는 디아민은 소망하는 수준의 난연성, 내열성 또는 기계적 물성 등에 따라 적절히 선택될 수 있다.
구체적으로, 디아민 단량체로는 2,2-비스[4-(4-아미노페녹시)페닐]프로판(BAPP), 옥시디아닐린(ODA), 1,3-비스(4-아미노페녹시)벤젠, 1,3-비스(4-아미노페녹시)벤젠(TPE-R), 1,3-비스(3-아미노페녹시)벤젠, 1,4-비스(3-아미노페녹시)벤젠, p-페닐렌디아민(PPD), m-페닐렌디아민, 4,4'-디아미노디페닐프로판, 4,4'-메틸렌다이아닐린(MDA), 3,3'-메틸렌다이아닐린, 디메틸벤지딘, 3,3'-디클로로벤지딘, 4,4'-디아미노디페닐설피드, 3,3'-디아미노디페닐설폰, 4,4'-디아미노디페닐설폰, 4,4'-디아미노디페닐에테르, 3,3'-디아미노디페닐에테르, 3,4'-디아미노디페닐에테르, 1,5-디아미노나프탈렌, 4,4'-디아미노디페닐디에틸실란, 4,4'-디아미노디페닐실란, 4,4'-디아미노디페닐에틸포스핀옥사이드, 4,4'-디아미노디페닐N-메틸아민, 4,4'-디아미노디페닐N-페닐아민, 1,4-디아미노벤젠(p-페닐렌디아민), 1,3-디아미노벤젠, 1,2-디아미노벤젠, 2,2-비스[4-(4-아미노페녹시)페닐]프로판, 4,4'-메틸렌 비스(2-메틸사이클로헥실아민) 또는 이들의 유도체, 또는 이들의 조합이 사용될 수 있다. 바람직하게는 디아민 단량체는 p-페닐렌디아민(PPD), 옥시디아닐린(ODA), 2,2-비스[4-(4-아미노페녹시)페닐]프로판(BAPP), 4,4'-메틸렌다이아닐린(MDA), 1,3-비스(4-아미노페녹시) 벤젠(TPE-R) 및 4,4'-메틸렌 비스(2-메틸사이클로헥실아민)으로 이루어진 군으로부터 선택된 어느 하나 이상일 수 있다.
본 발명에 따른 폴리이미드는 바람직하게, 난연성을 향상시키기 위한 난연제를 더 포함할 수 있다. 난연성을 보다 향상시킬 목적으로, 트리페닐포스페이트, 트리크레딜포스페이트, 트리크실레닐포스페이트, 트리에틸포스페이트, 크레딜디페닐포스페이트, 크실레닐디페닐포스페이트, 크레딜비스(2,6-크실레닐)포스페이트, 2-에틸헥실포스페이트, 디메틸메틸포스페이트, 레조르시놀비스(디페놀 A 비스(디크레딜)포스페이트, 디에틸-N,N-비스(2-히드록시에틸)아미노메틸포스페이트, 디에틸포스피네이트, 페닐포스피네이트, 디페닐포스피네이트, 유기 포스핀옥사이드, 인산아미드, 적린 등의 인계 난연제, 폴리인산암모늄, 트리아진, 숙시노구아나민, 트리구아나민, 멜렘, 멜람, 트리스(β-시아노에틸)이소시아누레이트, 아세토구아나민, 황산구아닐멜라민, 황산멜렘, 황산멜람 등의 질소계 난연제, 디페닐술폰-3-술폰산칼륨, 방향족 술폰이미드 금속염, 폴리스티렌술폰산 알칼리 금속염 등의 금속염계 난연제, 수산화알루미늄, 수산화마그네슘, 돌로마이트, 히드로탈사이트, 수산화바륨, 염기성 탄산마그네슘, 수산화지르코늄, 산화주석 등의 수화 금속계 난연제, 실리카, 산화알루미늄, 산화철, 산화티탄, 산화망간, 산화마그네슘, 산화지르코늄, 산화아연, 산화몰리브덴, 산화코발트, 산화비스무트, 산화크롬, 산화주석, 산화안티몬, 산화니켈, 산화구리, 산화텅스텐, 붕산아연, 메타붕산아연, 메타붕산바륨, 탄산아연, 탄산마그네슘, 탄산칼슘, 탄산바륨, 주석산아연 등 무기계 난연제/난연 조제, 실리콘 파우더 등의 난연제/난연 조제 등의 비할로겐계 난연제를 병용하더라도 상관없다. 이들을 단독으로 또는 2 종류 이상 조합하여 이용하더라도 상관없다.
상기 폴리이미드 층의 두께는 5 μm 내지 400 μm 일 수 있다. 구체적으로, 10 내지 200 μm, 보다 구체적으로는 10 내지 150 μm, 보다 더 구체적으로는 10 내지 120 μm 일 수 있다. 만약, 상기 폴리이미드 층의 두께가 5 um 보다 얇은 경우 충분한 난연성을 확보하지 못하거나 외부 충격이나 스웰링에 대한 힘을 효과적으로 분산시키지 못하거나 압착에 대한 강성을 충분히 확보하지 못하는 바 바람직하지 못하고, 이와 반대로, 400 μm를 초과하는 경우 전지의 부피 대비 용량이 감소될 수 있는 바 바람직하지 못하다.
본 발명에 있어서, 상기 폴리이미드 층과 고분자 발포체 층의 두께 비가 1:10 내지 4:5인, 바람직하게는 1:50 내지 2:5, 더 바람직하게는 1:50 내지 3:10, 보다 더 바람직하게는 1:50 내지 6:25일 수 있다. 고분자 발포체 층 및 폴리이미드 층의 두께 비가 1:10 내지 4:5를 벗어나는 경우 난연성을 확보하지 못하거나 스웰링에 대한 내구성이 떨어지거나 전지의 부피 대비 용량이 감소될 수 있어 적절한 고분자 발포체 층 및 폴리이미드 층이 적절한 두께비를 가져야한다.
폴리이미드 필름의 제조
본 발명의 폴리이미드 필름은 다음과 같은 당업계에 공지된 통상적인 방법으로 제조될 수 있다.
(1) 디아민 단량체 전량을 용매 중에 넣고, 그 후 이무수물 단량체 단량체를 디아민 단량체와 실질적으로 등몰이 되도록 첨가하여 중합하는 방법;
(2) 이무수물 단량체 전량을 용매 중에 넣고, 그 후 디아민 단량체를 이무수물 단량체와 실질적으로 등몰이 되도록 첨가하여 중합하는 방법;
(3) 디아민 단량체 중 일부 성분을 용매 중에 넣은 후, 반응 성분에 대해서 이무수물 단량체 중 일부 성분을 약 85~105 몰%의 비율로 혼합한 후, 나머지 디아민 단량체 성분을 첨가하고 이에 연속해서 나머지 이무수물 단량체 성분을 첨가하여, 디아민 단량체 및 이무수물 단량체가 실질적으로 등몰이 되도록 하여 중합하는 방법;
(4) 이무수물 단량체를 용매 중에 넣은 후, 반응 성분에 대해서 디아민 화합물 중 일부 성분을 85~105 몰%의 비율로 혼합한 후, 다른 이무수물 단량체 성분을 첨가하고 계속되어 나머지 디아민 단량체 성분을 첨가하여, 디아민 단량체 및 이무수물 단량체가 실질적으로 등몰이 되도록 하여 중합하는 방법;
(5) 용매 중에서 일부 디아민 단량체 성분과 일부 이무수물 단량체 성분을 어느 하나가 과량이도록 반응시켜, 제1 조성물을 형성하고, 또 다른 용매 중에서 일부 디아민 단량체 성분과 일부 이무수물 단량체 성분을 어느 하나가 과량이도록 반응시켜 제2 조성물을 형성한 후, 제1, 제2 조성물들을 혼합하고, 중합을 완결하는 방법으로서, 이 때 제1 조성물을 형성할 때 디아민 단량체 성분이 과잉일 경우, 제 2조성물에서는 이무수물 단량체 성분을 과량으로 하고, 제1 조성물에서 이무수물 단량체 성분이 과잉일 경우, 제2 조성물에서는 디아민 단량체 성분을 과량으로 하여, 제1, 제2 조성물들을 혼합하여 이들 반응에 사용되는 전체 디아민 단량체 성분과 이무수물 단량체 성분이 실질적으로 등몰이 되도록 하여 중합하는 방법 등을 들 수 있다.
일 예시로, 유기 용매에 전술한 이무수물 단량체와 디아민 단량체 성분을 반응시켜 폴리아믹산 용액을 얻는다.
이때, 용매는 일반적으로 아미드계 용매로 비양성자성 극성 용매(Aprotic solvent), 예를 들어 N,N'-디메틸포름 아마이드, N,N'-디메틸아세트아미드, N-메틸-피롤리돈, 또는 이들의 조합을 사용할 수 있다.
상기 전술한 이무수물 단량체와 디아민 단량체 성분의 투입형태는 분말, 덩어리 및 용액 형태로 투입할 수 있으며 반응 초기에는 분말 형태로 투입하여 반응을 진행한 다음, 이후에는 중합 점도 조절을 위해 용액 형태로 투입하는 것이 바람직하다.
얻어진 폴리아믹산 용액은 이미드화 촉매 및 탈수제와 혼합되어 지지체에 도포될 수 있다.
사용되는 촉매의 예로는 3급 아민류(예컨대, 이소퀴놀린, β-피콜린, 피리딘 등)가 있고, 탈수제의 예로는 무수산이 있으나, 이에 제한되지 않는다. 또한, 상기에서 사용되는 지지체로는 유리판, 알루미늄박, 순환 스테인레스 벨트 또는 스테인레스 드럼 등을 들 수 있으나, 이에 제한되지 않는다.
상기 지지체 상에 도포된 층은 건조 공기 및 열처리에 의해 지지체 위에서 겔화된다.
상기 겔화된 필름 층은 지지체에서 분리되어 열처리하여 건조 및 이미드화가 완료된다.
보다 구체적으로, 교반기 및 질소 주입·배출관을 구비한 반응기에 질소를 주입시키면서 DMF를 500 ml 투입하고, 반응기의 온도를 30 ℃로 설정한 후, 적절한 이무수물 단량체와 디아민 단량체 성분을 조절된 조성비로 투입하여 완전히 용해시킨다. 이후, 질소 분위기하에서 40 ℃로 반응기의 온도를 올려 가열하면서 120분간 교반을 계속해주어 1차 반응 점도가 1,500cP인 폴리아믹산을 제조한다.
이렇게 제조한 폴리아믹산에 적절한 디안하이드라이드 용액을 첨가하여 최종 점도 100,000~120,000cP가 되도록 교반시킨다.
이렇게 제조한 최종 폴리아믹산에 촉매 및 탈수제와 함께, 난연제, 바람직하게 인계 난연제로 예를 들어, 트리페닐 인산(triphenyl phosphate, TPP) 등의 함량을 조절하여 첨가시킨 후, 어플리케이터를 이용하여 폴리이미드 층을 제조한다.
이차전지 모듈 완충 패드용 복합 시트
본 발명에 따른 이차전지 모듈 완충 패드용 복합 시트는 이차전지 모듈 내에서 완충작용을 위한 패드로의 역할을 수행하여 셀의 스웰링을 제어하여 셀 팽창에 따른 셀 또는 모듈의 파손을 방지한다.
또한, 소프트한 탄성 재질을 포함하는 소재인 고분자 발포체 층을 포함하여 진동에 대한 흡수성 및 압축에 의한 반발력이 우수하기에, 셀 스웰링 현상이 발생하더라도 우수한 치수 안정성을 갖는 이차전지 모듈을 제공할 수 있다.
또한, 본 발명의 복합 시트는 층 사이에 별도의 접착제를 포함하지 않아도 폴리이미드 층과 고분자 발포체 층이 효과적으로 점착되어 있으며 연소 후에도 각 층이 떨어져 나가는 현상없이 점착되어 있어 구조적 안정성이 우수한 이차전지 모듈을 제공할 수 있다.
본 발명의 이차전지 모듈 완충 패드용 복합 시트는 다음과 같은 과정으로 제조될 수 있다:
(a) 이무수물 단량체 및 디아민 단량체로부터 얻어진 폴리아믹산 용액으로부터 폴리이미드 필름을 포함하는 폴리이미드 층을 형성하는 단계;
(b) 폴리이미드 층 일면 또는 양면 상에 고분자 발포체 전구체 용액을 코팅하는 단계; 및
(c) 폴리이미드 필름 층의 일면 또는 양면에 코팅된 고분자 발포체 전구체 용액을 열경화시켜 고분자 발포체 층을 형성하여 복합 시트를 제조하는 단계.
상기 제조방법에 있어서, 이무수물 단량체, 디아민 단량체, 폴리이미드 층, 고분자 발포체 층에 대해서는 상술한 바와 같다.
상기 단계 (b)에서 고분자 발포체 전구체 용액은 우레탄 조성물일 수 있으며, 우레탄 조성물은 경화 처리에 의해 폴리우레탄 발포체(foam)를 형성할 수 있는 이소시아네이트, 폴리올 및 발포제 등을 포함하는 우레탄 전구체 용액일 수 있다.
본 발명에서, 상기 단계 (c) 이후에 자외선(UV)을 조사하여 표면처리를 더 수행할 수 있으며, UV 처리를 통해 UV 경화를 수행함으로써 경화되지 않은 고분자 발포체 전구체 용액을 경화시키고 표면의 요철을 조절할 수 있으며, 폴리이미드 층과 고분자 발포체 층 간의 접착성을 향상시킬 수 있다.
이차전지 모듈
본 발명의 일실시양태에 따르면, 모듈 케이스; 상기 모듈 케이스 내에 수용되는 복수 개의 이차 전지 셀들; 및 상기 복수 개의 이차 전지 셀들 사이에 배치되고, 상기 복수 개의 이차 전지 셀들의 팽창 시 압축되며 상기 복수 개의 이차 전지 셀들의 온도를 제어할 수 있는 복수 개의 복합 시트들;을 포함하는 이차 전지 모듈에 관한 것으로, 상기 복합 시트는 고분자 발포체 층; 및 고분자 발포체 층의 일면 또는 양면에 적층된 폴리이미드 층을 포함하는 복합 시트인, 이차 전지 모듈을 제공한다.
도 3은 본 발명의 일 구현예에 따른 이차전지 모듈(300)을 개략적으로 도시한다. 도 3을 참조하면, 모듈 케이스(311), 이차전지 셀(313) 및 복합시트 (312)를 포함할 수 있다. 상기 셀은 전극 조립체 및 외장재를 포함하여 구성된 하나의 단위 이차전지를 의미한다.
상기 모듈 케이스(311)는 상기 이차전지 모듈(300)의 외관을 형성하며, 후술하는 복수 개의 이차전지 셀들(313) 및 복수 개의 복합시트(완충 패드)들(312)을 수용할 수 있다.
상기 이차전지 셀(313)은 파우치형 이차 전지로 구비될 수 있으며, 복수 개로 구비되어 상호 전기적으로 연결될 수 있다. 상기 복수 개의 배터리 셀들(313)은 상기 모듈 케이스(311) 내에서 상하 방향을 따라 상호 적층될 수 있다.
상기 복합시트 (312)는 상기 복수 개의 이차전지 셀들(313)의 셀 스웰링 제어를 위한 것으로서, 복수 개로 구비될 수 있으며, 상기 복수 개의 이차전지 셀들(313) 사이에 배치될 수 있다.
이러한 상기 복수 개의 복합 시트들(312)은 상기 복수 개의 이차전지 셀들(313)의 셀 스웰링 시, 즉, 상기 복수 개의 이차전지 셀들(313)의 팽창 시, 압축되어 셀 스웰링을 제어하여 복수 개의 배터리 셀들(313) 팽창에 따른 상기 이차전지 셀들(313)이나 상기 모듈 케이스(311)의 파손 등을 방지할 수 있다.
위 스웰링 현상의 일 구체예를 도 4에 개략적으로 나타내었다. 도 4는 본 발명의 일 구현예에 따른 이차전지 모듈의 일부(400)를 개략적으로 도시한다. 도 4를 참조하면, 모듈 케이스의 일부(411), 스웰링된 이차전지 셀(413) 및 복합시트 (412)를 확인할 수 있다.
상기 스웰링된 이차전지 셀(413) 또는 모듈 케이스에 대해서 본 발명에 따른 복합시트(412)는 완충 작용을 통해 압축에 대한 반발을 제공할 뿐만 아니라 난연에 대한 우수한 효과를 나타낼 수 있다.
아울러, 상기 복수 개의 복합시트들(312) 중 상기 모듈 케이스(311) 내의 최상단 및 최하단에 배치되는 복합시트들(312)는 마주하는 모듈 케이스(311)의 내벽에 접촉 배치될 수 있다. 이에 따라, 상기 복수 개의 이차전지 셀들(313)의 팽창에 따라 발생되는 힘이나 진동 등이 상기 모듈 케이스(311)로 전달되는 것을 효과적으로 방지할 수도 있다.
모듈 케이스의 크기는 수용되는 이차전지 셀의 개수, 점착부재의 개수 및 단위 부피당 출력 효율 등을 고려하여 적정한 크기를 가지도록 조절할 수 있다. 일예로 모듈 케이스는 크기가 가로 약 200 mm 내지 약 600 mm이고, 세로(모듈상의 높이)가 약 50 mm 내지 약 250 mm이며, 높이(셀 두께방향 축)가 약 30 mm 내지 약 400 mm일 수 있다. 모듈 케이스의 하부판, 측벽 및/또는 상부판에는 홀이 형성되어 있을 수 있다.
모듈 케이스 내부공간에 수용되는 배터리 셀은 3 개 내지 40 개 일 수 있다. 구체적으로, 배터리 모듈 케이스 내부공간에 수용되는 배터리 셀은 5 개 이상, 10 개 이상 또는 15 개 이상 수용될 수 있으며, 약 35 개 이하, 약 30 개 이하 또는 약 25 개 이하가 수용될 수 있다. 이들 셀 단위당 또는 2개의 셀단위 또는 3개의 셀단위 또는 그 이상으로 사용하는 목적에 따라 복합시트가 셀 사이 또는 모듈 케이스와 셀 간에 배치될 수 있다.
상기 이차전지 셀의 두께는 특별히 제한되지 않으나, 이차전지 모듈의 출력 효율 등을 고려하면 5.0 mm 내지 15.0 mm의 범위를 가질 수 있다. 다른 예로 약 7.5 mm 내지 약 15.0 mm의 범위 이거나, 약 5.0 mm 내지 12.0 mm의 범위 이거나, 약 7.5 mm 내지 12.0 mm의 범위이거나 또는 약 8.0 mm 내지 10.0mm의 범위를 가질 수 있다
배터리 셀은 일단면의 면적이 약 100 cm2 내지 1,000 cm2의 범위내일 수 있다. 다른예로 약 120 cm2 이상, 140 cm2 이상, 160 cm2 이상, 180 cm2 이상 또는 200 cm2 이상일 수 있으며, 약 900 cm2 이하, 800 cm2 이하, 700 cm2 이하, 600 cm2 이하 또는 약 500 cm2 이하일 수 있다.
배터리 셀은 중량이 100 gf 내지 5,000 gf의 범위 내일 수 있다. 다른예로 약 200gf 이상, 400gf 이상, 600gf 이상, 800gf 이상 또는 약 1,000gf 이상일 수 있으며, 약 1,800gf 이하, 1,600gf 이하, 1,400gf 이하 또는 약 1,200g 이하일 수 있다.
본 발명에 따른 복합 시트는 이차 전지 모듈에서 우수한 내충격성을 발휘하고 기계적 강성이 우수한 폴리이미드 층을 통해 외부 압력에 대한 향상된 구조적 안정성을 제공하며 셀 스웰링 제어와 함께 난연성을 구현함으로써 이차 전지 모듈의 취약점을 해소하는 점에서 우수한 장점을 가진다.
도 1은 본 발명에 따른 복합 시트의 일 구현예를 나타낸다.
도 2는 본 발명에 따른 복합 시트의 일 구현예를 나타낸다.
도 3은 본 출원에서 적용될 수 있는 예시적인 모듈 케이스를 도시한다.
도 4는 이차전지 스웰링 현상시 복합 시트에 의한 완충 효과를 도시한다.
도 5는 필름의 난연성 평가를 위한 VTM 평가 방법을 도시한 것이다.
도 6은 복합시트의 난연성 평가를 위한 HB 평가 방법을 도시한 것이다.
도 7은 HB 평가에 따른 연소 후 복합 시트를 나타낸 사진이다.
이하 본 발명을 하나 이상의 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
<실시예>
제조예 1. 폴리이미드 필름의 제조
제조예 1-1: 12.5 μm의 두께를 갖는 폴리이미드 필름
교반기 및 질소 주입·배출관을 구비한 반응기에 질소를 주입시키면서 DMF 500 ml 중에 이무수물 단량체로서 피로멜리트산 이무수물 (90 몰% ~ 100 몰%), 디아민 단량체로서 4,4'-옥시디아닐린 (100 몰%)을 혼합한 뒤 질소 분위기하에서 40 ℃로 반응기의 온도를 올려 가열시키면서 중합하여 폴리아믹산 용액을 제조하였다.
제조된 폴리아믹산 용액에 아믹산기 1 몰당 3.5 몰비의 아세트산 무수물 및 1.1 몰비의 이소퀴놀린을 첨가하여 폴리이미드 필름 제조용 조성물을 얻고, 상기 조성물을 닥터 블레이드를 사용하여 SUS판(100SA, Sandvik社) 위에 캐스팅하고, 90 ℃에서 4 분간 건조시켜 겔 필름을 제조하였다. 상기 겔 필름을 SUS판과 분리한 뒤, 250 내지 380 ℃에서 14 분간 열처리하여 12.5 ㎛의 평균 두께를 갖는 폴리이미드 필름을 제조하였다.
제조예 1-2: 25 μm의 두께를 갖는 폴리이미드 필름
두께가 25 μm가 되도록 제어하여 폴리이미드 필름을 제조한 것 외에는 제조예 1-1과 동일한 방법을 사용하여 폴리이미드 필름을 제조하였다.
제조예 1-3: 50 μm의 두께를 갖는 폴리이미드 필름
두께가 50μm가 되도록 제어하여 폴리이미드 필름을 제조한 것 외에는 제조예 1-1과 동일한 방법을 사용하여 폴리이미드 필름을 제조하였다.
제조예 1-4: 75 μm의 두께를 갖는 폴리이미드 필름
두께가 75 μm가 되도록 제어하여 폴리이미드 필름을 제조한 것 외에는 제조예 1-1과 동일한 방법을 사용하여 폴리이미드 필름을 제조하였다.
제조예 1-5: 100 μm의 두께를 갖는 폴리이미드 필름
두께가 100 μm가 되도록 제어하여 폴리이미드 필름을 제조한 것 외에는 제조예 1-1과 동일한 방법을 사용하여 폴리이미드 필름을 제조하였다.
제조예 2. 우레탄 조성물(고분자 발포체 전구체 용액)
Polyol Base 발포액을 포함하는 용액에 기포를 주입하여 포밍한 우레탄 조성물을 사용하였다.
실시예 1. 복합 시트의 제조
폴리이미드 필름에 폴리우레탄을 코팅 또는 도포하고 열처리 및 후가공 처리하여 복합시트를 제조하였다.
실시예 1-1. 복합 시트
제조예 1-1에서 제조된 폴리이미드 필름의 표면 상(일면 또는 양면)에 제조예 2의 우레탄 조성물을 발포하고, 110℃의 온도로 1분 동안 열경화시킨 후 최종 표면을 UV로 처리하여 500 um 두께의 우레탄 발포체 층을 포함하는 복합 시트를 제조하였다.
실시예 1-2
실시예 1-1에서 제조예 1-1의 폴리이미드 필름을 사용한 것 대신에 제조예 1-2에서 제조된 폴리이미드 필름을 사용한 것을 제외하고는 실시예 1-1과 동일한 방법으로 복합 시트를 제조하였다.
실시예 1-3
실시예 1-1에서 제조예 1-1의 폴리이미드 필름을 사용한 것 대신에 제조예 1-3에서 제조된 폴리이미드 필름을 사용한 것을 제외하고는 실시예 1-1과 동일한 방법으로 복합 시트를 제조하였다.
실시예 1-4
실시예 1-1에서 제조예 1-1의 폴리이미드 필름을 사용한 것 대신에 제조예 1-4에서 제조된 폴리이미드 필름을 사용한 것을 제외하고는 실시예 1-1과 동일한 방법으로 복합 시트를 제조하였다.
실시예 1-5
실시예 1-1에서 제조예 1-1의 폴리이미드 필름을 사용한 것 대신에 제조예 1-5에서 제조된 폴리이미드 필름을 사용한 것을 제외하고는 실시예 1-1과 동일한 방법으로 복합 시트를 제조하였다.
하기 표 1은 실시예 1-1 내지 1-5에 따라 제조된 복합 시트의 구성 및 두께를 나타낸 것입니다.
복합 시트 고분자 발포체
(폴리우레탄 폼)
폴리이미드 필름 폴리이미드 필름 두께(μm) 복합시트 두께
(μm)
실시예 1-1 제조예 2 제조예 1-1 12.5 500
실시예 1-2 제조예 2 제조예 1-2 25 500
실시예 1-3 제조예 2 제조예 1-3 50 500
실시예 1-4 제조예 2 제조예 1-4 75 500
실시예 1-5 제조예 2 제조예 1-5 100 500
비교예: PET 필름을 포함하는 복합 시트
비교예 1-1. PET 필름
Kolon사 PET 제품의 50 μm 두께의 PET 필름을 사용하였다.
비교예 1-2. PET 필름
Kolon사 PET 제품의 100 μm 두께의 PET 필름을 사용하였다.
비교예 2-1. 복합 시트
실시예 1-1에서 제조예 1-1의 폴리이미드 필름을 사용한 것 대신에 50 μm 두께의 PET 필름(비교예 1-1)을 사용한 것을 제외하고는 실시예 1-1과 동일한 방법으로 복합 시트를 제조하였다.
비교예 2-2. 복합 시트
실시예 1-1에서 제조예 1-1의 폴리이미드 필름을 사용한 것 대신에 100 μm 두께의 PET 필름(비교예 1-2)을 사용한 것을 제외하고는 실시예 1-1과 동일한 방법으로 복합 시트를 제조하였다.
<실험예>
실험예 1: 필름의 난연성 평가
필름의 두께별 난연성을 평가하기 위하여, VTM(Thin Material Vertical Burning Test) 평가를 수행하였다.
구체적으로, 제조된 필름 시편(200 x 50 mm)을 13 mm 직경의 봉(mandrel)에 말아서 윗 부분을 테이핑하고, 클램프를 이용하여 고정시키고, 시편에 3 초간 2 회의 접염을 실시한 후 제품의 연소 양상 및 주위로의 화염 전파 정도를 평가하였으며(도 6), 아래 판정 조건을 기준으로 등급을 확인하였다.
- 판정 조건
Figure PCTKR2022008480-appb-img-000001
위 실험을 통해 평가한 결과는 하기 표 2와 같다.
필름 제품 두께 난연 등급
폴리이미드 제조예 1-1 12.5 VTM-0
제조예 1-2 25 VTM-0
제조예 1-3 50 VTM-0
제조예 1-4 75 VTM-0
제조예 1-5 100 VTM-0
PET 필름 비교예 1-1 50 VTM-2
비교예 1-1 100 VTM-2
실험 결과, 폴리이미드 필름의 경우 모두 VTM-0의 우수한 난연 등급을 나타냈으나, PET 필름의 경우 VTM-2 난연 등급을 나타내었다. 본 발명의 폴리이미드 필름은 착화 후 화염이 발생하지 않았으나, 완충패드용 PET 필름은 화염이 발생하였으며 연소를 하면서 낙하물도 Cotton 발화를 함으로서 폴리이미드 필름 보다 난연 성능이 낮은 것으로 나타났다.
실험예 2: 필름 및 우레탄 폼을 포함하는 복합 시트의 난연성 평가
필름의 두께별 상기 필름을 포함하는 복합 시트의 난연성을 평가하기 위하여, 수평 방향으로 화염 전파 양상을 확인하는 것으로 목적으로 화염 전파 속도를 측정하는 HB(Horizontal Burning Test) 평가를 수행하였다.
구체적으로 제조된 필름 시편(125 x 13 mm)을 길이 방향으로 한 쪽 끝에서부터 25 mm, 100 mm 거리에 마킹한 후, 시편의 한 쪽 끝에 불꽃을 30초 동안 가하고 불꽃이 25 mm 마킹 표시를 지날 때부터 100 mm 마킹선에 도착할 때가지의 시간을 측정하여 속도를 계산하였으며, 그 결과는 하기 표 5 및 도 8과 같다.
복합시트
 
실시예 1-2
(필름 두께: 25 um)
실시예 1-3
(필름 두께: 50 um)
실시예 1-4
(필름 두께: 75 um)
실시예 1-5
(필름 두께: 100 um)
비교예 2-1
(필름 두께: 50 um)
비교예 2-2 (필름 두께: 100 um)
연소시간(s) 26 34 50 0 15 18
연소속도(mm/min) 173 132 90 0 300 250
표 3 및 도 8에서 확인할 수 있듯이, 우레탄 폼에 코팅된 필름의 두께가 동일한 조건일 때, 본 발명의 폴리이미드 필름이 코팅된 복합 시트가 PET 필름이 코팅된 복합 시트 대비 연소 시간이 더 길고 연소 속도가 더 느린 것으로 나타났습니다. 더욱이 25 um의 폴리이미드 필름이 코팅된 실시예 1-2의 복합시트는 두께가 더 두꺼운 50 um의 PET 필름이 코팅된 비교예 2-1의 복합시트 보다 연소 시간이 길고 연소 속도가 낮은 것으로 나타났다.
또한, 본 발명의 복합 시트는 연소 후에도 폴리이미드 필름 층과 고분자 발포체 층이 안정적으로 접착되는 것으로 나타나 구조적 안정성이 우수한 것으로 나타났다.
이제까지 본 발명에 대하여 그 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
<부호의 설명>
100: 복합 시트
111: 고분자 발포체 층
112: 폴리이미드 층
200: 복합 시트
211: 고분자 발포체 층
212: 폴리이미드 층
300: 이차전지 모듈
311: 모듈 케이스
312: 복합시트
313: 이차전지 셀
400: 이차전지 모듈의 일부
411: 모듈 케이스의 일부
412: 복합시트
413: 스웰링된 이차전지 셀

Claims (12)

  1. 고분자 발포체 층; 및
    고분자 발포체 층의 일면 또는 양면에 적층된 폴리이미드 층을 포함하는 이차전지 모듈 완충 패드용 복합 시트.
  2. 제1항에 있어서, 상기 고분자 발포체는 EPS 발포체(Expanded Polystyrene foam), XPS 발포체 (Extruded Polystyrene Sheet foam), 폴리에틸렌 발포체 (polyethylene foam), 폴리우레탄 발포체 (Polyurethane Foam), 수성 연질 발포체 및 우레아 발포체 (Urea Foam)로 이루어진 군으로부터 선택되는 어느 하나 이상인, 이차전지 모듈 완충 패드용 복합 시트.
  3. 제2항에 있어서, 상기 고분자 발포체는 폴리우레탄 발포체인, 이차전지 모듈 완충 패드용 복합 시트.
  4. 제1항에 있어서, 상기 폴리이미드 층을 구성하는 디아민 단량체는 2,2-비스[4-(4-아미노페녹시)페닐]프로판(BAPP), 옥시디아닐린(ODA), 1,3-비스(4-아미노페녹시)벤젠, 1,3-비스(4-아미노페녹시)벤젠(TPE-R), 1,3-비스(3-아미노페녹시)벤젠, 1,4-비스(3-아미노페녹시)벤젠, p-페닐렌디아민(PPD), m-페닐렌디아민, 4,4'-디아미노디페닐프로판, 4,4'-메틸렌다이아닐린(MDA), 3,3'-메틸렌다이아닐린, 디메틸벤지딘, 3,3'-디클로로벤지딘, 4,4'-디아미노디페닐설피드, 3,3'-디아미노디페닐설폰, 4,4'-디아미노디페닐설폰, 4,4'-디아미노디페닐에테르, 3,3'-디아미노디페닐에테르, 3,4'-디아미노디페닐에테르, 1,5-디아미노나프탈렌, 4,4'-디아미노디페닐디에틸실란, 4,4'-디아미노디페닐실란, 4,4'-디아미노디페닐에틸포스핀옥사이드, 4,4'-디아미노디페닐N-메틸아민, 4,4'-디아미노디페닐N-페닐아민, 1,4-디아미노벤젠(p-페닐렌디아민), 1,3-디아미노벤젠, 1,2-디아미노벤젠, 2,2-비스[4-(4-아미노페녹시)페닐]프로판, 및 4,4'-메틸렌 비스(2-메틸사이클로헥실아민)으로 이루어진 군으로부터 선택되는 어느 하나 이상인, 이차전지 모듈 완충 패드용 복합 시트.
  5. 제1항에 있어서, 상기 폴리이미드 층을 구성하는 이무수물 단량체는 피로멜리트산 이무수물(PMDA), 2,3,6,7-나프탈렌테트라카르복시산 이무수물, 3,3',4,4'-비페닐테트라카르복시산 이무수물, 1,2,5,6-나프탈렌테트라카르복시산 이무수물, 비페닐테트라카르복실산이무수물(BPDA), 벤조페논테트라카르복시산 이무수물 (BTDA), 2,2-비스(3,4-디카르복시페닐)프로판 이무수물, 3,4,9,10-페릴렌테트라카르복시산 이무수물, 비스(3,4-디카르복시페닐)프로판 이무수물, 1,1-비스(2,3-디카르복시페닐)에탄 이무수물, 1,1-비스(3,4-디카르복시페닐)에탄 이무수물, 비스(2,3-디카르복시페닐)메탄 이무수물, 비스(3,4-디카르복시페닐)에탄 이무수물, 옥시디프탈산 이무수물 (ODPA), 비스(3,4-디카르복시페닐)설폰 이무수물, p-페닐렌비스(트리멜리트산모노에스테르산 무수물), 에틸렌비스(트리멜리트산모노에스테르산 무수물), 비스페놀A 비스(트리멜리트산모노에스테르산 무수물), 및 4,4'-비스페놀 A 이무수물(BPADA)로 이루어진 군으로부터 선택되는 어느 하나 이상인, 이차전지 모듈 완충 패드용 복합 시트.
  6. 제1항에 있어서, 상기 폴리이미드 층을 구성하는 디아민 단량체는 p-페닐렌디아민(PPD), 옥시디아닐린(ODA), 2,2-비스[4-(4-아미노페녹시)페닐]프로판(BAPP), 4,4'-메틸렌다이아닐린(MDA), 1,3-비스(4-아미노페녹시)벤젠(TPE-R) 및 4,4'-메틸렌 비스(2-메틸사이클로헥실아민)으로 이루어진 군으로부터 선택된 어느 하나 이상이고,
    이무수물 단량체는 피로멜리트산 이무수물(PMDA), 비페닐테트라카르복실산이무수물(BPDA), 옥시디프탈산 이무수물 (ODPA), 및 벤조페논테트라카르복시산 이무수물 (BTDA) 및 4,4'-비스페놀 A 디안하이드라이드(BPADA)으로 이루어진 군으로부터 선택된 어느 하나 이상일 수 있으며, 더 바람직하게는 비페닐테트라카르복실산이무수물(BPDA) 및 4,4'-비스페놀 A 디안하이드라이드(BPADA) 중 어느 하나 이상인 것인, 이차전지 모듈 완충 패드용 복합 시트.
  7. 제1항에 있어서, 상기 폴리이미드 층은 5 μm 내지 400 μm의 두께를 갖는 것인, 이차전지 모듈 완충 패드용 복합 시트.
  8. 제1항에 있어서, 상기 폴리이미드 층과 고분자 발포체 층의 두께 비가 1:10 내지 4:5인 것인, 이차전지 모듈 완충 패드용 복합 시트.
  9. (a) 이무수물 단량체 및 디아민 단량체로부터 얻어진 폴리아믹산 용액으로부터 폴리이미드 필름을 포함하는 폴리이미드 층을 형성하는 단계;
    (b) 폴리이미드 층 일면 또는 양면 상에 고분자 발포체 전구체 용액을 코팅하여 발포하는 단계; 및
    (c) 폴리이미드 필름 층의 일면 또는 양면에 코팅된 고분자 발포체 전구체 용액을 열경화시켜 고분자 발포체 층을 형성하여 복합 시트를 제조하는 단계;를 포함하는 이차전지 모듈 완충 패드용 복합 시트의 제조방법.
  10. 제9항에 있어서, 단계 (b)에서 고분자 발포체 전구체 용액은 우레탄 조성물인 것인, 이차전지 모듈 완충 패드용 복합 시트의 제조방법.
  11. 제1항에 있어서, 상기 폴리이미드 층은 난연제를 더 포함하는 것인, 이차전지 모듈 완충 패드용 복합 시트.
  12. 모듈 케이스; 상기 모듈 케이스 내에 수용되는 복수 개의 이차 전지 셀들; 및 상기 복수 개의 이차 전지 셀들 사이에 배치되고, 상기 복수 개의 이차 전지 셀들의 팽창 시 압축되며 상기 복수 개의 이차 전지 셀들의 온도를 제어할 수 있는 복수 개의 복합 시트들;을 포함하는 이차 전지 모듈에 관한 것으로, 상기 복합 시트는 고분자 발포체 층; 및 고분자 발포체 층의 일면 또는 양면에 적층된 폴리이미드 층을 포함하는 복합 시트인, 이차 전지 모듈.
PCT/KR2022/008480 2021-06-18 2022-06-15 고분자 발포체 및 폴리이미드를 포함하는 완충 복합 시트 및 이의 제조방법 WO2022265394A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210079179 2021-06-18
KR10-2021-0079179 2021-06-18

Publications (1)

Publication Number Publication Date
WO2022265394A1 true WO2022265394A1 (ko) 2022-12-22

Family

ID=84525811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/008480 WO2022265394A1 (ko) 2021-06-18 2022-06-15 고분자 발포체 및 폴리이미드를 포함하는 완충 복합 시트 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR20220169905A (ko)
WO (1) WO2022265394A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4329034A1 (en) 2021-12-08 2024-02-28 LG Energy Solution, Ltd. Solid electrolyte and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080038467A (ko) * 2006-10-30 2008-05-07 주식회사 엘지화학 완충 부재를 포함하고 있는 전지모듈
KR20130123762A (ko) * 2012-05-03 2013-11-13 주식회사 엘지화학 이차전지 조립체 및 이에 적용되는 가압 장치
KR101847147B1 (ko) * 2017-01-25 2018-04-09 주식회사 에스제이폼웍스 Oled용 폴리우레탄 폼 완충 필름 및 그 제조방법
KR20190143503A (ko) * 2010-07-16 2019-12-30 아셀 그룹 리미티드 복합체 물질 및 그 용도
KR20200129337A (ko) * 2019-05-08 2020-11-18 피아이첨단소재 주식회사 폴리이미드 필름 제조방법 및 이에 의해 제조된 폴리이미드 필름

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080038467A (ko) * 2006-10-30 2008-05-07 주식회사 엘지화학 완충 부재를 포함하고 있는 전지모듈
KR20190143503A (ko) * 2010-07-16 2019-12-30 아셀 그룹 리미티드 복합체 물질 및 그 용도
KR20130123762A (ko) * 2012-05-03 2013-11-13 주식회사 엘지화학 이차전지 조립체 및 이에 적용되는 가압 장치
KR101847147B1 (ko) * 2017-01-25 2018-04-09 주식회사 에스제이폼웍스 Oled용 폴리우레탄 폼 완충 필름 및 그 제조방법
KR20200129337A (ko) * 2019-05-08 2020-11-18 피아이첨단소재 주식회사 폴리이미드 필름 제조방법 및 이에 의해 제조된 폴리이미드 필름

Also Published As

Publication number Publication date
KR20220169905A (ko) 2022-12-28

Similar Documents

Publication Publication Date Title
WO2010062054A2 (ko) 셀 포장재 및 그 제조방법
WO2019093669A2 (ko) 초박막 블랙 폴리이미드 필름 및 이의 제조방법
WO2022265394A1 (ko) 고분자 발포체 및 폴리이미드를 포함하는 완충 복합 시트 및 이의 제조방법
WO2019168245A1 (ko) 그래핀 함유의 구형 pi계 필러를 포함하는 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이를 이용하여 제조되는 그라파이트 시트
WO2016108491A1 (ko) 가교형 수용성 열가소성 폴리아믹산을 이용한 열융착 다층 폴리이미드 필름, 및 이의 제조방법
WO2019054817A1 (ko) 배터리 모듈
WO2019164068A1 (ko) 구형의 pi계 필러를 포함하는 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이를 이용하여 제조되는 그라파이트 시트
WO2019124929A1 (ko) 무선 충전용 복합기판
WO2020091432A1 (ko) 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름
TW200302852A (en) Resin composition
WO2020096363A1 (ko) 유전특성이 우수한 폴리이미드 복합 필름 및 이를 제조하는 방법
WO2020096259A1 (ko) 치수 안정성이 향상된 초박막 폴리이미드 필름 및 이의 제조방법
WO2020111399A1 (ko) 입경이 상이한 2 이상의 필러를 포함하는 폴리이미드 필름 및 이를 포함하는 전자장치
WO2019143000A1 (ko) 2 종 이상의 필러를 포함하는 고열전도성 폴리이미드 필름
WO2020138687A1 (ko) 디스플레이 기판 제조용 폴리아믹산 조성물 및 이를 이용하여 디스플레이용 기판을 제조하는 방법
WO2020262765A1 (ko) 그라파이트 시트용 폴리이미드 필름 및 이의 제조방법
WO2016108490A1 (ko) 가교형 수용성 열가소성 폴리아믹산 및 이의 제조방법
WO2019203431A1 (ko) 수지 조성물 및 이를 포함하는 배터리 모듈
WO2019182224A1 (ko) 무지향성 고분자 사슬을 포함하는 폴리이미드 필름, 이의 제조방법 및 이를 이용하여 제조된 그라파이트 시트
WO2020101225A1 (ko) 가교성 디안하이드라이드계 화합물 및 산화방지제를 포함하는 폴리이미드 전구체 조성물, 이로부터 제조된 폴리이미드 필름
WO2015046953A1 (ko) 변성 폴리페닐렌 옥사이드를 이용한 동박적층판
WO2020096410A1 (ko) 금속층과의 접착력이 향상된 폴리이미드 복합 필름 및 이를 제조하는 방법
KR101004426B1 (ko) 디스플레이 패널 적층용 쿠션재 및 이의 제조방법
WO2020022564A1 (ko) 방향족 카르복실산을 포함하는 폴리이미드 전구체 조성물 및 이를 이용하여 제조되는 폴리이미드 필름
WO2020017692A1 (ko) 점토 입자 및 카본 블랙을 포함하는 폴리이미드 필름 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22825317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22825317

Country of ref document: EP

Kind code of ref document: A1