WO2018160033A2 - 고분자 복합 재료를 활용한 3d 입체물 및 이의 제조 로봇 시스템 - Google Patents
고분자 복합 재료를 활용한 3d 입체물 및 이의 제조 로봇 시스템 Download PDFInfo
- Publication number
- WO2018160033A2 WO2018160033A2 PCT/KR2018/002534 KR2018002534W WO2018160033A2 WO 2018160033 A2 WO2018160033 A2 WO 2018160033A2 KR 2018002534 W KR2018002534 W KR 2018002534W WO 2018160033 A2 WO2018160033 A2 WO 2018160033A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer composite
- axis
- composite material
- heating unit
- mandrel
- Prior art date
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 132
- 239000002131 composite material Substances 0.000 title claims abstract description 125
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 85
- 239000000463 material Substances 0.000 claims abstract description 95
- 239000000835 fiber Substances 0.000 claims abstract description 45
- 239000010410 layer Substances 0.000 claims abstract description 30
- 239000011247 coating layer Substances 0.000 claims abstract description 23
- 238000010438 heat treatment Methods 0.000 claims description 113
- 239000007787 solid Substances 0.000 claims description 57
- 239000011162 core material Substances 0.000 claims description 38
- 238000000034 method Methods 0.000 claims description 27
- -1 polyethylene Polymers 0.000 claims description 21
- 239000002657 fibrous material Substances 0.000 claims description 17
- 150000001875 compounds Chemical class 0.000 claims description 16
- 239000004698 Polyethylene Substances 0.000 claims description 11
- 239000004743 Polypropylene Substances 0.000 claims description 10
- 239000004952 Polyamide Substances 0.000 claims description 9
- 239000004697 Polyetherimide Substances 0.000 claims description 9
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 claims description 9
- 229920002647 polyamide Polymers 0.000 claims description 9
- 229920001601 polyetherimide Polymers 0.000 claims description 9
- 229920001155 polypropylene Polymers 0.000 claims description 9
- 229920006305 unsaturated polyester Polymers 0.000 claims description 9
- 239000004593 Epoxy Substances 0.000 claims description 8
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 8
- 239000004642 Polyimide Substances 0.000 claims description 8
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 claims description 8
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 claims description 8
- 229920002530 polyetherether ketone Polymers 0.000 claims description 8
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 8
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 8
- 229920001721 polyimide Polymers 0.000 claims description 8
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 7
- 229920001707 polybutylene terephthalate Polymers 0.000 claims description 7
- 229920000573 polyethylene Polymers 0.000 claims description 7
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 7
- 239000011343 solid material Substances 0.000 claims description 7
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 6
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 6
- 239000004417 polycarbonate Substances 0.000 claims description 5
- 229920000515 polycarbonate Polymers 0.000 claims description 5
- 239000004626 polylactic acid Substances 0.000 claims description 5
- 239000002861 polymer material Substances 0.000 claims description 5
- 239000004814 polyurethane Substances 0.000 claims description 5
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 4
- 230000032258 transport Effects 0.000 description 39
- 230000008901 benefit Effects 0.000 description 11
- 238000000465 moulding Methods 0.000 description 9
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 229920001688 coating polymer Polymers 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 229920000049 Carbon (fiber) Polymers 0.000 description 5
- 229920006231 aramid fiber Polymers 0.000 description 5
- 239000004917 carbon fiber Substances 0.000 description 5
- 239000003365 glass fiber Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- 239000004760 aramid Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000010146 3D printing Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000009954 braiding Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 241000239366 Euphausiacea Species 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010399 physical interaction Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/227—Driving means
- B29C64/236—Driving means for motion in a direction within the plane of a layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
- B33Y70/10—Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/0869—Devices involving movement of the laser head in at least one axial direction
- B23K26/0876—Devices involving movement of the laser head in at least one axial direction in at least two axial directions
- B23K26/0884—Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J11/00—Manipulators not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/112—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
- B29C64/209—Heads; Nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/227—Driving means
- B29C64/241—Driving means for rotary motion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/295—Heating elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/307—Handling of material to be used in additive manufacturing
- B29C64/321—Feeding
- B29C64/336—Feeding of two or more materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C67/00—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C67/00—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
- B29C67/24—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2033/00—Use of polymers of unsaturated acids or derivatives thereof as moulding material
- B29K2033/04—Polymers of esters
- B29K2033/12—Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2055/00—Use of specific polymers obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of main groups B29K2023/00 - B29K2049/00, e.g. having a vinyl group, as moulding material
- B29K2055/02—ABS polymers, i.e. acrylonitrile-butadiene-styrene polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2069/00—Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2877/00—Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as mould material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0003—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
Definitions
- the present invention relates to a 3D solid object and a manufacturing robot system using the polymer composite material, and more particularly to a three-dimensional solid object and a manufacturing robot system thereof.
- 3D printing or 3D molding has been in the spotlight because it can reduce the amount of raw materials used in lightweight composite material and improve mechanical performance.
- the lamination speed has also been improved to allow it to function as part of an automated process.
- Laminated processing is used in various fields such as automobiles, aircraft, electronics, consumer electronics, sports goods, and building materials, but should be made in advance such as sophistication of manufacturing, cost reduction, and simplification of manufacturing process and equipment. There are still many tasks to do. In particular, there is a great need for research on improving the rigidity and durability of raw materials, which influence the performance of products by 3D printing or 3D molding.
- a lamination processing apparatus (3D printer etc.) forms the product of desired shape, controlling the discharge direction, angle, and position of a thin elongate raw material.
- the raw material must be freely controlled (from input to discharge) by the additive processing equipment.
- the rigidity and durability of the raw material should be excellent.
- research and development of raw materials that can secure rigidity and durability are still insufficient.
- robotic systems for producing 3D solid objects using raw materials with excellent rigidity and durability are still in short status.
- the problem to be solved by the present invention is to provide a 3D solid material and a manufacturing robot system thereof composed of a polymer composite material including a core material, a fiber layer and a coating layer.
- the present invention also provides a 3D stereoscopic manufacturing robot system using a mandrel.
- the present invention also provides a 3D stereoscopic manufacturing robot system capable of mass production of 3D stereoscopic objects.
- the mandrel rotating about the first axis (x); A material which is supplied with a core material including at least one of a polymer compound or a fiber material, and a polymer composite material including a fiber layer and a coating layer surrounding the core material, and heat-treated the supplied polymer composite material to the surface of the mandrel Feeding device; And a transport device for reciprocating the material supply device in a direction of the first axis (x) and in a direction of a second axis (y) perpendicular to the first axis.
- the material supply apparatus the first heating unit for heat treating the polymer composite material; And a second heating unit disposed on the mandrel and heat treating the polymer composite material discharged from the first heating unit.
- the material supply apparatus includes a first heating unit for heat-treating the polymer composite material supplied to one side and discharging it to the other side
- the transport apparatus includes a first support unit supporting one side of the first heating unit. ; A second support part supporting the other side of the first heating unit; A first transporter configured to reciprocate the first support in the first axial direction; A second transporter for reciprocating the second support in the first axial direction; And a plurality of motors driving the first transport unit and the second transport unit and reciprocating the first support unit and the second support unit in the second axial direction.
- the mobile device further includes a moving rail disposed between the first support part and one side of the first heating unit and disposed in the second axial direction, and one side of the first heating unit may move along the moving rail. have.
- the mandrel is plural, and the plurality of mandrels are arranged in a line in one axial direction, and the material supply device forms the polymer composite material on the surfaces of the plurality of mandrels while moving in the one axial direction. can do.
- the one axis direction may be the first axis direction, or a third axis direction perpendicular to the first axis and the second axis.
- the mandrel rotating about the first axis (x);
- the polymer composite material is disposed on one side of the mandrel and is supplied with a polymer material including a core material including at least one of a polymer compound or a fiber and a fiber layer and a coating layer surrounding the core material.
- a first material supply device which heat-processes and discharges to the surface of the mandrel;
- a second material supply device disposed on the other side of the mandrel, receiving the polymer composite material, and heat-processing the supplied polymer composite material to discharge the surface of the mandrel;
- a transport device for reciprocating the first and second material supply devices in the first axis (x) direction and in a second axis (y) direction perpendicular to the first axis.
- the first material supply device includes a first heating unit for heat treating the polymer composite material
- the second material supply device includes a first heating unit for heat treating the polymer composite material
- the mand A second heating disposed on the reel and simultaneously heat-treating the polymer composite material discharged from the first heating unit of the first material supply device and the polymer composite material discharged from the second heating unit of the second material supply device
- the unit may further include.
- the mandrel is plural, and the plurality of mandrels are arranged in a line in one axial direction, and the first and second material supply devices move on the axial direction to the surfaces of the plurality of mandrels.
- a polymer composite material can be formed.
- the one axis direction may be the first axis direction, or a third axis direction perpendicular to the first axis and the second axis.
- the mandrel rotating about the first axis (x);
- An oven for receiving a polymer composite material including a core material including at least one of a polymer compound or a fiber material, a fiber layer and a coating layer surrounding the core material, and heat treating the supplied polymer composite material;
- a first heating unit receiving the polymer composite material heat treated from the oven and heat-processing to discharge the polymer composite material to the surface of the mandrel; And reciprocating one side and the other side of the first heating unit in a second axis (y) direction perpendicular to the first axis, and moving the other side of the first heating unit to one side of the first heating unit.
- It includes; a transport device for rotating a predetermined angle relative to.
- the method may further include a second heating unit disposed on the mandrel and heat treating the polymer composite material discharged from the first heating unit.
- the mandrel is a plurality, the plurality of mandrel is arranged in a line in one axis direction, the plurality of mandrel is moved in the one axis direction while the polymer composite material is on the surface of the plurality of mandrel Can be formed.
- the one axis direction may be the first axis direction, or a third axis direction perpendicular to the first axis and the second axis.
- the fiber layer may surround the core material, and the coating layer may surround the fiber layer.
- the polymer composite material may surround the core material
- the fiber layer may surround the coating layer.
- the 3D solid object which concerns on embodiment is manufactured by the above-mentioned 3D solid body manufacturing robot system, and has a truss structure.
- the polymer compound may include polylactic acid (PLA), polyethylene (PolyEthylene; PE), polypropylene (PolyPropylene; PP), polyamide (PolyAmide; PA), ABS (Acrylonitrile-Butadiene-Styrene; ABS), Poly Methyl Meth Acrylate (PMMA), Polycarbonate (PC), Polyethylene Terephthalate (PET), PolyButylene Terephthalate (PBT), PolyEtherImide; PEI ), Polyphenylene sulfide (PPS), polyether ether ketone (PEEK), ethylene vinyl acetate (EVA), polyurethane (PU), epoxy (EPoxy), unsaturated It may include at least one of polyester (Unsaturated Polyester; UP), polyimide (PI), phenolic (PHenolic (PF)).
- PMMA Polycarbonate
- PET Polyethylene Terephthalate
- PBT PolyButylene Terephthalate
- PES Polyphenylene sulfide
- FIG. 1 is a plan view of a 3D three-dimensional object manufacturing robot system according to an embodiment of the present invention.
- FIG. 2 is a side view of the 3D stereoscopic manufacturing robot system shown in FIG. 1.
- 3 is an example of a polymer composite material used in the 3D solid object manufacturing robot system according to an embodiment of the present invention.
- 6 is an example of a 3D solid body having a truss structure.
- FIG. 7 shows an example of molding a part of the 3D solid body having the truss structure shown in FIG. 6.
- FIG. 8 is a side view of a 3D stereoscopic manufacturing robot system according to another embodiment of the present invention.
- FIG. 9 is a plan view of a 3D solid object manufacturing robot system according to another embodiment of the present invention.
- FIG. 10 is a side view of the 3D stereoscopic manufacturing robot system according to another embodiment of the present invention shown in FIG. 9.
- FIG. 11 is a plan view of a 3D solid body manufacturing robot system according to still another embodiment of the present invention.
- FIG. 11 is a plan view of a 3D solid body manufacturing robot system according to still another embodiment of the present invention.
- FIG. 12 is a plan view of a 3D three-dimensional object manufacturing robot system according to another embodiment of the present invention.
- FIG. 13 is a side view of the 3D stereoscopic manufacturing robot system according to another embodiment of the present invention shown in FIG. 12.
- FIG. 14 is a plan view of a 3D stereoscopic object manufacturing robot system according to yet another embodiment of the present invention.
- FIG. 1 is a plan view of a 3D solid object manufacturing robot system according to an embodiment of the present invention
- Figure 2 is a side view of the 3D solid body manufacturing robot system shown in FIG.
- a 3D solid object manufacturing robot system includes a material supply device 100, a transport device 300, and a mandrel device 500.
- the material supply device 100 receives the polymer composite material 50 from the outside, heat-processes the provided polymer composite material 50, and discharges the heat-treated polymer composite material 50.
- the material supply device 100 may discharge a predetermined amount of the heat-treated polymer composite material 50 at a constant speed.
- the polymer composite material 50 provided to the material supply device 100 includes a continuous strand, yarn, and polymer composite material of a polymer material or a composite material. , Bundles, bands, tapes, and the like.
- Polymer materials include thermoplastics such as PLA, PE, PP, PA, ABS, PC, PET, PEI, PEEK, or thermosetting resins such as epoxy, unsaturated polyester, PI, and PUR. (thermosetting resins).
- the polymeric material is not limited to this.
- the reinforcing fibers may be GF (glass fiber), CF (carbon fiber), NF (natural fiber), AF (aramid fiber), or the like.
- the composite material is a mixture of fibers in the polymer material
- the fibers may be glass fibers, carbon fibers, boron fibers, alumina fibers, silicon carbide fibers, aramid fibers, various whiskers or combinations thereof, It is not limited to this.
- Figure 3 is an example of a polymer composite material used in the 3D solid body manufacturing robot system according to an embodiment of the present invention
- Figure 4 is a polymer composite material used in the 3D solid body manufacturing robot system according to an embodiment of the present invention Another example.
- the polymer composite material 50, 50 ′ includes a core 52 and a fiber layer 54 and a coating layer 56 surrounding the core 52.
- the polymer composite material 50 shown in FIG. 3 has a structure in which the fiber layer 54 surrounds the core 52 and the coating layer 56 surrounds the fiber layer 54, and the polymer composite material 50 shown in FIG. 4. ') Has a difference in that the coating layer 56 surrounds the core material 52 and the fiber layer 54 surrounds the coating layer 56.
- the core 52 in the polymer composite materials 50 and 50 'shown in FIGS. 3 and 4 includes at least one of a polymer compound and a fiber material.
- the high molecular compound may include at least one or more of a thermoplastic resin or a thermosetting resin.
- the polymer compound may be polylactic acid (PLA), polyethylene (PolyEthylene (PE), polypropylene (PP), polyamide (PA), Acrylonitrile-Butadiene-Styrene (ABS) Polymethyl methacrylate (PMMA), polycarbonate (PC), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyetherimide (PolyEtherImide); PEI), PolyPhenylene Sulfide (PPS), PolyEther Ether Ketone (PEEK), Ethylene Vinyl Acetate (EVA), Polyurethane (PU), Epoxy (EP), It may include at least one of an unsaturated polyester (UP), polyimide (PI), and phenolic (PHenolic; PF).
- PPA polyethylene
- PA polyamide
- ABS Acrylonitrile-Butadiene-Styrene
- PMMA Polymethyl methacrylate
- PC polycarbonate
- PET polyethylene terephthalate
- the fiber material may include at least one or more of glass fibers, carbon fibers, natural fibers, aramid fibers, ceramic fibers, viscous fluid fibers, shape memory alloy fibers, optical fibers, and piezoelectric fibers.
- the fiber material may be a reinforcing material of the high molecular compound.
- Some fibers may be encapsulated.
- the fibrous material may be coated with several layers. In this case, the fiber material may have a structure of a cable having a small diameter.
- the core 52 may include a strand shape as well as a band shape.
- the shape of the core 52 may be substantially the same as the shape of the continuous strand, yarn, polymer composite material, bundle, band, tape, and the like.
- the core material 220 may have one direction.
- the core 52 may be a unidirectional strand.
- the core 52 can be formed by consolidating the preheated material strand for this purpose. That is, the core 52 may be formed by consolidating a material strand containing at least one of a polymer compound or a fiber material at a predetermined temperature.
- the material strands may be wound on at least one bobbin provided with the krill unit. According to an embodiment, two or more material strands comprising different materials may be wound on one bobbin.
- the bobbin can align the material strands and store the material strands.
- the material strands can be released from the bobbin and the released material strands can be fed to the preheating position of the preheating unit.
- the material strands can be preheated to a predetermined temperature.
- the predetermined temperature here may be a temperature sufficient for the material strands to be compressed and consolidated.
- the material strands may be preheated to a predetermined temperature by the preheating unit, and the preheated material strands may be supplied to the compression unit.
- the preheated material strand may be compacted.
- Material strands having a predetermined temperature may be compressed and consolidated together by two or more compression units. During the preheating and consolidation process, the material strands may join two or more together. As a result, the core 52 having a unidirectionality can be formed.
- material strands with different constituent materials may be joined together.
- the formed core 52 may include two or more materials.
- the fibrous layer 54 in the polymer composite materials 50, 50 'shown in FIGS. 3 and 4 may comprise fibrous material.
- the fiber layer may include at least one or more of glass fibers, carbon fibers, natural fibers, aramid fibers, ceramic fibers, viscous fluid fibers, shape memory alloy fibers, optical fibers, and piezoelectric fibers. Some fibers may be encapsulated.
- the fibrous material may be coated with several layers. In this case, the fiber material may have a cable structure having a small diameter.
- the fibers included in the core 52 and the fibers included in the fiber layer 54 may be substantially the same, but the fibers included in the core 52 and the fibers included in the fiber layer 54 may be substantially different. Can be.
- the fibrous layer 54 may include at least one or more of a thermoplastic resin or a thermosetting resin.
- the fibrous layer 54 may be polylactic acid, polyethylene, polypropylene, polyamide, ABS, polymethacrylic acid methyl, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyetherimide, polyphenylene sulfide It may include at least one of, polyether ether ketone, ethylene vinyl acetate, polyurethane, epoxy, unsaturated polyester, polyimide, phenolic.
- the fibrous layer 54 may have a braided structure.
- the fibrous material may be braided onto the core 52 by the braiding unit.
- the braiding unit may have a plurality of bobbins wound around the fiber material, and the bobbins may be arranged at predetermined intervals on the same circumference.
- the plurality of bobbins can move along the circumference while rotating.
- the fiber material may be released from the bobbin, and the released fiber material may be braided on the core 52 to form a braided structure.
- the braided fibrous layer 54 may have sufficient rigidity / strength to withstand the stress or load exerted by the core 52 radially.
- the coating layer 56 in the polymer composite materials 50 and 50 'shown in FIGS. 3 and 4 may include a polymer compound.
- the polymer compound may include a coating polymer.
- the coating polymer may have a rheological characteristic suitable for bonding the steric matter to be formed based on the polymer composite material 50. That is, the coating polymer may allow the three-dimensional object to be formed based on the polymer composite material 50 in the future to have a suitable bonding with the adjacent material.
- the coating polymer may be chosen as one of materials with suitable chemical and / or physical adhesion. For example, in the embodiment shown in FIG.
- a coating polymer having a high viscosity may be selected. Furthermore, the coating polymer may be chosen so that future solids can withstand the strong shear forces generated at the contact surface with adjacent materials.
- a gripping configuration may be formed on the surface of the polymer composite material 50. That is, the coating layer 160 may include a gripping structure.
- the gripping structure may be a structure that improves mechanical bonding between each other. For example, the gripping structure can improve the bonding force between the polymeric composite material 50 and the subsequent overmolding material.
- the coating polymer may provide "chemical” bonding, and the gripping structure may provide additional "mechanical” bonding.
- the gripping structure can have a specific surface texture or pattern of the polymeric composite material 50 and can increase the overall contact area.
- the polymer composite materials 50 and 50 ′ shown in FIGS. 3 and 4 adjust performance such as stiffness, durability and impact based on the physical interactions between the core 52, the fibrous layer 54 and the coating layer 56. Can be.
- the material supply apparatus 100 includes a first heating unit 110 and a second heating unit 130.
- the first heating unit 110 receives the polymer composite material 50, heats the provided polymer composite material 50 to change the state of the polymer composite material 50, and changes the state of the polymer composite material 50. To the mandrel device 500. Here, the heat applied to the polymer composite material 50 in the first heating unit 110 is lower than the heat applied in the second heating unit 130.
- the first heating unit 110 may be a pipe heater.
- the first heating unit 110 is formed straight or in a straight line in the second axis y direction and has a predetermined length.
- the reason why the first heating unit 110 has a predetermined length in the second axial direction is attributable to the polymer composite material 50. Since the polymer composite materials 50 and 50 ′ shown in FIG. 3 or 4 include the core 52, the fibrous layer 54, and the coating layer 56, are not easily bent or deformed by an external force. Therefore, when the first heating unit 110 has a predetermined length in the second axis y direction, the polymer composite materials 50 and 50 'illustrated in FIG. 3 or 4 are not bent or deformed by external force, Polymer composite materials 50 and 50 'can be used.
- the first heating unit 110 may be mounted on the support parts 310a and 310b.
- One side of the first heating unit 110 that is, the side on which the polymer composite material 50 is provided may be mounted on the first support 310a.
- the other side of the first heating unit 110 that is, the side from which the polymer composite material 50 opened by the first heating unit 110 is discharged, may be mounted on the second support 310b.
- the first support part 310a is disposed on the first transport part 330a and may be reciprocated in the direction of the first axis x by the driving of the first transport part 330a.
- a moving rail 315a may be disposed between the first support part 310a and one side of the first heating unit 110.
- the moving rail 315a is disposed in the second axis y direction, and one side of the first heating unit 110 is mounted on the moving rail 315a.
- the first heating unit 110 is reciprocally movable in the second axis y direction along the moving rail 315a.
- a nozzle for discharging the heat-treated polymer composite material 50 may be provided on the other side of the first heating unit 110, that is, the side where the polymer composite material 50 heat-treated by the first heating unit 110 is discharged.
- the second heating unit 130 is disposed adjacent to the other side of the first heating unit 110, that is, the side from which the polymer composite material 50 opened by the first heating unit 110 is discharged, and the first heating is performed. Heat is applied to the polymer composite material 50 discharged from the unit 110.
- the heat applied in the second heating unit 130 is a higher temperature than the heat applied in the first heating unit 110.
- the heat applied from the second heating unit 130 is to give the polymer composite material 50 with optimum flexibility and formability, and the heat applied from the first heating unit 110 is predetermined to the polymer composite material 50.
- To give the flexibility of the polymer composite material 50 is to give mobility without having a great influence on moving inside the first heating unit 110 having a predetermined length.
- the second heating unit 130 may be disposed on the mandrel 510. Immediately before the polymer composite material 50 discharged from the first heating unit 110 is formed on the mandrel 510, the second heating unit 130 applies additional heat to the polymer composite material 50 so as to add the polymer composite material. The formability of the material 50 can be improved.
- the second heating unit 130 may be hot air or a halogen heater.
- the transport device 300 transports the material supply device 100.
- the transport device 300 may transport the material supply device 100 in at least one axial direction.
- the transport apparatus 300 may transport the material supply apparatus 100 in the first axis x direction and in the second axis y direction.
- the transport device 300 includes a support part 310a and 310b for supporting the material supply device 100, and a transport part 330a for transporting the support parts 310a and 310b in the directions of the first axis x and the second axis y. , 330b, and the motors 350 and 370 and the timing belt 390 driving the transport units 330a and 330b.
- the timing belt 370 is driven by the rotation of the first motor 350, and the first and second transport parts 330a and 330b are driven by the timing belt 370 to support the first and second support parts 310a,. 310b) is reciprocated in the direction of the first axis (x).
- the second transport unit 330b reciprocates the second support 310b in the second axis y direction by the second motor 370.
- the first heating unit 110 may reciprocate in the second axis y direction in association with the reciprocating movement of the second support part 310b.
- the first and second motors 350 and 370 may be servo motors or stepping motors.
- the mandrel device 500 includes a mandrel 510 and a third motor 530 for rotating the mandrel 510 around the first axis x.
- the mandrel 510 is driven to rotate about the first axis x by the third motor 530.
- the polymer composite material 50 discharged from the first heating unit 110 of the material supply device 100 may be formed in a predetermined shape on a surface of the rotating mandrel 510.
- a 3D solid material 50 ′′, 50 formed of a polymer composite material is formed on a long grooved mandrel 510, 510 ′ and then separated from the mandrel 510, 510 ′. '' ') Can be produced.
- 3D stereoscopic object manufacturing robot system can produce a 3D stereoscopic object (50 '' '' having a truss structure as shown in FIG. 6.
- the 3D solid object 50 '' '' having the truss structure does not require an injection process unlike other 3D solid objects in the related art, or it is possible to reduce the injection cost by performing the injection process only on a part of the 3D solid object 50 '' ''.
- the 3D solid object 50 '' 'having the truss structure may be composed of the polymer composite materials 50 and 50' shown in FIG. 3 or 4. Since the polymer composite materials 50 and 50 ′ shown in FIG.
- 3 or 4 are excellent in rigidity, do not form moldings formed by an injection process outside the 3D solid body 50 ′′ ′′ having the truss structure. You don't have to.
- the molding is formed outside the 3D solid object 50 '' '' having the truss structure, as shown in Figure 7, molding on the entire outside of the 3D solid object 50 '' '' having the truss structure It is not necessary to form the 60, and the molding 60 may be formed only in a part of the outside of the 3D solid body 50 '' '' having the truss structure.
- FIG. 8 is a side view of a 3D stereoscopic manufacturing robot system according to another embodiment of the present invention.
- the mandrel device 500 of the 3D stereoscopic manufacturing robot system according to an embodiment of the present invention shown in Figure 1 is provided with a plurality.
- the 3D three-dimensional object manufacturing robot system according to another embodiment of the present invention shown in Figure 8 includes a plurality of mandrel devices (500-1, 500-2, 500-3, 500-4, 500-5) do.
- the plurality of mandrel devices 500-1, 500-2, 500-3, 500-4, and 500-5 may be arranged in a line along the third axis z direction.
- the plurality of mandrel devices 500-1, 500-2, 500-3, 500-4, and 500-5 are arranged in a line along the first axis (x) direction, unlike those shown in FIG. 8. May be Therefore, the direction in which the plurality of mandrel devices 500-1, 500-2, 500-3, 500-4 and 500-5 are arranged in a row is not limited to a specific direction.
- the 3D stereoscopic manufacturing robot system according to another embodiment of the present invention shown in FIG. 8 is capable of mass-producing 3D stereoscopic materials composed of the polymer composite material 50 formed on the mandrel 510 surface of the mandrel device 500. There is an advantage to this.
- the 3D solid object manufacturing robot system according to another embodiment of the present invention shown in FIG. 8 is not only shown in FIG. 5 but also in FIG. 6 or 7.
- FIG. 9 is a plan view of a 3D stereoscopic object manufacturing robot system according to another embodiment of the present invention
- FIG. 10 is a side view of a 3D stereoscopic object manufacturing robot system according to another embodiment of the present invention shown in FIG. 9.
- the 3D three-dimensional object manufacturing robot system according to still another embodiment of the present invention shown in FIGS. 9 and 10 includes a first material supply device 100a and a second material supply device 100b. Moreover, the 3D three-dimensional object manufacturing robot system which concerns on other embodiment of this invention includes the mandrel apparatus 500 arrange
- the 3D solid object manufacturing robot system shown in FIG. There is an advantage that can produce 3D solids more quickly.
- the first material supply device 100a includes a first heating unit 110a
- the second material supply device 100b also includes a first heating unit 110b.
- the first heating units 110a and 110b may be the same as the first heating unit 110 shown in FIG. 1, but may be disposed to face each other.
- the 3D solid object manufacturing robot system includes a second heating unit 130.
- the second heating unit 130 is disposed between the other side of the first heating unit 110a of the first material supply device 100a and the other side of the first heating unit 110b of the second material supply device 100b. And simultaneously discharged to the two polymer composite materials 50 discharged from the other side of the first heating unit 110a of the first material supply device 100a and the first heating unit 110b of the second material supply device 100b. Apply heat.
- the 3D solid object manufacturing robot system which concerns on another embodiment of this invention contains the transportation apparatus 300 '.
- the transport device 300 ' transports the first material supply device 100a and the second material supply device 100b in the direction of the first axis x or / and the second axis y.
- the transportation device 300 includes a first support 310a, a second support 310b, a third support 310c and a fourth support 310d.
- the first support 310a and the second support 310b support and transport the first heating unit 110a of the first material supply device 100a, and the third support 310c and the fourth support 310d are The first heating unit 110b of the second material supply device 100b is supported and transported.
- the first support part 310a supports one side of the first heating unit 110a of the first material supply device 100a
- the second support part 310b supports the first heating unit of the first material supply device 100a. Support the other side of 110a.
- a moving rail may be disposed between the first support part 310a and one side of the first heating unit 110a.
- One side of the first heating unit 110a may reciprocate in the second axis y direction along the moving rail.
- the third support part 310c supports one side of the first heating unit 110b of the second material supply device 100b
- the fourth support part 310d is the first heating unit of the second material supply device 100b. Support the other side of 110b.
- a moving rail may be disposed between the third support part 310c and one side of the first heating unit 110b.
- One side of the first heating unit 110b may reciprocate along the moving rail in a second axis y direction.
- the transportation device 300 includes a first transportation unit 330a, a second transportation unit 330b, and a third transportation unit 330c.
- the first support part 310a is disposed on the first transport part 330a, and the first support part 310a is oriented in the first axis x or / and the second axis y by the first transport part 330a. Is moved to.
- the third support part 310c is disposed on the second transport part 330b, and the third support part 310c is oriented in the first axis x or / and second axis y by the second transport part 330b. Is moved to.
- the third transport unit 330c is disposed between the first transport unit 330a and the second transport unit 330b, and the second support unit 310b and the fourth support unit 310d on the third transport unit 330c. Is placed.
- the second support part 310b and the fourth support part 310d are moved in the first axis x or / and second axis y directions independently of each other by the third transport part 330c.
- the transport apparatus 300 includes a plurality of motors 350a, 350b, 370a, and 370b for driving the first to third transport units 330a, 330b, and 330c.
- the plurality of motors 350a, 350b, 370a, and 370b may be servo motors or stepping motors.
- the 3D solid object manufacturing robot system according to still another embodiment of the present invention shown in FIG. 10 includes not only the 3D solid objects 50 ′′ and 50 ′ ′ shown in FIG. 5, but also the truss structure shown in FIG. 6 or 7. There is an advantage that can produce 3D solid object 50 '' '' having a faster than the 3D solid object manufacturing robot system according to the embodiment shown in FIG.
- FIG. 11 is a plan view of a 3D solid body manufacturing robot system according to still another embodiment of the present invention.
- FIG. 11 is a plan view of a 3D solid body manufacturing robot system according to still another embodiment of the present invention.
- the mandrel device 500 of the 3D stereoscopic manufacturing robot system according to another embodiment of the present invention illustrated in FIG. 9 is provided in plurality. It is provided. That is, the 3D three-dimensional object manufacturing robot system according to another embodiment of the present invention shown in FIG. 11 includes a plurality of mandrel devices 500-1, 500-2, and 500-3.
- the plurality of mandrel devices 500-1, 500-2, and 500-3 may be arranged in a line along the first axis x direction.
- the plurality of mandrel devices 500-1, 500-2, and 500-3 may be arranged in a line along the third axis z, unlike illustrated in FIG. 11. Therefore, the direction arrange
- the 3D solid object manufacturing robot system according to another embodiment of the present invention shown in FIG. 11 a plurality of mandrel devices are provided while the first and second material supply devices 100a and 100b move in the first axis x direction.
- the polymer composite material 50 is formed at (500-1, 500-2, 500-3). Accordingly, the 3D solid object manufacturing robot system according to another embodiment of the present invention shown in FIG. 11 includes a large amount of 3D solid material composed of the polymer composite material 50 formed on the surface of the mandrel 510 of the mandrel device 500. There is an advantage to produce.
- the 3D solid object manufacturing robot system according to another embodiment of the present invention shown in FIG. 11 is not only shown in FIG. 6 or 7 but also in the 3D solid objects 50 ′′, 50 ′ ′′ shown in FIG. 5.
- FIG. 12 is a plan view of a 3D stereoscopic manufacturing robot system according to another embodiment of the present invention
- FIG. 13 is a side view of a 3D stereoscopic manufacturing robot system according to another embodiment of the present invention shown in FIG. 12.
- a 3D solid object manufacturing robot system includes a material supply device 100 ′, a transport device 300 ′′, and a mandrel device 500. .
- the material supply device 100 ′ includes a first heating device 110 ′, a second heating device 130, and an oven 150.
- the first heating device 110 ′ heat-treats the polymer composite material 50 provided from the oven 150 and discharges it to the surface of the mandrel 510 of the mandrel device 500.
- the first heating device 110 ′ may be a pipe heater that is straight or straight in one direction.
- a predetermined angle may be rotated based on one side of the first heating device 110 ′, that is, the side from which the polymer composite material 50 is supplied from the oven 150.
- the first heating device 110 ′ may be perpendicular to the third axis z.
- One side of the first heating device 110 ′ is mounted to the moving rail 315 a to reciprocate in the second axis y direction.
- the second heating device 130 may be the same as the second heating device 130 shown in FIG. 1. In addition, the second heating device 130 may move along with the movement of the other side of the first heating device 110 ′, that is, the side from which the polymer composite material 50 is discharged.
- the oven 150 is a device for heat treating the polymer composite material 50 supplied to the material supply device 100 '.
- the oven 150 is particularly useful in the 3D stereoscopic manufacturing robot system shown in FIGS. 12 and 13.
- the first heating unit 110 ′ of the present embodiment rotates by a predetermined angle with respect to one side, because the polymer composite material 50 in its original state has high rigidity. .
- the first heating unit 110 ′ rotates at a predetermined angle due to the rigidity of the polymer composite material 50 in its original state. It is difficult.
- the transport device 300 '' includes a first support 310a and a second support 310b.
- the first support 310a supports one side of the first heating unit 110 ′.
- a moving rail 315a may be disposed between the first support 310a and one side of the first heating unit 110 ′.
- the moving rail 315a is disposed in the second axis y direction.
- One side of the first heating unit 110 ′ is mounted on the moving rail 315a to move forward or backward in the second axis y direction.
- the second support 310b is disposed on the transporter 330, and can be reciprocated along the first axis x by the driving of the transporter 330.
- the second support 310b supports the other side of the first heating unit 110 ′.
- the other side of the first heating unit 110 ′ moves in the first axis x direction in association with the movement in the first axis x direction of the second support 310b.
- the transportation device 300 ′ ′ includes a first motor 350 reciprocating the transportation unit 330 in the first axis x direction.
- the transportation device 300 ′ ′ may include a second motor 370 that reciprocates the second support 310b in the second axis y direction.
- the mandrel device 500 includes a mandrel 510 and a third motor 530. Since the mandrel device 500 is the same as the mandrel device 500 described with reference to FIG. 1, a detailed description thereof will be omitted.
- the 3D stereoscopic object manufacturing robot system shown in FIGS. 12 and 13 is not only the 3D stereoscopic bodies 50 ′′ and 50 ′ ′′ shown in FIG. 5, but also the 3D stereoscopic objects 50 ′ ′′ shown in FIG. 6 or 7. ') Can be produced.
- FIG. 14 is a plan view of a 3D stereoscopic object manufacturing robot system according to yet another embodiment of the present invention.
- a plurality of mandrel devices 500 of the 3D stereoscopic manufacturing robot system according to another embodiment of the present invention shown in FIG. 13 are provided. do. That is, the 3D three-dimensional object manufacturing robot system according to another embodiment of the present invention shown in FIG. 14 includes a plurality of mandrel devices 500-1, 500-2, and 500-3.
- the plurality of mandrel devices 500-1, 500-2, and 500-3 may be arranged in a line along the first axis x direction.
- the plurality of mandrel devices 500-1, 500-2, and 500-3 may be arranged in a line along the third axis z, unlike illustrated in FIG. 14. Therefore, the direction arrange
- the 3D solid object manufacturing robot system according to another embodiment of the present invention shown in FIG. 14 includes a large amount of 3D solid material composed of the polymer composite material 50 formed on the surface of the mandrel 510 of the mandrel device 500. There is an advantage to produce.
- the 3D solid object manufacturing robot system according to another embodiment of the present invention shown in FIG. 8 is not only shown in FIG. 5 but also in FIG. 6 or 7.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- Robotics (AREA)
- Ceramic Engineering (AREA)
- Civil Engineering (AREA)
- Composite Materials (AREA)
- Structural Engineering (AREA)
- Plasma & Fusion (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
본 발명은 고분자 복합 재료를 활용한 3D 입체물 및 이의 제조 로봇 시스템에 관한 것으로, 더욱 상세하게는 고분자 복합 재료로 구성된 3차원 입체물과 이의 제조 로봇 시스템에 관한 것이다. 본 발명의 실시 형태에 따른 3D 입체물 제조 로봇 시스템은, 제1 축(x)을 중심으로 회전하는 맨드렐; 심재와 상기 심재를 둘러싸는 섬유층과 코팅층을 포함하는 고분자 복합 재료를 공급받고, 공급된 상기 고분자 복합 재료를 열 처리하여 상기 멘드렐의 표면으로 토출하는 재료 공급 장치; 및 상기 재료 공급 장치를 상기 제1 축(x) 방향 및 상기 제1 축과 수직한 제2 축(y) 방향으로 왕복 이동시키는 운송 장치;를 포함한다.
Description
본 발명은 고분자 복합 재료를 활용한 3D 입체물 및 이의 제조 로봇 시스템에 관한 것으로, 더욱 상세하게는 고분자 복합 재료로 구성된 3차원 입체물과 이의 제조 로봇 시스템에 관한 것이다.
최근, 플라스틱 복합소재를 이용하여 강도와 내구성을 보강하기 위한 내부 보강재(reinforcement)를 제조하는 기술이 이용되고 있다. 적층 가공(additive manufacturing) 장치 및 폴리머/복합재의 내부 보강재와 같은 내부 골격 제조 기술에 대한 연구가 활발히 이루어지고 있다.
이를 이용하면, 경량 복합 소재 입체물의 원재료 사용량은 줄이면서도 기계적 성능을 높일 수 있다는 점에서 3D 프린팅이나 3D 몰딩이 각광받고 있다. 특히, 적층 가공 속도도 개선되어 자동화 공정의 일부로서 기능할 수 있게 되었다.
적층 가공은 자동차, 항공기, 전자제품, 가전제품(consumer electronics), 스포츠 용품(sporting goods), 건축소재 등 다양한 분야에서 이용되고 있지만, 제조의 정교성, 원가 절감, 제조 공정과 설비의 단순화 등 선결해야 할 과제가 아직 많다. 특히, 3D 프린팅이나 3D 몰딩에 의한 제품의 성능을 좌우하는 원재료의 강성과 내구성 향상에 대한 연구가 매우 필요한 상황이다.
적층 가공 장치(3D 프린터 등)는 가늘고 기다란 원재료의 토출 방향, 각도 및 위치를 제어하면서 원하는 형상의 제품을 형성한다. 제품의 정교한 형성을 위해서는 원재료가 적층 가공 장치에 의해 자유롭게 제어(투입에서 토출까지)될 수 있어야 한다. 또한, 최종 형성되는 제품의 성능을 위해, 원재료의 강성과 내구성이 뛰어나야 한다. 하지만, 상술한 선결 과제를 해결하면서, 강성과 내구성까지 확보할 수 있는 원재료에 대한 연구나 개발이 아직은 미진한 상태이다.
또한, 강성과 내구성이 뛰어난 원재료를 이용하여 3D 입체물을 제조하는 로봇 시스템도 미진한 상태이다.
본 발명이 해결하고자 하는 과제는 심재, 섬유층 및 코팅층을 포함하는 고분자 복합 재료로 구성된 3D 입체물과 이의 제조 로봇 시스템을 제공한다.
또한, 맨드렐을 이용한 3D 입체물 제조 로봇 시스템을 제공한다.
또한, 3D 입체물의 대량 생산이 가능한 3D 입체물 제조 로봇 시스템을 제공한다.
또한, 3D 입체물을 몰딩하기 위한 사출 공정이 불필요하거나 사출 비용을 줄일 수 있는 3D 입체물을 제공한다.
실시 형태에 따른 3D 입체물 제조 로봇 시스템은, 제1 축(x)을 중심으로 회전하는 맨드렐; 고분자 화합물 또는 섬유재 중 적어도 하나를 포함하는 심재와 상기 심재를 둘러싸는 섬유층과 코팅층을 포함하는 고분자 복합 재료를 공급받고, 공급된 상기 고분자 복합 재료를 열 처리하여 상기 멘드렐의 표면으로 토출하는 재료 공급 장치; 및 상기 재료 공급 장치를 상기 제1 축(x) 방향 및 상기 제1 축과 수직한 제2 축(y) 방향으로 왕복 이동시키는 운송 장치;를 포함한다.
여기서, 상기 재료 공급 장치는, 상기 고분자 복합 재료를 열처리하는 제1 히팅 유닛; 및 상기 맨드렐 상에 배치되고 상기 제1 히팅 유닛에서 토출되는 상기 고분자 복합 재료를 열처리하는 제2 히팅 유닛;을 포함할 수 있다.
여기서, 상기 재료 공급 장치는, 일 측으로 공급되는 상기 고분자 복합 재료를 열처리하여 타 측으로 토출하는 제1 히팅 유닛을 포함하고, 상기 운송 장치는, 상기 제1 히팅 유닛의 일 측을 지지하는 제1 지지부; 상기 제1 히팅 유닛의 타 측을 지지하는 제2 지지부; 상기 제1 지지부를 상기 제1 축 방향으로 왕복 이동시키는 제1 운송부; 상기 제2 지지부를 상기 제1 축 방향으로 왕복 이동시키는 제2 운송부; 및 제1 운송부와 제2 운송부를 구동시키고, 상기 제1 지지부와 상기 제2 지지부를 상기 제2 축 방향으로 왕복 이동시키는 복수의 모터;를 포함할 수 있다.
여기서, 상기 제1 지지부와 상기 제1 히팅 유닛의 일 측 사이에 배치되고, 상기 제2 축 방향으로 배치된 이동 레일을 더 포함하고, 상기 제1 히팅 유닛의 일 측은 상기 이동 레일을 따라 이동할 수 있다.
여기서, 상기 멘드렐은 복수이고, 상기 복수의 멘드렐이 일 축 방향으로 일렬로 배치되고, 상기 재료 공급 장치가 상기 일 축 방향으로 이동하면서 상기 복수의 멘드렐의 표면에 상기 고분자 복합 재료를 형성할 수 있다.
여기서, 상기 일 축 방향은, 상기 제1 축 방향, 또는 상기 제1 축 및 상기 제2 축과 수직한 제3 축 방향일 수 있다.
실시 형태에 따른 3D 입체물 제조 로봇 시스템은, 제1 축(x)을 중심으로 회전하는 맨드렐; 상기 멘드렐을 기준으로 일 측에 배치되고, 고분자 화합물 또는 섬유재 중 적어도 하나를 포함하는 심재와 상기 심재를 둘러싸는 섬유층과 코팅층을 포함하는 고분자 복합 재료를 공급받고, 공급된 상기 고분자 복합 재료를 열 처리하여 상기 멘드렐의 표면으로 토출하는 제1 재료 공급 장치; 상기 멘드렐을 기준으로 타 측에 배치되고, 상기 고분자 복합 재료를 공급받고, 공급된 상기 고분자 복합 재료를 열 처리하여 상기 멘드렐의 표면으로 토출하는 제2 재료 공급 장치; 및 상기 제1 및 제2 재료 공급 장치를 상기 제1 축(x) 방향 및 상기 제1 축과 수직한 제2 축(y) 방향으로 왕복 이동시키는 운송 장치;를 포함한다.
여기서, 상기 제1 재료 공급 장치는, 상기 고분자 복합 재료를 열처리하는 제1 히팅 유닛을 포함하고, 상기 제2 재료 공급 장치는, 상기 고분자 복합 재료를 열처리하는 제1 히팅 유닛을 포함하고, 상기 맨드렐 상에 배치되고, 상기 제1 재료 공급 장치의 제1 히팅 유닛에서 토출되는 상기 고분자 복합 재료와 상기 제2 재료 공급 장치의 제2 히팅 유닛에서 토출되는 상기 고분자 복합 재료를 동시에 열처리하는 제2 히팅 유닛을 더 포함할 수 있다.
여기서, 상기 멘드렐은 복수이고, 상기 복수의 멘드렐이 일 축 방향으로 일렬로 배치되고, 상기 제1 및 제2 재료 공급 장치가 상기 일 축 방향으로 이동하면서 상기 복수의 멘드렐의 표면에 상기 고분자 복합 재료를 형성할 수 있다.
여기서, 상기 일 축 방향은, 상기 제1 축 방향, 또는 상기 제1 축 및 상기 제2 축과 수직한 제3 축 방향일 수 있다.
실시 형태에 따른 3D 입체물 제조 로봇 시스템은, 제1 축(x)을 중심으로 회전하는 맨드렐; 고분자 화합물 또는 섬유재 중 적어도 하나를 포함하는 심재와 상기 심재를 둘러싸는 섬유층과 코팅층을 포함하는 고분자 복합 재료를 공급받고, 공급된 상기 고분자 복합 재료를 열 처리하는 오븐; 상기 오븐으로부터 열처리된 상기 고분자 복합 재료를 제공받아 열 처리하여 상기 멘드렐의 표면으로 상기 고분자 복합 재료를 토출하는 제1 히팅 유닛; 및 상기 제1 히팅 유닛의 일 측과 타 측을 상기 제1 축과 수직한 제2 축(y) 방향으로 왕복 이동시키고, 상기 제1 히팅 유닛의 타 측을 상기 제1 히팅 유닛의 일 측을 기준으로 소정 각도 회전시키는 운송 장치;를 포함한다.
여기서, 상기 멘드렐 상에 배치되고, 상기 제1 히팅 유닛에서 토출되는 상기 고분자 복합 재료를 열처리하는 제2 히팅 유닛을 더 포함할 수 있다.
여기서, 상기 멘드렐은 복수이고, 상기 복수의 멘드렐이 일 축 방향으로 일렬로 배치되고, 상기 복수의 멘드렐이 상기 일 축 방향으로 이동되면서 상기 복수의 멘드렐의 표면에 상기 고분자 복합 재료가 형성될 수 있다.
여기서, 상기 일 축 방향은, 상기 제1 축 방향, 또는 상기 제1 축 및 상기 제2 축과 수직한 제3 축 방향일 수 있다.
여기서, 상기 고분자 복합 재료는, 상기 섬유층이 상기 심재를 둘러싸고, 상기 코팅층이 상기 섬유층을 둘러쌀 수 있다.
여기서, 상기 고분자 복합 재료는, 상기 코팅층이 상기 심재를 둘러싸고, 상기 섬유층이 상기 코팅층을 둘러쌀 수 있다.
실시 형태에 따른 3D 입체물은, 앞서 상술한 3D 입체물 제조 로봇 시스템에 의해서 제조되고, 트러스 구조를 갖는다.
여기서, 상기 고분자 화합물은 폴리 젖산(PolyLactic Acid; PLA), 폴리에틸렌(PolyEthylene; PE), 폴리프로필렌(PolyPropylene; PP), 폴리아미드(PolyAmide; PA), 에이비에스(Acrylonitrile-Butadiene-Styrene; ABS), 폴리메타크릴산메칠(Poly Methyl MethAcrylate; PMMA), 폴리카보네이트(PolyCarbonate; PC), 폴리에틸렌테레프탈레이트(PolyEthylene Terephthalate; PET), 폴리부틸렌테레프탈레이드(PolyButylene Terephthalate; PBT), 폴리에테르이미드(PolyEtherImide; PEI), 폴리페닐렌설파이드(PolyPhenylene Sulfide; PPS), 폴리에텔에텔케톤(PolyEtherEtherKetone; PEEK), 에틸렌비닐아세테이트(Ethylene Vinyl Acetate; EVA), 폴리우레탄(PolyUrethane; PU), 에폭시(EPoxy; EP), 불포화 폴리에스터(Unsaturated Polyester; UP), 폴리이미드(PolyImide; PI), 페놀릭(PHenolic; PF) 중 적어도 하나 이상을 포함할 수 있다.
본 발명에 따른 고분자 복합 재료로 구성된 3D 입체물 제조 로봇 시스템을 사용하면, 맨드렐을 이용하여 다양한 형상의 3D 입체물을 생산할 수 있는 이점이 있다.
또한, 3D 입체물을 대량 생산할 수 있는 이점이 있다.
본 발명에 따른 고분자 복합 재료로 구성된 3D 입체물을 사용하면, 3D 입체물을 몰딩하기 위한 사출 공정이 불필요하거나 사출 비용을 줄일 수 있는 이점이 있다.
도 1은 본 발명에 일 실시 형태에 따른 3D 입체물 제조 로봇 시스템의 평면도이다.
도 2는 도 1에 도시된 3D 입체물 제조 로봇 시스템의 일 측면도이다.
도 3은 본 발명의 일 실시 형태에 따른 3D 입체물 제조 로봇 시스템에 사용되는 고분자 복합 재료의 일 예이다.
도 4는 본 발명의 일 실시 형태에 따른 3D 입체물 제조 로봇 시스템에 사용되는 고분자 복합 재료의 다른 일 예이다.
도 5는 3D 입체물의 여러 예들을 보여준다.
도 6은 트러스 구조를 갖는 3D 입체물의 일 예이다.
도 7은 도 6에 도시된 트러스 구조를 갖는 3D 입체물의 일부에 몰딩을 한 일 예를 보여준다.
도 8은 본 발명의 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템의 일 측면도이다.
도 9는 본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템의 평면도이다.
도 10은 도 9에 도시된 본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템의 일 측면도이다.
도 11은 본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템의 평면도이다.
도 12는 본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템의 평면도이다.
도 13은 도 12에 도시된 본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템의 일 측면도이다.
도 14는 본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템의 평면도이다.
이하, 첨부된 도면을 참조하면서 본 발명에 따른 편조 하이브리드 재료 제조 시스템에 대해 상세히 설명한다. 아래에서 설명하는 실시예는 본 발명을 이해하기 위한 예시에 불과하며, 본 발명의 구조, 사용, 응용 방식을 한정하려는 의도를 갖지 않는다. 본 발명의 실시예에 대한 설명은 첨부된 도면과 연관되어 이해할 수 있고, 첨부된 도면은 본 발명에 대한 설명의 일부로 간주될 수 있다.
도 1은 본 발명에 일 실시 형태에 따른 3D 입체물 제조 로봇 시스템의 평면도이고, 도 2는 도 1에 도시된 3D 입체물 제조 로봇 시스템의 일 측면도이다.
도 1 내지 도 2를 참조하면, 본 발명에 일 실시 형태에 따른 3D 입체물 제조 로봇 시스템은, 재료 공급 장치(100), 운송 장치(300) 및 맨드렐 장치(500)를 포함한다.
재료 공급 장치(100)는 외부로부터 고분자 복합 재료(50)를 제공받고, 제공받은 고분자 복합 재료(50)를 열 처리하고, 열 처리된 고분자 복합 재료(50)를 토출한다. 여기서, 재료 공급 장치(100)는 열 처리된 고분자 복합 재료(50)를 일정 속도로 일정량을 토출할 수 있다.
재료 공급 장치(100)로 제공되는 고분자 복합 재료(50)는, 고분자 재료(polymer material) 또는 복합 재료(composite material)의 연속적으로 이어진 스트랜드(strand), 얀(yarn), 고분자 복합 재료(tow), 번들(bundle), 밴드(band), 테이프(tape) 등이다. 고분자 재료로는 PLA, PE, PP, PA, ABS, PC, PET, PEI, PEEK 등의 열가소성 수지(thermoplastics) 혹은 에폭시(epoxy), 불포화 폴리에스터 수지(unsaturated polyester), PI, PUR 등의 열경화성 수지(thermosetting resins)일 수 있다. 고분자 물질은 이에 한정되지 않는다. 여기서, 보강재(reinforcing fibers)는 GF(glass fiber), CF(carbon fiber), NF(natural fiber), AF(aramid fiber) 등일 수 있다. 또한, 복합 재료는 상기 고분자 재료에 섬유를 혼합한 것으로, 상기 섬유는 유리 섬유, 탄소 섬유, 보론 섬유, 알루미나 섬유, 탄화규소 섬유, 아라미드 섬유, 각종 휘스커(whisker) 또는 이들의 조합일 수 있지만, 이에 한정되지 않는다.
고분자 복합 재료(50)의 다른 구체적인 예를 도 3 내지 도 4를 참조하여 설명한다.
도 3은 본 발명의 일 실시 형태에 따른 3D 입체물 제조 로봇 시스템에 사용되는 고분자 복합 재료의 일 예이고, 도 4는 본 발명의 일 실시 형태에 따른 3D 입체물 제조 로봇 시스템에 사용되는 고분자 복합 재료의 다른 일 예이다.
도 3과 도 4을 참조하면, 고분자 복합 재료(50, 50')는 심재(52)와 심재(52)를 둘러싸는 섬유층(54)과 코팅층(56)을 포함한다.
도 3에 도시된 고분자 복합 재료(50)는, 심재(52)를 섬유층(54)이 둘러싸고, 섬유층(54)을 코팅층(56)이 둘러싸는 구조이고, 도 4에 도시된 고분자 복합 재료(50')는 심재(52)를 코팅층(56)이 둘러싸고, 코팅층(56)을 섬유층(54)이 둘러싸는 구조인 점에서 차이가 있다.
도 3과 도 4에 도시된 고분자 복합 재료(50, 50')에서의 심재(52)는 고분자 화합물과 섬유재 중 적어도 하나를 포함한다. 고분자 화합물은 열가소성 수지 또는 열경화성 수지 중 적어도 하나 이상을 포함할 수 있다. 예를 들어, 고분자 화합물은 폴리 젖산(PolyLactic Acid; PLA), 폴리에틸렌(PolyEthylene; PE), 폴리프로필렌(PolyPropylene; PP), 폴리아미드(PolyAmide; PA), 에이비에스(Acrylonitrile-Butadiene-Styrene; ABS), 폴리메타크릴산메칠(Poly Methyl MethAcrylate; PMMA), 폴리카보네이트(PolyCarbonate; PC), 폴리에틸렌테레프탈레이트(PolyEthylene Terephthalate; PET), 폴리부틸렌테레프탈레이드(PolyButylene Terephthalate; PBT), 폴리에테르이미드(PolyEtherImide; PEI), 폴리페닐렌설파이드(PolyPhenylene Sulfide; PPS), 폴리에텔에텔케톤(PolyEtherEtherKetone; PEEK), 에틸렌비닐아세테이트(Ethylene Vinyl Acetate; EVA), 폴리우레탄(PolyUrethane; PU), 에폭시(EPoxy; EP), 불포화 폴리에스터(Unsaturated Polyester; UP), 폴리이미드(PolyImide; PI), 페놀릭(PHenolic; PF) 중 적어도 하나 이상을 포함할 수 있다. 섬유재는 유리 섬유, 탄소 섬유, 천연 섬유, 아라미드 섬유, 세라믹 섬유, 점조화 유체 섬유, 형상 기억 합금 섬유, 광 섬유, 압전 섬유 중 적어도 하나 이상을 포함할 수 있다. 고분자 화합물과 혼합되었을 때 섬유재는 고분자 화합물의 보강재일 수 있다. 어떤 섬유재는 캡슐화될 수 있다. 예를 들어, 섬유재는 몇몇의 층들로 코팅될 수 있다. 이 경우, 섬유재는 작은 직경을 갖는 케이블의 구조를 가질 수 있다.
심재(52)의 형태는 스트랜드 형태뿐만 아니라 밴드 형태 등을 포함할 수 있다. 예를 들어, 심재(52)의 형태는 연속적으로 이어진 스트랜드, 얀, 고분자 복합 재료, 번들, 밴드, 테이프 등의 형태와 실질적으로 동일할 수 있다. 심재(220)는 일방향성을 가질 수 있다.
예를 들어, 심재(52)는 일방향 스트랜드일 수 있다. 이를 위해 심재(52)는 예열된 재료 스트랜드를 압밀함으로써 형성될 수 있다. 즉, 심재(52)는 고분자 화합물 또는 섬유재 중 적어도 하나를 포함하는 재료 스트랜드를 소정의 온도에서 압밀함으로써 형성될 수 있다. 재료 스트랜드는 크릴 유닛이 구비한 적어도 하나의 보빈에 감길 수 있다. 실시예에 따라, 서로 다른 물질을 포함하는 2 이상의 재료 스트랜드들이 하나의 보빈에 감길 수 있다. 보빈은 재료 스트랜드를 정렬시킬 수 있고, 재료 스트랜드를 보관할 수 있다. 재료 스트랜드는 보빈에서 풀려나올 수 있고, 풀려나온 재료 스트랜드는 예열 유닛의 예열 위치로 공급될 수 있다. 예열 위치에서 재료 스트랜드는 기 설정된 온도로 예열될 수 있다. 여기서 기 설정된 온도는 재료 스트랜드가 압축 및 압밀되기에 충분한 온도일 수 있다. 재료 스트랜드는 예열 유닛에 의해 기 설정된 온도로 예열될 수 있고, 예열된 재료 스트랜드는 압축 유닛에 공급될 수 있다. 예열된 재료 스트랜드는 압밀될 수 있다. 기 설정된 온도를 갖는 재료 스트랜드는 압축 유닛에 의해 2 이상이 함께 압축 및 압밀될 수 있다. 예열 및 압밀 과정을 거치는 동안, 재료 스트랜드는 2 이상이 서로 합쳐질 수 있다. 그 결과, 일방향성을 갖는 심재(52)가 형성될 수 있다.
실시예에 따라, 구성 물질이 서로 다른 재료 스트랜드가 서로 합쳐질 수 있다. 이 경우, 형성된 심재(52)는 2 이상의 물질을 포함할 수 있다.
도 3과 도 4에 도시된 고분자 복합 재료(50, 50')에서의 섬유층(54)은 섬유재를 포함할 수 있다. 예를 들어, 섬유층은 유리 섬유, 탄소 섬유, 천연 섬유, 아라미드 섬유, 세라믹 섬유, 점조화 유체 섬유, 형상 기억 합금 섬유, 광 섬유, 압전 섬유 중 적어도 하나 이상을 포함할 수 있다. 어떤 섬유재는 캡슐화될 수 있다. 예를 들어, 섬유재는 몇몇의 층들로 코팅될 수 있다. 이 경우, 섬유재는 작은 직경을 갖는 케이블 구조를 가질 수 있다. 심재(52)에 포함된 섬유재와 섬유층(54)에 포함된 섬유재는 실질적으로 서로 동일할 수 있지만, 심재(52)에 포함된 섬유재와 섬유층(54)에 포함된 섬유재는 실질적으로 상이할 수 있다.
섬유층(54)은 열가소성 수지 또는 열경화성 수지 중 적어도 하나 이상을 포함할 수 있다. 예를 들어, 섬유층(54)은 폴리 젖산, 폴리에틸렌, 폴리프로필렌, 폴리아미드, 에이비에스, 폴리메타크릴산메칠, 폴리카보네이트, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이드, 폴리에테르이미드, 폴리페닐렌설파이드, 폴리에텔에텔케톤, 에틸렌비닐아세테이트, 폴리우레탄, 에폭시, 불포화 폴리에스터, 폴리이미드, 페놀릭 중 적어도 하나 이상을 포함할 수 있다.
섬유층(54)은 편조 구조를 가질 수 있다. 예를 들어, 섬유재는 편조 유닛에 의해 심재(52) 상에 편조될 수 있다. 여기서, 편조 유닛은 섬유재를 감고 있는 다수의 보빈을 구비할 수 있고, 보빈은 동일 원주 상에 소정의 간격을 두고 배치될 수 있다. 심재(52)가 원주 상의 중심을 통과할 때, 다수의 보빈은 회전함과 동시에 원주를 따라 이동할 수 있다. 이 때, 섬유재는 보빈으로부터 풀려나올 수 있고, 풀려나온 섬유재는 심재(52) 상에 편조됨으로써 편조 구조가 형성될 수 있다. 이렇게 편조된 섬유층(54)은 심재(52)가 방사상으로 가하는 압력(strain)이나 부하(load)를 견딜 수 있는 충분한 강성(rigidity/strength)을 가질 수 있다.
도 3과 도 4에 도시된 고분자 복합 재료(50, 50')에서의 코팅층(56)은 고분자 화합물을 포함할 수 있다. 여기서, 고분자 화합물은 코팅 폴리머(coating polymer)를 포함할 수 있다. 코팅 폴리머는 고분자 복합 재료(50)를 기초로 형성될 입체물을 결합시키기에 적절한 유동적 특성(rheological characteristic)을 가질 수 있다. 즉, 코팅 폴리머는 향후 고분자 복합 재료(50)를 기초로 형성될 입체물이 인접한 물질과 적절한 결합(suitable bonding)을 갖도록 할 수 있다. 이를 위해, 코팅 폴리머는 적절한 화학적 및/또는 물리적 접착력을 갖는 물질 중 하나로 선택될 수 있다. 예를 들어, 형성된 고분자 복합 재료(50)의 표면에 코팅층(160)이 위치하는 도 3에 도시된 실시예에서는 고점성(high viscosity)을 갖는 코팅 폴리머가 선택될 수 있다. 나아가, 코팅 폴리머는 향후 형성될 입체물이 인접한 물질과의 접촉면에서 발생되는 강한 전단력(shear)에도 견딜 수 있도록 선택될 수 있다.
한편, 특정 텍스처(texture)나 구조형태(configuration)가 고분자 복합 재료(50)에 요구된다면, 그립핑 구조(gripping configuration)가 고분자 복합 재료(50)의 표면에 형성될 수 있다. 즉, 코팅층(160)은 그립핑 구조를 포함할 수 있다. 그립핑 구조는 상호간의 기계적 결합력(bonding)을 향상시키는 구조일 수 있다. 예를 들어, 그립핑 구조는 고분자 복합 재료(50)와 후속으로 이루어지는 오버몰딩 재료 사이의 결합력을 향상시킬 수 있다. 코팅 폴리머는 "화학적" 본딩을 제공할 수 있고, 그립핑 구조는 부가적인 "기계적" 본딩을 제공할 수 있다. 그립핑 구조는 고분자 복합 재료(50)의 특정 표면 텍스처나 패턴을 구비할 수 있고, 전체적인 접촉 면적을 증가시킬 수도 있다.
도 3 및 도 4에 도시된 고분자 복합 재료(50, 50')는 심재(52), 섬유층(54) 및 코팅층(56) 사이의 물리적 상호작용에 기초하여 강성, 내구성 및 충격성 등의 성능을 조절할 수 있다.
다시, 도 1 내지 도 2를 참조하면, 재료 공급 장치(100)는 제1 히팅 유닛(110) 및 제2 히팅 유닛(130)을 포함한다.
제1 히팅 유닛(110)은 고분자 복합 재료(50)를 제공받고, 제공되는 고분자 복합 재료(50)에 열을 가하여 고분자 복합 재료(50)의 상태를 변화시키고, 상태 변화된 고분자 복합 재료(50)를 맨드렐 장치(500)로 제공한다. 여기서, 제1 히팅 유닛(110)에서 고분자 복합 재료(50)에 가해지는 열은, 제2 히팅 유닛(130)에서 가해지는 열보다 낮은 온도이다.
제1 히팅 유닛(110)은 파이프 히터(Pipe heater)일 수 있다. 제1 히팅 유닛(110)은 제2 축(y) 방향으로 곧게 또는 일직선으로 형성되고, 소정의 길이를 갖는다.
제1 히팅 유닛(110)이 제2 축 방향으로 소정의 길이를 갖는 이유는, 고분자 복합 재료(50)에 기인한다. 도 3 또는 도 4에 도시된 고분자 복합 재료(50, 50')는 심재(52), 섬유층(54) 및 코팅층(56)을 포함하기 때문에 외력에 의해 쉽게 구부러지거나 변형되기 어렵다. 따라서, 제1 히팅 유닛(110)이 제2 축(y) 방향으로 소정 길이를 가지면, 도 3 또는 도 4에 도시된 고분자 복합 재료(50, 50')를 외력으로 구부러지게 하거나 변형하지 않고, 고분자 복합 재료(50, 50')를 이용할 수 있다.
제1 히팅 유닛(110)은 지지부(310a, 310b) 상에 장착될 수 있다. 제1 히팅 유닛(110)의 일 측, 즉 고분자 복합 재료(50)가 제공되는 측이 제1 지지부(310a) 상에 장착될 수 있다. 여기서, 제1 히팅 유닛(110)의 타 측, 즉 제1 히팅 유닛(110)에 의해 열처된 고분자 복합 재료(50)가 토출되는 측이 제2 지지부(310b) 상에 장착될 수 있다.
제1 지지부(310a)는 제1 운송부(330a) 상에 배치되고, 제1 운송부(330a)의 구동에 의해 제1 축(x) 방향으로 왕복 이동이 가능하다. 제1 지지부(310a)와 제1 히팅 유닛(110)의 일 측 사이에는 이동 레일(315a)이 배치될 수 있다. 이동 레일 (315a)은 제2 축(y) 방향으로 배치되고, 이동 레일(315a)에 제1 히팅 유닛(110)의 일 측이 장착된다. 이동 레일(315a)을 따라 제1 히팅 유닛(110)이 제2 축(y) 방향으로 왕복 이동 가능하다.
제1 히팅 유닛(110)의 타 측, 즉 제1 히팅 유닛(110)에 의해 열처된 고분자 복합 재료(50)가 토출되는 측에는 열처리된 고분자 복합 재료(50)가 토출되는 노즐이 구비될 수 있다.
제2 히팅 유닛(130)은 제1 히팅 유닛(110)의 타 측, 즉 제1 히팅 유닛(110)에 의해 열처된 고분자 복합 재료(50)가 토출되는 측에 인접하여 배치되고, 제1 히팅 유닛(110)에서 토출되는 고분자 복합 재료(50)에 열을 가한다. 제2 히팅 유닛(130)에서 가해지는 열은 제1 히팅 유닛(110)에서 가해지는 열보다 더 높은 온도이다. 제2 히팅 유닛(130)에서 가해지는 열은 고분자 복합 재료(50)에 최적의 유연성과 성형성을 주기 위한 것이고, 제1 히팅 유닛(110)에서 가해지는 열은 고분자 복합 재료(50)에 소정의 유연성을 주면서 고분자 복합 재료(50)가 소정의 길이를 갖는 제1 히팅 유닛(110) 내부를 이동하는데 큰 영향이 없는 이동성을 주기 위한 것이다.
제2 히팅 유닛(130)은 맨드렐(510) 상에 배치될 수 있다. 제1 히팅 유닛(110)에서 토출되는 고분자 복합 재료(50)가 맨드렐(510) 상에 형성되기 직전에, 제2 히팅 유닛(130)은 고분자 복합 재료(50)에 추가적인 열을 가하여 고분자 복합 재료(50)의 성형성을 높일 수 있다.
제2 히팅 유닛(130)은 고온의 공기(hot air) 또는 할로겐(halogen) 히터일 수 있다.
운송 장치(300)는 재료 공급 장치(100)를 운송한다. 운송 장치(300)는 재료 공급 장치(100)를 적어도 하나 이상의 축 방향으로 운송시킬 수 있다. 예를 들어, 도면에 도시된 바와 같이, 운송 장치(300)는 재료 공급 장치(100)를 제1 축(x) 방향으로 운송하고, 제2 축(y) 방향으로 운송할 수 있다.
운송 장치(300)는 재료 공급 장치(100)를 지지하는 지지부(310a, 310b), 지지부(310a, 310b)를 제1 축(x) 및 제2 축(y) 방향으로 운송하는 운송부(330a, 330b), 및 운송부(330a, 330b)를 구동시키는 모터(350, 370)와 타이밍 벨트(390)를 포함할 수 있다.
제1 모터(350)의 회전에 의해 타이밍 벨트(370)가 구동하고, 타이밍 벨트(370)의 구동에 의해 제1 및 제2 운송부(330a, 330b)가 제1 및 제2 지지부(310a, 310b)를 제1 축(x) 방향으로 왕복 이동시킨다. 제2 모터(370)에 의해 제2 운송부(330b)가 제2 지지부(310b)를 제2 축(y) 방향으로 왕복 이동 시킨다. 제2 지지부(310b)의 왕복 이동에 연동하여 제1 히팅 유닛(110)이 제2 축(y) 방향으로 왕복 이동 가능하다.
제1 및 제2 모터(350, 370)는 서보 모터(servo motor) 또는 스텝핑 모터(stepping motor)일 수 있다.
맨드렐 장치(500)는 맨드렐(510)과 제1 축(x)을 중심축으로 하여 맨드렐(510)을 회전시키기 위한 제3 모터(530)을 포함한다. 맨드렐(510)은 제3 모터(530)에 의해 제1 축(x)을 중심으로 회전 구동한다.
운송 장치(300)가 재료 공급 장치(100)를 제1 축(x) 또는/및 제2 축(y) 방향으로 운송하고, 맨드렐 장치(500)의 맨드렐(510)이 회전함에 따라, 재료 공급 장치(100)의 제1 히팅 유닛(110)에서 토출되는 고분자 복합 재료(50)가 회전하는 맨드렐(510)의 표면 상에 미리 설정된 소정의 형상대로 형성될 수 있다. 예를 들어, 도 5를 참조하면, 길게 홈이 파진 맨드렐(510, 510’) 상에 형성된 후 맨드렐(510, 510’)에서 분리됨으로써 고분자 복합 재료로 구성된 3D 입체물(50’’, 50’’’)이 생산될 수 있다.
본 발명에 일 실시 형태에 따른 3D 입체물 제조 로봇 시스템은, 도 6과 같은 트러스 구조를 갖는 3D 입체물(50’’’’)을 생산할 수 있다. 상기 트러스 구조를 갖는 3D 입체물(50’’’’)은 종래의 다른 3D 입체물과 달리 사출 공정이 불필요하거나 3D 입체물(50’’’’)의 일 부분에만 사출 공정을 수행하여 사출 비용을 줄일 수 있는 이점이 있다. 그 이유는, 상기 트러스 구조를 갖는 3D 입체물(50’’’’)은 도 3 또는 도 4에 도시된 고분자 복합 재료(50, 50’)로 구성될 수 있기 때문이다. 도 3 또는 도 4에 도시된 고분자 복합 재료(50, 50’)는 강성이 뛰어나기 때문에, 상기 트러스 구조를 갖는 3D 입체물(50’’’’) 외부에 사출 공정에 의해 형성되는 몰딩을 형성하지 않아도 된다. 한편, 상기 트러스 구조를 갖는 3D 입체물(50’’’’) 외부에 몰딩을 형성하더라도, 도 7에 도시된 바와 같이, 상기 트러스 구조를 갖는 3D 입체물(50’’’’)의 외부 전체에 몰딩(60)을 형성할 필요가 없고, 상기 트러스 구조를 갖는 3D 입체물(50’’’’)의 외부 중 일부에만 몰딩(60)을 형성해도 된다.
도 8은 본 발명의 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템의 일 측면도이다.
도 8에 도시된 본 발명의 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템은, 도 1에 도시된 본 발명의 일 실시 형태에 따른 3D 입체물 제조 로봇 시스템의 맨드렐 장치(500)가 복수로 구비된다. 즉, 도 8에 도시된 본 발명의 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템은, 복수의 맨드렐 장치(500-1, 500-2, 500-3, 500-4, 500-5)를 포함한다.
복수의 맨드렐 장치(500-1, 500-2, 500-3, 500-4, 500-5)는 제3 축(z) 방향을 따라 일렬로 배열될 수 있다. 또한, 복수의 맨드렐 장치(500-1, 500-2, 500-3, 500-4, 500-5)는, 도 8에 도시된 것과는 달리, 제1 축(x) 방향을 따라 일렬로 배열될 수도 있다. 따라서, 복수의 맨드렐 장치(500-1, 500-2, 500-3, 500-4, 500-5)의 일렬로 배열된 방향이 특정 방향으로 한정되지 않는다.
도 8에 도시된 본 발명의 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템은, 재료 공급 장치(100)가 제3 축(z) 방향으로 이동하면서 복수의 맨드렐 장치(500-1, 500-2, 500-3, 500-4, 500-5)에 고분자 복합 재료(50)를 형성한다. 따라서, 도 8에 도시된 본 발명의 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템은 맨드렐 장치(500)의 맨드렐(510) 표면에 형성되는 고분자 복합 재료(50)로 구성된 3D 입체물을 대량 생산할 수 있는 이점이 있다.
특히, 도 8에 도시된 본 발명의 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템은, 도 5에 도시된 3D 입체물(50’’, 50’’’)뿐만 아니라, 도 6 또는 도 7에 도시된 트러스 구조를 갖는 3D 입체물(50’’’’)을 대량 생산할 수 있는 이점이 있다.
도 9는 본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템의 평면도이고, 도 10은 도 9에 도시된 본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템의 일 측면도이다.
도 9 및 도 10에 도시된 본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템은, 제1 재료 공급 장치(100a)와 제2 재료 공급 장치(100b)를 포함한다. 또한, 본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템은, 제1 재료 공급 장치(100a)와 제2 재료 공급 장치(100b) 사이에 배치된 맨드렐 장치(500)를 포함한다.
제1 재료 공급 장치(100a)와 제2 재료 공급 장치(100b)가 동시에 하나의 멘드렐(510)의 표면에 고분자 복합 재료(50)를 형성하기 때문에, 도 1에 도시된 3D 입체물 제조 로봇 시스템보다 더 신속하게 3D 입체물을 생산할 수 있는 이점이 있다.
제1 재료 공급 장치(100a)은 제1 히팅 유닛(110a)을 포함하고, 제2 재료 공급 장치(100b)도 제1 히팅 유닛(110b)을 포함한다. 여기서, 제1 히팅 유닛(110a, 110b)은, 도 1에 도시된 제1 히팅 유닛(110)과 동일하되, 배치 방향이 서로 마주보도록 배치될 수 있다.
본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템은, 제2 히팅 유닛(130)을 포함한다. 제2 히팅 유닛(130)은 제1 재료 공급 장치(100a)의 제1 히팅 유닛(110a)의 타 측과 제2 재료 공급 장치(100b)의 제1 히팅 유닛(110b)의 타 측 사이에 배치되어 제1 재료 공급 장치(100a)의 제1 히팅 유닛(110a)과 제2 재료 공급 장치(100b)의 제1 히팅 유닛(110b)의 타 측에서 토출되는 두 개의 고분자 복합 재료(50)에 동시에 열을 가한다.
본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템은, 운송 장치(300’)를 포함한다. 운송 장치(300’)는 제1 재료 공급 장치(100a)와 제2 재료 공급 장치(100b)를 제1 축(x) 또는/및 제2 축(y) 방향으로 운송한다.
운송 장치(300’)는 제1 지지부(310a), 제2 지지부(310b), 제3 지지부(310c) 및 제4 지지부(310d)를 포함한다. 제1 지지부(310a)와 제2 지지부(310b)는 제1 재료 공급 장치(100a)의 제1 히팅 유닛(110a)을 지지하고 운반하며, 제3 지지부(310c)와 제4 지지부(310d)는 제2 재료 공급 장치(100b)의 제1 히팅 유닛(110b)을 지지하고 운반한다.
제1 지지부(310a)는 제1 재료 공급 장치(100a)의 제1 히팅 유닛(110a)의 일 측을 지지하고, 제2 지지부(310b)는 제1 재료 공급 장치(100a)의 제1 히팅 유닛(110a)의 타 측을 지지한다. 제1 지지부(310a)와 제1 히팅 유닛(110a)의 일 측 사이에는 이동 레일이 배치될 수 있다. 제1 히팅 유닛(110a)의 일 측이 이동 레일을 따라 제2 축(y) 방향으로 왕복 이동이 가능하다.
제3 지지부(310c)는 제2 재료 공급 장치(100b)의 제1 히팅 유닛(110b)의 일 측을 지지하고, 제4 지지부(310d)는 제2 재료 공급 장치(100b)의 제1 히팅 유닛(110b)의 타 측을 지지한다. 제3 지지부(310c)와 제1 히팅 유닛(110b)의 일 측 사이에는 이동 레일이 배치될 수 있다. 제1 히팅 유닛(110b)의 일 측이 이동 레일을 따라 제2 축(y) 방향으로 왕복 이동이 가능하다.
운송 장치(300’)는 제1 운송부(330a), 제2 운송부(330b) 및 제3 운송부(330c)를 포함한다. 제1 운송부(330a) 상에는 제1 지지부(310a)가 배치되며, 제1 운송부(330a)에 의해서 제1 지지부(310a)는 제1 축(x) 또는/및 제2 축(y) 방향으로 이동된다. 제2 운송부(330b) 상에는 제3 지지부(310c)가 배치되며, 제2 운송부(330b)에 의해서 제3 지지부(310c)는 제1 축(x) 또는/및 제2 축(y) 방향으로 이동된다. 제3 운송부(330c)는 제1 운송부(330a)와 제2 운송부(330b) 사이에 배치되고, 제3 운송부(330c) 상에 제2 지지부(310b)와 제4 지지부(310d)가 배치된다. 제3 운송부(330c)에 의해 제2 지지부(310b)와 제4 지지부(310d)가 서로 독립적으로 제1 축(x) 또는/및 제2 축(y) 방향으로 이동된다.
운송 장치(300’)는 제1 내지 제3 운송부(330a, 330b, 330c)를 구동하기 위한 복수의 모터(350a, 350b, 370a, 370b)를 포함한다. 복수의 모터(350a, 350b, 370a, 370b)는 서보 모터 또는 스텝핑 모터일 수 있다.
도 10에 도시된 본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템은, 도 5에 도시된 3D 입체물(50’’, 50’’’)뿐만 아니라 도 6 또는 도 7에 도시된 트러스 구조를 갖는 3D 입체물(50’’’’)을, 도 1에 도시된 실시 형태에 따른 3D 입체물 제조 로봇 시스템보다 더 신속하게 생산할 수 있는 이점이 있다.
도 11은 본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템의 평면도이다.
도 11에 도시된 본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템은, 도 9에 도시된 본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템의 맨드렐 장치(500)가 복수로 구비된다. 즉, 도 11에 도시된 본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템은, 복수의 맨드렐 장치(500-1, 500-2, 500-3)를 포함한다.
복수의 맨드렐 장치(500-1, 500-2, 500-3)는 제1 축(x) 방향을 따라 일렬로 배열될 수 있다. 또한, 복수의 맨드렐 장치(500-1, 500-2, 500-3)는, 도 11에 도시된 것과는 달리, 제3 축(z) 방향을 따라 일렬로 배열될 수도 있다. 따라서, 복수의 맨드렐 장치(500-1, 500-2, 500-3)의 일렬로 배열된 방향이 특정 방향으로 한정되지 않는다.
도 11에 도시된 본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템은, 제1 및 제2 재료 공급 장치(100a, 100b)가 제1 축(x) 방향으로 이동하면서 복수의 맨드렐 장치(500-1, 500-2, 500-3)에 고분자 복합 재료(50)를 형성한다. 따라서, 도 11에 도시된 본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템은 맨드렐 장치(500)의 맨드렐(510) 표면에 형성되는 고분자 복합 재료(50)로 구성된 3D 입체물을 대량 생산할 수 있는 이점이 있다.
특히, 도 11에 도시된 본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템은, 도 5에 도시된 3D 입체물(50’’, 50’’’)뿐만 아니라 도 6 또는 도 7에 도시된 트러스 구조를 갖는 3D 입체물(50’’’’)을 대량 생산할 수 있는 이점이 있다.
도 12는 본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템의 평면도이고, 도 13은 도 12에 도시된 본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템의 일 측면도이다.
도 12 내지 도 13을 참조하면, 본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템은, 재료 공급 장치(100’), 운송 장치(300’’) 및 맨드렐 장치(500)을 포함한다.
재료 공급 장치(100’)는 제1 히팅 장치(110’), 제2 히팅 장치(130), 및 오븐(150)을 포함한다.
제1 히팅 장치(110’)는 오븐(150)으로부터 제공되는 고분자 복합 물질(50)을 열처리하여 맨드렐 장치(500)의 맨드렐(510)의 표면으로 토출한다.
제1 히팅 장치(110’)는 일 방향으로 곧게 또는 일직선으로 형성된 파이프 히터일 수 있다.
제1 히팅 장치(110’)의 일 측, 즉 오븐(150)으로부터 고분자 복합 재료(50)가 공급되는 측을 기준으로 소정 각도 회전할 수 있다. 여기서, 제1 히팅 장치(110’)는 소정 각도 회전 시, 제3 축(z)과 수직을 유지할 수 있다.
제1 히팅 장치(110’)의 일 측은 이동 레일(315a)에 장착되어 제2 축(y) 방향으로 왕복 운동이 가능하다.
제2 히팅 장치(130)는 도 1에 도시된 제2 히팅 장치(130)와 동일한 것일 수 있다. 여기에 추가적으로 제2 히팅 장치(130)는 제1 히팅 장치(110’)의 타 측, 즉 고분자 복합 재료(50)가 토출되는 측의 이동과 함께 이동할 수도 있다.
오븐(150)은 재료 공급 장치(100’)로 공급되는 고분자 복합 재료(50)를 열 처리하기 위한 장비이다. 오븐(150)은 도 12 및 도 13에 도시된 3D 입체물 제조 로봇 시스템에서 특히 유용하다. 그 이유는, 앞서 다른 실시 형태들과 달리, 본 실시 형태의 제1 히팅 유닛(110’)은 일 측을 기준으로 소정 각도 회전하는데, 원 상태의 고분자 복합 재료(50)는 강성이 크기 때문이다. 원 상태의 고분자 복합 재료(50)가 제1 히팅 유닛(110’)으로 그대로 제공되면, 제1 히팅 유닛(110’)이 원 상태의 고분자 복합 재료(50)의 강성으로 인해 소정 각도로 회전하기 어렵다.
운송 장치(300’’)는 제1 지지대(310a)와 제2 지지대(310b)를 포함한다.
제1 지지대(310a)는 제1 히팅 유닛(110’)의 일 측을 지지한다. 제1 지지대(310a)와 제1 히팅 유닛(110’)의 일 측 사이에는 이동 레일(315a)이 배치될 수 있다. 이동 레일(315a)은 제2 축(y) 방향으로 배치된다. 이동 레일(315a)에 제1 히팅 유닛(110’)의 일 측이 장착되어 제2 축(y) 방향으로 전진 또는 후진 이동한다.
제2 지지대(310b)는 운송부(330) 상에 배치되고, 운송부(330)의 구동에 의해 제1 축(x)으로 왕복 운동 가능하다. 제2 지지대(310b)는 제1 히팅 유닛(110’)의 타 측을 지지한다. 제2 지지대(310b)의 제1 축(x) 방향으로 이동에 연동하여 제1 히팅 유닛(110’)의 타 측이 제1 축(x) 방향으로 이동한다.
운송 장치(300’’)는 운송부(330)를 제1 축(x) 방향으로 왕복 이동시키는 제1 모터(350)를 포함한다. 또한, 운송 장치(300’’)는 제2 지지대(310b)를 제2 축(y) 방향으로 왕복 이동시키는 제2 모터(370)를 포함할 수 있다.
맨드렐 장치(500)는 맨드렐(510)과 제3 모터(530)을 포함한다. 맨드렐 장치(500)는 도 1에서 설명한 맨드렐 장치(500)와 동일하므로, 구체적인 설명은 생략한다.
도 12 및 도 13에 도시된 3D 입체물 제조 로봇 시스템은, 도 5에 도시된 3D 입체물(50’’, 50’’’)뿐만 아니라, 도 6 또는 도 7에 도시된 3D 입체물(50’’’’)을 생산할 수 있다.
도 14는 본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템의 평면도이다.
도 14에 도시된 본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템은, 도 13에 도시된 본 발명의 또 실시 형태에 따른 3D 입체물 제조 로봇 시스템의 맨드렐 장치(500)가 복수로 구비된다. 즉, 도 14에 도시된 본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템은, 복수의 맨드렐 장치(500-1, 500-2, 500-3)를 포함한다.
복수의 맨드렐 장치(500-1, 500-2, 500-3)는 제1 축(x) 방향을 따라 일렬로 배열될 수 있다. 또한, 복수의 맨드렐 장치(500-1, 500-2, 500-3)는, 도 14에 도시된 것과는 달리, 제3 축(z) 방향을 따라 일렬로 배열될 수도 있다. 따라서, 복수의 맨드렐 장치(500-1, 500-2, 500-3)의 일렬로 배열된 방향이 특정 방향으로 한정되지 않는다.
도 14에 도시된 본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템은, 재료 공급 장치(100’)가 제1 축(x) 방향으로 이동하는 복수의 맨드렐 장치(500-1, 500-2, 500-3)에 고분자 복합 재료(50)를 형성한다. 따라서, 도 14에 도시된 본 발명의 또 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템은 맨드렐 장치(500)의 맨드렐(510) 표면에 형성되는 고분자 복합 재료(50)로 구성된 3D 입체물을 대량 생산할 수 있는 이점이 있다.
특히, 도 8에 도시된 본 발명의 다른 실시 형태에 따른 3D 입체물 제조 로봇 시스템은, 도 5에 도시된 3D 입체물(50’’, 50’’’)뿐만 아니라, 도 6 또는 도 7에 도시된 트러스 구조를 갖는 3D 입체물(50’’’’)을 대량 생산할 수 있는 이점이 있다.
상술한 설명과 첨부된 도면은 본 발명의 가능한 실시예를 보여주고 있지만, 본 발명의 권리범위는 오로지 첨부된 특허청구범위에 의해 정의된다. 즉, 특허청구범위에 기재된 본 발명의 범위나 사상으로부터 벗어나지 않는 한 다양한 부가, 변형 및 대체가 이루어질 수 있고, 다른 특정 형태, 구조, 배치, 성분, 크기로 구현되거나, 기타 요소, 물질, 부품과 함께 구현될 수 있을 것이다. 또한, 본 발명의 기본적인 원리를 벗어나지 않으면서 특정 환경이나 동작 조건에 적응될 수 있을 것이며, 이는 당업자에 자명할 것이다.
[부호의 설명]
50……고분자 복합 재료
100‥‥‥재료 공급 장치
110……제1 히팅 유닛
130……제2 히팅 유닛
150……오븐
300……운송 장치
500……맨드렐 장치
Claims (18)
- 제1 축(x)을 중심으로 회전하는 맨드렐;고분자 화합물 또는 섬유재 중 적어도 하나를 포함하는 심재와 상기 심재를 둘러싸는 섬유층과 코팅층을 포함하는 고분자 복합 재료를 공급받고, 공급된 상기 고분자 복합 재료를 열 처리하여 상기 멘드렐의 표면으로 토출하는 재료 공급 장치; 및상기 재료 공급 장치를 상기 제1 축(x) 방향 및 상기 제1 축과 수직한 제2 축(y) 방향으로 왕복 이동시키는 운송 장치;를 포함하는, 3D 입체물 제조 로봇 시스템.
- 제 1 항에 있어서, 상기 재료 공급 장치는,상기 고분자 복합 재료를 열처리하는 제1 히팅 유닛; 및상기 맨드렐 상에 배치되고 상기 제1 히팅 유닛에서 토출되는 상기 고분자 복합 재료를 열처리하는 제2 히팅 유닛;을 포함하는, 3D 입체물 제조 로봇 시스템.
- 제 1 항에 있어서,상기 재료 공급 장치는, 일 측으로 공급되는 상기 고분자 복합 재료를 열처리하여 타 측으로 토출하는 제1 히팅 유닛을 포함하고,상기 운송 장치는,상기 제1 히팅 유닛의 일 측을 지지하는 제1 지지부;상기 제1 히팅 유닛의 타 측을 지지하는 제2 지지부;상기 제1 지지부를 상기 제1 축 방향으로 왕복 이동시키는 제1 운송부;상기 제2 지지부를 상기 제1 축 방향으로 왕복 이동시키는 제2 운송부; 및제1 운송부와 제2 운송부를 구동시키고, 상기 제1 지지부와 상기 제2 지지부를 상기 제2 축 방향으로 왕복 이동시키는 복수의 모터;를 포함하는, 3D 입체물 제조 로봇 시스템.
- 제 3 항에 있어서,상기 제1 지지부와 상기 제1 히팅 유닛의 일 측 사이에 배치되고, 상기 제2 축 방향으로 배치된 이동 레일을 더 포함하고,상기 제1 히팅 유닛의 일 측은 상기 이동 레일을 따라 이동하는, 3D 입체물 제조 로봇 시스템.
- 제 1 항에 있어서,상기 멘드렐은 복수이고,상기 복수의 멘드렐이 일 축 방향으로 일렬로 배치되고,상기 재료 공급 장치가 상기 일 축 방향으로 이동하면서 상기 복수의 멘드렐의 표면에 상기 고분자 복합 재료를 형성하는, 3D 입체물 제조 로봇 시스템.
- 제 5 항에 있어서,상기 일 축 방향은, 상기 제1 축 방향, 또는 상기 제1 축 및 상기 제2 축과 수직한 제3 축 방향인, 3D 입체물 제조 로봇 시스템.
- 제1 축(x)을 중심으로 회전하는 맨드렐;상기 멘드렐을 기준으로 일 측에 배치되고, 고분자 화합물 또는 섬유재 중 적어도 하나를 포함하는 심재와 상기 심재를 둘러싸는 섬유층과 코팅층을 포함하는 고분자 복합 재료를 공급받고, 공급된 상기 고분자 복합 재료를 열 처리하여 상기 멘드렐의 표면으로 토출하는 제1 재료 공급 장치;상기 멘드렐을 기준으로 타 측에 배치되고, 상기 고분자 복합 재료를 공급받고, 공급된 상기 고분자 복합 재료를 열 처리하여 상기 멘드렐의 표면으로 토출하는 제2 재료 공급 장치; 및상기 제1 및 제2 재료 공급 장치를 상기 제1 축(x) 방향 및 상기 제1 축과 수직한 제2 축(y) 방향으로 왕복 이동시키는 운송 장치;를 포함하는, 3D 입체물 제조 로봇 시스템.
- 제 7 항에 있어서,상기 제1 재료 공급 장치는, 상기 고분자 복합 재료를 열처리하는 제1 히팅 유닛을 포함하고,상기 제2 재료 공급 장치는, 상기 고분자 복합 재료를 열처리하는 제1 히팅 유닛을 포함하고,상기 맨드렐 상에 배치되고, 상기 제1 재료 공급 장치의 제1 히팅 유닛에서 토출되는 상기 고분자 복합 재료와 상기 제2 재료 공급 장치의 제2 히팅 유닛에서 토출되는 상기 고분자 복합 재료를 동시에 열처리하는 제2 히팅 유닛을 더 포함하는, 3D 입체물 제조 로봇 시스템.
- 제 7 항에 있어서,상기 멘드렐은 복수이고,상기 복수의 멘드렐이 일 축 방향으로 일렬로 배치되고,상기 제1 및 제2 재료 공급 장치가 상기 일 축 방향으로 이동하면서 상기 복수의 멘드렐의 표면에 상기 고분자 복합 재료를 형성하는, 3D 입체물 제조 로봇 시스템.
- 제 9 항에 있어서,상기 일 축 방향은, 상기 제1 축 방향, 또는 상기 제1 축 및 상기 제2 축과 수직한 제3 축 방향인, 3D 입체물 제조 로봇 시스템.
- 제1 축(x)을 중심으로 회전하는 맨드렐;고분자 화합물 또는 섬유재 중 적어도 하나를 포함하는 심재와 상기 심재를 둘러싸는 섬유층과 코팅층을 포함하는 고분자 복합 재료를 공급받고, 공급된 상기 고분자 복합 재료를 열 처리하는 오븐;상기 오븐으로부터 열처리된 상기 고분자 복합 재료를 제공받아 열 처리하여 상기 멘드렐의 표면으로 상기 고분자 복합 재료를 토출하는 제1 히팅 유닛; 및상기 제1 히팅 유닛의 일 측과 타 측을 상기 제1 축과 수직한 제2 축(y) 방향으로 왕복 이동시키고, 상기 제1 히팅 유닛의 타 측을 상기 제1 히팅 유닛의 일 측을 기준으로 소정 각도 회전시키는 운송 장치;를 포함하는, 3D 입체물 제조 로봇 시스템.
- 제 11 항에 있어서,상기 멘드렐 상에 배치되고, 상기 제1 히팅 유닛에서 토출되는 상기 고분자 복합 재료를 열처리하는 제2 히팅 유닛을 더 포함하는, 3D 입체물 제조 로봇 시스템.
- 제 11 항에 있어서,상기 멘드렐은 복수이고,상기 복수의 멘드렐이 일 축 방향으로 일렬로 배치되고,상기 복수의 멘드렐이 상기 일 축 방향으로 이동되면서 상기 복수의 멘드렐의 표면에 상기 고분자 복합 재료가 형성되는, 3D 입체물 제조 로봇 시스템.
- 제 13 항에 있어서,상기 일 축 방향은, 상기 제1 축 방향, 또는 상기 제1 축 및 상기 제2 축과 수직한 제3 축 방향인, 3D 입체물 제조 로봇 시스템.
- 제 1 항 내지 제 14 항 중 어느 한 항에 있어서,상기 고분자 복합 재료는, 상기 섬유층이 상기 심재를 둘러싸고, 상기 코팅층이 상기 섬유층을 둘러싸는, 3D 입체물 제조 로봇 시스템.
- 제 1 항 내지 제 14 항 중 어느 한 항에 있어서,상기 고분자 복합 재료는, 상기 코팅층이 상기 심재를 둘러싸고, 상기 섬유층이 상기 코팅층을 둘러싸는, 3D 입체물 제조 로봇 시스템.
- 제 1 항 내지 제 14 항 중 어느 한 항의 3D 입체물 제조 로봇 시스템에 의해서 제조되고, 트러스 구조를 갖는, 3D 입체물.
- 제 17 항에 있어서,상기 고분자 화합물은 폴리 젖산(PolyLactic Acid; PLA), 폴리에틸렌(PolyEthylene; PE), 폴리프로필렌(PolyPropylene; PP), 폴리아미드(PolyAmide; PA), 에이비에스(Acrylonitrile-Butadiene-Styrene; ABS), 폴리메타크릴산메칠(Poly Methyl MethAcrylate; PMMA), 폴리카보네이트(PolyCarbonate; PC), 폴리에틸렌테레프탈레이트(PolyEthylene Terephthalate; PET), 폴리부틸렌테레프탈레이드(PolyButylene Terephthalate; PBT), 폴리에테르이미드(PolyEtherImide; PEI), 폴리페닐렌설파이드(PolyPhenylene Sulfide; PPS), 폴리에텔에텔케톤(PolyEtherEtherKetone; PEEK), 에틸렌비닐아세테이트(Ethylene Vinyl Acetate; EVA), 폴리우레탄(PolyUrethane; PU), 에폭시(EPoxy; EP), 불포화 폴리에스터(Unsaturated Polyester; UP), 폴리이미드(PolyImide; PI), 페놀릭(PHenolic; PF) 중 적어도 하나 이상을 포함하는, 3D 입체물.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170027892A KR101944748B1 (ko) | 2017-03-03 | 2017-03-03 | 고분자 복합 재료를 활용한 3d 입체물 및 이의 제조 로봇 시스템 |
KR10-2017-0027892 | 2017-03-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2018160033A2 true WO2018160033A2 (ko) | 2018-09-07 |
WO2018160033A3 WO2018160033A3 (ko) | 2018-10-25 |
Family
ID=63370742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/002534 WO2018160033A2 (ko) | 2017-03-03 | 2018-03-02 | 고분자 복합 재료를 활용한 3d 입체물 및 이의 제조 로봇 시스템 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101944748B1 (ko) |
WO (1) | WO2018160033A2 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111270841B (zh) * | 2020-03-04 | 2024-08-30 | 杭州中为光电技术有限公司 | 环氧地坪施工机器人 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5437899A (en) * | 1992-07-14 | 1995-08-01 | Composite Development Corporation | Structural element formed of a fiber reinforced thermoplastic material and method of manufacture |
US6776602B2 (en) * | 1999-04-20 | 2004-08-17 | Stratasys, Inc. | Filament cassette and loading system |
KR101320932B1 (ko) * | 2011-12-19 | 2013-10-22 | 한국기계연구원 | 세포배양지지체 제조 장치 |
KR20150042660A (ko) | 2013-10-11 | 2015-04-21 | 주식회사 로킷 | 에프디엠 방식의 쓰리디 프린터 용 세라믹/피엘에이 혼합 필라멘트 |
US9102099B1 (en) * | 2014-02-05 | 2015-08-11 | MetaMason, Inc. | Methods for additive manufacturing processes incorporating active deposition |
CN204076839U (zh) * | 2014-02-12 | 2015-01-07 | 汕头大学 | 一种多喷头3d打印机 |
EP3090811B1 (en) * | 2015-03-23 | 2021-07-28 | SCM Group S.p.A. | Machining centre |
-
2017
- 2017-03-03 KR KR1020170027892A patent/KR101944748B1/ko active IP Right Grant
-
2018
- 2018-03-02 WO PCT/KR2018/002534 patent/WO2018160033A2/ko active Application Filing
Also Published As
Publication number | Publication date |
---|---|
KR20180101094A (ko) | 2018-09-12 |
KR101944748B1 (ko) | 2019-02-07 |
WO2018160033A3 (ko) | 2018-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017122942A1 (ko) | 형성 가능한 플라스틱 재료로 이루어진 소재의 토출을 제어하는 헤드 유닛 및 헤드 서플라이 유닛 | |
CN105579220B (zh) | 用于纤维增强的添加制造的装置 | |
CN102834248B (zh) | 制造敷设纤维织品的装置及方法 | |
WO2017122941A1 (ko) | 헤드 유닛의 이동과, 형성 가능한 플라스틱 재료의 텐션 및 온도를 제어하는 트랜스포머 | |
WO2016175512A1 (ko) | 형성 가능한 플라스틱 재료를 위한 3d 입체물 제조 로봇 | |
US10456949B2 (en) | Device and method for producing fibre boards | |
CN102171026A (zh) | 堆布和悬垂增强纤维结构段以制造异型坯的设备及方法 | |
CN105829090B (zh) | 成形工具、成形装置和使含增强纤维的半成品成型的方法 | |
WO2014104730A1 (ko) | 연속 탄소섬유 강화 열가소성 프리프레그의 제조 방법 | |
US11413806B2 (en) | Method for fabricating a 3D composite structure including smoothing of support structures | |
WO2013105748A1 (ko) | 열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩 방법 및 그를 이용한 고압용기 및 그 제조방법 | |
US11565464B2 (en) | System for deposition and fabrication of 3D integrated composite structures | |
US20200324460A1 (en) | Method for fabricating multi-material structure for 3d integrated composite structures | |
US20060169396A1 (en) | Method for producing a three-dimensional preform | |
WO2018160033A2 (ko) | 고분자 복합 재료를 활용한 3d 입체물 및 이의 제조 로봇 시스템 | |
WO2018151548A1 (ko) | 고분자 복합 재료를 활용한 3d 입체물 제조 로봇 시스템 | |
WO2019107579A1 (ko) | 다이렉트 프리폼 제조용 섬유 적층 장치 및 방법 | |
KR102041980B1 (ko) | 헤드 유닛 | |
IT201900015297A1 (it) | Apparecchiatura e metodo per la stampa tridimensionale di materiali compositi a fibra continua | |
KR20190088104A (ko) | 3차원 입체물 제조 로봇 시스템 | |
KR102036600B1 (ko) | 3차원 입체물 제조 로봇 시스템을 위한 오븐 유닛 | |
KR101914699B1 (ko) | 기계적 및 기능적 성능의 조절이 가능한 하이브리드 재료 | |
KR101975936B1 (ko) | 고분자 복합 재료를 활용한 3d 입체물의 제조 로봇 시스템 | |
KR20190088105A (ko) | 3d 입체물 제조 로봇 시스템 | |
CN113733549A (zh) | 一种复合部件的添材制造方法和复合部件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18761696 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18761696 Country of ref document: EP Kind code of ref document: A2 |