WO2021137457A1 - 비함침 타입의 연속섬유 복합재 제조장치 - Google Patents

비함침 타입의 연속섬유 복합재 제조장치 Download PDF

Info

Publication number
WO2021137457A1
WO2021137457A1 PCT/KR2020/017663 KR2020017663W WO2021137457A1 WO 2021137457 A1 WO2021137457 A1 WO 2021137457A1 KR 2020017663 W KR2020017663 W KR 2020017663W WO 2021137457 A1 WO2021137457 A1 WO 2021137457A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber reinforcement
resin
fiber composite
type continuous
composite manufacturing
Prior art date
Application number
PCT/KR2020/017663
Other languages
English (en)
French (fr)
Inventor
임준혁
김민혁
김민아
Original Assignee
한화솔루션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190178890A external-priority patent/KR102217071B1/ko
Priority claimed from KR1020190178894A external-priority patent/KR102265968B1/ko
Application filed by 한화솔루션 주식회사 filed Critical 한화솔루션 주식회사
Publication of WO2021137457A1 publication Critical patent/WO2021137457A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/04Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape in flat form, e.g. fan-like, sheet-like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/14Twisting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing

Definitions

  • the present invention relates to a non-impregnated type continuous fiber composite manufacturing apparatus, characterized in that the resin is applied while moving parallel to the ground, rather than being impregnated in the resin bath while the fiber reinforcement is bent. Due to these characteristics, the problem such as tearing of the edge part of the continuous fiber composite does not occur, it is possible to preserve the flexible characteristics, and the bending of the continuous fiber composite while continuously maintaining the unidirectional properties of the fiber reinforcement There is an advantage in that the characteristics can be improved to the required level of the target part.
  • a fiber-reinforced polymer composite material is made by impregnating a fiber as a reinforcing material with a polymer resin as a base material.
  • Polymer composites have many advantages such as high strength compared to weight, chemical stability, and high fatigue limit, and are expanding their application to the aerospace industry and various automotive parts that require excellent weight-to-weight ratio.
  • pultrusion is a process of molding a product by drawing through a die while impregnating the continuously supplied fiber bundle with resin.
  • Pultrusion a method known for several decades for the continuous production of endless composite profiles with such a uniform cross-section, is that the fibers, which are combined into bundles, so-called rovings, are made of thermosetting or thermoplastic matrix materials, e.g. For example, it is impregnated with a polyurethane or epoxy resin and subsequently cured in a curing tool to form a composite profile, mostly through heat treatment.
  • the fibers may be, inter alia, glass, carbon, basalt, or aramid fibers.
  • the rovings are pulled over deflection rollers through a pulling unit, an open impregnating bath filled with a matrix material formed into a liquid by a so-called puller. After the open impregnation bath, the impregnated rovings enter a hardening tool, which comprises one or more thermal chambers.
  • pultrusion systems have been known for many years, in which rovings are pulled without deflection through the injection box.
  • These pultrusion systems include at least one slit-shaped roving feeder for feeding the fibers at the front end of the housing in the direction of movement of the fibers.
  • the fibers are impregnated with a liquid matrix and pulled by a pulling unit.
  • the impregnated fiber portions leave the injection box through a slit-shaped conveying opening at the rear end of the housing in the direction of movement of the fibers and subsequently enter the curing tool.
  • the conventional pultrusion molding apparatus includes a fiber supply unit 1 , a guide unit 2 , an impregnation unit 3 , a mold forming unit 4 , a hardening unit 5 , and a cutting unit 6 .
  • the fiber supply unit 1 is provided with a plurality of winding rolls 1a, and the fiber reinforcement 10 wound on the winding roll 1a flows into the impregnation unit 3 through the guide unit 2 .
  • the fiber reinforcement 10 impregnated in the resin in the impregnated part 3 is heated and cured through the mold forming part 4 and the hardening part 5, and is cut in the cutting part 6 according to a desired shape.
  • the impregnated part 3 is in the form of a bath, and a plurality of rolls 3a are provided therein.
  • the central axes of the plurality of rolls 3a have different heights from the vertical direction, and the fiber reinforcement 10 is disposed to have a curve as shown in FIG. 2 .
  • FIG. 3 schematically shows another form of the roll 3a of the impregnated part 3 in the conventional pultrusion molding apparatus.
  • a protrusion 3b for supporting the fiber reinforcement 10 is formed to support the bent portion of the fiber reinforcement 10 .
  • the conventional impregnated portion 3 is inevitably bent due to the structural characteristics of the fiber reinforcement 10 to form an edge, and the edge portion of the completed continuous fiber composite material is unformed or torn. were many
  • the present invention relates to a non-impregnated type continuous fiber composite manufacturing apparatus, characterized in that the resin is applied while moving parallel to the ground, rather than being impregnated in the resin bath while the fiber reinforcement is bent. Due to these characteristics, the problem such as tearing of the edge part of the continuous fiber composite does not occur, it is possible to preserve the flexible characteristics, and the bending of the continuous fiber composite while continuously maintaining the unidirectional properties of the fiber reinforcement There is an advantage in that the characteristics can be improved to the required level of the target part.
  • a non-impregnated type continuous fiber composite manufacturing apparatus includes: a fiber supply unit for supplying a plurality of extended fiber reinforcements; a coating part through which the fiber reinforcement moves and passes parallel to the ground, the resin is sprayed on the fiber reinforcement; and a mold forming part having heat, through which the fiber reinforcement is passed, wherein the coating part includes: a housing part through which the fiber reinforcement is passed; a roller part positioned inside the housing part, the fiber reinforcement abutting to move the fiber reinforcement in the longitudinal direction; And it is located inside the housing portion, the injection portion for spraying the resin toward the fiber reinforcement; includes.
  • the housing portion of the non-impregnated type continuous fiber composite manufacturing apparatus includes an inlet through which the fiber reinforcement is introduced and an outlet through which the fiber reinforcement to which the resin is applied is discharged, and the lower end of the inlet and the outlet
  • the height in the vertical direction from the ground is the same as the height in the vertical direction from the ground of the surface of the roller part.
  • the injection part of the non-impregnated type continuous fiber composite manufacturing apparatus according to the present invention is coupled to the upper surface of the housing part inside the housing part and sprays the resin downward.
  • the injection part of the non-impregnated type continuous fiber composite manufacturing apparatus according to the present invention is formed to extend perpendicular to the longitudinal direction of the fiber reinforcement.
  • roller portion of the non-impregnated type continuous fiber composite manufacturing apparatus according to the present invention is formed to extend in the longitudinal direction, it is a timing belt type in which the belt is rotated.
  • the belt of the non-impregnated type continuous fiber composite manufacturing apparatus rotates due to a pair of rollers spaced apart from each other at a predetermined interval in the longitudinal direction.
  • the inlet of the non-impregnated type continuous fiber composite manufacturing apparatus has an upper inlet and a lower inlet, and the upper inlet and the lower inlet are inclined while having a predetermined angle with the fiber reinforcement.
  • the distance in the vertical direction becomes narrower.
  • roller of the non-impregnated type continuous fiber composite manufacturing apparatus according to the present invention is replaceable.
  • the non-impregnated type continuous fiber composite manufacturing apparatus further comprises a twist part for imparting twist to the resin-coated fiber reinforcement, wherein the twist part, the resin-coated fiber reinforcement a body part through; and a screw portion rotating within the body portion, wherein the resin-coated fiber reinforcement is rotated and twisted along the inner surface of the screw portion.
  • the screw portion of the non-impregnation type continuous fiber composite manufacturing apparatus has an oblique thread, and the resin-coated fiber reinforcement is rotated and twisted along the inner surface of the thread.
  • the resin is applied to the fiber reinforcement in the form of spraying the resin from the top in the housing, not the conventional bath type, and due to the configuration of the roller part, the fiber reinforcement is moved in the longitudinal direction so as to be parallel to the ground
  • the resin is applied without bending the fiber reinforcement. Due to this, problems such as tearing of the edge portion of the continuous fiber composite material do not occur, and it is possible to preserve the flexible characteristics. That is, there is an advantage in that the flexural properties of the continuous fiber composite material can be improved to the required level of the target part while continuously maintaining the unidirectional physical properties of the fiber reinforcement material.
  • the fixing part it is possible to periodically press the fiber reinforcement by repeatedly ascending and descending the fixing part, and to prevent deviation of the parallel movement.
  • FIG. 3 schematically shows another form of the roller of the impregnated part in the conventional pultrusion molding apparatus.
  • Figure 4 shows a coating according to the present invention.
  • 5 and 6 show a front view of the fixing part, showing the divided operation process.
  • FIG. 8 is a view for explaining the position of the twist portion according to the present invention.
  • the 'length direction' refers to the x-axis direction with reference to FIG. 4
  • the 'width direction' refers to the y-axis direction based on FIG. 4
  • the 'vertical direction' refers to FIG. 4 . It is the z-axis direction perpendicular to the longitudinal direction and the width direction simultaneously as a reference. The same applies below.
  • the continuous fiber composite manufacturing apparatus includes a fiber supply unit (1), a guide unit (2), a coating unit, and a mold forming unit (4).
  • Figure 4 shows a coating according to the present invention.
  • the configuration of the coating unit and the effect thereof will be described with reference to FIG. 4 .
  • the coating portion is configured instead of the conventional impregnation portion (3).
  • the coating part according to the present invention includes a housing part 100 , an inlet 200 , an outlet 300 , a roller part 400 , a spraying part 500 , and a fixing part 600 .
  • the housing part 100 is preferably in the form of a box.
  • the inlet 200 , the outlet 300 , the roller 400 , the spraying part 500 and the fixing part 600 are positioned inside the housing part 100 .
  • the housing part 100 is penetrated by the fiber reinforcement 10 . At this time, it is preferable that the fiber reinforcement 10 penetrates through the housing part 100 so as to be parallel to the ground. A description thereof will be provided later.
  • An inlet 200 and an outlet 300 are formed in the housing part 100 .
  • the inlet 200 is where the fiber reinforcement 10 is introduced through the guide part 2
  • the outlet 300 is where the resin-coated fiber reinforcement 20 is discharged.
  • FIG 7 shows in detail the inlet 200 according to the present invention.
  • the inlet 200 according to the present invention is composed of an upper inlet 210 and a lower inlet 220 . At this time, it is preferable that the upper inlet 210 and the lower inlet 220 have an inclination while having a predetermined angle with the fiber reinforcement 10 parallel to the ground.
  • the upper inlet 210 and the lower inlet 220 become narrower as they get closer to the housing 100 (from left to right with reference to FIG. 7 ).
  • the inflow size is widened as much as possible at the portion where the fiber reinforcement 10 starts to flow into the housing part 100, and the inflow size is narrowed at the point of entry into the housing part 100, so that the possibility of escape can be prevented.
  • the roller 400 is positioned inside the housing 100 and serves to move the fiber reinforcement 10 in the longitudinal direction.
  • the roller 400 is preferably a timing belt type in which a belt surrounding a pair of rollers spaced apart from each other in a longitudinal direction rotates in a clockwise direction.
  • the fiber reinforcement 10 is placed on the surface of the belt, and as the belt moves, the fiber reinforcement also moves. Since the timing belt moves in a straight direction in the section between the pair of rollers, the fiber reinforcement 10 positioned on the surface of the belt can move in the longitudinal direction.
  • rollers are preferably replaceable. For this reason, there is an advantage that the operator is easy to repair and the durability is increased.
  • the roller part 400 is positioned to be spaced apart from the lower surface of the housing part 100 at a predetermined distance in the vertical direction.
  • a configuration for setting the height may be, for example, a 'die' shape, but is not necessarily limited to this example.
  • the height in the vertical direction from the ground at the lower end of the point where the inlet 200 and the housing part 100 abut and the lower end of the point where the outlet 300 and the housing part 100 contact each other, and the belt of the roller part 400 It is preferable that the height of the surface of the surface in the vertical direction from the ground is the same.
  • the fiber reinforcement 10 can move in a state parallel to the ground.
  • the resin is impregnated and discharged while the fiber reinforcement 10 has a curvature in the impregnation part 3, but in the present invention, the resin is coated in a state parallel to the ground. Therefore, problems such as tearing of the edge portion of the continuous fiber composite material do not occur, and it is possible to preserve the flexible characteristics. That is, there is an advantage in that the flexural properties of the continuous fiber composite material can be improved to the required level of the target part while continuously maintaining the unidirectional physical properties of the fiber reinforcement material.
  • the injection unit 500 is formed inside the housing unit 100 . In more detail, it is coupled to the upper portion from the inside of the housing part 100 so that the injection direction is downward.
  • the injection unit 500 has, for example, a cylindrical shape in which a hollow part is formed.
  • the resin is injected from the injection unit 500 . Since the storage unit for storing the resin is a known technology, a detailed description thereof will be omitted.
  • the sprayed resin is sprayed on the fiber reinforcement 10 moving in the longitudinal direction, and the fiber reinforcement 10 is coated with the resin and discharged.
  • the injection unit 500 is formed to extend perpendicular to the longitudinal direction of the fiber reinforcement to have directionality. For this reason, there is an advantage that the resin can be uniformly sprayed on the fiber reinforcement 10 .
  • the fixing part 600 is located on one side of the roller part 400 . More specifically, it is preferable to be located in the vicinity of the outlet (300).
  • FIGS. 5 and 6 show a front view of the fixing part 600, showing the divided operation process.
  • FIGS. 5 and 6 show a front view of the fixing part 600, showing the divided operation process.
  • the fixing unit 600 is coupled to the support 30 extending in the vertical direction from the inside of the housing 100 to press the fiber reinforcement 10 positioned on the upper surface of the support 30 . For this reason, when the fiber reinforcement 10 is twisted in the process of applying the resin, there is an advantage in that the fixing unit 600 presses it to keep it parallel to the ground.
  • the coupling member 610 has a panel shape and serves to connect the components of the fixing part 600 on the upper surface of the housing part 100 .
  • the support housing 620 is formed to extend vertically from the lower portion of the coupling member 610 .
  • the support housing 620 is preferably in the form of a box, and the support 630 is vertically elevated by the support cylinder 650 inside the support housing 620 .
  • the slider 621 is coupled to the inner surface of the support housing 620 . Due to this, the slider having a shape corresponding to the complementary shape formed on the outer surface of the support 630 can slide in a vertical direction along the slider 621 formed on the inner surface of the support housing 620 . It has the advantage of being easy to fix and release by providing flexibility of operation.
  • the support part 630 may be vertically raised and lowered inside the support part housing 620 by the support part cylinder 650 .
  • the support cylinder 650 is preferably in the form of a hydraulic cylinder, for example.
  • the support 630 can be raised or lowered through the user's electronic control.
  • the clamp unit 640 includes a first clamp unit 641 and a second clamp unit 642 .
  • the first clamp part 641 again includes a first upper clamp 641a and a first lower clamp 641b
  • the second clamp part 642 again includes a second upper clamp 642a and a second lower clamp 642a. 642b).
  • first upper clamp 641a and the first lower clamp 641b are linked by a first shaft 6402 passing through them simultaneously in the longitudinal direction.
  • second upper clamp 642a and the second lower clamp 642b are linked by a second shaft 6403 passing through them simultaneously in the longitudinal direction.
  • the upper portions of the first upper clamp 641a, the second upper clamp 642a, and the support portion 630 are linked by an upper shaft 6401 passing through them simultaneously in the longitudinal direction, and the first lower clamp 641b).
  • the second lower clamp 642b and the lower part of the support 630 are linked by a lower shaft 6404 passing through it simultaneously in the longitudinal direction.
  • the first lower clamp 641b and the second lower clamp 642b cannot be narrowed in the width direction before the support 630 comes into contact with the fiber reinforcement 10 positioned on the upper surface of the support 30, and the support part Only after the 630 is in contact with the fiber reinforcement 10 located on the upper surface of the support 30, it comes into contact with the side of the support 30 and the fiber reinforcement 10 and the support 30 located on the upper surface of the support 30 ) can be attached to all sides.
  • the thickness of the resin coated on the fiber reinforcement 10 may not be constant due to process characteristics. Therefore, if the structure for pressing the fiber reinforcement 10 in an unchanging form, there is a problem in that a difference in the pressing force is generated according to the thickness of the resin to be coated.
  • the first lower clamp 641b and the second lower clamp 642b must first contact the fiber reinforcement 10 in the width direction. , so that the bonding force between the support 30 and the first lower clamp 641b and the second lower clamp 642b is maintained regardless of the thickness of the coated resin. As an effect related thereto, the force for pressing the fiber reinforcement 10 can be uniformly applied.
  • the process of releasing the fixing of the support 30 of the fixing part 600 is performed through the lifting and lowering of the support part 630 . This is done opposite to the operation implemented due to the lowering of the support 630 . A detailed description will be omitted to avoid duplicate description.
  • the lifting and lowering of the fixing part 600 is repeatedly performed to periodically press the fiber reinforcement 10, and it is possible to prevent separation.
  • Pads 631 , 6411 , and 6421 are preferably formed at the ends of the support 630 , the first lower clamp 641b and the second lower clamp 642b . For this reason, the frictional force with the support 30 is increased, and the fixing force is increased. In addition, the degree of damage to the fiber reinforcement 10 can be reduced due to the pad 631 of the portion in contact with the fiber reinforcement 10 .
  • the continuous fiber composite manufacturing apparatus may further include a twist unit 1000 .
  • the twisted part 1000 is positioned between the coating part and the mold forming part 4 .
  • FIG. 8 shows the arrangement to explain the position of the twisted part 1000 according to the present invention
  • FIG. 9 is a schematic view of the configuration of the twisted part 1000 according to the present invention.
  • the twisted part 1000 according to the present invention is located between the coating part and the mold forming part 4 . That is, the fiber reinforcement material 20 to which the resin is applied through the coating unit flows into the twist unit 1000 , and the fiber reinforcement material 21 twisted through the twist unit 1000 flows into the mold forming unit 4 .
  • the twist part 1000 includes a body part 1100 and a screw part 1200 .
  • the body portion 1100 is penetrated by the resin-coated or applied fiber reinforcement 20 .
  • the body portion 1100 is, for example, preferably in a cylindrical shape. This is to facilitate rotation of the screw unit 1200 .
  • a hollow part is formed in the body part 1100, and the screw part 1200 is inserted.
  • the screw part 1200 rotates within the body part 1100 .
  • a motor or the like that provides rotational power is a known technology, and thus will be omitted.
  • the screw thread 1201 having an oblique shape is formed in the screw part 1200 , and the fiber reinforcement 20 coated with resin is accommodated on the inner surface of the screw thread 1201 .
  • the non-impregnated type resin When the non-impregnated type resin is applied to manufacture the fiber reinforcement 20, it is suitable to obtain a desired level of flexural elasticity, etc., but there is a limitation in that overall physical properties are weaker than that of the impregnated type. In particular, among the physical properties, the tensile load is weakened, which is a very important property when the finished continuous fiber composite is used.
  • Example 1 Example 2
  • Example 3 impregnation O X X non-impregnated X O O kink X X O Tensile load (N) 385 338 371.8
  • Example 1 is a conventional impregnated type
  • Example 2 is a non-impregnated type or no twist is applied
  • Example 3 is a non-impregnated type and twisted shape is provided according to the present invention.
  • the conventional impregnation type has a tensile load of 385N.
  • the non-impregnated type to which twist is not imparted is 338N, and it can be seen that the tensile load properties are remarkably weakened.
  • the tensile load can be improved to a level similar to that of the impregnated type at 371.8N when the twist shape is provided, and thus can be supplemented.
  • the optimal embodiment of the number of twists is preferably 10 or more and 15 or less of 360 degree twist rotations per 1M.
  • the present invention relates to a non-impregnated type continuous fiber composite manufacturing apparatus, characterized in that the resin is applied while moving parallel to the ground, rather than being impregnated in the resin bath while the fiber reinforcement is bent. Due to these characteristics, the problem such as tearing of the edge part of the continuous fiber composite does not occur, it is possible to preserve the flexible characteristics, and the bending of the continuous fiber composite while continuously maintaining the unidirectional properties of the fiber reinforcement There is an advantage in that the characteristics can be improved to the required level of the target part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

본 발명은 비함침 타입의 연속섬유 복합재 제조장치에 관한 발명으로, 복수 개의 연장되는 섬유 강화재를 공급하는 섬유 공급부; 상기 섬유 강화재가 지면과 평행하도록 이동하여 통과하되, 수지가 상기 섬유 강화재에 분사되는 코팅부; 및 열을 지니되, 상기 섬유 강화재가 통과되는 금형 성형부;를 포함하고, 상기 코팅부는, 상기 섬유 강화재가 관통되는 하우징부; 상기 하우징부의 내부에 위치되되, 상기 섬유 강화재가 맞닿아 상기 섬유 강화재를 길이 방향으로 이동시키는 롤러부; 및 상기 하우징부의 내부에 위치되되, 상기 수지를 상기 섬유 강화재를 향하여 분사하는 분사부;를 포함한다.

Description

비함침 타입의 연속섬유 복합재 제조장치
본 발명은 비함침 타입의 연속섬유 복합재 제조장치에 관한 발명으로, 섬유 강화재가 굴곡지면서 수지 배스 내에서 함침되는 것이 아닌 지면과 평행하도록 이동하면서 수지가 도포되는 것을 특징으로 한다. 이러한 특징으로 인해, 연속섬유 복합재의 엣지(Edge)부분의 찢김 등의 문제가 발생하지 않게 되고, 플렉서블 한 특성을 보존할 수 있게 되며, 섬유 강화재의 단방향 물성을 지속적으로 유지하면서 연속섬유 복합재의 굴곡 특성을 타켓(target) 부품의 요구 수준으로 개선할 수 있는 장점이 있다.
섬유강화 고분자 복합재료는 보강재료인 섬유에 기지재료인 고분자 수지를 함침시켜 만들어진다.
고분자 복합재료는 무게에 비해 강도가 크고, 화학적으로 안정하며, 피로 한도가 큰 등의 여러 장점이 있으며, 우수한 무게비 성능을 요구하는 항공 우주 산업, 각종 자동차 부품 등에 그 적용 범위를 넓혀가고 있다.
섬유 강화 고분자 복합재료의 성형 방법에는 Autoclave Molding, 필라멘트 와인딩, 테이프 적층법, RTM(Resin Transfer Molding), Pultrusion, Compression Molding 등의 여러 방법이 있다. 이러한 여러 성형 공정 중 Pultrusion은 연속적으로 공급되는 섬유다발에 수지를 함침시키면서 다이를 통해 인발하여 제품을 성형하는 공정이다.
이러한 균일한 단면을 갖는 무단의 복합재료 프로파일들의 연속적인 제조를 위한 수십년 동안 공지된 방법의 인발 성형은, 다발들, 소위 로빙들(rovings)로 조합되는 섬유들은 열경화성 또는 열가소성 기지재료, 예를 들어, 폴리우레탄 또는 에폭시 수지로 함침되고, 그리고 후속하여, 대부분 열 처리를 통해 복합재료 프로파일을 형성하기 위해 경화 공구에서 경화된다. 섬유들은, 특히, 유리, 탄소, 현무암, 또는 아라미드(aramid) 섬유들일 수 있다.
가장 일반적인 인발 성형 시스템들에서, 로빙들은 당김 유닛, 소위 풀러(puller)에 의해 액체로 형성된 기지재료로 채워진 개방 함침 배스(open impregnating bath)를 통해 편향 롤러들에 걸쳐 당겨진다. 개방 함침 배스 후에, 함침된 로빙들은 경화 공구로 진입하며, 이 경화 공구는 하나 이상의 열 챔버들을 포함한다.
또한, 인발 성형 시스템들은 수년 동안 공지되어 있으며, 이 인발 성형 시스템들에서, 로빙들은 사출 박스를 통해 편향 없이 당겨진다. 이 인발 성형 시스템들은 섬유들의 움직임 방향으로 하우징의 전방 단부에서 섬유들을 공급하기 위한 적어도 하나의 슬릿 형상 로빙 공급부를 포함한다. 섬유들은 액체 기지재료로 함침되고, 당김 유닛에 의해 당겨진다. 함침된 섬유 부분들은 섬유들의 움직임 방향으로 하우징의 후방 단부의 슬릿형상 운반 개구를 통해 사출 박스를 떠나서 후속하여 경화 공구로 진입한다.
도 1은 종래의 인발 성형 장치를 도시한 것이다.
종래의 인발 성형 장치는 섬유 공급부(1), 가이드부(2), 함침부(3), 금형 성형부(4), 경화부(5) 및 절단부(6)를 구비한다.
섬유 공급부(1)에는 복수 개의 권취롤(1a)이 구비되고, 권취롤(1a)에 권취된 섬유 강화재(10)는 가이드부(2)를 거쳐 함침부(3)에 유입된다. 함침부(3)에서 수지에 함침된 섬유 강화재(10)는 금형 성형부(4) 및 경화부(5)를 거쳐 가열 및 경화되고, 원하는 형태에 따라 절단부(6)에서 절단된다.
도 2는 종래의 인발 성형 장치에서의 함침부(3)의 형상을 간략하게 도시한 것이다. 함침부(3)는 배스(bath) 형태로, 내부에 복수 개의 롤(3a)이 구비된다. 복수 개의 롤(3a)의 중심축은 수직 방향으로부터 높이가 상이하고, 도 2와 같이 섬유 강화재(10)가 굴곡을 지니도록 배치된다.
또한, 도 3은 종래의 인발 성형 장치에서의 함침부(3)의 롤(3a)의 다른 형태를 간략하게 도시한 것이다. 다른 형태의 롤(3a)은 섬유 강화재(10)를 지지하기 위한 돌기부(3b)가 형성되어 섬유 강화재(10)가 꺾이는 부분을 지지하게 된다.
그러나, 종래와 같은 함침부(3)는 구조 특성 상 필연적으로 섬유 강화재(10)가 휘어져 엣지(Edge)가 형성되고, 완성된 연속섬유 복합재의 엣지 부분이 미성형되거나, 찢기는 등의 불량인 경우가 다수였다.
이로 인해, 물성 측면에서 적용 가능한 분야가 다양함에도 불구하고, 부품 특성 상 단방향 물성은 필수이나, 플렉서블(flexible)한 특성을 동시에 보유해야 하는 부품(예컨대 항공기 구조재, 자동차 구조재, 대형 중공관 등)에서는 적용되기 어려운 문제점이 있었다.
본 발명은 비함침 타입의 연속섬유 복합재 제조장치에 관한 발명으로, 섬유 강화재가 굴곡지면서 수지 배스 내에서 함침되는 것이 아닌 지면과 평행하도록 이동하면서 수지가 도포되는 것을 특징으로 한다. 이러한 특징으로 인해, 연속섬유 복합재의 엣지(Edge)부분의 찢김 등의 문제가 발생하지 않게 되고, 플렉서블 한 특성을 보존할 수 있게 되며, 섬유 강화재의 단방향 물성을 지속적으로 유지하면서 연속섬유 복합재의 굴곡 특성을 타켓(target) 부품의 요구 수준으로 개선할 수 있는 장점이 있다.
상기 목적을 달성하기 위하여 본 발명에 따른 비함침 타입의 연속섬유 복합재 제조장치는 복수 개의 연장되는 섬유 강화재를 공급하는 섬유 공급부; 상기 섬유 강화재가 지면과 평행하도록 이동하여 통과하되, 수지가 상기 섬유 강화재에 분사되는 코팅부; 및 열을 지니되, 상기 섬유 강화재가 통과되는 금형 성형부;를 포함하고, 상기 코팅부는, 상기 섬유 강화재가 관통되는 하우징부; 상기 하우징부의 내부에 위치되되, 상기 섬유 강화재가 맞닿아 상기 섬유 강화재를 길이 방향으로 이동시키는 롤러부; 및 상기 하우징부의 내부에 위치되되, 상기 수지를 상기 섬유 강화재를 향하여 분사하는 분사부;를 포함한다.
또한, 본 발명에 따른 비함침 타입의 연속섬유 복합재 제조장치의 상기 하우징부는 상기 섬유 강화재가 유입되는 유입구 및 상기 수지가 도포된 상기 섬유 강화재가 배출되는 배출구를 포함하고, 상기 유입구 및 상기 배출구의 하단의 지면으로부터의 수직 방향의 높이는, 상기 롤러부의 표면의 지면으로부터의 수직 방향의 높이와 동일하다.
또한, 본 발명에 따른 비함침 타입의 연속섬유 복합재 제조장치의 상기 분사부는 상기 하우징부의 내부에서 상기 하우징부의 상면에 결합되어 하방으로 상기 수지를 분사한다.
또한, 본 발명에 따른 비함침 타입의 연속섬유 복합재 제조장치의 상기 분사부는 상기 섬유 강화재의 길이 방향과 수직하도록 연장 형성된다.
또한, 본 발명에 따른 비함침 타입의 연속섬유 복합재 제조장치의 상기 롤러부는 길이 방향으로 연장 형성되되, 벨트가 회전되는 타이밍 벨트 타입이다.
또한, 본 발명에 따른 비함침 타입의 연속섬유 복합재 제조장치의 상기 벨트는 길이 방향으로 소정의 간격을 두고 이격되는 한 쌍의 롤러로 인해 회전한다.
또한, 본 발명에 따른 비함침 타입의 연속섬유 복합재 제조장치의 상기 유입구는 상부 유입구 및 하부 유입구를 구비하고, 상기 상부 유입구 및 상기 하부 유입구는 상기 섬유 강화재와 소정의 각도를 지니면서 경사진다.
또한, 본 발명에 따른 비함침 타입의 연속섬유 복합재 제조장치의 상기 상부 유입구 및 하부 유입구는 상기 하우징부에 가까워질수록 수직 방향으로의 간격이 좁아진다.
또한, 본 발명에 따른 비함침 타입의 연속섬유 복합재 제조장치의 상기 롤러는 교체 가능하다.
또한, 본 발명에 따른 비함침 타입의 연속섬유 복합재 제조장치는 상기 수지가 코팅된 상기 섬유 강화재에 꼬임을 부여하는 트위스트부;를 더 포함하고, 상기 트위스트부는, 상기 수지가 코팅된 상기 섬유 강화재가 관통되는 바디부; 및 상기 바디부 내에서 회전하는 스크류부;를 구비하고, 상기 수지가 코팅된 상기 섬유 강화재는 상기 스크류부의 내측면을 따라 회전하여 꼬여진다.
또한, 본 발명에 따른 비함침 타입의 연속섬유 복합재 제조장치의 상기 스크류부는 사선 형상의 나사산을 지니고, 상기 나사산의 내측면을 따라 상기 수지가 코팅된 상기 섬유 강화재가 회전하여 꼬여진다.
본 발명에 따르면 종래의 배스 타입이 아닌 하우징부 내에서의 수지를 상부에서 분사하는 형식으로 섬유 강화재에 수지를 도포하고, 롤러부 등의 구성으로 인해, 섬유 강화재가 지면과 평행하도록 길이 방향으로 이동하여, 섬유 강화재가 굴곡 없이 수지가 도포된다. 이로 인해, 연속섬유 복합재의 엣지(Edge)부분의 찢김 등의 문제가 발생하지 않게 되고, 플렉서블 한 특성을 보존할 수 있게 된다. 즉, 섬유 강화재의 단방향 물성을 지속적으로 유지하면서 연속섬유 복합재의 굴곡 특성을 타켓(target) 부품의 요구 수준으로 개선할 수 있는 장점이 있다.
또한, 고정부의 구성으로 고정부의 승강 및 하강을 반복적으로 진행하여 주기적으로 섬유 강화재를 가압하고, 평행 이동의 이탈을 방지할 수 있게 된다.
또한, 비함침 타입이 지니는 인장 하중의 물성 한계를 꼬임 형상을 부여하여 보완할 수 있는 장점이 있다.
도 1은 종래의 인발 성형 장치를 도시한 것이다.
도 2는 종래의 인발 성형 장치에서의 함침부의 형상을 간략하게 도시한 것이다.
도 3은 종래의 인발 성형 장치에서의 함침부의 롤러의 다른 형태를 간략하게 도시한 것이다.
도 4는 본 발명에 따른 코팅부를 도시한 것이다.
도 5 및 도 6은 고정부의 정면도를 도시한 것으로, 작동 과정을 분할하여 도시한 것이다.
도 7은 본 발명에 따른 유입구를 상세히 도시한 것이다.
도 8은 본 발명에 따른 트위스트부의 위치를 설명하기 위한 도면이다.
도 9는 본 발명에 따른 트위스트부를 간략하게 도시한 것이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
또한, 본 발명에서의 '길이 방향'이라 함은 도 4를 기준으로 x축 방향이고, '폭 방향'이라 함은 도 4를 기준으로 y축 방향이고, '수직 방향'이라 함은 도 4를 기준으로 길이 방향과 폭 방향에 동시에 수직되는 z축 방향이다. 이하에서 동일하게 적용된다.
본 발명에 따른 연속섬유 복합재 제조장치는 섬유 공급부(1), 가이드부(2), 코팅부, 금형 성형부(4)를 구비한다.
섬유 공급부(1), 가이드부(2) 및 금형 성형부(4)는 종래의 기술과 동일한 바, 중복 설명을 방지하기 위해 상세한 설명은 생략하도록 한다.
도 4는 본 발명에 따른 코팅부를 도시한 것이다. 이하, 도 4를 참조하여 코팅부의 구성 및 이에 따른 효과를 설명하도록 한다.
본 발명에서는 종래의 함침부(3) 대신 코팅부가 구성된다. 본 발명에 따른 코팅부는 하우징부(100), 유입구(200), 배출구(300), 롤러부(400), 분사부(500) 및 고정부(600)를 포함한다.
하우징부(100)는 박스(box) 형태인 것이 바람직하다. 또한, 하우징부(100) 내부에 유입구(200), 배출구(300), 롤러부(400), 분사부(500) 및 고정부(600)가 위치되는 것이 바람직하다.
하우징부(100)는 섬유 강화재(10)가 관통된다. 이때, 섬유 강화재(10)는 하우징부(100)를 관통하면서 지면과 평행하도록 관통되는 것이 바람직하다. 이에 관한 설명은 후술하도록 한다.
하우징부(100)에는 유입구(200) 및 배출구(300)가 형성된다. 유입구(200)는 섬유 강화재(10)가 가이드부(2)를 거쳐 유입되는 곳이고, 배출구(300)는 수지가 코팅된 섬유 강화재(20)가 배출되는 곳이다.
도 7은 본 발명에 따른 유입구(200)를 상세히 도시한 것이다.
본 발명에 따른 유입구(200)는 상부 유입구(210) 및 하부 유입구(220)로 구성된다. 이때, 상부 유입구(210) 및 하부 유입구(220)는 지면과 평행한 섬유 강화재(10)와 소정의 각도를 지니면서 경사를 지니는 것이 바람직하다.
좀 더 상세하게는, 상부 유입구(210) 및 하부 유입구(220)는 하우징부(100)에 가까워질수록(도 7을 기준으로 좌측에서 우측 방향) 간격이 좁아지는 것이 바람직하다.
이러한 소위 '깔때기' 형상으로 인해, 섬유 강화재(10)가 하우징부(100)로 유입되기 시작하는 부분에는 최대한 유입 크기를 넓히고, 하우징부(100) 내부로 유입되는 시점에서는 유입 크기를 좁혀 이탈 가능성을 방지할 수 있게 된다.
롤러부(400)는 하우징부(100)의 내부에 위치되어, 섬유 강화재(10)를 길이 방향으로 이동시키는 역할을 한다.
좀 더 상세하게는, 롤러부(400)는 길이 방향으로 소정의 간격을 둔 한 쌍의 롤러 사이를 감싸는 벨트가 시계 방향으로 회전하는 타이밍 벨트(timing belt) 타입인 것이 바람직하다.
벨트의 표면에 섬유 강화재(10)가 놓이게 되고, 벨트가 이동함에 따라 섬유 강화재 또한 이동하게 된다. 타이밍 벨트는 한 쌍의 롤러 사이의 구간에서는 직선 방향으로 이동하기 때문에 벨트의 표면에 위치된 섬유 강화재(10)가 길이 방향으로 이동할 수 있게 된다.
롤러는 교체 가능한 것이 바람직하다. 이로 인해, 작업자가 보수가 용이하며 내구성이 증대되는 장점이 있다.
이때, 미도시되었지만 롤러부(400)는 하우징부(100)의 하면과 수직 방향으로 소정의 간격을 두고 이격되어 위치된다. 높이를 설정하기 위한 구성으로는 일 예로 '다이'형태일 수 있으나, 반드시 이러한 예에 국한되는 것은 아니다.
또한, 유입구(200)와 하우징부(100)가 맞닿는 지점의 하단 및 배출구(300)와 하우징부(100)가 맞닿는 지점의 하단의 지면으로부터의 수직 방향의 높이와, 롤러부(400)의 벨트의 표면의 지면으로부터의 수직 방향의 높이가 동일한 것이 바람직하다.
이로 인해, 섬유 강화재(10)가 유입되고 하우징부(100)의 내부에서 수지가 도포되어 배출되는 공정을 거쳐도, 섬유 강화재(10)가 지면과 평행한 상태로 이동할 수 있게 된다. 종래의 경우에는 함침부(3)에서 섬유 강화재(10)가 굴곡을 지니면서 수지가 함침되어 배출되나, 본 발명의 경우에는 지면과 평행한 상태로 수지가 코팅된다. 따라서, 연속섬유 복합재의 엣지(Edge)부분의 찢김 등의 문제가 발생하지 않게 되고, 플렉서블 한 특성을 보존할 수 있게 된다. 즉, 섬유 강화재의 단방향 물성을 지속적으로 유지하면서 연속섬유 복합재의 굴곡 특성을 타켓(target) 부품의 요구 수준으로 개선할 수 있는 장점이 있다.
본 발명에 따른 분사부(500)는 하우징부(100) 내부에 형성된다. 좀 더 상세하게는 하우징부(100)의 내부에서 상부에 결합되어 분사 방향이 하방으로 향하도록 형성된다. 분사부(500)는 일 예로 중공부가 형성된 원통 형상이다.
분사부(500)에서는 수지가 분사된다. 수지를 저장하는 저장부 등은 공지된 기술인 바 상세한 설명은 생략하도록 한다. 분사된 수지는 길이 방향으로 이동 중인 섬유 강화재(10)에 분사되고, 섬유 강화재(10)는 수지에 의해 코팅되어 배출된다.
이때, 분사부(500)는 섬유 강화재의 길이 방향과 수직하도록 연장 형성되어 방향성을 지니는 것이 바람직하다. 이로 인해, 수지가 섬유 강화재(10)에 균일하게 분사될 수 있는 장점이 있다.
고정부(600)는 롤러부(400)의 일측에 위치된다. 좀 더 상세하게는, 배출구(300) 근방에 위치되는 것이 바람직하다.
도 5 및 도 6은 고정부(600)의 정면도를 도시한 것으로, 작동 과정을 분할하여 도시한 것이다. 이하, 도 5 및 도 6을 참조하여 고정부(600)의 구성 및 작동 원리, 이에 따른 효과를 설명하도록 한다.
고정부(600)는 하우징부(100)의 내부에서 수직 방향으로 연장 형성된 지지대(30)에 결착되어 지지대(30)의 상면에 위치된 섬유 강화재(10)를 가압한다. 이로 인해, 수지가 도포되는 과정에서 섬유 강화재(10)가 뒤틀리는 경우가 발생되면, 고정부(600)가 이를 가압하여 지면과 평행을 유지할 수 있게 하는 장점이 있다.
결합부재(610)는 패널 형상으로, 하우징부(100)의 상면에서 고정부(600)의 구성요소를 연결하는 역할을 한다.
지지부 하우징(620)은 결합부재(610)의 하부에서 수직 방향으로 연장 형성된다. 지지부 하우징(620)은 박스(box) 형태인 것이 바람직하며, 지지부 하우징(620)의 내부에서 지지부(630)가 지지부 실린더(650)에 의해 수직 방향으로 승강하게 된다.
이때, 지지부 하우징(620)의 내측면에는 슬라이더(621)가 결합되는 것이 바람직하다. 이로 인해, 지지부(630)의 외측면에 형성된 이에 상보적으로 대응되는 형상을 지닌 슬라이더가 지지부 하우징(620)의 내측면에 형성된 슬라이더(621)를 따라 수직 방향으로 슬라이딩 운동을 진행할 수 있게 된다. 동작의 유연함을 제공하여 고정 및 해제가 용이한 장점이 있다.
지지부(630)는 지지부 실린더(650)에 의해 지지부 하우징(620) 내부에서 수직 방향으로 승하강할 수 있다. 이때, 지지부 실린더(650)는 일 예로 유압 실린더 형태인 것이 바람직하다. 또한, 사용자의 전자적 제어를 통해 지지부(630)가 승강할 수 있게 된다.
클램프부(640)는 지지부 하우징(620) 내부에 일부가 위치되고, 일부는 지지부 하우징(620) 외부로 돌출된다. 클램프부(640)는 제1 클램프부(641) 및 제2 클램프부(642)를 포함한다. 제1 클램프부(641)는 다시 제1 상부 클램프(641a) 및 제1 하부 클램프(641b)를 포함하고, 제2 클램프부(642)는 다시 제2 상부 클램프(642a) 및 제2 하부 클램프(642b)를 포함한다.
이때, 제1 상부 클램프(641a) 및 제1 하부 클램프(641b)는 이를 길이 방향으로 동시에 관통하는 제1 축(6402)에 의해 링크(link) 결합된다. 또한, 제2 상부 클램프(642a) 및 제2 하부 클램프(642b)는 이를 길이 방향으로 동시에 관통하는 제2 축(6403)에 의해 링크 결합된다. 또한, 제1 상부 클램프(641a), 제2 상부 클램프(642a) 및 지지부(630)의 상부는 이를 길이 방향으로 동시에 관통하는 상부 축(6401)에 의해 링크 결합되고, 제1 하부 클램프(641b), 제2 하부 클램프(642b) 및 지지부(630)의 하부는 이를 길이 방향으로 동시에 관통하는 하부 축(6404)에 의해 링크 결합된다.
이러한 구성요소 간 링크 결합으로 인해, 도 6과 같이 지지부(630)가 하강하여 지지대(30)의 상면에 위치된 섬유 강화재(10)와 맞닿는 경우에는, 제1 상부 클램프(641a) 및 제2 상부 클램프(642a)가 폭 방향으로 벌어지고, 이와 반대로 제1 하부 클램프(641b) 및 제2 하부 클램프(642b)는 폭 방향으로 좁아지게 된다.
이때, 지지부(630)가 지지대(30)의 상면에 위치된 섬유 강화재(10)와 맞닿기 전에는 제1 하부 클램프(641b) 및 제2 하부 클램프(642b)는 폭 방향으로 좁아질 수 없고, 지지부(630)가 지지대(30)의 상면에 위치된 섬유 강화재(10)와 맞닿은 후에만 지지대(30)의 측면과 맞닿아 지지대(30)의 상면에 위치된 섬유 강화재(10)와 및 지지대(30)의 측면을 모두 결착할 수 있게 된다.
섬유 강화재(10)에 코팅된 수지의 두께는 공정 특성 상 일정할 수 없다. 따라서, 변하지는 않는 형태로 섬유 강화재(10)를 가압하는 구조라면, 코팅되는 수지의 두께에 따라 가압력 차이가 발생되는 문제점이 있다.
그러나, 본 발명에 따르면, 만약 코팅된 수지의 두께가 두꺼워지더라도 지지부(630)가 먼저 섬유 강화재(10)에 맞닿아야만 제1 하부 클램프(641b) 및 제2 하부 클램프(642b)가 폭 방향으로 좁아지게 되므로 코팅된 수지의 두께를 불문하고 지지대(30)와 제1 하부 클램프(641b) 및 제2 하부 클램프(642b)와의 결합력이 유지되는 장점이 있다. 이에 연계되는 효과로 섬유 강화재(10)를 가압하는 힘이 균일하게 가해질 수 있게 된다.
이때, 고정부(600)의 지지대(30)의 고정을 해제하는 과정은 지지부(630)의 승강을 통해 이루어진다. 이는 지지부(630)의 하강으로 인해 구현되는 동작과 반대로 이루어진다. 중복 설명을 방지하기 위해 상세한 설명은 생략한다.
이때, 미도시된 외부 제어로 인해, 고정부(600)의 승강 및 하강을 반복적으로 진행하여 주기적으로 섬유 강화재(10)를 가압하고, 이탈을 방지할 수 있게 된다.
지지부(630), 제1 하부 클램프(641b) 및 제2 하부 클램프(642b)의 단부에는 패드(631, 6411, 6421)이 형성되는 것이 바람직하다. 이로 인해, 지지대(30)와의 마찰력이 증대되어 고정력이 증대된다. 또한, 섬유 강화재(10)와 맞닿는 부분의 패드(631)로 인해 섬유 강화재(10)의 손상 정도를 낮출 수 있게 된다.
본 발명에 따른 연속섬유 복합재 제조장치는 트위스트부(1000)를 더 포함할 수 있다. 트위스트부(1000)는 코팅부와 금형 성형부(4) 사이에 위치된다.
도 8은 본 발명에 따른 트위스트부(1000)의 위치를 설명하기 위해 배치를 도시한 것이고, 도 9는 본 발명에 따른 트위스트부(1000)의 구성을 간략히 도시한 것이다.
본 발명에 따른 트위스트부(1000)는 코팅부와 금형 성형부(4) 사이에 위치된다. 즉, 코팅부를 거쳐 수지가 도포된 섬유 강화재(20)는 트위스트부(1000)에 유입되고, 트위스트부(1000)를 거쳐 꼬인 섬유 강화재(21)는 금형 성형부(4)로 유입된다.
트위스트부(1000)는 바디부(1100) 및 스크류부(1200)를 구비한다.
바디부(1100)는 수지가 코팅 혹은 도포된 섬유 강화재(20)가 관통된다. 바디부(1100)는 일 예로 원통 형상인 것이 바람직하다. 이는 스크류부(1200)가 회전하기 용이하기 위함이다.
또한, 바디부(1100) 내에는 중공부가 형성되어, 스크류부(1200)가 삽입된다. 스크류부(1200)는 바디부(1100) 내에서 회전하게 된다. 이때, 회전의 동력을 제공하는 모터 등은 공지된 기술인 바, 생략한다.
이때, 스크류부(1200)는 사선 형태를 지닌 나사산(1201)이 형성되는 것이 바람직하고, 나사산(1201)의 내측면에 수지가 도포된 섬유 강화재(20)가 수용된다.
따라서, 스크류부(1200)가 회전하는 경우, 길이 방향으로 이동하는 수지가 도포된 섬유 강화재(20)는 회전하는 나사산(1201)의 내측면에 맞물리면서 길이 방향으로 이동하게 되므로, 꼬여지게 되어 꼬임 형상을 지니게 된다.
비함침 타입으로 수지가 도포되어 섬유 강화재(20)를 제조하는 경우, 원하는 수준의 굴곡탄성 등을 얻는데 적합하지만, 전반적인 물성이 함침 타입보다 약해질 수밖에 없는 한계점이 있다. 특히, 물성 중 인장 하중(Tensile Load)이 약해지는데, 이는 완성된 연속섬유 복합재가 사용됨에 있어서 매우 중요한 물성이다.
따라서, 본 발명에서는 섬유 강화재에 꼬임 형상을 부여하여, 부족한 인장 하중의 물성을 보완할 수 있다.
이하에서는, 꼬임 형상을 부여함으로 인해 인장 하중의 개선 효과를 실험예를 통해 증명하고자 한다. 이때, 꼬임 관련, 1M당 360도 10회 회전을 기준이다.
[실험예 1] 인장 하중 실험
실시예 1 실시예 2 실시예 3
함침 O X X
비함침 X O O
꼬임 X X O
인장 하중(N) 385 338 371.8
실시예 1은 종래의 함침 타입을, 실시예 2는 비함침 타입이나 꼬임이 부여되지 않은 것을, 실시예 3은 본 발명에 따라 비함침 타입이고 꼬임 형상이 부여된 것이다.
종래의 함침 타입은 인장 하중이 385N이다. 실시예 2와 같이, 꼬임이 부여되지 않은 비함침타입(본 발명을 기준으로 한다면, 코팅부만이 존재하는 경우이다)은 338N으로 인장 하중 물성이 현격히 약화되는 것을 확인할 수 있다.
그러나, 본 발명에 따르면, 꼬임 형상이 부여되는 경우 371.8N으로, 함침 타입과 유사한 수준으로 인장 하중을 개선할 수 있어 보완할 수 있는 것을 확인할 수 있다.
또한, 꼬임 횟수 관련 최적의 횟수를 확인하기 위해 다음과 같은 실험을 진행하였다. 이때, 꼬임 관련 1M당 360도 회전을 기준으로 한다.
[실험예 2] 꼬임 횟수에 따른 인장 하중 실험
꼬임 횟수 8 9 10 11 12 13 14 15 16
인장 하중(N) 365.1 365.3 371.8 372.1 372.3 372.5 372.7 373 325.5
위 실험예 2에서 확인할 수 있듯이, 꼬임 횟수가 9회 회전인 경우에는 인장 하중이 365.3N이나, 10회 회전인 경우에는 371.8N으로 인장 하중이 급격히 증대되는 것을 확인할 수 있다. 또한, 10회~15회까지는 점차 증대되나, 16회부터는 325.5N으로 오히려 인장 하중이 급격히 감소되며, 꼬임 형상을 부여하지 않은 경우보다 인장 하중이 낮아지게 된다.
따라서, 본 발명에서 꼬임 횟수의 최적의 실시예는 1M당 360도 꼬임 회전이 10회 이상 15회 이하인 것이 바람직하다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
본 발명은 비함침 타입의 연속섬유 복합재 제조장치에 관한 발명으로, 섬유 강화재가 굴곡지면서 수지 배스 내에서 함침되는 것이 아닌 지면과 평행하도록 이동하면서 수지가 도포되는 것을 특징으로 한다. 이러한 특징으로 인해, 연속섬유 복합재의 엣지(Edge)부분의 찢김 등의 문제가 발생하지 않게 되고, 플렉서블 한 특성을 보존할 수 있게 되며, 섬유 강화재의 단방향 물성을 지속적으로 유지하면서 연속섬유 복합재의 굴곡 특성을 타켓(target) 부품의 요구 수준으로 개선할 수 있는 장점이 있다.

Claims (11)

  1. 복수 개의 연장되는 섬유 강화재를 공급하는 섬유 공급부;
    상기 섬유 강화재가 지면과 평행하도록 이동하여 통과하되, 수지가 상기 섬유 강화재에 분사되는 코팅부; 및
    열을 지니되, 상기 섬유 강화재가 통과되는 금형 성형부;를 포함하고,
    상기 코팅부는,
    상기 섬유 강화재가 관통되는 하우징부;
    상기 하우징부의 내부에 위치되되, 상기 섬유 강화재가 맞닿아 상기 섬유 강화재를 길이 방향으로 이동시키는 롤러부; 및
    상기 하우징부의 내부에 위치되되, 상기 수지를 상기 섬유 강화재를 향하여 분사하는 분사부;를 포함하는
    비함침 타입의 연속섬유 복합재 제조장치.
  2. 제1항에 있어서,
    상기 하우징부는 상기 섬유 강화재가 유입되는 유입구 및 상기 수지가 도포된 상기 섬유 강화재가 배출되는 배출구를 포함하고,
    상기 유입구 및 상기 배출구의 하단의 지면으로부터의 수직 방향의 높이는, 상기 롤러부의 표면의 지면으로부터의 수직 방향의 높이와 동일한 것인
    비함침 타입의 연속섬유 복합재 제조장치.
  3. 제2항에 있어서,
    상기 분사부는 상기 하우징부의 내부에서 상기 하우징부의 상면에 결합되어 하방으로 상기 수지를 분사하는 것인
    비함침 타입의 연속섬유 복합재 제조장치.
  4. 제3항에 있어서,
    상기 분사부는 상기 섬유 강화재의 길이 방향과 수직하도록 연장 형성되는 것인
    비함침 타입의 연속섬유 복합재 제조장치.
  5. 제4항에 있어서,
    상기 롤러부는 길이 방향으로 연장 형성되되, 벨트가 회전되는 타이밍 벨트 타입인 것인
    비함침 타입의 연속섬유 복합재 제조장치.
  6. 제5항에 있어서,
    상기 벨트는 길이 방향으로 소정의 간격을 두고 이격되는 한 쌍의 롤러로 인해 회전하는 것인
    비함침 타입의 연속섬유 복합재 제조장치.
  7. 제6항에 있어서,
    상기 유입구는 상부 유입구 및 하부 유입구를 구비하고,
    상기 상부 유입구 및 상기 하부 유입구는 상기 섬유 강화재와 소정의 각도를 지니면서 경사진 것인
    비함침 타입의 연속섬유 복합재 제조장치.
  8. 제7항에 있어서,
    상기 상부 유입구 및 하부 유입구는 상기 하우징부에 가까워질수록 수직 방향으로의 간격이 좁아지는 것인
    비함침 타입의 연속섬유 복합재 제조장치.
  9. 제8항에 있어서,
    상기 롤러는 교체 가능한 것인
    비함침 타입의 연속섬유 복합재 제조장치.
  10. 제2항에 있어서,
    상기 수지가 코팅된 상기 섬유 강화재에 꼬임을 부여하는 트위스트부;를 더 포함하고,
    상기 트위스트부는,
    상기 수지가 코팅된 상기 섬유 강화재가 관통되는 바디부; 및
    상기 바디부 내에서 회전하는 스크류부;를 구비하고,
    상기 수지가 코팅된 상기 섬유 강화재는 상기 스크류부의 내측면을 따라 회전하여 꼬여지는 것인
    비함침 타입의 연속섬유 복합재 제조장치.
  11. 제10항에 있어서,
    상기 스크류부는 사선 형상의 나사산을 지니고,
    상기 나사산의 내측면을 따라 상기 수지가 코팅된 상기 섬유 강화재가 회전하여 꼬여지는 것인
    비함침 타입의 연속섬유 복합재 제조장치.
PCT/KR2020/017663 2019-12-31 2020-12-04 비함침 타입의 연속섬유 복합재 제조장치 WO2021137457A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0178890 2019-12-31
KR1020190178890A KR102217071B1 (ko) 2019-12-31 2019-12-31 비함침 타입의 연속섬유 복합재 제조장치
KR10-2019-0178894 2019-12-31
KR1020190178894A KR102265968B1 (ko) 2019-12-31 2019-12-31 꼬임 형상의 연속섬유 복합재 제조장치

Publications (1)

Publication Number Publication Date
WO2021137457A1 true WO2021137457A1 (ko) 2021-07-08

Family

ID=76686849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017663 WO2021137457A1 (ko) 2019-12-31 2020-12-04 비함침 타입의 연속섬유 복합재 제조장치

Country Status (1)

Country Link
WO (1) WO2021137457A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030054973A (ko) * 2001-12-26 2003-07-02 주식회사 포스코 선재코일 제조방법 및 산화막 제거장치
KR20080109883A (ko) * 2006-04-28 2008-12-17 가부시키가이샤 고베 세이코쇼 섬유 강화 수지 스트랜드의 제조장치
KR100880805B1 (ko) * 2008-02-28 2009-01-30 한국생산기술연구원 섬유강화복합소재의 비개방형 인젝션 인발성형장치
KR20110026639A (ko) * 2009-09-08 2011-03-16 (주)삼박 섬유강화 열가소성 복합재료의 성형장치 및 성형방법과 이에 의해 제조되는 성형품
KR20190024130A (ko) * 2017-08-31 2019-03-08 구정환 연속식 섬유 강화 파이프의 제조 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030054973A (ko) * 2001-12-26 2003-07-02 주식회사 포스코 선재코일 제조방법 및 산화막 제거장치
KR20080109883A (ko) * 2006-04-28 2008-12-17 가부시키가이샤 고베 세이코쇼 섬유 강화 수지 스트랜드의 제조장치
KR100880805B1 (ko) * 2008-02-28 2009-01-30 한국생산기술연구원 섬유강화복합소재의 비개방형 인젝션 인발성형장치
KR20110026639A (ko) * 2009-09-08 2011-03-16 (주)삼박 섬유강화 열가소성 복합재료의 성형장치 및 성형방법과 이에 의해 제조되는 성형품
KR20190024130A (ko) * 2017-08-31 2019-03-08 구정환 연속식 섬유 강화 파이프의 제조 장치

Similar Documents

Publication Publication Date Title
US5876553A (en) Apparatus for forming reinforcing structural rebar
US5593536A (en) Apparatus for forming reinforcing structural rebar
CN104552988B (zh) 一种超轻质复合材料曳引带的制备方法及制备系统
WO2013105748A1 (ko) 열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩 방법 및 그를 이용한 고압용기 및 그 제조방법
EP2262630B1 (de) Verfahren zur herstellung von faservorformlingen
FI92985B (fi) Menetelmä jatkuvilla kuiduilla vahvistettujen profiilien valmistamiseksi kuumassa pehmenevästä hartsista ja laitteisto niiden saamiseksi
US5520867A (en) Method of manufaturing a resin structure reinforced with long fibers
WO2022065620A1 (ko) 콘크리트용 섬유강화 복합체 보강근 제조장치 및 이를 통해 제조된 섬유강화 복합체 보강근
EP3450486A1 (en) Composite reinforcing thread, prepreg, tape for 3d printing and installation for preparing same
WO2014104730A1 (ko) 연속 탄소섬유 강화 열가소성 프리프레그의 제조 방법
CN107249838B (zh) 用于生产纤维复合材料的方法和设备
US11230073B2 (en) Method for producing an at least partially contoured, fibre reinforced plastic profile, a contoured, fibre reinforced plastic profile and its use
EP0560038B1 (en) Process for the preparation of a lattice-shaped structure member
WO2021137457A1 (ko) 비함침 타입의 연속섬유 복합재 제조장치
JPH0315524B2 (ko)
EP0364828B1 (de) Extrusionsimprägniervorrichtung
JPS58138616A (ja) ガラス繊維強化成形材とその製造装置
JPH0156661B2 (ko)
US5225020A (en) Pultrusion mandrel with integral, intercooled resin injector and method of using the same
KR102265968B1 (ko) 꼬임 형상의 연속섬유 복합재 제조장치
WO2021137447A1 (ko) 연속섬유 복합재 제조장치
KR102217071B1 (ko) 비함침 타입의 연속섬유 복합재 제조장치
CN216914916U (zh) 一种拉挤制件生产设备及拉挤制件
CN211251390U (zh) 一种多层连续纤维弯曲设备
WO2015178662A1 (ko) 연속섬유 강화 복합재 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20910129

Country of ref document: EP

Kind code of ref document: A1