WO2021137447A1 - 연속섬유 복합재 제조장치 - Google Patents

연속섬유 복합재 제조장치 Download PDF

Info

Publication number
WO2021137447A1
WO2021137447A1 PCT/KR2020/017258 KR2020017258W WO2021137447A1 WO 2021137447 A1 WO2021137447 A1 WO 2021137447A1 KR 2020017258 W KR2020017258 W KR 2020017258W WO 2021137447 A1 WO2021137447 A1 WO 2021137447A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
length
cross
sectional area
resin
Prior art date
Application number
PCT/KR2020/017258
Other languages
English (en)
French (fr)
Inventor
임준혁
김민혁
김민아
Original Assignee
한화솔루션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화솔루션 주식회사 filed Critical 한화솔루션 주식회사
Publication of WO2021137447A1 publication Critical patent/WO2021137447A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/504Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • B29C70/525Component parts, details or accessories; Auxiliary operations
    • B29C70/527Pulling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • B29C70/525Component parts, details or accessories; Auxiliary operations
    • B29C70/528Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/545Perforating, cutting or machining during or after moulding

Definitions

  • the present invention relates to an apparatus for manufacturing a composite material. More specifically, it includes a fiber supply unit for supplying a plurality of extended fiber reinforcements, an impregnation unit in which the resin is accommodated, and a mold forming unit through which the fiber reinforcement material passes, and the mold forming unit includes a resin-coated fiber through the impregnation unit.
  • a fiber supply unit for supplying a plurality of extended fiber reinforcements
  • an impregnation unit in which the resin is accommodated and a mold forming unit through which the fiber reinforcement material passes
  • the mold forming unit includes a resin-coated fiber through the impregnation unit.
  • the cross-sectional area ratio of the internal pipe through which the fiber reinforcement is supplied is different. For this reason, it is possible to prevent the orientation between the polymers in the resin and increase the bonding force between the resin and the fibers, thereby improving the strength of the continuous fiber composite.
  • a fiber-reinforced polymer composite material is made by impregnating a fiber as a reinforcing material with a polymer resin as a base material.
  • Polymer composites have many advantages such as high strength compared to weight, chemical stability, and high fatigue limit, and are expanding their application to the aerospace industry and various automotive parts that require excellent weight-to-weight ratio.
  • pultrusion is a process of molding a product by drawing through a die while impregnating the continuously supplied fiber bundle with resin.
  • Pultrusion a method known for several decades for the continuous production of endless composite profiles with such a uniform cross-section, is that the fibers, which are combined into bundles, so-called rovings, are made of thermosetting or thermoplastic matrix materials, e.g. For example, it is impregnated with a polyurethane or epoxy resin and subsequently cured in a curing tool to form a composite profile, mostly through heat treatment.
  • the fibers may be, inter alia, glass, carbon, basalt, or aramid fibers.
  • the rovings are pulled over deflection rollers through a pulling unit, an open impregnating bath filled with a matrix material formed into a liquid by a so-called puller. After the open impregnation bath, the impregnated rovings enter a hardening tool, which comprises one or more thermal chambers.
  • pultrusion systems have been known for many years, in which rovings are pulled without deflection through the injection box.
  • These pultrusion systems include at least one slit-shaped roving feeder for feeding the fibers at the front end of the housing in the direction of movement of the fibers.
  • the fibers are impregnated with a liquid matrix and pulled by a pulling unit.
  • the impregnated fiber portions leave the injection box through a slit-shaped conveying opening at the rear end of the housing in the direction of movement of the fibers and subsequently enter the curing tool.
  • the conventional injection box 10 exits the roving supply unit 11 and the injection box 10 to receive a plurality of rovings (R) first and a transfer opening 12 toward a curing mold (not shown) for curing operation. is provided with
  • the diameter of the roving supply part 11 is formed larger than the diameter of the transport opening 12 , and the passage 13 through which the plurality of rovings R flows is formed in the roving supply part 11 . It is provided to become narrower toward the carrying opening 12 .
  • the present invention relates to an apparatus for manufacturing a composite material. More specifically, it includes a fiber supply unit for supplying a plurality of extended fiber reinforcements, an impregnation unit in which the resin is accommodated, and a mold forming unit through which the fiber reinforcement material passes, and the mold forming unit includes a resin-coated fiber through the impregnation unit.
  • a fiber supply unit for supplying a plurality of extended fiber reinforcements
  • an impregnation unit in which the resin is accommodated and a mold forming unit through which the fiber reinforcement material passes
  • the mold forming unit includes a resin-coated fiber through the impregnation unit.
  • the cross-sectional area ratio of the internal pipe through which the fiber reinforcement is supplied is different. For this reason, it is possible to prevent the orientation between the polymers in the resin and increase the bonding force between the resin and the fibers, thereby improving the strength of the continuous fiber composite.
  • the continuous fiber composite material manufacturing apparatus is a fiber supply unit for supplying a plurality of extending fiber reinforcement; The impregnated part containing the resin; and a mold forming part having heat and passing through the fiber reinforcement, wherein the mold forming part passes through the impregnation part and the fiber reinforcement coated with the resin passes, but an internal pipe having a different cross-sectional area ratio; It is characterized in that it is provided.
  • the internal pipe of the continuous fiber composite manufacturing apparatus has a fiber inlet and a fiber outlet, and the length of the cross-sectional area at the fiber inlet is perpendicular to the length in the width direction compared to the length of the cross-sectional area at the fiber outlet. It is characterized in that the length in the width direction is different from the length in the direction.
  • the length in the vertical direction of the cross-sectional area at the fiber inlet of the continuous fiber composite manufacturing apparatus according to the present invention is longer than the length in the width direction, and the length in the width direction of the cross-sectional area of the fiber outlet is longer than the length in the vertical direction do it with
  • the length in the vertical direction of the cross-sectional area at the fiber inlet of the continuous fiber composite manufacturing apparatus according to the present invention is shorter than the length in the width direction, and the length in the width direction of the cross-sectional area of the fiber outlet is shorter than the length in the vertical direction do it with
  • the length in the width direction of the cross-sectional area of the internal pipe becomes shorter toward one point of the internal pipe, the fiber from the one point It is characterized in that the length in the width direction of the cross-sectional area becomes longer as it goes toward the outlet.
  • the length in the vertical direction of the cross-sectional area of the internal pipe is characterized in that it becomes shorter as it goes from one side to the other.
  • the length in the vertical direction of the cross-sectional area of the fiber inlet of the continuous fiber composite manufacturing apparatus according to the present invention is longer than the length in the vertical direction of the cross-sectional area of the fiber outlet, and the length in the width direction of the cross-sectional area of the fiber inlet is the fiber It is characterized in that the cross-sectional area of the outlet is shorter than the length in the width direction.
  • the resin stored in the impregnation portion of the continuous fiber composite manufacturing apparatus according to the present invention is characterized in that the liquid.
  • the continuous fiber composite manufacturing apparatus is characterized in that it further comprises a guide part for applying tension to the fiber reinforcement.
  • the continuous fiber composite manufacturing apparatus is characterized in that it further comprises a; hardening part to which the fiber reinforcement having passed through the guide part, the impregnation part and the mold forming part is supplied and cooled to a predetermined temperature.
  • the continuous fiber composite material manufacturing apparatus is characterized in that it further includes a cutting part for cutting the fiber reinforcement discharged from the hardening part to have a predetermined length.
  • the mold forming part of the continuous fiber composite manufacturing apparatus is spaced apart from each other by a predetermined distance, and a horizontal roll part provided in the form of a pair of rollers; further comprising,
  • the thickness of the fiber reinforcement moved from the mold forming part to the hardening part is reduced by the horizontal roll part.
  • the horizontal roll portion of the continuous fiber composite manufacturing apparatus according to the present invention rotates by the movement of the fiber reinforcement.
  • the resin-coated fiber reinforcement is formed to have different lengths in the width direction and the length in the vertical direction of the cross-sectional area at each point of the flow path of the fiber reinforcement in the heat treatment process through the mold forming part. Therefore, there is an effect of preventing the bonding between the polymers in the resin and improving the bonding force between the resin and the fiber, thereby improving the strength of the fiber reinforcement.
  • the fiber reinforcement not only improves the bonding force between the fiber and the resin while passing through the inner conduit having different lengths in the vertical direction and the width direction along the longitudinal direction of the mold forming part, but also improves the horizontality of the process of being compressed to a predetermined thickness.
  • the bonding force between the fibers and the resin can be further improved, thereby increasing the strength of the fiber reinforcement.
  • the horizontal roll unit does not require a separate driving device, so it has the advantage of convenient installation and disassembly.
  • FIG. 1 schematically shows a part of a conventional drawing process.
  • FIG. 2 is an enlarged view of a fiber inside an injection box in a conventional drawing process.
  • FIG. 3 is an overall conceptual diagram of a drawing process according to the present invention.
  • FIG. 4 is a plan view of a mold forming part according to the present invention.
  • FIG. 5 is a front view of a mold forming part according to the present invention.
  • FIG. 6 is a perspective view of an internal conduit according to the present invention.
  • the “length direction” is the x-axis direction with reference to FIG. 4
  • the “width direction” is the y-axis direction with respect to FIG. 4
  • the “vertical direction” is the z-axis direction with reference to FIG. 4 .
  • “upper” means an upward direction in a vertical direction
  • “lower” means a downward direction in a vertical direction.
  • the continuous fiber composite manufacturing apparatus includes a fiber supply unit 100 , a guide unit 200 , an impregnation unit 300 , a mold forming unit 400 , a hardening unit 500 , a cutting unit 700 , and a horizontal roll unit 700 . ) is included.
  • the fiber supply unit 100 supplies a plurality of fiber reinforcements.
  • the fiber reinforcement is preferably a continuous fiber, and is made of continuous fiber thermoplastic (CFTRPC), a lightweight material that is impregnated with a resin through an impregnation unit 300 to be described later.
  • CFRP continuous fiber thermoplastic
  • CFTRPC continuous fiber thermoplastic
  • it refers to an elongated column of entangled fibers having a round cross section used in a drawing process such as tow, fiber tow, roving and sliver.
  • the fiber reinforcement may be supplied as a continuous bundle, and may be supplied as a fiber bundle stacked in multiple layers according to the product shape or specifications required by the user, or may be supplied by stacking a plurality of fiber bundles.
  • the fiber supply unit 100 includes a plurality of winding rolls 110 so that at least one or more fiber reinforcement materials can be wound, respectively.
  • the winding roll 110 may be rotatably provided to a frame installed in the work space.
  • the winding roll 110 is a form in which fibers having a round cross section are provided in a skein shape, and is wound in a single beam shape (see FIG. 3 ).
  • the fiber reinforcement may be continuously provided from the plurality of winding rolls 110 and arranged in parallel to be sequentially or simultaneously arranged according to the stacking order of the winding rolls 110 .
  • the fiber reinforcement may include at least one type. Specifically, it is made of continuous fiber thermoplastic (CFTRPC), a lightweight material that is impregnated with resin through an impregnation unit 300 to be described later, and the shape and thickness of the fibers may be different for each content of continuous fibers.
  • CFRTPC continuous fiber thermoplastic
  • the fiber reinforcement may include glass fiber, carbon fiber, etc.
  • the mixing ratio may be variously mixed such as 60%, 70%, and the like.
  • the guide unit 200 is provided with a plurality of rollers and plates to apply tension to the fiber reinforcement moving from the fiber supply unit 100 .
  • the fiber reinforcement supplied from the winding roll 110 is gathered by the rollers or plates of the guide part 200 to be supplied to the impregnation part 300 .
  • the plurality of fiber reinforcements continuously supplied from the plurality of winding rolls 110 are uniformly applied with inclination and tension and arranged at the same time to partially wind the rollers or plates of the guide unit 200 .
  • the height of the plurality of rollers of the guide unit 200 can be adjusted so that the fiber reinforcement is well supplied to the impregnation unit 300 , which is the next step, and the distance between the plurality of rollers in consideration of the number and thickness of the fiber reinforcement material.
  • the spacing can be adjusted.
  • the fiber reinforcement supplied as above enters toward the impregnated part 300 , and the outer surface of the fiber reinforcement that has passed through the impregnated part 300 is coated with resin.
  • the impregnated part 300 has a hollow part in the form of a bath or tank, and a liquid resin may be accommodated therein.
  • thermoplastic resin is used as the resin accommodated in the impregnation part 300 , and in addition, a thermosetting resin may be used.
  • a thermosetting resin may be used as such a resin, epoxy, polypropylene (PP), or polyamide (PA) may be typically used.
  • the fiber reinforcement supplied from the guide part 200 may be pulled and coated with such a liquid resin.
  • This process is a known drawing process technology, and as the resin is coated along the outer surface of the fiber reinforcement, the volume content of the fibers increases, thereby slowing the drawing step and slowing down the overall speed of the process.
  • the conventional strength (physical properties) is lowered to solve the problem.
  • the mold forming unit 400 is a section for preheating and melting the resin-coated fiber reinforcement.
  • the heating temperature may be heated to a temperature of about 220°C, and when the resin is polyamide (PA), the heating temperature may be heated to about 250°C .
  • the heating temperature exemplifies the temperature for the typically used resin, and in addition, resins of various materials may be used, and may be changed to be heated to an optimal temperature suitable for each resin. However, it is not necessary to exceed about 300° C. for stable performance, and it is preferable to manage it at about 300° C. or less to reduce manufacturing cost.
  • the mold forming unit 400 is provided with an internal conduit 410 extending in the longitudinal direction in the form of a flow path through which the resin-coated fiber reinforcement material can pass.
  • one side of the inner conduit 410 through which the resin-coated fiber reinforcement is introduced is referred to as a fiber inlet 411 , and the resin-coated fiber reinforcement passes through the inner conduit 410 and exits the inner conduit 410 . ), the other side is referred to as a fiber outlet 412 (see FIG. 4 ).
  • the size of the cross-sectional area along the longitudinal direction of the inner conduit 410 is preferably different.
  • each point has a different length in the width direction between the cross-sectional areas based on the longitudinal direction.
  • a point a 410a which is the starting point of the inner conduit 410 through which the resin-coated fiber reinforcement is first introduced, a point a 410a of the inner conduit 410, b spaced apart by a predetermined distance in the longitudinal direction Point 410b, point c 410c spaced apart by a predetermined distance in the longitudinal direction from point b 410b of the inner conduit 410, and point d at which the resin-coated fiber reinforcement completely exits from the inner conduit 410 may be 410d, and the points a 410a to d points 410d shown in the drawings may be respective points when the inner pipe 410 is divided into thirds based on the longitudinal direction, but limited to a specific section and may be designed and changed by those skilled in the art.
  • the length in the width direction of the cross-sectional area of the inner conduit 410 becomes shorter from the point a 410a to the point b 410b, and again from the point b 410b to the point c 410c and the point d 410d. ), the length in the width direction of the cross-sectional area of the inner conduit 410 may gradually increase.
  • the length in the vertical direction of the cross-sectional area of the inner conduit 410 may be gradually shortened.
  • the length in the vertical direction of the cross-sectional area is longer than the length in the width direction.
  • the heat treatment process in the mold forming part 400 is performed, and finally, in order for the resin-coated fiber reinforcement material to exit from the inner conduit 410, the fiber outlet
  • the length in the vertical direction of the cross-sectional area proceeds through the point d (410d) of the inner pipe 410 of a size shorter than the length in the width direction.
  • the length in the width direction of the cross-sectional area of the fiber outlet 412 is longer than the length in the width direction of the cross-sectional area of the fiber inlet 411, and the length in the vertical direction of the cross-sectional area of the fiber inlet 411 is longer than the length of the fiber outlet ( 412), it is preferable that the length in the vertical direction of the cross-sectional area is shorter.
  • the resin-coated fiber reinforcement is passed while changing both the width direction and the vertical direction of the cross-sectional area of the fiber reinforcement pipe in the heat treatment process through the mold forming unit 400 .
  • the length in the width direction of the cross-sectional area of the inner conduit 410 becomes narrower as the fiber inlet 411 goes toward the b point 410b of the inner conduit 410,
  • the length in the width direction of the cross-sectional area at the point b 410b among the points a 410a to d points 410d of the inner conduit 410 is the shortest.
  • the length in the width direction of the cross-sectional area of the inner conduit 410 becomes longer and longer again.
  • the point c 410c of the point a 410a to the point d 410d of the inner conduit 410 is most similar to the square shape.
  • the resin-coated fiber reinforcement when passing through the heating die (corresponding to the mold forming part of the present invention) in the conventional drawing process, has a size of a constant cross-sectional area or a cross-sectional area that decreases in width from one direction to the other. It passed through a heating die, but due to the characteristics of the drawing process, the fiber reinforcement is pulled and proceeded, so it is not an orientation in which fibers and resin are entangled while passing through a conventional heating die, but a polymer in the resin is oriented and connected in one direction between the polymers in the resin There was a problem that the phenomenon occurred.
  • the width direction of the cross-sectional area at each point based on the longitudinal direction of the inner conduit 410 Due to the characteristic that the length and the length in the vertical direction are formed differently, there is an effect that can prevent bonding between the polymers in the resin and improve the bonding force between the resin and the fiber, thereby improving the strength of the fiber reinforcement.
  • Table 1 below is a table showing strength (physical properties) values according to the pulling speed of the fiber reinforcement processed by the conventional heating die of [Experimental Example 1] and the mold forming unit 400 according to the present invention in the drawing process.
  • Example Line speed Application of the shape of the mold forming part Add horizontal roll Strength (MPa) One 2 m/min Conventional heating mold X 31.9 ⁇ 1.2 2 4 m/min Conventional heating mold X 26.8 ⁇ 0.7 3 6 m/min Conventional heating mold X 22.3 ⁇ 1.1 4 6 m/min Mold forming part 400 X 26.1 ⁇ 0.6 5 6 m/min Conventional heating mold O 25.8 ⁇ 0.8 6 6 m/min Mold forming part 400 O 27.3 ⁇ 0.5
  • the internal The fiber reinforcement passing through the conduit 410 prevents the polymer in the resin from being oriented while passing through various cross-sections in the width direction and the vertical direction, and causes a phenomenon of connection between the resin and the fiber to improve the strength of the fiber reinforcement. do.
  • the horizontal roll unit 700 is positioned to be spaced apart from the mold forming unit 400 according to the present invention by a predetermined distance, as shown in FIG. 2 .
  • the horizontal roll unit 700 is a pair of rollers in the shape of a pair of rollers, after the heat treatment and molding process of the fiber reinforcement through the mold forming unit 400 is finished, in the upper and lower portions of the fiber reinforcement discharged from the mold forming unit 400 . are positioned adjacent to each other.
  • the horizontal roll unit 700 does not have a separate driving device for rotation, and rotates according to movement in one direction of the fiber reinforcement being pulled.
  • the fiber reinforcement while passing through the roller-shaped horizontal roll part 700 positioned on the upper and lower portions of the fiber reinforcement, the fiber reinforcement has a uniform thickness or is located in the mold forming part 400 . It can pass through the horizontal roll part 700 with a thinner thickness.
  • the fiber reinforcement not only improves the bonding force between the fiber and the resin while passing through the inner conduit 410 having different lengths in the vertical direction and the width direction along the longitudinal direction of the mold forming unit 400, but also compresses to a predetermined thickness.
  • the bonding force between the fibers and the resin can be further improved, thereby increasing the strength of the fiber reinforcement.
  • the horizontal roll unit 700 does not require a separate driving device, so it has the advantage of convenient installation and disassembly.
  • the horizontal roll part 700 can be applied to a conventional heating mold in which the fiber reinforcement is heat-treated and molded, so that in a company that applies a drawing process, the horizontal roll part 700 does not require a large cost in designing and changing the mold. Since the physical properties of the fabricated fiber reinforcement can be improved by adding only the configuration of
  • the fiber reinforcement entering the hardening unit 500 is a step of hardening the fiber reinforcement by applying a constant temperature, and may be positioned in the form of a final product, and may be cooled in the air after passing through the hardening unit 500 .
  • the fiber reinforcement supplied from the first fiber supply unit 100 may be pressurized and heated in the form of a final product while going through preheating, heating and cooling sections, and in this process, the resin-impregnated fiber reinforcement has a stable resin layer. It can be fixed to the fiber reinforcement material, and the resin can be properly spread on the fiber reinforcement material to improve the strength according to the properties of the fiber reinforcement material.
  • the fiber reinforcement can be made in the form of a complete product by a known technique of cutting the fiber reinforcement that is continuously discharged into the cutting unit 600 to a predetermined length.
  • a composite material of any desired length can be produced by a continuous process of the drawing process of the present invention in a series of processes.
  • the present invention relates to an apparatus for manufacturing a composite material. More specifically, it includes a fiber supply unit for supplying a plurality of extended fiber reinforcements, an impregnation unit in which the resin is accommodated, and a mold forming unit through which the fiber reinforcement material passes, and the mold forming unit includes a resin-coated fiber through the impregnation unit.
  • a fiber supply unit for supplying a plurality of extended fiber reinforcements
  • an impregnation unit in which the resin is accommodated and a mold forming unit through which the fiber reinforcement material passes
  • the mold forming unit includes a resin-coated fiber through the impregnation unit.
  • the cross-sectional area ratio of the internal pipe through which the fiber reinforcement is supplied is different. For this reason, it is possible to prevent the orientation between the polymers in the resin and increase the bonding force between the resin and the fibers, thereby improving the strength of the continuous fiber composite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

본 발명은 복합재 제조장치에 관한 것이다. 보다 상세하게는 복수 개의 연장되는 섬유 강화재를 공급하는 섬유 공급부, 수지가 수용된 함침부 및 열을 지니되, 섬유 강화재가 통과되는 금형 성형부를 포함하고, 금형 성형부는, 함침부를 거쳐 수지가 피복된 섬유 강화재가 통과할 수 있는 내부 관로를 구비하되, 섬유 강화재가 공급되는 내부 관로의 단면적 비율이 상이한 것을 특징으로 한다. 이로 인해, 수지 내 고분자 간 배향을 방지하고, 수지와 섬유 간의 결합력을 증대시켜 연속섬유복합재의 강도를 향상시킬 수 있다.

Description

연속섬유 복합재 제조장치
본 발명은 복합재 제조장치에 관한 것이다. 보다 상세하게는 복수 개의 연장되는 섬유 강화재를 공급하는 섬유 공급부, 수지가 수용된 함침부 및 열을 지니되, 섬유 강화재가 통과되는 금형 성형부를 포함하고, 금형 성형부는, 함침부를 거쳐 수지가 피복된 섬유 강화재가 통과할 수 있는 내부 관로를 구비하되, 섬유 강화재가 공급되는 내부 관로의 단면적 비율이 상이한 것을 특징으로 한다. 이로 인해, 수지 내 고분자 간 배향을 방지하고, 수지와 섬유 간의 결합력을 증대시켜 연속섬유복합재의 강도를 향상시킬 수 있다.
섬유강화 고분자 복합재료는 보강재료인 섬유에 기지재료인 고분자 수지를 함침시켜 만들어진다.
고분자 복합재료는 무게에 비해 강도가 크고, 화학적으로 안정하며, 피로 한도가 큰 등의 여러 장점이 있으며, 우수한 무게비 성능을 요구하는 항공 우주 산업, 각종 자동차 부품 등에 그 적용 범위를 넓혀가고 있다.
섬유 강화 고분자 복합재료의 성형 방법에는 Autoclave Molding, 필라멘트 와인딩, 테이프 적층법, RTM(Resin Transfer Molding), Pultrusion, Compression Molding 등의 여러 방법이 있다. 이러한 여러 성형 공정 중 Pultrusion은 연속적으로 공급되는 섬유다발에 수지를 함침시키면서 다이를 통해 인발하여 제품을 성형하는 공정이다.
이러한 균일한 단면을 갖는 무단의 복합재료 프로파일들의 연속적인 제조를 위한 수십년 동안 공지된 방법의 인발 성형은, 다발들, 소위 로빙들(rovings)로 조합되는 섬유들은 열경화성 또는 열가소성 기지재료, 예를 들어, 폴리우레탄 또는 에폭시 수지로 함침되고, 그리고 후속하여, 대부분 열 처리를 통해 복합재료 프로파일을 형성하기 위해 경화 공구에서 경화된다. 섬유들은, 특히, 유리, 탄소, 현무암, 또는 아라미드(aramid) 섬유들일 수 있다.
가장 일반적인 인발 성형 시스템들에서, 로빙들은 당김 유닛, 소위 풀러(puller)에 의해 액체로 형성된 기지재료로 채워진 개방 함침 배스(open impregnating bath)를 통해 편향 롤러들에 걸쳐 당겨진다. 개방 함침 배스 후에, 함침된 로빙들은 경화 공구로 진입하며, 이 경화 공구는 하나 이상의 열 챔버들을 포함한다.
또한, 인발 성형 시스템들은 수년 동안 공지되어 있으며, 이 인발 성형 시스템들에서, 로빙들은 사출 박스를 통해 편향 없이 당겨진다. 이 인발 성형 시스템들은 섬유들의 움직임 방향으로 하우징의 전방 단부에서 섬유들을 공급하기 위한 적어도 하나의 슬릿 형상 로빙 공급부를 포함한다. 섬유들은 액체 기지재료로 함침되고, 당김 유닛에 의해 당겨진다. 함침된 섬유 부분들은 섬유들의 움직임 방향으로 하우징의 후방 단부의 슬릿형상 운반 개구를 통해 사출 박스를 떠나서 후속하여 경화 공구로 진입한다.
그러나, 종래의 복합소재는 섬유를 인발하여 연속적으로 제조함에 따라, 섬유의 배열방향이 단방향으로 배열되게 되어 결정구조가 달라져 강도 또한 달라지게 되는 문제점이 있다.
도 1은 서술한 문제를 해결하기 위한 종래의 인발 성형 시스템의 공정의 일부를 개시한 것이다.
개방 함침 배스 후에 복수 개의 로빙(R)들은 사출박스(10)를 향해 진입하게 된다.
종래의 사출박스(10)는 복수 개의 로빙(R)들을 가장 먼저 공급받는 로빙 공급부(11) 및 사출박스(10)를 빠져나가 경화작업을 위해 경화금형(미도시)으로 향하는 운반개구(12)로 구비된다.
이때, 종래의 사출박스(10)에서는 로빙 공급부(11)의 직경이 운반 개구(12)의 직경보다 크게 형성되고, 복수 개의 로빙(R)들이 유동되는 통로(13)가 로빙 공급부(11)에서 운반 개구(12)를 향할수록 점점 좁아지게 구비된다.
이와 같은 구조로 인해, 로빙(R)들의 균일한 안내를 용이하게 할 수 있고, 공동의 배열에 따라 서로 위에 또는 서로 인접하게 동시에 제조될 수 있게 된다.
하지만, 종래의 도 1과 같은 일방향을 향할수록 단면이 적어지는 사출 박스의 구성으로는, 섬유(로빙, R)들간의 인접한 배열만 용이하게 할 수 있을 뿐, 함침 배스를 통과한 복수 개의 섬유들이 수지와 혼합되는 열처리 과정에서, 로빙 공급부에서 운반 개구로의 관로가 측면에서 보았을 때의 단면이 직선 형상을 지님으로, 수지 내 고분자가 일방향으로 배향되어, 고분자 간 연결이 발생됨으로 섬유와 수지 고분자 간의 결합력이 낮아져 물성을 향상시키지 못하는 문제점은 여전히 남아있다(도 2 참조).
따라서, 고분자 수지가 피복된 섬유가 열처리 성형되는 인발 공정에 있어서, 수지 내 고분자가 배향되면서 수지 내 고분자 간의 연결되는 현상을 방지할 수 있고, 섬유와 수지 간의 결합력이 증대시킬 수 있는 공정의 개발이 필요한 실정이다.
본 발명은 복합재 제조장치에 관한 것이다. 보다 상세하게는 복수 개의 연장되는 섬유 강화재를 공급하는 섬유 공급부, 수지가 수용된 함침부 및 열을 지니되, 섬유 강화재가 통과되는 금형 성형부를 포함하고, 금형 성형부는, 함침부를 거쳐 수지가 피복된 섬유 강화재가 통과할 수 있는 내부 관로를 구비하되, 섬유 강화재가 공급되는 내부 관로의 단면적 비율이 상이한 것을 특징으로 한다. 이로 인해, 수지 내 고분자 간 배향을 방지하고, 수지와 섬유 간의 결합력을 증대시켜 연속섬유복합재의 강도를 향상시킬 수 있다.
상기 목적을 달성하기 위하여, 본 발명에 따른 연속섬유 복합재 제조장치는 복수 개의 연장되는 섬유 강화재를 공급하는 섬유 공급부; 수지가 수용된 함침부; 및 열을 지니되, 상기 섬유 강화재가 통과되는 금형 성형부;를 포함하고, 상기 금형 성형부는, 상기 함침부를 거쳐 상기 수지가 피복된 상기 섬유 강화재가 통과하되, 단면적의 비율이 상이한 내부 관로;를 구비하는 것을 특징으로 한다.
또한, 본 발명에 따른 연속섬유 복합재 제조장치의 상기 내부 관로는 섬유 유입구 및 섬유 배출구를 지니고, 상기 섬유 유입구에서의 단면적의 수직 방향의 길이 대비 폭 방향의 길이와, 상기 섬유 배출구에서의 단면적의 수직 방향의 길이 대비 폭 방향의 길이가 상이한 것을 특징으로 한다.
또한, 본 발명에 따른 연속섬유 복합재 제조장치의 상기 내부 관로를 상부에서 볼 때, 상기 내부 관로의 일 지점의 전, 후에서 상기 단면적의 폭 방향의 길이의 증감의 변화가 발생되는 것을 특징으로 한다.
또한, 본 발명에 따른 연속섬유 복합재 제조장치의 상기 섬유 유입구에서의 단면적의 수직 방향의 길이가 폭 방향의 길이보다 길고, 상기 섬유 배출구의 단면적의 폭 방향의 길이가 수직 방향의 길이보다 긴 것을 특징으로 한다.
또한, 본 발명에 따른 연속섬유 복합재 제조장치의 상기 섬유 유입구에서의 단면적의 수직 방향의 길이가 폭 방향의 길이보다 짧고, 상기 섬유 배출구의 단면적의 폭 방향의 길이가 수직 방향의 길이보다 짧은 것을 특징으로 한다.
또한, 본 발명에 따른 연속섬유 복합재 제조장치의 상기 내부 관로를 상부에서 볼 때, 상기 내부 관로의 단면적의 폭 방향의 길이가 상기 내부 관로의 일지점을 향할수록 짧아지되, 상기 일지점에서부터 상기 섬유 배출구를 향할수록 단면적의 폭 방향의 길이가 길어지는 것을 특징으로 한다.
또한, 본 발명에 따른 연속섬유 복합재 제조장치의 상기 내부 관로를 측면에서 볼 때, 상기 내부 관로의 단면적의 수직 방향의 길이는 일측에서 타측을 향할수록 짧아지는 것을 특징으로 한다.
또한, 본 발명에 따른 연속섬유 복합재 제조장치의 상기 섬유 유입구의 단면적의 수직 방향의 길이가 상기 섬유 배출구의 단면적의 수직 방향의 길이보다 더 길고, 상기 섬유 유입구의 단면적의 폭 방향의 길이가 상기 섬유 배출구의 단면적의 폭 방향의 길이보다 짧은 것을 특징으로 한다.
또한, 본 발명에 따른 연속섬유 복합재 제조장치의 상기 함침부의 내부에 저장되는 수지는 액체인 것을 특징으로 한다.
또한, 본 발명에 따른 연속섬유 복합재 제조장치는 상기 섬유 강화재에 장력을 가하는 가이드부;를 더 포함하는 것을 특징으로 한다.
또한, 본 발명에 따른 연속섬유 복합재 제조장치는 상기 가이드부, 상기 함침부 및 상기 금형 성형부를 통과한 상기 섬유 강화재가 공급되어 일정 온도로 냉각되는 경화부;를 더 포함하는 것을 특징으로 한다.
또한, 본 발명에 따른 연속섬유 복합재 제조장치의 상기 경화부로부터 배출된 상기 섬유 강화재가 일정 길이를 지니도록 컷팅하는 절단부;를 더 포함하는 것을 특징으로 한다.
또한, 본 발명에 따른 연속섬유 복합재 제조장치의 상기 금형 성형부와 소정의 간격이 이격되되, 한 쌍의 롤러 형태로 구비되는 수평롤부;를 더 포함하되,
상기 수평롤부에 의해 상기 금형 성형부에서 상기 경화부로 이동되는 상기 섬유 강화재의 두께가 축소된다.
또한, 본 발명에 따른 연속섬유 복합재 제조장치의 상기 수평롤부는 상기 섬유 강화재의 이동에 의해 회전한다.
본 발명의 연속섬유 복합재 제조장치에 의하면 수지가 피복된 섬유 강화재는 금형 성형부를 통한 열처리 공정에서 섬유 강화재의 유로의 각 지점마다 단면적의 폭 방향의 길이 및 수직 방향의 길이가 상이하게 형성되는 특징으로 인해, 수지 내 고분자 간의 결합을 방지하고 수지와 섬유 간의 결합력을 향상시켜 섬유 강화재의 강도를 향상시킬 수 있는 효과가 있다.
또한, 수평롤부로 인해 섬유 강화재는 금형 성형부 길이방향을 따라 수직 방향 및 폭 방향의 길이가 상이한 내부 관로를 통과하면서 섬유 및 수지 간의 결합력을 향상시킬 뿐만 아니라, 소정의 두께로 압축되는 공정의 수평롤부를 한 번 더 거쳐 수지 내 고분자 간 배열을 흐트러지게 함으로써, 섬유 및 수지 간의 결합력을 더 향상시켜 섬유 강화재의 강도를 증대시킬 수 있다.
또한, 수평롤부는 별도의 구동 장치가 필요 없어 설치 및 분해가 편리한 장점이 있다.
도 1은 종래의 인발 공정의 일부를 간략하게 도시한 것이다.
도 2는 종래의 인발 공정에서 사출 박스 내부의 섬유의 확대도이다.
도 3은 본 발명에 따른 인발 공정의 전체 개념도이다.
도 4는 본 발명에 따른 금형 성형부의 평면도이다.
도 5는 본 발명에 따른 금형 성형부의 정면도이다.
도 6은 본 발명에 따른 내부 관로의 사시도이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 명세서에서 사용된 용어는 실시 예들을 설명하기 위한 것이며, 따라서 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprise)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.
이하에서 사용하는 용어의 정의는 다음과 같다. "길이 방향"이란, 도 4를 기준으로 x축 방향이며, "폭 방향"이란, 도 4를 기준으로 y축 방향이며, "수직 방향"이란, 도 4를 기준으로 z축 방향이다. 또한, "상부"란, 수직 방향에서 위쪽 방향을 의미하고, "하부"란 수직 방향에서 아래쪽 방향을 의미한다.
본 발명에 따른 연속섬유 복합재 제조장치는 섬유 공급부(100), 가이드부(200), 함침부(300), 금형 성형부(400), 경화부(500), 절단부(700) 및 수평롤부(700)를 포함한다.
먼저, 도 3을 참조하여, 섬유 공급부(100) 및 가이드부(200)를 설명하도록 한다.
섬유 공급부(100)는 복수 개의 섬유 강화재를 공급한다.
섬유 강화재는 연속섬유인 것이 바람직하고, 후술할 함침부(300)를 거쳐 수지가 함침되는 경량소재인 연속섬유복합재(Continuous Fiber Thermoplastic; CFTRPC)로 제조된다. 일 예로, 토우(tow), 섬유 토우(fiber tow), 로빙(roving) 및 슬라이버(sliver) 등의 인발 공정에서 사용되는 둥근 단면을 갖는 엉킨 섬유(entangled fiber)의 가늘고 긴 컬럼을 의미한다.
또한, 섬유 강화재는 연속적인 형태의 다발로 공급할 수 있으며, 제품의 형태나 사용자가 요구하는 스펙 등에 따라 복수층으로 적층된 섬유 다발로 공급하거나, 복수의 섬유 다발을 적층하여 공급하는 것도 가능하다.
이를 위해, 섬유 공급부(100)는 적어도 하나 이상의 섬유 강화재가 각각 권취될 수 있도록 복수 개의 권취롤(110)을 구비한다. 권취롤(110)은 작업 공간에 설치되는 프레임에 회전 가능하게 제공될 수 있다.
권취롤(110)은 둥근 단면을 가지는 섬유가 타래 형상으로 구비되는 형태로, 단일 빔 형상에 권취되게 된다(도3 참조).
이에 따라, 섬유 강화재는 복수 개의 권취롤(110)로부터 연속적으로 제공되고, 평행으로 배치되어 권취롤(110)의 적층 순서에 따라 순차적으로 또는 동시에 배치될 수 있다.
또한, 본 발명에 따른 실시예에서 섬유 강화재는 적어도 한 종류를 포함할 수 있다. 구체적으로, 후술할 함침부(300)를 거쳐 수지가 함침되는 경량소재인 연속섬유복합재(Continuous Fiber Thermoplastic; CFTRPC)로 제조되고, 연속섬유의 함량마다 섬유의 형태 및 굵기 등이 다를 수 있다.
예를 들어, 섬유 강화재는 유리섬유, 탄소섬유 등을 포함할 수 있고, 혼합비율도 60%, 70% 등과 같이 다양하게 혼합할 수 있다.
가이드부(200)는 복수 개의 롤러 및 플레이트가 구비되어, 섬유 공급부(100)로부터 이동되는 섬유 강화재에 장력을 가할 수 있다.
상세하게, 권취롤(110)로부터 공급되는 섬유 강화재를 가이드부(200)의 롤러 또는 플레이트로 집결시켜 함침부(300)에 공급할 수 있게 된다.
즉, 복수 개의 권취롤(110)로부터 연속적으로 공급되는 복수 개의 섬유 강화재에 경사 및 장력을 균일하게 가함과 동시에 배열하여 가이드부(200)의 롤러 또는 플레이트에 일부 감는 형태를 지닐 수 있다.
또한, 가이드부(200)의 복수 개의 롤러들은 섬유 강화재를 다음 단계인, 함침부(300)에 공급이 잘 되도록 높이를 조절할 수 있고, 섬유 강화재의 적층수나 두께 등을 고려하여 복수 개의 롤러 사이의 간격이 조정될 수 있음은 물론이다.
위와 같이 공급되는 섬유 강화재는 함침부(300)를 향해 진입하고, 함침부(300)를 통과한 섬유 강화재의 외측면에는 수지가 피복되게 된다.
이하, 이를 상세하게 설명하도록 한다.
함침부(300)는 조(bath) 또는 탱크 형태로 중공부를 지니고, 내부에 액체 형태의 수지가 수용될 수 있다.
본 발명에서 함침부(300)의 내부에 수용된 수지는 열가소성 수지가 사용되는 것이 바람직하고, 그 외에도 열경화성 수지가 사용되는 것도 가능하다. 이러한 수지로는, 에폭시(epoxy), 폴리프로필렌(Polypropylene; PP) 또는 폴리아미드(Poly Amide; PA)가 대표적으로 사용될 수 있다.
이와 같은 액체 형태의 수지에 가이드부(200)로부터 공급되는 섬유 강화재가 당겨져 피복될 수 있다.
이러한 공정은 공지된 인발 공정의 기술로, 섬유 강화재의 외측면을 따라 수지가 피복됨에 따라 섬유의 부피 함량이 커져 인발 단계가 둔화되고, 공정 전체 속도를 둔화시키는 단점이 있다.
이에 따라, 생산 속도가 더디게 되고, 생산성이 떨어지는 문제점으로, 결국 단가가 높아지게 된다.
결국, 생산 속도를 증가시키기 위해 섬유 강화재의 당김 속도를 임의로 조정하게 되면, 섬유 및 수지 간의 배향에 따른 결합력이 약해져 강도(물성)가 낮아지는 문제점이 있다.
이에 따라, 본 발명의 연속섬유 복합재 제조장치의 금형 성형부의 형상에 따라 종래의 강도(물성)가 낮아지는 문제를 해결하고자 한다.
이하, 도 4 내지 도 6을 참조하여 금형 성형부(400)를 설명하도록 한다.
금형 성형부(400)는 수지가 피복된 섬유 강화재를 예열 및 용융시키는 구간이다. 액체 형태의 수지가 폴리프로필렌(Polypropylene; PP)일 경우 가열 온도는 약 220℃의 온도로 가열될 수 있으며, 수지가 폴리아미드(PolyAmide; PA)일 경우 가열 온도는 약 250℃로 가열될 수 있다. 여기서, 가열 온도는 대표적으로 사용되는 수지에 대한 온도를 예시한 것으로, 이외에도 다양한 소재의 수지가 사용될 수 있으며, 각각의 수지에 적합한 최적의 온도로 가열하도록 변경될 수 있다. 그러나, 안정적인 성능을 위해 약 300℃를 초과할 필요는 없으며, 제조비용의 절감을 위해 약 300℃ 이하로 관리되는 것이 바람직하다.
또한, 금형 성형부(400)는 수지가 피복된 섬유 강화재가 통과할 수 있는 유로의 형태로, 길이 방향으로 연장되는 내부 관로(410)가 구비된다.
상세하게, 수지가 피복된 섬유 강화재가 유입되는 내부 관로(410)의 일측을 섬유 유입구(411)라 지칭하고, 수지가 피복된 섬유 강화재가 내부 관로(410)를 통과하여 빠져나가는 내부 관로(410)의 타측을 섬유 배출구(412)라 지칭한다(도 4 참조).
이때, 금형 성형부(400)를 상부에서 볼 때, 도 4와 같이, 내부 관로(410)의 길이 방향에 따른 단면적의 크기가 상이한 것이 바람직하다.
상세하게, 도 4와 같이, 내부 관로(410)를 상부에서 볼 때, 길이 방향을 기준으로, 일지점마다 단면적 간의 상이한 폭 방향의 길이를 가진다.
일 예로, 수지가 피복된 섬유 강화재가 처음 유입되는 내부 관로(410)의 시작 지점인 a지점(410a), 내부 관로(410)의 a지점(410a)에서 길이 방향으로 소정의 간격이 이격된 b지점(410b), 내부 관로(410)의 b지점(410b)에서 길이 방향으로 소정의 간격이 이격된 c지점(410c) 및 수지가 피복된 섬유 강화재가 내부 관로(410)로부터 완전히 빠져나가는 d지점(410d)일 수 있고, 도면에 도시된 a지점(410a) 내지 d지점(410d)은 내부 관로(410)를 길이방향을 기준으로 삼등분 하였을 때 각각의 지점일 수 있으나, 단, 특정 구간에 한정되지 않고 해당 분야의 당업자에 의해 설계 및 변경될 수 있다.
이와 같이, 내부 관로(410)의 단면적의 폭 방향의 길이는 a지점(410a)에서 b지점(410b)을 향할수록 짧아지고, 다시 b지점(410b)에서 c지점(410c) 및 d지점(410d)을 향할수록 내부 관로(410)의 단면적의 폭방향의 길이가 점점 길어질 수 있다.
또한, 도 5를 참조하면, 내부 관로(410)를 측면에서 볼 때, 내부 관로(410)의 단면적의 수직 방향의 길이가 점점 짧아질 수 있다.
즉, 내부 관로(410)의 길이 방향을 따라, a지점(410a), b지점(410b), c지점(410c) 및 d지점(410d)을 향할수록 내부 관로(410)의 단면적의 수직 방향의 길이가 점점 짧아지게 된다.
다시 말해, 수지가 피복된 섬유 강화재는 금형 성형부(400)에서의 열처리 공정을 위해, 섬유 유입구(411)에 진입할 때, 단면적의 수직 방향의 길이가 폭 방향의 길이보다 더 긴 크기의 내부 관로(410)의 a지점(410a)을 통과한 후, 금형 성형부(400)에서의 열처리 공정이 진행되고, 최종적으로 내부 관로(410)에서 수지가 피복된 섬유 강화재가 빠져나오기 위해, 섬유 배출구(412)에 진입할 때, 단면적의 수직 방향의 길이가 폭 방향의 길이보다 더 짧은 크기의 내부 관로(410)의 d지점(410d)을 통과하여 진행된다.
이때, 섬유 유입구(411)의 단면적의 폭 방향의 길이보다 섬유 배출구(412)의 단면적의 폭 방향의 길이가 더 긴 것이 바람직하고, 섬유 유입구(411)의 단면적의 수직 방향의 길이보다 섬유 배출구(412)의 단면적의 수직 방향의 길이가 더 짧은 것이 바람직하다.
이에 따라, 수지가 피복된 섬유 강화재는 금형 성형부(400)를 통한 열처리 공정에서 섬유 강화재의 관로 중 단면적의 폭 방향 및 수직 방향의 크기가 모두 변경되면서 통과되게 된다.
또한, 내부 관로(410)를 상부에서 볼 때, 섬유 유입구(411)에서 내부 관로(410)의 b지점(410b)을 향할수록 내부 관로(410)의 단면적의 폭 방향의 길이가 점점 좁아지므로, 내부 관로(410)의 a지점(410a) 내지 d지점(410d) 중 b지점(410b)에서의 단면적의 폭 방향의 길이가 가장 짧게 된다.
또한, 내부 관로(410)를 상부에서 볼 때, 내부 관로(410)의 b지점(410b)에서 d지점(410d)을 향할수록 내부 관로(410)의 단면적의 폭 방향의 길이가 다시 점점 길어지고, 동시에 a지점(410a)에서 d지점(410d)을 향할수록 단면적의 수직 방향의 길이가 점점 짧아지므로, 내부 관로(410)의 a지점(410a) 내지 d지점(410d) 중 c지점(410c)의 단면적의 크기가 가장 정사각형 형상과 유사하게 된다.
즉, 종래의 인발 공정에서 히팅 다이(본 발명의 금형 성형부와 대응)를 통과할 때, 수지가 피복된 섬유 강화재는 일정한 단면적의 크기 또는 일방향에서 타방향으로 갈수록 폭이 작아지는 단면적의 크기의 히팅 다이를 통과하였는데, 인발 공정의 특징 상, 섬유 강화재를 당겨 진행하므로, 종래의 히팅 다이를 통과하면서 섬유 및 수지 간의 엉키는 배향이 아닌, 수지 내 고분자가 배향이 되면서 수지 내 고분자 간의 일방향으로 연결되는 현상이 발생되는 문제점이 있었다.
그러나, 본 발명에 따른 금형 성형부(400)의 수지가 피복된 섬유 강화재가 유동하는 내부 관로(410)의 형상에 있어서, 내부 관로(410)의 길이 방향을 기준으로 각 지점마다 단면적의 폭 방향의 길이 및 수직 방향의 길이가 상이하게 형성되는 특징으로 인해, 수지 내 고분자 간의 결합을 방지하고 수지와 섬유 간의 결합력을 향상시켜 섬유 강화재의 강도를 향상시킬 수 있는 효과가 있다.
게다가, 본 발명에 따른 금형 성형부(400)의 형상으로 인해, 섬유 강화재의 당김 속도를 가장 이상적(이론적)으로 진행하였을 때의 물성을 비교적 느린 당김 속도에서도 확보할 수 있는 효과가 있다.
이를 증명하기 위해, 하기 표 1을 참조하도록 한다.
하기 표 1은 인발 공정에 있어서, 하기 [실험 예 1]의 종래 히팅 다이와 본 발명에 따른 금형 성형부(400)에 의해 공정되는 섬유 강화재의 당김 속도에 따른 강도(물성) 값을 나타낸 표이다.
[실험 예 1] : 종래 히팅 다이와 본 발명의 금형 성형부(400)에 의해 공정되는 섬유 강화재의 당김 속도에 따라 제작되는 연속섬유복합재(CFRTPC) 강도 측정
실시 예 Line speed(당김 속도) 금형 성형부 형상 적용 수평롤부 추가 강도(MPa)
1 2 m/min 종래 히팅 금형 X 31.9±1.2
2 4 m/min 종래 히팅 금형 X 26.8±0.7
3 6 m/min 종래 히팅 금형 X 22.3±1.1
4 6 m/min 금형 성형부(400) X 26.1±0.6
5 6 m/min 종래 히팅 금형 O 25.8±0.8
6 6 m/min 금형 성형부(400) O 27.3±0.5
상기 표 1 및 실시 예 1 내지 3을 참조하면, 종래 히팅 금형을 적용하여 당김 속도를 2m/min, 4m/min 및 6m/min으로 다르게 하였을 경우, 섬유 강화재의 당김 속도를 2m/min으로 적용하였을 때, 강도가 31.9±1.2(MPa)로 가장 우수한 것을 확인할 수 있다.
이는, 종래의 인발 공정에서 히팅 금형을 적용하고, 섬유 강화재의 당김 속도를 4m/min 보다 빠른 6m/min으로 진행하였을 경우, 당김 속도가 빠를수록 작업 속도는 향상되나, 강도가 낮아지는 것을 확인하였다.
즉, 열처리 구간에서 수지 간 고분자가 배향되면서, 섬유와 수지 간의 결합력이 낮아지는 문제로 당김 속도 2m/min으로 하였을 때 보다 당김 속도를 6m/min으로 적용하는 것이 약 10MPa정도 강도가 저하되는 것을 확인할 수 있다.
이에, 본 발명에 따른 금형 성형부(400)를 도입하여 종래 히팅 금형 적용하였을 때와 동일한 6m/min으로 당김 속도를 적용하여 실험(실시 예 3 및 4 비교)하였다.
표 1에도 알 수 있듯이, 본 발명에 따른 금형 성형부(400)에 섬유 강화재가 통과할 경우, 당김 속도 4m/min을 적용했을 때와 유사한 강도가 형성되는 확인할 수 있다.
즉, 본 발명에 따른 금형 성형부(400)에 구비되는 내부 관로(410)의 길이 방향을 기준으로 각 지점마다 단면적의 폭 방향의 길이 및 수직 방향의 길이가 상이하게 형성되는 특징으로 인해, 내부 관로(410)를 통과하는 섬유 강화재는 다양한 폭 방향 및 수직 방향의 단면을 거치면서 수지 내 고분자가 배향되는 것을 방지하고, 수지와 섬유 간의 연결되는 현상을 발생시켜 섬유 강화재의 강도를 향상시킬 수 있게 된다.
따라서, 생산 속도를 증대시킴과 동시에 강도를 기존과 유사한 수준으로 유지할 수 있는 장점이 있다.
게다가, 본 발명에 따르면, 실시 예 5 및 6과 같이, 인발 공정에 수평롤부(700)를 추가하였을 경우, 동일한 당김 속도에서 강도가 향상되는 특징이 있다.
이를 위해, 본 발명에 따른 수평롤부(700)를 먼저 설명하도록 한다.
수평롤부(700)는 도 2와 같이, 본 발명에 따른 금형 성형부(400)와 소정의 간격이 이격되어 위치된다.
즉, 수평롤부(700)는 한 쌍의 롤러 형상으로, 금형 성형부(400)를 통해 섬유 강화재의 열처리 및 성형 공정이 끝난 뒤에, 금형 성형부(400)에서 배출되는 섬유 강화재의 상부 및 하부에서 인접하도록 맞닿아 위치된다.
또한, 수평롤부(700)는 회동하기 위한 별도의 구동 장치가 없고, 당겨지는 섬유 강화재의 일방향으로 이동에 따라 회전하게 된다.
이에 따라, 도 3의 확대 도시된 바와 같이, 섬유 강화재의 상부 및 하부에 위치된 롤러 형상의 수평롤부(700)를 통과하면서 섬유 강화재는 균일한 두께 또는 금형 성형부(400)에 위치했을 경우 보다 더 얇아진 두께로 수평롤부(700)를 통과할 수 있다.
즉, 섬유 강화재는 금형 성형부(400)의 길이방향을 따라 수직 방향 및 폭 방향의 길이가 상이한 내부 관로(410)를 통과하면서 섬유 및 수지 간의 결합력을 향상시킬 뿐만 아니라, 소정의 두께로 압축되는 공정의 수평롤부(700)를 한 번 더 거쳐 수지 내 고분자 간 배열을 흐트러지게 함으로써, 섬유 및 수지 간의 결합력을 더 향상시켜 섬유 강화재의 강도를 증대시킬 수 있다.
이는, 표 1에서, 금형 성형부(400)를 통과하는 섬유 강화재의 당김 속도 6m/min로 적용하였을 때 보다, 금형 성형부(400) 이후에 수평롤부(700)를 통과하는 섬유 강화재의 당김 속도를 동일하게 6m/min로 적용하였을 때, 강도가 약 1.2MPa 증가하는 것을 파악할 수 있다.
또한, 본 발명에 따른 수평롤부(700)는 별도의 구동 장치가 필요 없어 설치 및 분해가 편리한 장점이 있다.
게다가, 수평롤부(700)는 섬유 강화재가 열처리 및 성형되는 종래의 히팅 금형에도 적용이 가능하여 인발 공정을 적용하는 기업에 있어서, 비용이 크게 들어가는 금형 설계 및 변경을 하지 않고, 수평롤부(700)의 구성만을 추가하여 제작되는 섬유 강화재의 물성을 향상시킬 수 있으므로, 비용 절감의 효과가 발생한다.
이하, 금형 성형부(400) 및 수평롤부(700)를 통과한 섬유 강화재가 진입하는 경화부(500) 및 절단부(600)를 설명하도록 한다.
경화부(500)에 진입하는 섬유 강화재는 일정한 온도를 가하여 섬유 강화재를 경화시키는 단계로, 최종적인 제품의 형태로 자리잡을 수 있고, 경화부(500)를 통과한 후 대기중에서 냉각될 수 있다.
이와 같이, 최초 섬유 공급부(100)로부터 공급되는 섬유 강화재는 예열, 가열 및 냉각구간을 거치면서 최종 제품의 형태로 가압 및 가열될 수 있고, 이 과정에서 수지가 함침된 섬유 강화재는 수지층이 안정적으로 고착될 수 있으며, 수지가 섬유 강화재에 적당히 포진되도록 하여 섬유 강화재의 성질에 따라 강도를 향상시킬 수 있다.
이후, 섬유 강화재는 절단부(600)에 진입하여 연속적으로 배출되는 섬유 강화재를 일정한 길이로 컷팅하는 공지 기술로 완전한 제품의 형태로 만들 수 있게 된다.
서술한 바와 같이 일련의 과정으로 본 발명의 인발 공정의 연속 공정으로 임의의 원하는 길이의 복합재를 제조할 수 있다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
본 발명은 복합재 제조장치에 관한 것이다. 보다 상세하게는 복수 개의 연장되는 섬유 강화재를 공급하는 섬유 공급부, 수지가 수용된 함침부 및 열을 지니되, 섬유 강화재가 통과되는 금형 성형부를 포함하고, 금형 성형부는, 함침부를 거쳐 수지가 피복된 섬유 강화재가 통과할 수 있는 내부 관로를 구비하되, 섬유 강화재가 공급되는 내부 관로의 단면적 비율이 상이한 것을 특징으로 한다. 이로 인해, 수지 내 고분자 간 배향을 방지하고, 수지와 섬유 간의 결합력을 증대시켜 연속섬유복합재의 강도를 향상시킬 수 있다.

Claims (14)

  1. 복수 개의 연장되는 섬유 강화재를 공급하는 섬유 공급부;
    수지가 수용된 함침부; 및
    열을 지니되, 상기 섬유 강화재가 통과되는 금형 성형부;를 포함하고,
    상기 금형 성형부는,
    상기 함침부를 거쳐 상기 수지가 피복된 상기 섬유 강화재가 통과하되, 단면적의 비율이 상이한 내부 관로;를 구비하는 것을 특징으로 하는
    연속섬유 복합재 제조장치.
  2. 제1항에 있어서,
    상기 내부 관로는 섬유 유입구 및 섬유 배출구를 지니고,
    상기 섬유 유입구에서의 단면적의 수직 방향의 길이 대비 폭 방향의 길이와,
    상기 섬유 배출구에서의 단면적의 수직 방향의 길이 대비 폭 방향의 길이가 상이한 것을 특징으로 하는
    연속섬유 복합재 제조장치.
  3. 제1항에 있어서,
    상기 내부 관로를 상부에서 볼 때,
    상기 내부 관로의 일 지점의 전, 후에서 상기 단면적의 폭 방향의 길이의 증감의 변화가 발생되는 것을 특징으로 하는
    연속섬유 복합재 제조장치.
  4. 제2항에 있어서,
    상기 섬유 유입구에서의 단면적의 수직 방향의 길이가 폭 방향의 길이보다 길고, 상기 섬유 배출구의 단면적의 폭 방향의 길이가 수직 방향의 길이보다 긴 것을 특징으로 하는
    연속섬유 복합재 제조장치.
  5. 제2항에 있어서,
    상기 섬유 유입구에서의 단면적의 수직 방향의 길이가 폭 방향의 길이보다 짧고, 상기 섬유 배출구의 단면적의 폭 방향의 길이가 수직 방향의 길이보다 짧은 것을 특징으로 하는
    연속섬유 복합재 제조장치.
  6. 제3항에 있어서,
    상기 내부 관로를 상부에서 볼 때,
    상기 내부 관로의 단면적의 폭 방향의 길이가 상기 내부 관로의 일지점을 향할수록 짧아지되,
    상기 일지점에서부터 상기 섬유 배출구를 향할수록 단면적의 폭 방향의 길이가 길어지는 것을 특징으로 하는
    연속섬유 복합재 제조장치.
  7. 제1항에 있어서,
    상기 내부 관로를 측면에서 볼 때,
    상기 내부 관로의 단면적의 수직 방향의 길이는 일측에서 타측을 향할수록 짧아지는 것을 특징으로 하는
    연속섬유 복합재 제조장치.
  8. 제4항에 있어서,
    상기 섬유 유입구의 단면적의 수직 방향의 길이가 상기 섬유 배출구의 단면적의 수직 방향의 길이보다 더 길고,
    상기 섬유 유입구의 단면적의 폭 방향의 길이가 상기 섬유 배출구의 단면적의 폭 방향의 길이보다 짧은 것을 특징으로 하는
    연속섬유 복합재 제조장치.
  9. 제1항에 있어서,
    상기 함침부의 내부에 저장되는 수지는 액체인 것을 특징으로 하는
    연속섬유 복합재 제조장치.
  10. 제1항에 있어서,
    상기 섬유 강화재에 장력을 가하는 가이드부;를 더 포함하는 것을 특징으로 하는
    연속섬유 복합재 제조장치.
  11. 제10항에 있어서,
    상기 가이드부, 상기 함침부 및 상기 금형 성형부를 통과한 상기 섬유 강화재가 공급되어 일정 온도로 냉각되는 경화부;를 더 포함하는 것을 특징으로 하는
    연속섬유 복합재 제조장치.
  12. 제11항에 있어서,
    상기 경화부로부터 배출된 상기 섬유 강화재가 일정 길이를 지니도록 컷팅하는 절단부;를 더 포함하는 것을 특징으로 하는
    연속섬유 복합재 제조장치.
  13. 제12항에 있어서,
    상기 금형 성형부와 소정의 간격이 이격되되, 한 쌍의 롤러 형태로 구비되는 수평롤부;를 더 포함하되,
    상기 수평롤부에 의해 상기 금형 성형부에서 상기 경화부로 이동되는 상기 섬유 강화재의 두께가 축소되는
    연속섬유 복합재 제조장치.
  14. 제13항에 있어서,
    상기 수평롤부는 상기 섬유 강화재의 이동에 의해 회전하는 것인
    연속섬유 복합재 제조장치.
PCT/KR2020/017258 2019-12-31 2020-11-30 연속섬유 복합재 제조장치 WO2021137447A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0178888 2019-12-31
KR20190178888 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021137447A1 true WO2021137447A1 (ko) 2021-07-08

Family

ID=76686808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017258 WO2021137447A1 (ko) 2019-12-31 2020-11-30 연속섬유 복합재 제조장치

Country Status (2)

Country Link
KR (1) KR102344943B1 (ko)
WO (1) WO2021137447A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08225375A (ja) * 1995-02-22 1996-09-03 Tonen Corp 一方向性炭素繊維強化炭素複合材集合体並びに同炭素複合材多角柱体とその集合体の製造方法
KR100880805B1 (ko) * 2008-02-28 2009-01-30 한국생산기술연구원 섬유강화복합소재의 비개방형 인젝션 인발성형장치
KR20120116519A (ko) * 2011-04-11 2012-10-23 한화엘앤씨 주식회사 열가소성 수지로 함침된 장섬유 복합재를 이용한 압출 프로파일 제조방법 및 그 방법에 의해 제조된 창호용 프로파일
JP2017160308A (ja) * 2016-03-08 2017-09-14 パナソニックIpマネジメント株式会社 プレス成形用繊維強化樹脂シートとそれを用いた繊維強化樹脂板およびその製造方法
KR20190127777A (ko) * 2017-03-31 2019-11-13 크라우스마파이 테크놀로지스 게엠베하 섬유 보강식 플라스틱 프로파일들, 특히 플라스틱 로드들을 제조하기 위한 인발 성형 시스템을 위한 사출 박스

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001260205A (ja) * 2000-03-22 2001-09-25 Shiro Murakami 押し出し加工用のダイスおよび電線の製造法
KR101116592B1 (ko) * 2009-06-04 2012-03-09 신승수 상압 플라즈마를 이용하여 표면이 개질 된 콘크리트 보강용 합성수지 보강재, 그 제조장치 및 제조방법
KR101181559B1 (ko) * 2010-05-26 2012-09-10 동일산자주식회사 섬유강화플라스틱 재질의 중공 구조재의 제조를 위한 인발성형장치
KR20190036365A (ko) * 2017-09-27 2019-04-04 (주)엘지하우시스 복합소재 제조장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08225375A (ja) * 1995-02-22 1996-09-03 Tonen Corp 一方向性炭素繊維強化炭素複合材集合体並びに同炭素複合材多角柱体とその集合体の製造方法
KR100880805B1 (ko) * 2008-02-28 2009-01-30 한국생산기술연구원 섬유강화복합소재의 비개방형 인젝션 인발성형장치
KR20120116519A (ko) * 2011-04-11 2012-10-23 한화엘앤씨 주식회사 열가소성 수지로 함침된 장섬유 복합재를 이용한 압출 프로파일 제조방법 및 그 방법에 의해 제조된 창호용 프로파일
JP2017160308A (ja) * 2016-03-08 2017-09-14 パナソニックIpマネジメント株式会社 プレス成形用繊維強化樹脂シートとそれを用いた繊維強化樹脂板およびその製造方法
KR20190127777A (ko) * 2017-03-31 2019-11-13 크라우스마파이 테크놀로지스 게엠베하 섬유 보강식 플라스틱 프로파일들, 특히 플라스틱 로드들을 제조하기 위한 인발 성형 시스템을 위한 사출 박스

Also Published As

Publication number Publication date
KR20210086469A (ko) 2021-07-08
KR102344943B1 (ko) 2021-12-30

Similar Documents

Publication Publication Date Title
US5876553A (en) Apparatus for forming reinforcing structural rebar
US5593536A (en) Apparatus for forming reinforcing structural rebar
WO2019107991A1 (ko) 연속섬유 보강 열가소성 수지 복합재료 및 그 제조방법
FI92985C (fi) Menetelmä jatkuvilla kuiduilla vahvistettujen profiilien valmistamiseksi kuumassa pehmenevästä hartsista ja laitteisto niiden saamiseksi
WO2013105748A1 (ko) 열가소성 플라스틱-연속섬유 혼성복합체의 혼성 와인딩 방법 및 그를 이용한 고압용기 및 그 제조방법
US5520867A (en) Method of manufaturing a resin structure reinforced with long fibers
WO2014104730A1 (ko) 연속 탄소섬유 강화 열가소성 프리프레그의 제조 방법
JP2013530855A (ja) 強化引抜成形異形材の形成方法
CA2355320A1 (en) Process and apparatus for filament winding composite workpieces
CN102218831A (zh) 连续纤维多轴向增强热塑性预固结片材及其制备方法
KR20140015462A (ko) 연속 섬유 보강된 열가소성 봉 및 그를 제조하기 위한 인발 방법
JP6890547B2 (ja) 繊維複合材料を製造する方法および装置
US20110281052A1 (en) Fibre Reinforced Thermoplastic Composite Tubes
WO2015002951A2 (en) Composite tapes and rods having embedded sensing elements
WO2021137447A1 (ko) 연속섬유 복합재 제조장치
US20010001408A1 (en) Method and apparatus to febricate a fuly-consolidated fiber- reinforced tape from polymer powder preimpregnated fiber tow bundles for automated tow placement
WO2021137457A1 (ko) 비함침 타입의 연속섬유 복합재 제조장치
US20220161479A1 (en) Die and method for molding reinforcing bar
JP2019072963A (ja) 一方向プリプレグテープの製造装置と製造方法
WO2015178662A1 (ko) 연속섬유 강화 복합재 및 그의 제조방법
EP0747204A2 (en) A method and system for producing pultruded parts
JP7119539B2 (ja) 炭素繊維強化樹脂成形品の製造方法
US20160201403A1 (en) Composite Sucker Rod Assemblies
WO2021015576A1 (ko) 유리섬유 리바 제조 장치
WO2023211013A1 (ko) 고압 가스 저장 용기 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20910307

Country of ref document: EP

Kind code of ref document: A1