WO2015016491A1 - 강도와 내수압이 우수한 경질 ipvc파이프 수지 조성물 및 경질 ipvc파이프 - Google Patents

강도와 내수압이 우수한 경질 ipvc파이프 수지 조성물 및 경질 ipvc파이프 Download PDF

Info

Publication number
WO2015016491A1
WO2015016491A1 PCT/KR2014/005832 KR2014005832W WO2015016491A1 WO 2015016491 A1 WO2015016491 A1 WO 2015016491A1 KR 2014005832 W KR2014005832 W KR 2014005832W WO 2015016491 A1 WO2015016491 A1 WO 2015016491A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
pipe
resin
parts
water pressure
Prior art date
Application number
PCT/KR2014/005832
Other languages
English (en)
French (fr)
Inventor
이종태
Original Assignee
(주)피피아이평화
평화 파이프 인더스트리 인크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)피피아이평화, 평화 파이프 인더스트리 인크 filed Critical (주)피피아이평화
Priority to US14/394,627 priority Critical patent/US10023732B2/en
Priority to JP2015529710A priority patent/JP6018312B2/ja
Priority to RU2015101341A priority patent/RU2606437C2/ru
Priority to EP14831557.5A priority patent/EP2894196B8/en
Priority to CN201480002106.3A priority patent/CN104540894B/zh
Publication of WO2015016491A1 publication Critical patent/WO2015016491A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • C08K5/57Organo-tin compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/12Rigid pipes of plastics with or without reinforcement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/12Rigid pipes of plastics with or without reinforcement
    • F16L9/127Rigid pipes of plastics with or without reinforcement the walls consisting of a single layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/372Sulfides, e.g. R-(S)x-R'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/18Applications used for pipes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride

Definitions

  • the present invention relates to a rigid IPVC pipe resin composition and a rigid IPVC pipe having excellent strength and water pressure resistance.
  • P.V.C. pipe is a pipe produced by extruding a polyvinyl chloride resin.
  • P.V.C. pipes are widely used because they are light, have excellent mechanical strength, have excellent physical properties such as chemical resistance, corrosion resistance, chemical resistance, heat insulation, and electrical insulation, and have long life and low price.
  • IPVC pipe resin composition capable of realizing mechanical properties by extrusion molding P.V.C. resin having a K-Value of 72 to 84 without using a plasticizer.
  • IPVC pipe resin composition excellent in tensile strength, fall strength and water pressure, and provides a rigid P.V.C. pipe used for civil, construction, water, sewage piping.
  • One embodiment of the present invention provides a hard IPVC pipe resin composition having excellent strength and water pressure including a P.V.C. resin having a K-Value of 72 to 84.
  • the PVC resin having a K-Value of 72 to 84, about 1 to about 3 parts by weight of a Tin complex, about 3 to about 10 parts by weight of an impact modifier, and about 1 part of a methacrylate lubricant It provides a rigid IPVC pipe resin composition having excellent strength and water pressure including about 10 parts by weight.
  • the methacrylate-based lubricant may include butyl methacrylate and methyl methacrylate.
  • the methacrylate-based lubricant may include butyl methacrylate and methyl methacrylate in a weight ratio of about 1: 1 to about 1: 2.
  • Another embodiment of the present invention provides a rigid IPVC pipe excellent in strength and water pressure produced by extruding the resin composition.
  • the tensile strength of the pipe may be about 50 MPa to about 60 MPa.
  • the P.V.C. pipe manufactured by extruding the IPVC pipe resin composition can realize excellent tensile strength, fall strength and water pressure.
  • One embodiment of the present invention provides a hard IPVC pipe resin composition having excellent strength and water pressure, including P.V.C. resin having a K-Value of 72 to 84.
  • P.V.C Typical of the pipes are produced by extruding hard P.V.C. resin, and most of the pipes were produced by extruding P.V.C.
  • P.V.C. resins having a K-Value of 72 to 84 are hard to extrude, so that a large amount of plasticizer is mixed and extruded to produce soft extruded products such as sheets and vinyl.
  • P.V.C. resin having a K-Value of 72 to 84 compared to P.V.C. resin having a K-Value of 66. Since the resin has excellent mechanical strength, P.V.C. Despite being able to produce pipes, P.V.C. The resin has a disadvantage of relatively high melting point due to its high molecular weight, high temperature required for processing, and poor melt flowability due to its high viscosity. Therefore, it is recognized as a hard extrusion area due to the high load on the extruder during extrusion. In many cases, a large amount of plasticizer was mixed to produce soft extruded products such as sheets and vinyl.
  • phthalic acid plasticizers DEHP, DINP, DBP, etc.
  • adipic acid plasticizers Adipates, DHEA, etc.
  • the hard IPVC pipe resin composition by using a PVC resin and a methacrylate-based lubricant having a K-Value of 72 to 84, simultaneously realized excellent strength and water pressure due to a smooth extrusion process, so that the K-Value is Despite the use of PVC resins of 72 to 84, it is possible to produce a hard extruded product, and to exclude the use of a plasticizer, thereby increasing mechanical properties.
  • the P.V.C. pipe composition is a P.V.C. resin having a K-Value of 72 to 84 as a base resin, P.V.C. resin having a K-Value of 72 to 84 is excellent in mechanical strength and can be used as civil engineering and construction materials.
  • PVC resin with a K-Value of more than 84 refers to a homopolymer that is polymerized by a suspension polymerizing method, and the supply and demand of raw materials is difficult because products using the homopolymer are hardly produced. Since it is difficult and there is a possibility that workability is lowered, the K-Value of the PVC resin is economical in terms of cost and manufacturing process to maintain the above range, and can implement excellent workability.
  • PVC resin having a K-Value of 72 to 84, about 1 to about 3 parts by weight of Tin stabilizer, about 3 to about 10 parts by weight of impact modifier, and methacrylate lubricant It provides a rigid IPVC pipe resin composition having excellent strength and water pressure including about 1 to about 10 parts by weight.
  • Tin stabilizer is a thermal stabilizer to maintain the physical and chemical properties of PVC resin during processing and during use. When the tin stabilizer is mixed at less than about 1 part by weight, the workability decreases. While the improvement is insignificant, production costs are high and physical properties may be degraded.
  • the tin stabilizer may use a tin (TiN) mercaptoacetate compound, disulfide, and can minimize thermal decomposition occurring during processing.
  • TiN tin
  • an organic tin stabilizer may be used as the tin stabilizer, and the organic tin stabilizer may include a butyl tin stabilizer, an octyl tin stabilizer, or a methyl tin stabilizer, and may be used in the extrusion process of the PVC resin due to its excellent heat resistance and transparency.
  • the organic tin stabilizer may collect hydrogen chloride (HCl) in an instable state, and may suppress the occurrence of double bonds or suppress external changes such as oxidation and light.
  • the impact modifier is mixed from about 3 parts by weight to about 10 parts by weight based on 100 parts by weight of the P.V.C.resin.
  • Impact modifiers are blended with P.V.C. resins to increase fracture, tensile, compression, warpage and impact strength.
  • an acrylic copolymer, chloride polyethylene (CPE), or the like is used as the impact modifier.
  • the CPE can form an alloy by mixing with the PVC resin, and excellent compatibility with the PVC resin can implement impact resistance and high bending strength, the ethylene group of the CPE is anti-aging against UV Can play a role.
  • the methacrylate lubricant is mixed with the PVC resin and serves to increase the fluidity and formability of the resin, and may include about 1 to about 10 parts by weight of the methacrylate lubricant based on 100 parts by weight of the PVC resin. have.
  • the methacrylate type lubricant due to the compressive and flexible properties of the methacrylate type lubricant, or organic compatibility with the PVC resin having a K-Value of 72 to 84, to shorten the melting time of the PVC resin, By lowering the temperature imparted during the process and increasing the melt flowability of the PVC resin to lower the load by extrusion, a rigid pipe resin composition is used despite the use of PVC resin having a K-Value of 72 to 84. Can be formed.
  • the methacrylate-based lubricant it is possible to minimize the decrease in mechanical properties due to the use of a plasticizer.
  • the methyl methacrylate lubricant is mixed with a high molecular weight PVC resin having a K-Value of 72 to 84 to improve the melting characteristics, and increase the melt tensile strength of the molten resin to extrude the pipe. Molding is possible.
  • the methacrylate lubricant when the methacrylate lubricant is mixed in less than about 1 part by weight based on 100 parts by weight of the PVC resin, the resin melts faster and the thermal stability of the resin decreases due to lack of compatibility with the PVC resin, thereby extruder cylinder or mold. There is a problem that the resin is carbonized inside
  • the methacrylate-based lubricant when the methacrylate-based lubricant is mixed with more than 10 parts by weight based on 100 parts by weight of the PVC resin, the melting of the resin is delayed, the resin melting temperature is increased to increase the viscosity of the PVC resin to reduce the molding processability And, causing a lot of power consumption, there is a problem that the productivity and workability is lowered, the water resistance of the produced pipe is lowered.
  • methacrylate-based lubricants in the above range is advantageous in that the compatibility with the P.V.C. resin can be improved, and the kneading effect having compatibility can be easily realized.
  • the methyl methacrylate-based lubricant may include butyl methacrylate and methyl methacrylate.
  • the methacrylate-based lubricant may include butyl methacrylate and methyl methacrylate in a weight ratio of about 1: 1 to about 1: 2.
  • the butyl methacrylate (methyl methacrylate) and methyl methacrylate (Methyl Methacrylate) may be included in a weight ratio of 1: 2, and when maintaining the weight ratio with the PVC resin having a K-Value of 72 to 84 Compatibility can be increased to improve the kneading effect of the composition.
  • the weight ratio smooth workability is maintained by a certain level of melting (gelling) during extrusion processing, while melting out of the weight ratio may be delayed to reduce workability.
  • the butyl methacrylate may be increased compatibility with the PVC resin
  • the methyl meta used in a larger amount than the butyl methacrylate Acrylate (Methyl Methacrylate) may serve as a processing aid to control the melting temperature
  • the compatibility with the PVC resin is increased due to the use of the CPE, an impact modifier, may be advantageous when mixing the composition.
  • Another embodiment of the present invention provides a rigid IPVC pipe excellent in strength and water pressure produced by extruding the resin composition.
  • the said resin composition is as above-mentioned.
  • the tensile strength of the pipe manufactured by extruding the resin composition may be about 50 MPa to about 60 MPa.
  • Tensile strength is one of the values indicating the mechanical strength of the material, the tensile strength can be obtained by pulling the pipe and the applied load and the deformation shape of the pipe.
  • the resin composition has a P.V.C. resin having a K-Value of 72 to 84 and the P.V.C. About 1 part by weight to about 3 parts by weight of Tin stabilizer, about 3 to about 10 parts by weight of impact modifier, and about 1 to about 10 parts by weight of methacrylate lubricant,
  • the pipe can realize improved tensile strength and can also improve excellent fall strength and water pressure.
  • P.V.C. resin having a K-Value of 72.
  • the resin composition including 3.0 parts by weight of the lubricant mixed with the extrusion was prepared to prepare a pipe having a diameter of 114 mm and a thickness of 7.1 mm.
  • P.V.C. resin having a K-Value of 76 wherein the P.V.C. A pipe was manufactured in the same manner as in Example 1 except that 100 parts by weight of resin was used and 4.0 parts by weight of the lubricant was included.
  • a pipe was manufactured in the same manner as in Example 1, except that 10 parts by weight of butyl methacrylate (BA) and methyl methacrylate (MMA) were mixed in a 1: 2 weight ratio.
  • BA butyl methacrylate
  • MMA methyl methacrylate
  • a P.V.C. resin having a K-Value of 66 wherein the P.V.C. Extruded resin composition comprising 2.1 parts by weight of Tin stabilizer (TIN Complex), 6.0 parts by weight of acrylic copolymer (AIM) as an impact modifier, 1.0 parts by weight of PA as a processing aid and 1.6 parts by weight of olefin lubricants.
  • TIN Complex Tin stabilizer
  • AIM acrylic copolymer
  • a pipe having a diameter of 114 mm and a thickness of 7.1 mm was manufactured.
  • Tensile strength Tensile strength of the pipes of Examples and Comparative Examples was measured by the method of KS M ISO 6259-1, 6259-2 through a tensile compression tester (INSTROH 3369).
  • Example 1 51 5.0 or more 13
  • Example 3 52 5.0 or more 60
  • Example 4 53 5.0 or more 23 Comparative Example 1 48 2.0 1.0 Comparative Example 2 47 1.6 1.0
  • Examples 1 to 4 using PVC resins having K-Values of 72 to 84 are tensile strength and fall compared to Comparative Examples 1 and 2 using PVC resins having K-Values of 72 to 84. It was confirmed that the strength and the water pressure resistance were excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Lubricants (AREA)

Abstract

K-Value가 72내지 84인 P.V.C.수지를 포함하는 강도와 내수압이 우수한 경질 IPVC파이프 수지 조성물을 제공한다. 상기 수지 조성물을 압출하여 제조되는 강도와 내수압이 우수한 경질 IPVC파이프를 제공한다.

Description

강도와 내수압이 우수한 경질 IPVC파이프 수지 조성물 및 경질 IPVC파이프
강도와 내수압이 우수한 경질 IPVC 파이프 수지 조성물 및 경질 IPVC파이프에 관한 것이다.
일반적으로 P.V.C.파이프는 폴리염화비닐(Polyvinyl Chloride) 수지를 압출하여 생산되는 파이프다.
P.V.C.파이프는 가볍고, 기계적 강도가 우수하고, 내화학성, 내식성, 내약품성, 단열성, 전기절연성 등 여러 물성이 우수하며, 수명이 길고 가격이 저렴하기 때문에 널리 사용되고 있다.
그러나, 상기 P.V.C.파이프를 토목, 건축재로 사용하는 경우, 충격, 인장의 한계로 인하여 사용 중, 취급 중 파손과 터짐 등의 문제가 발생되었는바, 상기 문제점의 원인은 충격강도를 높이면 인장 정도가 낮아지고 인장강도를 높이면 충격강도가 낮아지는 반비례현상을 조절하지 못하였기 때문이다.
이에 최근에는 충격 강도와 인장강도를 동시에 높이고 내수압 성능을 향상시키기 위한 P.V.C.파이프 성형용 수지 조성물에 대한 기술개발의 필요성이 대두되고 있다.
본 발명의 일구현예는 K-Value가 72내지 84인 P.V.C.수지에 가소제를 사용하지 않고 압출 성형하여 기계적 물성을 구현할 수 있는 IPVC 파이프 수지 조성물을 제공한다.
본 발명의 다른 구현예는 상기 IPVC 파이프 수지 조성물이 압출됨으로써, 인장강도, 낙추강도 및 내수압이 우수하고, 토목, 건축, 수도, 하수용 배관으로 사용하는 경질 P.V.C.파이프를 제공한다.
본 발명의 일구현예는, K-Value가 72 내지 84인 P.V.C.수지를 포함하는 강도와 내수압이 우수한 경질 IPVC파이프 수지 조성물을 제공한다.
상기 K-Value가 72 내지 84인 P.V.C.수지 100중량부에 대해, Tin 안정제(Tin Complex) 약 1 내지 약 3중량부와, 충격보강제 약 3 내지 약 10중량부와, 메타크릴레이트계 활제 약 1 내지 약 10중량부를 포함하는 강도와 내수압이 우수한 경질 IPVC파이프 수지 조성물을 제공한다.
상기 메타크릴레이트계 활제는 부틸 메타아크릴레이트(Butyl Methacrylate) 및 메틸 메타아크릴레이트(Methyl Methacrylate)를 포함할 수 있다.
상기 메타크릴레이트계 활제는 부틸 메타아크릴레이트(Butyl Methacrylate) 및 메틸 메타아크릴레이트(Methyl Methacrylate)를 약 1:1 내지 약 1:2 중량비로 포함할 수 있다.
본 발명의 다른 구현예는 수지 조성물을 압출하여 제조되는 강도와 내수압이 우수한 경질 IPVC파이프을 제공한다.
상기 파이프의 인장강도가 약 50MPa 내지 약 60MPa 일 수 있다.
상기 IPVC 파이프 수지 조성물이 압출하여 제조된 상기 P.V.C.파이프는 우수한 인장강도, 낙추강도 및 내수압을 구현할 수 있다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
경질 IPVC파이프 수지 조성물
본 발명의 일 구현예는, K-Value가 72 내지 84인 P.V.C.수지를 포함하는 강도와 내수압이 우수한 경질 IPVC파이프 수지 조성물을 제공한다.
통상적으로, P.V.C. 파이프는 대부분 경질 P.V.C.수지를 압출하여 생산되는데, K-Value가 66인 P.V.C.수지를 압출하여 경질 P.V.C.파이프를 생산하는 것이 대부분이었다. 반면, K-Value가 72 내지 84인 P.V.C.수지는 경질 압출이 불가능하기 때문에 다량의 가소제를 혼합하여 압출함으로써, 시트나 비닐 등의 연질 압출제품을 생산하였다.
구체적으로, K-Value가 66인 P.V.C.수지에 비하여 K-Value가 72 내지 84인 P.V.C. 수지는 기계적 강도가 우수하기 때문에 보다 고강도의 P.V.C. 파이프를 생산할 수 있음에도 불구하고, K-Value가 72 내지 84인 P.V.C. 수지는 분자량이 높아 용융점이 상대적으로 높고, 가공시 고온이 필요하며, 점도가 높아 용융수지 흐름성이 나쁘다는 단점이 있어, 압출시 압출기에 대한 높은 부하(torque)로 경질 압출이 불가능 영역으로 인식되어, 다량의 가소제를 혼합하여 시트나 비닐 등의 연질 압출제품을 생산하는 것이 대부분이었다.
이때, 가소제로는 프탈산계 가소제(DOP, DEHP, DINP, DBP 등)나 아디핀산계 가소제(Adipates, DHEA 등) 등을 사용하였다.
그러나, 다량의 가소제를 혼합하여 K-Value가 72 내지 84인 P.V.C.수지를 압출하여 파이프를 생산할 경우 여러 가지 기계적 물성이 저하되는 문제점이 있었다.
이에, 상기 경질 IPVC파이프 수지 조성물은 K-Value가 72 내지 84인 P.V.C.수지와 메타크릴레이트계 활제를 사용함으로써, 원활한 압출 가공으로 인해 우수한 강도와 내수압을 동시에 구현하였는바, 이로 인해 K-Value가 72 내지 84인 P.V.C.수지를 사용함에도 불구하고 경질 압출제품을 생산할 수 있고, 가소제의 사용을 배제하였는바 기계적 물성을 상승시킬 수 있다.
상기 P.V.C.파이프 조성물은 베이스 수지로서 K-Value가 72 내지 84인 P.V.C.수지가 사용되는데, K-Value가 72내지 84인 P.V.C.수지는 기계적 강도가 우수하여 토목, 건설 자재로 사용가능하다.
구체적으로, K-Value가 84를 초과하는 P.V.C.수지는 초고분자 수지로, 현탁중합법에 의해 중합된 호모폴리머(homopolymer)를 일컫는바, 상기 호모폴리머를 사용한 제품은 거의 생산되지 않기 때문에 원료 수급이 어렵고, 가공성이 저하될 우려가 있어, 상기 P.V.C.수지의 K-Value는 상기 범위를 유지하는 것이 비용 및 제조공정 측면에서 경제적이고, 우수한 가공성을 구현할 수 있다.
구체적으로, K-Value가 72 내지 84인 P.V.C.수지100중량부에 대해, Tin 안정제(Tin Complex) 약 1 내지 약 3중량부와, 충격보강제 약 3 내지 약 10중량부와, 메타크릴레이트계 활제 약 1 내지 약 10중량부를 포함하는 강도와 내수압이 우수한 경질 IPVC파이프 수지 조성물을 제공한다.
상기 P.V.C.수지 100중량부에 대해 Tin 안정제(Tin Complex) 약 1 내지 약 3중량부를 포함할 수 있다. Tin 안정제는 열안정제로서 가공 과정중과 사용기간 중에 P.V.C.수지의 물리적, 화학적성질을 유지하도록 하는 것으로서 Tin 안정제가 약 1중량부 미만으로 혼합되면 작업성이 떨어지고, 약 3중량부를 초과하여 혼합되면 성능향상은 미미한 반면에 생산비용이 많이 소요되며, 물성이 저하될 수 있다.
예를 들어, 상기 Tin 안정제는 틴(TiN) 메르캅토아세테이트 화합물, 이황화물을 사용할 수 있고, 가공 중에 발생하는 열분해를 최소화 할 수 있다.
또한, 상기 Tin안정제로 유기 Tin안정제를 사용할 수 있고, 상기 유기 Tin안정제는 부틸 Tin안정제, 옥틸 Tin안정제, 메틸 Tin안정제를 포함할 수 있으며, 내열성 및 투명성이 우수하여 상기 P.V.C.수지 압출 가공시 사용 가능하다. 상기 유기 Tin안정제는 염화수소(HCl)을 불황성 상태로 포집할 수 있고, 2중 결합의 발생을 억제하거나, 산화 및 광선 등 외부에 의한 변화를 억제할 수 있다.
상기 충격보강제는 상기 P.V.C.수지 100중량부에 대해 약 3 내지 약 10중량부를 혼합한다.
충격보강제는 P.V.C.수지에 혼합되어 분열, 인장, 압축, 휨, 충격강도를 증가시키는 역할을 한다. 충격보강제로는 아크릴 공중합체(Acrylic copolymer), 클로라이드 폴리에틸렌(Chloride polyethylene,CPE) 등을 사용한다.
예를 들어, 상기 CPE는 상기 P.V.C.수지와 혼합하여 합금을 형성할 수 있고, 상기 P.V.C.수지와 상용성이 우수하여 내충격성 및 높은 굴곡강도를 구현할 수 있으며, 상기 CPE의 에틸렌기는 자외선에 대한 노화방지 역할을 할 수 있다.
상기 충격보강제는 P.V.C.수지 100중량부에 대해 약 3중량부 미만으로 혼합되면 강도 증대 효과가 없고, P.V.C.수지 100중량부에 대해 약 10중량부를 초과하여 혼합되면 혼합량 증가에 비해 충격보강제의 효과 증대가 미미할수 있는바, 상기 함량범위의 충격보강제를 사용함으로써 강도 증대 효과를 용이하게 구현할 수 있다.
상기 메타크릴레이트계 활제는 P.V.C.수지에 혼합되어 수지의 유동성과 성형성을 증대시키는 역할을 하는 것으로, 상기 P.V.C.수지 100중량부에 대해 메타크릴레이트계 활제를 약 1 내지 약 10중량부를 포함할 수 있다.
상기 메타크릴레이트계 활제를 사용함으로써, 메타크릴레이트계 활제의 압축적이고 유연한 성질, 또는 K-Value가 72 내지 84인 P.V.C.수지와의 유기적 상용성으로 인하여, 상기 P.V.C.수지의 용융시간을 단축하고, 공정시 부여되는 온도를 낮출수 있고, 상기 P.V.C.수지의 용융흐름성을 증대하여 압출에 의한 부하를 낮춤으로써, K-Value가 72 내지 84인 P.V.C.수지를 사용함에도 불구하고, 경질의 파이프 수지 조성물을 형성할 수 있다. 또한, 상기 메타크릴레이트계 활제를 사용함으로써 가소제의 사용으로 인한 기계적 물성 저하를 최소화 할 수 있다.
나아가, 상기 메틸 메타크릴레이트계 활제는 K-Value가 72 내지 84인 고분자량의 P.V.C.수지에 혼합되어 용융(Fusion)특성을 개선시키고, 용융수지의 용융인장강도(Melt strength)를 증대시켜 파이프 압출 성형이 가능하게 한다.
구체적으로, 상기 P.V.C.수지 100중량부에 대해 메타크릴레이트계 활제가 약 1중량부 미만으로 혼합되었을 경우 수지 용융이 빨라지고, P.V.C.수지와의 상용성 부족으로 수지의 열적 안정성이 저하되어 압출기 실린더 또는 금형 내부에 상기 수지가 탄화되는 문제가 있다
또한, 상기 P.V.C.수지 100중량부에 대해 메타크릴레이트계 활제가 10중량부를 초과하여 혼합되었을 경우 수지의 용융이 늦어지고, 수지 용융온도가 높아져 상기 P.V.C.수지의 점도를 높아지게 하여 성형 가공성을 저하시킬 수 있고, 많은 전력 소모를 유발하여, 생산성 및 작업성을 저하시키고, 생산된 파이프의 내수압성이 저하되는 문제점이 있다.
그러므로, 상기 범위 내의 메타크릴레이트계 활제를 사용하는 것이 P.V.C.수지와의 상용성을 높일수 있다는 점에서 유리하며, 상용성을 지닌 혼련 효과를 용이하게 구현할 수 있다.
상기 메틸 메타크릴레이트계 활제는 부틸 메타아크릴레이트(Butyl Methacrylate) 및 메틸 메타아크릴레이트(Methyl Methacrylate)를 포함할 수 있다.
상기 메타크릴레이트계 활제는 부틸 메타아크릴레이트(Butyl Methacrylate) 및 메틸 메타아크릴레이트(Methyl Methacrylate)를 약 1:1 내지 약 1:2 중량비로 포함할 수 있다.
상기 중량비를 벗어나서 부틸 메타아크릴레이트 및 메틸 메타아크릴레이트를 포함하는 경우 상용성이 저하될 우려가 있는바, 상기 범위의 중량비를 유지하는 것이 상용성을 극대화 시킬 수 있다는 점에서 유리하다.
예를 들어, 상기 부틸 메타아크릴레이트(Butyl Methacrylate) 및 메틸 메타아크릴레이트(Methyl Methacrylate)를 1:2 중량비로 포함할 수 있고 상기 중량비를 유지하는 경우 K-Value가 72 내지 84인 P.V.C.수지와의 상용성이 증대되어 조성물의 혼련효과를 향상시킬수 있다. 또한, 상기 중량비를 유지함으로써, 압출 가공시 일정수준 이상의 용융(겔링)으로 원활한 가공성이 유지되는 반면, 상기 중량비를 벗어나는 경우 용융이 지연되어 가공성이 저하될 수 있다.
구체적으로, 상기 P.V.C.수지에 충격보강제로써 전술한 CPE를 사용하는 경우, 상기 부틸 메타크릴레이트는 상기 P.V.C.수지와 상용성이 증가될 수 있고, 상기 부틸 메타크릴레이트에 비해 다량으로 사용되는 상기 메틸 메타아크릴레이트(Methyl Methacrylate)는 용융온도를 조절하는 가공조제 역할을 할 수 있고, 충격보강제인 상기 CPE의 사용으로 인해 상기 P.V.C.수지와 상용성이 증가되는바, 조성물 혼련시 유리할 수 있다.
그러므로, 상기 중량비를 유지하는 상기 메틸 메타크릴레이트계 활제를 사용함으로써, 성형성, 가공성 및 물리적 강도가 우수한 경질 IPVC 파이프를 생산 할 수 있다.
경질 IPVC파이프
본 발명의 다른 구현예는, 상기 수지 조성물을 압출하여 제조되는 강도와 내수압이 우수한 경질 IPVC파이프를 제공한다.
상기 수지 조성물은 전술한 바와 같다.
상기 수지 조성물을 압출함으로써 제조된 상기 파이프의 인장강도가 약 50MPa 내지 약 60MPa 일 수 있다. 인장강도는 재료의 기계적강도를 표시하는 값중의 하나로, 상기 파이프를 잡아당겨 그 가해진 하중과 상기 파이프의 변형 모양을 통해 인장강도를 구할 수 있다.
구체적으로, 상기 수지 조성물이 K-Value가 72 내지 84인 P.V.C.수지와, 상기 P.V.C. 수지 100중량부에 대해서, Tin 안정제(Tin Complex) 약 1 내지 약 3중량부와, 충격보강제 약 3 내지 약 10중량부와, 메타크릴레이트계 활제 약 1 내지 약 10중량부를 포함하는바, 상기 파이프는 향상된 인장강도를 구현할 수 있고, 우수한 낙추강도 및 내수압 또한 향상시킬 수 있다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
<실시예 및 비교예>
실시예1
K-Value가 72인 P.V.C.수지를 포함하고, 상기 P.V.C. 수지100중량부에 대해 Tin 안정제(TIN Complex) 2.5중량부, 충격보강제로 아크릴공중합체(AIM) 3.0중량부, 부틸 메타아크릴레이트(BA) 및 메틸메타아크릴레이트(MMA)가 각각 1:1중량비로 혼합된 활제 3.0중량부를 포함하는 수지 조성물을 압출하여 직경 114mm, 두께 7.1mm의 파이프를 제조하였다.
실시예2
K-Value가 76인 P.V.C.수지를 포함하고, 상기 P.V.C. 수지 100중량부를 사용하고, 상기 활제를 4.0중량부 포함하는 것을 제외하고는 상기 실시예 1과 동일하게 파이프를 제조하였다.
실시예3
K-Value가 84인 P.V.C.수지를 포함하고, 상기 P.V.C. 수지 100중량부를 사용하고, 상기 활제를 5.0중량부 포함하는 것을 제외하고는 상기 실시예 1과 동일하게 파이프를 제조하였다.
실시예4
부틸메타아크릴레이트(BA) 및 메틸메타아크릴레이트(MMA)가 각각 1:2 중량비로 혼합된 활제를 10중량부 포함하는 것을 제외하고는 상기 실시예 1과 동일하게 파이프를 제조하였다.
비교예1
K-Value가 66인 P.V.C.수지를 포함하고, 상기 P.V.C. 수지 100중량부에 대해 Tin 안정제(TIN Complex) 2.1중량부, 충격보강제로 아크릴공중합체(AIM) 6.0중량부, 가공조제로 PA 1.0중량부 및 올레핀계열 활제 1.6중량부를 포함하는 수지 조성물을 압출하여 직경 114mm이고, 두께 7.1mm의 파이프를 제조하였다.
비교예2
K-Value가 66인 P.V.C.수지를 포함하고, 상기 P.V.C. 수지 100중량부에 대해 C-Z(칼슘징크계) 안정제 4.5중량부, 충격보강제로 아크릴공중합체(AIM) 6.0중량부, 가공조제로 PA 1.0중량부 및 올레핀계열 활제 1.6중량부를 포함하는 수지 조성물을 압출하여 직경 114mm이고, 두께 7.1mm의 파이프를 제조하였다.
표 1
P.V.C 수지의 K-value(To 100) 메타크릴레이트계 활제(중량부)(BA: MMA)
실시예1 72 3(1:1)
실시예2 78 4(1:1)
실시예3 84 5(1:1)
실시예4 72 10(1:2)
비교예1 66 - (올레핀계 활제 1.6)
비교예2 66 - (올레핀계 활제 1.6)
<실험예> - 파이프의 기계적 물성 측정
1) 인장강도: 인장압축시험기(INSTROH 3369)를 통해 KS M ISO 6259-1, 6259-2의 방법으로 상기 실시예 및 비교예의 파이프의 인장강도를 측정하였다.
2) 낙추 높이: 상기 실시예 및 비교예의 파이프를 지면에 고정한 후 원뿔 모양의 추 9Kg을 일정높이에서 파이프에 낙하하여 파이프가 파손되는 추 높이를 낙추 높이로 판정하였다. 이때, 낙추 높이가 높을수록 낙추 강도가 우수하다. (단, 시험은 시험편을 0℃에서 60분간 상태조절 후 진행하여야 한다.)
3) 내수압: 장기 내수압 시험기(Long Term Hydrostatic Pressure Tester)를 통해 KS M ISO 1167의 방법으로 상기 실시예 및 비교예의 내수압을 측정하였다.
표 2
인장강도(MPa) 낙추높이(m) 내수압(hr)
실시예1 51 5.0이상 13
실시예2 55.4 4.0이상 55
실시예3 52 5.0이상 60
실시예4 53 5.0이상 23
비교예1 48 2.0 1.0
비교예2 47 1.6 1.0
상기 표 2에서 확인한 바와 같이, K-Value가 72 내지 84인 P.V.C 수지를 사용한 실시예 1 내지 4이 K-Value가 72 내지 84를 벗어난 P.V.C 수지를 사용한 비교예 1 및 2에 비하여 인장강도, 낙추강도 및 내수압이 우수한 것을 확인하였다.
또한, 메타크릴레이트계 활제를 1중량부 미만으로, 메타크릴레이트계 활제를 10중량부 초과하여 포함한 조성물로 파이프 제조를 시도하였으나, 가공성 저하 및 기계적 물성 저하 등으로 파이프가 제조되는데 어려움이 있었다.
그러므로, 가소제를 사용하지 않고서 K-Value가 72내지 84인 P.V.C.수지를 압출하여 경질 P.V.C.파이프를 생산하는데 있어서, 메타크릴레이트 활제의 함량이 인장강도, 낙추강도 및 내수압에 영향을 미치는 것을 확인하였다.

Claims (6)

  1. K-Value가 72 내지 84인 P.V.C.수지를 포함하는
    강도와 내수압이 우수한 경질 IPVC파이프 수지 조성물.
  2. 제 1항에 있어서,
    상기 K-Value가 72 내지 84인 P.V.C.수지 100중량부에 대해,
    Tin 안정제(Tin Complex) 1 내지 3중량부와,
    충격보강제 3 내지 10중량부와,
    메타크릴레이트계 활제 1 내지 10중량부를 포함하는
    강도와 내수압이 우수한 경질 IPVC파이프 수지 조성물.
  3. 제 2항에 있어서,
    상기 메타크릴레이트계 활제는 부틸 메타아크릴레이트(Butyl Methacrylate) 및 메틸 메타아크릴레이트(Methyl Methacrylate)를 포함하는
    강도와 내수압이 우수한 경질 IPVC파이프 수지 조성물.
  4. 제2항에 있어서,
    상기 메타크릴레이트계 활제는 부틸 메타아크릴레이트(Butyl Methacrylate) 및 메틸 메타아크릴레이트(Methyl Methacrylate)를 1:1 내지 1:2 중량비로 포함하는
    강도와 내수압이 우수한 경질 IPVC파이프 수지 조성물.
  5. 제1항 내지 제4항 중 어느 한 항에 기재된 수지 조성물을 압출하여 제조되는
    강도와 내수압이 우수한 경질 IPVC파이프.
  6. 제 5항에 있어서,
    상기 파이프의 인장강도가 50MPa 내지 60MPa인
    강도와 내수압이 우수한 경질 IPVC파이프.
PCT/KR2014/005832 2013-07-30 2014-07-01 강도와 내수압이 우수한 경질 ipvc파이프 수지 조성물 및 경질 ipvc파이프 WO2015016491A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/394,627 US10023732B2 (en) 2013-07-30 2014-07-01 Rigid IPVC pipe resin composition exhibiting excellent strength and hydrostatic pressure resistance and rigid IPVC pipe
JP2015529710A JP6018312B2 (ja) 2013-07-30 2014-07-01 強度と耐水圧に優れた硬質ipvcパイプ樹脂組成物及び硬質ipvcパイプ
RU2015101341A RU2606437C2 (ru) 2013-07-30 2014-07-01 Смоляная композиция для изготовления труб на основе жесткого упвх, обладающая высокой прочностью и сопротивлением гидростатическому давлению, и трубы из жесткого упвх
EP14831557.5A EP2894196B8 (en) 2013-07-30 2014-07-01 Rigid ipvc pipe resin composition and rigid ipvc pipe, with excellent stiffness and resistance to water pressure
CN201480002106.3A CN104540894B (zh) 2013-07-30 2014-07-01 强度和耐水压优秀的硬质抗冲聚氯乙烯管树脂组合物及硬质抗冲聚氯乙烯管

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130090278A KR101417941B1 (ko) 2013-07-30 2013-07-30 강도와 내수압이 우수한 경질 ipvc파이프 수지 조성물 및 경질 ipvc파이프
KR10-2013-0090278 2013-07-30

Publications (1)

Publication Number Publication Date
WO2015016491A1 true WO2015016491A1 (ko) 2015-02-05

Family

ID=51741798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005832 WO2015016491A1 (ko) 2013-07-30 2014-07-01 강도와 내수압이 우수한 경질 ipvc파이프 수지 조성물 및 경질 ipvc파이프

Country Status (8)

Country Link
US (1) US10023732B2 (ko)
EP (1) EP2894196B8 (ko)
JP (1) JP6018312B2 (ko)
KR (1) KR101417941B1 (ko)
CN (1) CN104540894B (ko)
MY (1) MY173341A (ko)
RU (1) RU2606437C2 (ko)
WO (1) WO2015016491A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7130935B2 (ja) * 2017-10-13 2022-09-06 信越化学工業株式会社 ポリ塩化ビニル系樹脂成形品及びその製造方法
KR102292538B1 (ko) 2017-12-19 2021-08-24 주식회사 엘지화학 염화비닐계 중합체의 제조방법 및 이로부터 제조된 염화비닐계 중합체
KR101997194B1 (ko) * 2018-11-07 2019-07-05 피피아이평화 주식회사 내충격성 및 화재 안전성이 우수한 이중관 구조 파이프
CN109810427A (zh) * 2018-12-10 2019-05-28 广州天市塑料原料有限公司 一种耐高压环境的聚氯乙烯材料及其制备方法
CN110330714A (zh) * 2019-07-02 2019-10-15 安徽晓旦机电设备有限公司 一种高强度光伏板清洁刷辊用材料及其制备方法
KR102649070B1 (ko) * 2022-10-27 2024-03-20 피피아이파이프 주식회사 폴리염화비닐 수지 조성물 및 폴리염화비닐 수지 조성물로 제조되는 파이프

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100210436B1 (ko) * 1996-04-30 1999-07-15 고다마 순이치로, 아마노 히로시 아크릴계 공중합체, 그 제조방법 및 아크릴계 공중합체 함유 염화비닐계 수지조성물
KR100909183B1 (ko) * 2009-03-17 2009-07-23 유영화학(주) 탄소섬유를 포함하는 폴리염화비닐수지관 및 그 제조방법
KR101266515B1 (ko) * 2012-11-23 2013-05-27 (주) 삼정디씨피 다층 구조의 수지 파이프

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1090670A (en) 1965-08-10 1967-11-15 Geigy Uk Ltd Chemical compositions
US3936417A (en) * 1968-07-23 1976-02-03 Grandview Industries, Limited Coilable polyvinyl chloride products and methods and compositions for producing the same
US3978022A (en) * 1974-07-08 1976-08-31 Rohm And Haas Company Thermal stabilization of acrylic polymers
US4239679A (en) * 1979-06-27 1980-12-16 Diamond Shamrock Corporation High bulk density rigid poly(vinyl chloride) resin powder composition and preparation thereof
JPS57139135A (en) 1981-02-24 1982-08-27 Mitsubishi Rayon Co Ltd Vinyl chloride resin composition
DE3608661A1 (de) 1985-06-04 1986-12-04 Wacker-Chemie GmbH, 81737 München Waermeformbestaendige formmasse
JP2705812B2 (ja) * 1988-10-31 1998-01-28 三菱レイヨン株式会社 熱可塑性樹脂用滑剤およびこれを用いた熱可塑性樹脂組成物
JPH083402A (ja) 1994-06-17 1996-01-09 Daiso Co Ltd 加工安定性に優れた塩化ビニル樹脂組成物及びそれより得られる樹脂管
JPH1017626A (ja) * 1996-04-30 1998-01-20 Kureha Chem Ind Co Ltd アクリル系共重合体およびその製造方法ならびにアクリル系共重合体を含有する塩化ビニル系樹脂組成物
JPH11106438A (ja) 1997-10-08 1999-04-20 Mitsubishi Rayon Co Ltd 熱可塑性樹脂用流動性改質剤およびこれを含有する熱可塑性樹脂組成物
CN1126788C (zh) * 1999-11-02 2003-11-05 海尔科化工程塑料国家工程研究中心有限公司 一种无毒的聚氯乙烯组合物及其制备方法
JP2003089737A (ja) 2001-07-13 2003-03-28 Sekisui Chem Co Ltd 塩化ビニル系樹脂組成物及び塩化ビニル系樹脂更生管
JP2005155901A (ja) 2003-11-05 2005-06-16 Sekisui Chem Co Ltd 硬質塩化ビニル系樹脂管
KR20070006858A (ko) 2004-03-30 2007-01-11 카네카 코포레이션 염화비닐계 수지 조성물
TW200626658A (en) * 2004-12-08 2006-08-01 Lg Chemical Ltd PVC processing-aids and process for manufacturing thereof
DE102005010242A1 (de) 2005-03-05 2006-09-07 Rehau Ag + Co. Verbesserte PVC-Zusammensetzung
RU2275383C1 (ru) 2005-09-08 2006-04-27 Закрытое акционерное общество "Биохимпласт" Поливинилхлорид с повышенной химической стойкостью в органических растворителях и его применение
US20080161470A1 (en) * 2006-12-28 2008-07-03 Stewart Carl Feinberg Composition comprising polyvinyl chloride and elastomer
CN101463169A (zh) * 2008-12-30 2009-06-24 深圳市领亚电子有限公司 电线电缆用过双波峰焊耐高温聚氯乙烯组合物及制备方法
CN102250433B (zh) * 2011-05-21 2013-04-10 贝内克-长顺汽车内饰材料(张家港)有限公司 一种汽车内饰材料pvc配方

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100210436B1 (ko) * 1996-04-30 1999-07-15 고다마 순이치로, 아마노 히로시 아크릴계 공중합체, 그 제조방법 및 아크릴계 공중합체 함유 염화비닐계 수지조성물
KR100909183B1 (ko) * 2009-03-17 2009-07-23 유영화학(주) 탄소섬유를 포함하는 폴리염화비닐수지관 및 그 제조방법
KR101266515B1 (ko) * 2012-11-23 2013-05-27 (주) 삼정디씨피 다층 구조의 수지 파이프

Also Published As

Publication number Publication date
EP2894196A1 (en) 2015-07-15
CN104540894A (zh) 2015-04-22
CN104540894B (zh) 2016-08-24
RU2015101341A (ru) 2016-08-27
JP2015529732A (ja) 2015-10-08
RU2606437C2 (ru) 2017-01-10
KR101417941B1 (ko) 2014-07-10
EP2894196B1 (en) 2018-09-05
US20160046800A1 (en) 2016-02-18
MY173341A (en) 2020-01-17
EP2894196B8 (en) 2018-10-31
US10023732B2 (en) 2018-07-17
JP6018312B2 (ja) 2016-11-02
EP2894196A4 (en) 2015-08-19

Similar Documents

Publication Publication Date Title
WO2015016491A1 (ko) 강도와 내수압이 우수한 경질 ipvc파이프 수지 조성물 및 경질 ipvc파이프
WO2009154347A1 (ko) 고인장 내충격합성수지관의 제조방법
US9809985B2 (en) Flooring material and the method for the same
US10208197B2 (en) PVC-based compound composition
KR100981118B1 (ko) 삼중벽 내충격 상수도관
KR20120006231A (ko) 중심층에 c-pvc를 함유하는 3층 구조 내충격 상수도관
WO2012060514A1 (ko) (메타)아크릴계 난연 공중합체 및 그의 제조 방법
CN103044818B (zh) 一种pvc/asa合金材料及其制备方法
KR101218405B1 (ko) 삼층형 폴리염화 비닐관
WO2017073987A1 (ko) 내스크래치 특성이 우수한 데코 시트
CN107109025B (zh) 丙烯酸系弹性体树脂组合物以及使用其制备的膜
CN101397405A (zh) 高韧性聚苯硫醚复合粒料的制造方法
WO2013094801A1 (ko) 열가소성 (메타)아크릴레이트 공중합체, 이를 포함하는 수지 조성물 및 그 성형품
KR101033830B1 (ko) 내후성이 향상된 수지관의 제조방법
KR101070584B1 (ko) 내충격성 합성수지조성물 및 이를 이용한 합성수지관
KR100976805B1 (ko) 수도관용 합성수지 조성물 및 그의 제조방법
KR100786773B1 (ko) 인장강도 및 내후성을 향상시킨 고강도 파이프 제조용수지조성물 및 그로부터 제조되는 고강도 파이프
CN104292651A (zh) 一种耐高温耐光老化pp膜及其制备方法
KR101218406B1 (ko) 합성수지 조성물 및 그의 제조방법
KR101033829B1 (ko) 내후성 및 인장강도가 향상된 수지관의 제조방법
CN106317705A (zh) 一种硬质pvc滑石粉填充体系电工套管
KR101310395B1 (ko) 파형관 및 이의 제조방법
CN100335554C (zh) 卫浴洁具用晶须改性螺旋聚氯乙烯管材组合物及其制备方法
US20180127528A1 (en) Smoothness improving additive for calendering process
KR100982196B1 (ko) 염화비닐 공중합 수지의 파이프조성물 및 이를 이용한 파이프

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14394627

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015529710

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015101341

Country of ref document: RU

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201600889

Country of ref document: ID