WO2015015934A1 - ワイドバンドギャップ半導体装置 - Google Patents

ワイドバンドギャップ半導体装置 Download PDF

Info

Publication number
WO2015015934A1
WO2015015934A1 PCT/JP2014/066113 JP2014066113W WO2015015934A1 WO 2015015934 A1 WO2015015934 A1 WO 2015015934A1 JP 2014066113 W JP2014066113 W JP 2014066113W WO 2015015934 A1 WO2015015934 A1 WO 2015015934A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
semiconductor
wide band
peripheral region
band gap
Prior art date
Application number
PCT/JP2014/066113
Other languages
English (en)
French (fr)
Inventor
増田 健良
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US14/909,015 priority Critical patent/US9691891B2/en
Publication of WO2015015934A1 publication Critical patent/WO2015015934A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode

Definitions

  • the present invention relates to a wide band gap semiconductor device, and more particularly to a wide band gap semiconductor device having a peripheral region.
  • silicon carbide has been increasingly adopted as a material for semiconductor devices in order to enable the use of high-voltage, low-loss and high-temperature environments in semiconductor devices such as MOSFETs (Metal Oxide Semiconductor Field Effect Transistors). It is being Silicon carbide is a wide band gap semiconductor having a larger band gap than silicon that has been widely used as a material for forming semiconductor devices. Therefore, by adopting silicon carbide as a material constituting the semiconductor device, it is possible to achieve a high breakdown voltage and a low on-resistance of the semiconductor device. In addition, a semiconductor device that employs silicon carbide as a material has an advantage that a decrease in characteristics when used in a high temperature environment is small as compared with a semiconductor device that employs silicon as a material.
  • a plurality of guard rings are provided concentrically so as to surround an element region, and the outer guard ring region is formed to have a lower impurity concentration. Yes.
  • JP 2011-44688 discloses a semiconductor device having a peripheral region (termination region) in which a plurality of p-type guard rings are formed at intervals from an active region.
  • Each guard ring is a floating guard ring formed in the surface layer portion of the epitaxial layer, and is covered with a gate insulating film and an interlayer insulating film.
  • a main object of the present invention is to provide a wide band gap semiconductor device capable of increasing the breakdown voltage without increasing the size.
  • a wide band gap semiconductor device includes a semiconductor substrate having a main surface and made of a wide band gap semiconductor, a device region formed on the semiconductor substrate, and a peripheral region formed so as to surround the device region.
  • the semiconductor substrate has a first semiconductor region having a first conductivity type, a first semiconductor region formed on the first semiconductor region, having a main surface, and having a conductivity type different from the first conductivity type.
  • the semiconductor substrate has a plurality of step portions surrounding the device region in an annular shape at the outermost periphery of the peripheral region, and the second semiconductor region extends along the step portions. Is formed.
  • FIG. 10 is a cross-sectional view of a wide band gap semiconductor device according to a first embodiment.
  • FIG. 10 is a cross-sectional view for illustrating the method for manufacturing the wide band gap semiconductor device according to the first embodiment.
  • FIG. 10 is a cross-sectional view for illustrating the method for manufacturing the wide band gap semiconductor device according to the first embodiment.
  • FIG. 10 is a cross-sectional view for illustrating the method for manufacturing the wide band gap semiconductor device according to the first embodiment.
  • FIG. 10 is a cross-sectional view for illustrating the method for manufacturing the wide band gap semiconductor device according to the first embodiment.
  • FIG. 10 is a cross-sectional view for illustrating the method for manufacturing the wide band gap semiconductor device according to the first embodiment.
  • FIG. 10 is a cross-sectional view for illustrating the method for manufacturing the wide band gap semiconductor device according to the first embodiment.
  • 7 is a cross-sectional view of a wide band gap semiconductor device according to Reference Example 1.
  • FIG. 12 is a cross-sectional view for explaining the method for manufacturing the wide band gap semiconductor device according to Reference Example 1.
  • FIG. 12 is a cross-sectional view for explaining the method for manufacturing the wide band gap semiconductor device according to Reference Example 1.
  • FIG. 12 is a cross-sectional view for explaining the method for manufacturing the wide band gap semiconductor device according to Reference Example 1.
  • FIG. 12 is a cross-sectional view for explaining the method for manufacturing the wide band gap semiconductor device according to Reference Example 1.
  • FIG. 12 is a cross-sectional view for explaining the method for manufacturing the wide band gap semiconductor device according to Reference Example 1.
  • FIG. 12 is a cross-sectional view for explaining the method for manufacturing the wide band gap semiconductor device according to Reference Example 1.
  • FIG. 12 is a cross-sectional view for explaining the method for manufacturing the
  • FIG. 12 is a cross-sectional view for explaining the method for manufacturing the wide band gap semiconductor device according to Reference Example 1.
  • FIG. 10 is a cross-sectional view of a wide band gap semiconductor device according to Reference Example 2.
  • FIG. 6 is a cross-sectional view of a modification of the wide band gap semiconductor device according to the first embodiment. It is sectional drawing of the modification of the wide band gap semiconductor device which concerns on the reference example 1.
  • FIG. 10 is a cross-sectional view for explaining the method for manufacturing the wide band gap semiconductor device according to Reference Example 1.
  • FIG. 10 is a cross-sectional view of a wide band gap semiconductor device according to Reference Example 2.
  • FIG. 6 is a cross-sectional view of a modification of the wide band gap semiconductor device according to the first embodiment. It is sectional drawing of the modification of the wide band gap semiconductor device which concerns on the reference example 1.
  • the wide band gap semiconductor device includes a semiconductor substrate (epitaxial substrate 20) having a main surface (upper surface P2) and made of a wide band gap semiconductor.
  • 20 includes a device region 20E formed at 20 and a peripheral region 20T formed so as to surround the device region 20E.
  • the semiconductor substrate 20 is formed on the first semiconductor region (drift layer 21) having the first conductivity type and the first semiconductor region (drift layer 21), and has a main surface P2.
  • a second semiconductor region (electric field relaxation region 25) having a second conductivity type different from the first conductivity type.
  • the semiconductor substrate 20 has a stepped portion 71 that annularly surrounds the device region 20E, and the second semiconductor region is formed along the stepped portion 71.
  • the peripheral region 20T is formed with the plurality of step portions 71 that annularly surround the device region 20E, the main surface in the direction from the device region 20E to the outer peripheral end of the wide band gap semiconductor device.
  • the creepage distance of (upper surface P2) can be increased. That is, the creepage distance of the main surface P2 in the peripheral region 20T can be increased without increasing the spatial distance of the peripheral region 20T (the shortest linear distance from the device region 20E to the outer peripheral edge of the wide band gap semiconductor device). .
  • a depletion layer is formed at the interface between the first semiconductor region and the second semiconductor region in the peripheral region 20T.
  • the wide band gap semiconductor device according to the present embodiment can achieve high breakdown voltage without increasing the size.
  • the stepped portion 71 has an upper surface (terrace surface 71a) extending in a direction along the main surface (upper surface P2) and a main surface (upper surface P2).
  • the thickness T1 (see FIG. 1) in the inclined surface 71c of the second semiconductor region is the thickness of the inclined surface 71c in the second semiconductor region (electric field relaxation region 25). It may be thicker than T2 (see FIG. 1).
  • a depletion layer formed at the interface between the first semiconductor region 21 and the second semiconductor region 25 formed along the plurality of stepped portions 71 on the first semiconductor region 21 has a main surface ( Even in a direction parallel to the upper surface P2), they can be connected to each other, and a wide depletion layer can be formed in the peripheral region 20T in both the direction parallel to the main surface (upper surface P2) and the direction perpendicular thereto. .
  • the breakdown voltage of the wide band gap semiconductor device can be improved more effectively.
  • a plurality of stepped portions (71) are formed, and the plurality of stepped portions (71) face the main surface toward the outer peripheral side of the peripheral region (20T). It may be formed in a staircase shape with a depth in a direction perpendicular to (upper surface P2). Even in this case, the creepage distance of the main surface P2 in the peripheral region 20T is increased without increasing the spatial distance of the peripheral region 20T (the shortest linear distance from the device region 20E to the outer peripheral end of the wide band gap semiconductor device). can do. Further, when a high voltage is applied to the wide band gap semiconductor device, a depletion layer is formed at the interface between the first semiconductor region and the second semiconductor region in the peripheral region 20T. As a result, the wide band gap semiconductor device according to the present embodiment can achieve high breakdown voltage without increasing the size.
  • the dielectric layer 61 is formed on the step portion 71, and the second semiconductor region (electric field relaxation region 25) It may be formed so as to be sandwiched between the first semiconductor region (drift layer 21) and the dielectric layer 61.
  • the dielectric layer 61 can protect the second semiconductor region (electric field relaxation region 25), and in the peripheral region 20T, within the semiconductor substrate 20 and between the semiconductor substrate 20 and the dielectric layer 61. Electric field concentration at the interface can be more effectively mitigated.
  • a plurality of stepped portions 71 are formed stepwise, that is, when the plurality of stepped portions 71 are formed so as to approach the lower surface P1 as they go to the outer peripheral side, In the second semiconductor region 25, the end portion (the outermost peripheral end of the second semiconductor region 25) located on the outer peripheral side of the wide band gap semiconductor device is the main surface (upper part) than the other portions in the second semiconductor region 25.
  • the wide band gap semiconductor device can alleviate electric field concentration on the outer peripheral side of peripheral region 20T where electric field concentration is likely to occur when a high voltage is applied in a general semiconductor device having a guard ring structure. .
  • the wide band gap semiconductor device according to the present embodiment can reduce the risk of occurrence of discharge on the dielectric layer 61.
  • the material constituting the dielectric layer 61 may include at least one selected from the group consisting of silicon dioxide, polyimide, and silicon nitride. Even in this case, the depletion layer easily expands from the interface between the first semiconductor region (drift layer 21) and the second semiconductor region (electric field relaxation region 25). Electric field concentration can be relaxed at the interface with the body layer 61, and the breakdown voltage of the wide band gap semiconductor device can be improved.
  • the main surface (upper surface P2) of the second semiconductor region (25) located inside the stepped portion (71) is A plurality of peripheral region grooves (70) surrounding the device region (20E) in an annular shape may be formed.
  • the spatial distance of the peripheral region 20T (from the device region 20E to the wideband) in the direction from the device region 20E to the outer peripheral edge of the wideband gap semiconductor device.
  • the creepage distance of the main surface (upper surface P2) can be further increased without increasing the shortest linear distance to the outer peripheral end of the gap semiconductor device.
  • the wide band gap semiconductor device according to the present embodiment can increase the breakdown voltage without increasing the size.
  • the peripheral region trench 70 may be formed in the second semiconductor region (electric field relaxation region 25). That is, the second semiconductor region (electric field relaxation region 25) is provided without being divided by the peripheral region groove 70. Therefore, the depletion layer easily expands in the direction in which the interface between the first semiconductor region (drift layer 21) and the second semiconductor region 25 extends, that is, in the direction parallel to the main surface P2. As a result, the electric field concentration in the vicinity of the device region 20E and the peripheral region 20T can be effectively reduced, and the breakdown voltage of the wide band gap semiconductor device can be improved.
  • the second semiconductor region 25 is provided without being divided by the peripheral region trench 70, for example, by connecting the second semiconductor region 25 to the source region 23 on the device region 20E side,
  • the entire two semiconductor regions 25 (JTE region 26 and guard ring region 27 in FIG. 8) can be grounded.
  • the application of the voltage is interrupted.
  • the conduction ions (carriers) in the region 25 can be quickly recovered. Therefore, the wide bandgap semiconductor device can be turned on in a state where the conduction ions in the second semiconductor region 25 are reliably recovered, and characteristic fluctuations during the ON operation can be suppressed.
  • the sidewall of the peripheral region trench 70 extends from the second semiconductor region (electric field relaxation region 25) to the first semiconductor region (drift layer 21). It may be.
  • the spatial distance of the peripheral region 20T (from the device region 20E to the wideband) in the direction from the device region 20E to the outer peripheral edge of the wide bandgap semiconductor device.
  • the creepage distance of the main surface (upper surface P2) can be increased without increasing the shortest linear distance to the outer peripheral end of the gap semiconductor device.
  • the wide band gap semiconductor device according to the present embodiment can increase the breakdown voltage without increasing the size.
  • the main surface (upper surface P2) of the semiconductor substrate (20) is provided with a device trench TR, and the peripheral region trench 70
  • the width of the peripheral region groove 70 in the direction perpendicular to the extending direction is smaller than the width of the device groove TR in the main surface (P2) in the direction perpendicular to the extending direction of the device groove TR.
  • the depth of the peripheral region groove 70 in the direction perpendicular to the (upper surface P2) may be smaller than the depth of the device groove TR in the direction perpendicular to the main surface (upper surface P2).
  • the width of the peripheral region trench 70 in the direction perpendicular to the extending direction of the peripheral region trench 70 is The width may be smaller than the width of the device trench TR in the extending direction of the trench TR. Further, the depth of the peripheral region groove 70 in the direction perpendicular to the main surface (upper surface P2) may be smaller than the depth of the device groove TR in the direction perpendicular to the main surface. In this case, since the width of the peripheral region groove 70 is sufficiently narrow, the first semiconductor region (drift layer 21) is changed from the second semiconductor region (electric field relaxation region 25) opposed to each other with the peripheral region groove 70 interposed therebetween.
  • the interval in the direction perpendicular to the extending direction of the peripheral region groove 70 between the depletion layers can be narrowed, or the depletion layers can be expanded so as to extend across the peripheral region groove 70. .
  • electric field concentration in the vicinity of the device region 20E and the peripheral region 20T can be relaxed, and the breakdown voltage of the wide band gap semiconductor device can be improved.
  • the semiconductor substrate is spaced from the first semiconductor region (drift layer 21) having the main surface (upper surface P2) by the main surface P2.
  • a pair of third semiconductor regions (body region 22) opposite to each other and having the second conductivity type, and the set of third semiconductor regions (body region 22) have the first conductivity type, respectively.
  • the width of the peripheral region groove 70 in the main surface (P2) in a direction perpendicular to the extending direction of the peripheral region groove 70 is the first surface in the main surface (P2).
  • the depth of the peripheral region trench 70 in the direction perpendicular to the main surface is smaller than the distance between the third semiconductor regions (p body regions 22) facing each other across the semiconductor region, and the depth of the third semiconductor region (p body region) 22) from the bottom main surface It may be smaller than the depth.
  • the width of the peripheral region groove 70 in the direction perpendicular to the direction in which the peripheral region groove 70 extends is equal to one set of the first pair facing each other across the first semiconductor region.
  • the distance between the three semiconductor regions (p body region 22) may be smaller.
  • the depth of the peripheral region groove 70 in the direction perpendicular to the main surface (upper surface P2) may be smaller than the depth from the main surface of the bottom of the third semiconductor region 22.
  • the gap in the direction perpendicular to the direction in which the peripheral region trenches 70 extend between the depletion layers can be narrowed, or the depletion layers can easily spread so as to extend across the peripheral region trenches 70. Can do. As a result, electric field concentration in the vicinity of the device region 20E and the peripheral region 20T can be relaxed, and the breakdown voltage of the wide band gap semiconductor device can be improved.
  • the sidewall of the peripheral region groove 70 may be inclined with respect to the main surface (upper surface P2).
  • the gap between the thick portions 27a can be narrower on the interface side with the first semiconductor region (drift layer 21) than on the main surface P2 side.
  • the depletion layer extends from the interface between each thick portion 27a and the first semiconductor region 21. It can be made easy to spread so that each other is continued across the peripheral region groove 70.
  • the peripheral region groove 70 having the side wall inclined with respect to the main surface P2 is formed by dry etching after forming a groove having a side wall perpendicular to the main surface P2 by dry etching, for example. It can be formed by removing the processing damage layer by wet etching or the like. As a result, it is possible to suppress a variation in the way the depletion layer expands due to the formation of the processing damage layer in the second semiconductor region 25.
  • the first conductivity type may be n-type and the second conductivity type may be p-type. Even in this case, a pn junction surface is formed at the interface between the first semiconductor region (drift layer 21) having the first conductivity type and the second semiconductor region (electric field relaxation region 25) having the second conductivity type. Is formed. Therefore, a depletion layer can be formed in the peripheral region 20T, and the breakdown voltage of the wide band gap semiconductor device can be improved.
  • the semiconductor substrate may be an epitaxial substrate in which an epitaxial layer is formed on a base substrate such as a single crystal substrate, or the base substrate is removed from the epitaxial substrate.
  • An epitaxial layer formed may be used.
  • MOSFET 101 as an example of the wide band gap semiconductor device according to the first embodiment is a trench gate type transistor.
  • the MOSFET 101 includes an epitaxial substrate 20 (semiconductor substrate), a gate oxide film 31 (gate insulating film), a gate electrode 32, a drain electrode layer 40 (first electrode layer), and a source electrode layer 50 (second electrode). Layer) and an interlayer insulating film 60.
  • the MOSFET 101 is a power semiconductor device that performs switching between the drain electrode layer 40 and the source electrode layer 50. Specifically, the MOSFET 101 is preferably configured to be able to apply a voltage of 600 V or higher between the drain electrode layer 40 and the source electrode layer 50, more preferably configured to be able to apply a voltage of 1200 V or higher. More preferably, it can be applied.
  • the epitaxial substrate 20 is made of a wide band gap semiconductor.
  • the wide band gap semiconductor is preferably made of silicon carbide, gallium nitride or diamond.
  • the wide band gap semiconductor material constituting epitaxial substrate 20 is silicon carbide, and the crystal structure has a hexagonal crystal.
  • Epitaxial substrate 20 has an upper surface P2, a lower surface P1, and a substrate side surface PS that connects lower surface P1 and upper surface P2.
  • the epitaxial substrate 20 has a device region 20E and a peripheral region 20T located outside the device region 20E when viewed in plan.
  • the epitaxial substrate 20 includes a single crystal substrate 29, an n-type drift layer 21, a p-type body region 22, a n-type source region 23, and a p-type contact region 24. Including. One surface of the single crystal substrate 29 constitutes a lower surface P1. Drift layer 21 is provided on the surface opposite to lower surface P ⁇ b> 1 of single crystal substrate 29. Body region 22 is in contact with drift layer 21. Body region 22 is separated from lower surface P ⁇ b> 1 by drift layer 21.
  • the impurity A concentration in the body region 22 is preferably about 5 ⁇ 10 17 / cm 3 or more and about 3 ⁇ 10 18 / cm 3 or less, for example, about 1 ⁇ 10 18 / cm 3 .
  • the source region 23 is in contact with the body region 22.
  • the source region 23 partially constitutes the upper surface P2.
  • Contact region 24 is in contact with body region 22.
  • the contact region 24 partially constitutes the upper surface P2.
  • Contact region 24 has an impurity concentration higher than that of body region 22.
  • the source electrode layer 50 is provided on the device region 20E on the upper surface P2 of the epitaxial substrate 20.
  • the source electrode layer 50 has an ohmic part 51 and a wiring part 52.
  • the ohmic part 51 is ohmically connected to the upper surface P2 of the epitaxial substrate 20.
  • the ohmic portion 51 is ohmically connected to the source region 23 and the contact region 24.
  • the upper surface P2 of the epitaxial substrate 20 is provided with a trench TR.
  • Trench TR has side wall surface SW and bottom surface BT.
  • Sidewall surface SW passes through source region 23 and body region 22 and reaches drift layer 21.
  • the body region 22 constitutes a portion of the side wall surface SW in the upper surface P2.
  • Sidewall surface SW includes a channel surface of MOSFET 101 on body region 22.
  • Sidewall surface SW of trench TR has a plane orientation ⁇ 0-33-8 ⁇ , and may preferably include a predetermined plane having a plane orientation (0-33-8).
  • the gate oxide film 31 covers the side wall surface SW and the bottom surface BT of the trench TR. That is, the gate oxide film 31 covers the body region 22 on the side wall surface SW.
  • the gate electrode 32 is provided on the gate oxide film 31.
  • the epitaxial substrate 20 includes a single crystal substrate 29, an n-type drift layer 21, an electric field relaxation region 25, and a field stop region 28 in the peripheral region 20T.
  • the electric field relaxation region 25 has a JTE (Junction Termination Extension) region 26 and a guard ring region 27.
  • Epitaxial substrate 20 has a plurality of stepped portions 71 in peripheral region 20T.
  • the plurality of stepped portions 71 have a step surface 71c that is inclined with respect to the upper surface P2, and a bottom surface 70a that intersects with the step surface 71c.
  • the step surface 71c of the stepped portion 71 and the side wall surface SW of the trench TR may be provided in parallel.
  • the step portion 71 is formed so as to surround the outer periphery of the device region 20E in an annular shape, and preferably extends in a direction along the outer periphery of the device region 20E.
  • the electric field relaxation region 25 and the field stop region 28 include the upper surface P2 and are formed along the plurality of stepped portions 71.
  • a plurality of stepped portions 71 are formed in a step shape, but the present invention is not limited to this. If the stepped portion 71 is configured with one or more steps, the creeping distance of the upper surface PS2 can be increased in the peripheral region 20T.
  • JTE region 26 has a p-type and is connected to body region 22.
  • the impurity concentration of the JTE region 26 is about 1 ⁇ 10 16 cm ⁇ 3 to 1 ⁇ 10 19 cm ⁇ 3 , and preferably about 1 ⁇ 10 17 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 .
  • At least a part of the JTE region 26 may be covered with the gate oxide film 31.
  • the JTE region 26 is formed so as to be located outside the body region 22 in the device region 20E, and includes the upper surface P2.
  • the guard ring region 27 has a p-type and is connected to the JTE region 26. That is, the guard ring region 27 is connected to the body region 22 via the JTE region 26. As described above, the guard ring region 27 is formed along the plurality of stepped portions 71 formed in the drift layer 21 and including the upper surface P2. That is, in the peripheral region 20T, the guard ring region 27 is located farthest from the surface of the dielectric layer 61 in contact with the field stop region 28 from a position connected to the JTE region 26 and including the upper surface P2 (lower surface). It is formed so as to include the upper surface P2 up to the position closest to P1.
  • the impurity concentration of the guard ring region 27 is equal to the impurity concentration of the JTE region 26 and is not less than 1 ⁇ 10 16 cm ⁇ 3 and not more than 1 ⁇ 10 19 cm ⁇ 3 , preferably 1 ⁇ 10 17. It is about cm ⁇ 3 or more and 1 ⁇ 10 18 cm ⁇ 3 or less.
  • the thickness T1 of the guard ring region 27 formed on the terrace surface 71a of the stepped portion 71 is thicker than the thickness T2 of the guard ring region 27 formed on the step surface 71c of the stepped portion 71.
  • the step surface 71c of the stepped portion 71 may be an inclined surface having an arbitrary angle with respect to the upper surface P2, and may be formed perpendicular to the upper surface P2.
  • the step surface 71c is a surface that is self-formed by thermal etching or the like.
  • the stepped portion 71 can be formed by a method similar to that for the trench TR, and thereby it is possible to prevent a damaged layer from being generated on the step surface 71c.
  • the field stop region 28 is n-type and has an impurity concentration higher than that of the drift layer 21.
  • Field stop region 28 is formed on the outer peripheral side of MOSFET 101 so as to surround guard ring region 27 on upper surface P ⁇ b> 2 of epitaxial substrate 20. That is, the field stop region 28 is formed in the peripheral region 20T so as to include the upper surface P2 at a position farthest from the surface of the dielectric layer 61.
  • the drain electrode layer 40 is provided on the lower surface P1 of the epitaxial substrate 20.
  • the drain electrode layer 40 is ohmically connected to the lower surface P ⁇ b> 1 of the epitaxial substrate 20.
  • the interlayer insulating film 60 is provided on the upper surface P ⁇ b> 2 of the epitaxial substrate 20 and covers the gate electrode 32.
  • Gate oxide film 31 and interlayer insulating film 60 have an opening exposing each of source region 23 and contact region 24 on upper surface P2. In this opening, the ohmic portion 51 of the source electrode layer 50 is in ohmic contact with each of the source region 23 and the contact region 24.
  • the dielectric layer 61 is formed on the upper surface P2 in the peripheral region 20T so as to fill the stepped portion 71. That is, the peripheral region 20T is flattened by the dielectric layer 61. From a different point of view, the dielectric layer 61 is formed thicker on the outer peripheral side than on the device region 20E side in the peripheral region 20T.
  • the dielectric layer 61 may be formed integrally with the interlayer insulating film 60 or may be formed as a separate body.
  • the material constituting the dielectric layer 61 may include at least one selected from the group consisting of silicon dioxide, (SiO 2 ), polyimide, silicon nitride (SiN), and hafnium oxide (HfO 2 ), for example. .
  • dielectric layer 61 is formed integrally with interlayer insulating film 60 and is made of silicon dioxide.
  • a single crystal substrate 29 having a lower surface P1 is prepared.
  • the drift layer 21 is formed by epitaxial growth on the surface opposite to the lower surface P1.
  • This epitaxial growth can be performed by a CVD (Chemical Vapor Deposition) method.
  • hydrogen gas may be used as the carrier gas.
  • the source gas for example, a mixed gas of silane (SiH 4 ) and propane (C 3 H 8 ) can be used.
  • SiH 4 silane
  • propane C 3 H 8
  • the body region 22, the source region 23, the contact region 24, and the electric field relaxation region 25 are formed on the drift layer 21. These formations can be performed by ion implantation.
  • an activation annealing process for activating impurities introduced by ion implantation is performed. For example, heating is performed for 30 minutes at a temperature of about 1700 ° C. in an atmosphere of argon (Ar) gas.
  • a mask layer 90 having an opening is formed on the electric field relaxation region 25 using, for example, a photolithography method.
  • the mask layer 90 for example, silicon dioxide or a silicon oxide film can be used.
  • trench TR is formed in epitaxial substrate 20 by etching using mask layer 90.
  • thermal etching is preferable.
  • the thermal etching can be performed, for example, by heating in an atmosphere containing a reactive gas having at least one or more types of halogen atoms.
  • the at least one or more types of halogen atom includes at least one of a chlorine (Cl) atom and a fluorine (F) atom.
  • This atmosphere is, for example, Cl 2 , BCl 3 , SF 6 , or CF 4 .
  • thermal etching is performed using a mixed gas of chlorine gas and oxygen gas as a reaction gas and a heat treatment temperature of, for example, about 700 ° C. to about 1000 ° C.
  • the reaction gas may contain a carrier gas in addition to the above-described chlorine gas and oxygen gas.
  • a carrier gas for example, nitrogen (N 2 ) gas, argon gas, helium gas or the like can be used.
  • mask layer 81 having an opening is formed on electric field relaxation region 25 using, for example, a photolithography method.
  • silicon dioxide or a silicon oxide film can be used.
  • one stepped portion 71 is formed on the epitaxial substrate 20 by etching using the mask layer 81.
  • thermal etching is preferable.
  • the thermal etching can be performed, for example, by heating in an atmosphere containing a reactive gas having at least one or more types of halogen atoms.
  • the at least one or more types of halogen atom includes at least one of a chlorine (Cl) atom and a fluorine (F) atom.
  • This atmosphere is, for example, Cl 2 , BCl 3 , SF 6 , or CF 4 .
  • thermal etching is performed using a mixed gas of chlorine gas and oxygen gas as a reaction gas and a heat treatment temperature of, for example, about 700 ° C.
  • the reaction gas may contain a carrier gas in addition to the above-described chlorine gas and oxygen gas.
  • a carrier gas for example, nitrogen (N 2 ) gas, argon gas, helium gas or the like can be used.
  • a mask layer 82 having an opening is formed on the electric field relaxation region 25.
  • the mask layer 82 is formed by processing the mask layer 81 or newly using a photolithography method.
  • the opening of the mask layer 82 is preferably formed wider on the device region 20E side than the opening of the mask layer 81.
  • two stepped portions 71 are formed in peripheral region 20T. By repeating the same process, a predetermined number of stepped portions 71 can be formed.
  • the guard ring region 27 and the field stop portion are formed on the plurality of step portions 71 formed in the peripheral region 20T.
  • These devices can be formed by ion implantation after covering the device region 20E with an ion implantation mask (not shown).
  • an activation annealing process for activating impurities introduced by ion implantation is performed. For example, heating is performed for 30 minutes at a temperature of about 1700 ° C. in an atmosphere of argon (Ar) gas. In this way, the structure shown in FIG. 5 is obtained.
  • a gate oxide film 31 covering each of the side wall surface SW and the bottom surface BT of the trench TR is formed.
  • the gate oxide film 31 can be formed, for example, by thermal oxidation of the epitaxial substrate 20.
  • the gate oxide film 31 may be formed, for example, on at least a part of the JTE region 26, or so as to cover each of the side wall surface and the bottom surface of the peripheral region groove 70. May be.
  • a gate electrode 32 is formed on the gate oxide film 31.
  • gate electrode 32 is formed so as to fill the region inside trench TR (region surrounded by side wall surface SW and bottom surface BT) with gate oxide film 31 interposed therebetween.
  • a conductor film to be the gate electrode 32 is formed on the gate oxide film 31 by using a sputtering method or the like.
  • a material of the conductor film any material such as metal can be used as long as it is a conductive material.
  • the portion of the conductor film formed in a region other than the inside of trench TR is removed by using any method such as etch back or CMP. In this way, the structure shown in FIG. 6 is obtained.
  • interlayer insulating film 60 is formed on gate oxide film 31 and gate electrode 32, and dielectric layer 61 is formed on JTE region 26, guard ring region 27, and field stop region 28. .
  • the interlayer insulating film 60 and the dielectric layer 61 may be formed integrally or separately.
  • the source electrode layer 50 is formed. Specifically, etching is first performed so that openings are formed in the gate oxide film 31 and the interlayer insulating film 60. Through the opening, each of the source region 23 and the contact region 24 is exposed on the upper surface P2. Next, ohmic portion 51 in contact with each of source region 23 and n contact region 24 is formed on upper surface P2. Next, the wiring part 52 is formed. Thus, MOSFET 101 shown in FIG. 1 is obtained.
  • stepped portion 71 is formed after trench TR is formed.
  • stepped portion 71 may be formed before trench TR is formed.
  • MOSFET 101 according to the first embodiment since a plurality of stepped portions 71 that annularly surround device region 20E are formed in peripheral region 20T, in the direction from device region 20E to the outer peripheral edge of the wide band gap semiconductor device, The creepage distance of the upper surface P2 can be increased. That is, the creepage distance of the main surface P2 in the peripheral region 20T can be increased without increasing the spatial distance of the peripheral region 20T (the shortest linear distance from the device region 20E to the outer peripheral edge of the wide band gap semiconductor device). . As a result, MOSFET 101 according to the first embodiment can achieve a high breakdown voltage without increasing the size.
  • thickness T1 of electric field relaxation region 25 on terrace surface 71a is greater than thickness T2 of electric field relaxation region 25 on step surface 71c. Therefore, the depletion layer can be easily expanded in the direction perpendicular to the upper surface P2 at the interface between the drift layer 21 and the electric field relaxation region 25. Therefore, the depletion layer formed at the interface between the drift layer 21 and the electric field relaxation region 25 formed along the plurality of stepped portions 71 on the drift layer 21 is connected to each other even in a direction parallel to the upper surface P2. In the peripheral region 20T, the depletion layer can be widely formed in both the direction parallel to the upper surface P2 and the direction perpendicular thereto. As a result, MOSFET 101 according to the first embodiment can further improve the breakdown voltage.
  • a dielectric layer 61 is formed on the stepped portion 71, and the electric field relaxation region 25 is formed so as to be sandwiched between the drift layer 21 and the dielectric layer 61 in the stepped portion 71. Therefore, the dielectric layer 61 can protect the electric field relaxation region 25, and can further concentrate the electric field concentration in the semiconductor substrate 20 and in the interface (upper surface P2) between the semiconductor substrate 20 and the dielectric layer 61 in the peripheral region 20T. Can be effectively mitigated.
  • the plurality of stepped portions 71 are formed in a step shape so as to approach the lower surface P1 as going to the outer peripheral side. That is, the end portion (portion in contact with the field stop region 28) located on the outer peripheral side of the wide band gap semiconductor device in the electric field relaxation region 25 is closest to the lower surface P ⁇ b> 1 than the other portion in the electric field relaxation region 25. Is formed.
  • the dielectric layer 61 is formed so as to bury the stepped portion 71, the outermost periphery of the electric field relaxation region 25 from above the end portion (JTE region 26) located on the device region 20E side in the electric field relaxation region 25 The dielectric layer 61 is formed thicker over the end.
  • MOSFET 101 according to the first embodiment can alleviate electric field concentration on the outer peripheral side of peripheral region 20T where electric field concentration is likely to occur when a high voltage is applied in a general semiconductor device having a guard ring structure.
  • the potential of the surface of the dielectric layer 61 located on the outer peripheral side of 20T can be lowered.
  • MOSFET 101 according to the first embodiment can reduce the risk of occurrence of discharge on dielectric layer 61.
  • the MOSFET 102 as an example of the wide band gap semiconductor device in Reference Example 1 is a trench gate type transistor.
  • the MOSFET 102 includes an epitaxial substrate 20 (semiconductor substrate), a gate oxide film 31 (gate insulating film), a gate electrode 32, a drain electrode layer 40 (first electrode layer), and a source electrode layer 50 (second electrode). Layer) and an interlayer insulating film 60.
  • the MOSFET 102 is a power semiconductor device that performs switching between the drain electrode layer 40 and the source electrode layer 50. Specifically, the MOSFET 102 is preferably configured to be able to apply a voltage of 600 V or more between the drain electrode layer 40 and the source electrode layer 50, more preferably configured to be capable of applying 1200 V or more. More preferably, it can be applied.
  • the epitaxial substrate 20 is made of a wide band gap semiconductor.
  • the wide band gap semiconductor is preferably made of silicon carbide, gallium nitride or diamond.
  • the wide band gap semiconductor material constituting epitaxial substrate 20 is silicon carbide, and the crystal structure has a hexagonal crystal.
  • Epitaxial substrate 20 has an upper surface P2, a lower surface 20B, and a substrate side surface PS that connects lower surface 20B and upper surface P2.
  • the epitaxial substrate 20 has a device region 20E and a peripheral region 20T located outside the device region 20E when viewed in plan.
  • the epitaxial substrate 20 includes a single crystal substrate 29, an n-type drift layer 21, a p-type body region 22, a n-type source region 23, and a p-type contact region 24. Including.
  • One surface of the single crystal substrate 29 constitutes a lower surface 20B.
  • a drift layer 21 is provided on the surface opposite to the lower surface 20 ⁇ / b> B of the single crystal substrate 29.
  • Body region 22 is in contact with drift layer 21.
  • Body region 22 is separated from lower surface 20 ⁇ / b> B by drift layer 21.
  • the impurity concentration of the body region 22 is preferably about 5 ⁇ 10 17 / cm 3 or more and about 3 ⁇ 10 18 / cm 3 or less, for example, about 1 ⁇ 10 18 / cm 3 .
  • the source region 23 is in contact with the body region 22.
  • the source region 23 partially constitutes the upper surface P2.
  • Contact region 24 is in contact with body region 22.
  • the contact region 24 partially constitutes the upper surface P2.
  • Contact region 24 has an impurity concentration higher than that of body region 22.
  • the source electrode layer 50 is provided on the device region 20E on the upper surface P2 of the epitaxial substrate 20.
  • the source electrode layer 50 has an ohmic part 51 and a wiring part 52.
  • the ohmic part 51 is ohmically connected to the upper surface P2 of the epitaxial substrate 20.
  • the ohmic portion 51 is ohmically connected to the source region 23 and the contact region 24.
  • the upper surface P2 of the epitaxial substrate 20 is provided with a trench TR.
  • Trench TR has side wall surface SW and bottom surface BT.
  • Sidewall surface SW passes through source region 23 and body region 22 and reaches drift layer 21.
  • the body region 22 constitutes a portion of the side wall surface SW in the upper surface P2.
  • Sidewall surface SW includes a channel surface of MOSFET 102 on body region 22.
  • Sidewall surface SW of trench TR has a plane orientation ⁇ 0-33-8 ⁇ , and may preferably include a predetermined plane having a plane orientation (0-33-8).
  • the gate oxide film 31 covers the side wall surface SW and the bottom surface BT of the trench TR. That is, the gate oxide film 31 covers the body region 22 on the side wall surface SW.
  • the gate electrode 32 is provided on the gate oxide film 31.
  • the epitaxial substrate 20 includes a single crystal substrate 29, an n-type drift layer 21, an electric field relaxation region 25, and a field stop region 28 in the peripheral region 20T.
  • the electric field relaxation region 25 has a JTE region 26 and a guard ring region 27.
  • a plurality of peripheral region grooves 70 are formed in the electric field relaxation region 25.
  • the plurality of peripheral region grooves 70 are formed so as to surround the outer periphery of the device region 20E, and preferably extend in a direction along the outer periphery of the device region 20E. In the direction perpendicular to the direction in which each peripheral region groove 70 extends, the interval between the peripheral region grooves 70 may be constant.
  • the peripheral region groove 70 has a bottom surface 70 a and a side wall surface 70 c in the electric field relaxation region 25. Accordingly, the electric field relaxation region 25 has a guard having a thick portion 27 a defined by the side wall surface 70 c of the peripheral region groove 70 and a thin portion 27 b defined by the bottom surface 70 a of the peripheral region groove 70.
  • a ring region 27 is formed.
  • the impurity concentration of the guard ring region 27 is equal to the impurity concentration of the JTE region 26 and is not less than 1 ⁇ 10 16 cm ⁇ 3 and not more than 1 ⁇ 10 19 cm ⁇ 3 , preferably 1 ⁇ 10 17. It is about cm ⁇ 3 or more and 1 ⁇ 10 18 cm ⁇ 3 or less.
  • the side wall surface 70c of the peripheral region groove 70 may be formed perpendicular to the upper surface P2, or may be an inclined surface having an arbitrary angle.
  • the peripheral region groove 70 effectively reduces the creepage distance of the upper surface P2 in the peripheral region 20T. Can be stretched long.
  • the side wall surface 70c of the peripheral region groove 70 is formed to be inclined with respect to the upper surface P2 to the same extent as the side wall surface SW of the trench TR, a method similar to that for the trench TR is described later. As a result, the peripheral region groove 70 can be formed, which can suppress the occurrence of a damaged layer on the side wall surface 70c.
  • the width (W1: FIG. 8) of the peripheral region groove 70 in the direction perpendicular to the extending direction of the peripheral region groove 70 is narrower than the width (W2: FIG. 8) in the direction perpendicular to the extending direction of the trench TR. .
  • the depth (D1: FIG. 8) of the peripheral region groove 70 in the direction perpendicular to the upper surface P2 is shallower than the depth (D2: FIG. 8) of the trench TR in the direction perpendicular to the upper surface P2.
  • the width W1 and the depth D1 of each peripheral region groove 70 may be the same or different.
  • JTE region 26 has a p-type and is connected to body region 22.
  • the impurity concentration of the JTE region 26 is about 1 ⁇ 10 16 cm ⁇ 3 to 1 ⁇ 10 19 cm ⁇ 3 , and preferably about 1 ⁇ 10 17 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 .
  • At least a part of the JTE region 26 may be covered with the gate oxide film 31.
  • the JTE region 26 is formed so as to be located outside the body region 22 in the device region 20E.
  • the guard ring region 27 has a p-type and is connected to the JTE region 26. That is, the guard ring region 27 is connected to the body region 22 via the JTE region 26.
  • the guard ring region 27 is formed on the outer peripheral side of the MOSFET 101 so as to surround the JTE region 26.
  • the field stop region 28 is n-type and has an impurity concentration higher than that of the drift layer 21.
  • the field stop region 28 is disposed outside the guard ring region 27 on the upper surface P ⁇ b> 2 of the epitaxial substrate 20.
  • the field stop region 28 is formed on the outer peripheral side of the MOSFET 101 so as to surround the guard ring region 27.
  • the drain electrode layer 40 is provided on the lower surface 20B of the epitaxial substrate 20.
  • the drain electrode layer 40 is ohmically connected to the lower surface 20 ⁇ / b> B of the epitaxial substrate 20.
  • the interlayer insulating film 60 is provided on the upper surface P ⁇ b> 2 of the epitaxial substrate 20 and covers the gate electrode 32.
  • Gate oxide film 31 and interlayer insulating film 60 have an opening exposing each of source region 23 and contact region 24 on upper surface P2. In this opening, the ohmic portion 51 of the source electrode layer 50 is in ohmic contact with each of the source region 23 and the contact region 24.
  • the dielectric layer 61 is formed on the upper surface P2 in the peripheral region 20T and covers the peripheral region groove. At this time, the dielectric layer 61 is formed so as to flatten the peripheral region groove 70. From a different point of view, the dielectric layer 61 is formed thin on the thick portion 27a and thick on the thin portion 27b.
  • the dielectric layer 61 may be formed integrally with the interlayer insulating film 60 or may be formed as a separate body.
  • the material constituting the dielectric layer 61 may include at least one selected from the group consisting of silicon dioxide, (SiO 2 ), polyimide, silicon nitride (SiN), and hafnium oxide (HfO 2 ), for example. .
  • dielectric layer 61 is formed integrally with interlayer insulating film 60 and is made of silicon dioxide.
  • a single crystal substrate 29 having a lower surface P1 is prepared.
  • the drift layer 21 is formed by epitaxial growth on the surface opposite to the lower surface P1.
  • This epitaxial growth can be performed by a CVD method.
  • hydrogen gas may be used as the carrier gas.
  • the source gas for example, a mixed gas of silane (SiH 4 ) and propane (C 3 H 8 ) can be used.
  • the source gas for example, a mixed gas of silane (SiH 4 ) and propane (C 3 H 8 ) can be used.
  • a body region 22, a source region 23, a contact region 24, an electric field relaxation region 25 and a field stop region 28 are formed on the drift layer 21. These formations can be performed by ion implantation.
  • an activation annealing process for activating impurities introduced by ion implantation is performed. For example, heating is performed for 30 minutes at a temperature of about 1700 ° C. in an atmosphere of argon (Ar) gas.
  • a mask layer 80 having an opening is formed on electric field relaxation region 25 using, for example, a photolithography method.
  • mask layer 80 for example, silicon dioxide or a silicon oxide film can be used.
  • the peripheral region trench 70 is formed in the epitaxial substrate 20 by etching using the mask layer 80.
  • thermal etching is preferable.
  • the thermal etching can be performed, for example, by heating in an atmosphere containing a reactive gas having at least one or more types of halogen atoms.
  • the at least one or more types of halogen atom includes at least one of a chlorine (Cl) atom and a fluorine (F) atom.
  • This atmosphere is, for example, Cl 2 , BCl 3 , SF 6 , or CF 4 .
  • thermal etching is performed using a mixed gas of chlorine gas and oxygen gas as a reaction gas and a heat treatment temperature of, for example, about 700 ° C.
  • the reaction gas may contain a carrier gas in addition to the above-described chlorine gas and oxygen gas.
  • a carrier gas for example, nitrogen (N 2 ) gas, argon gas, helium gas or the like can be used.
  • a mask layer 90 having an opening is formed on electric field relaxation region 25 using, for example, a photolithography method.
  • the mask layer 90 for example, silicon dioxide or a silicon oxide film can be used.
  • trench TR is formed in epitaxial substrate 20 by etching using mask layer 90.
  • thermal etching is preferable.
  • the thermal etching can be performed, for example, by heating in an atmosphere containing a reactive gas having at least one or more types of halogen atoms.
  • the at least one or more types of halogen atom includes at least one of a chlorine (Cl) atom and a fluorine (F) atom.
  • This atmosphere is, for example, Cl 2 , BCl 3 , SF 6 , or CF 4 .
  • thermal etching is performed using a mixed gas of chlorine gas and oxygen gas as a reaction gas and a heat treatment temperature of, for example, about 700 ° C. to about 1000 ° C.
  • the reaction gas may contain a carrier gas in addition to the above-described chlorine gas and oxygen gas.
  • a carrier gas for example, nitrogen (N 2 ) gas, argon gas, helium gas or the like can be used.
  • a gate oxide film 31 covering each of side wall surface SW and bottom surface BT of trench TR is formed.
  • the gate oxide film 31 can be formed, for example, by thermal oxidation of the epitaxial substrate 20.
  • the gate oxide film 31 may be formed, for example, on at least a part of the JTE region 26, or so as to cover each of the side wall surface and the bottom surface of the peripheral region groove 70. May be.
  • a gate electrode 32 is formed on the gate oxide film 31.
  • gate electrode 32 is formed so as to fill the region inside trench TR (region surrounded by side wall surface SW and bottom surface BT) with gate oxide film 31 interposed therebetween.
  • a conductor film to be the gate electrode 32 is formed on the gate oxide film 31 by using a sputtering method or the like.
  • a material of the conductor film any material such as metal can be used as long as it is a conductive material.
  • the portion of the conductor film formed in a region other than the inside of trench TR is removed by using any method such as etch back or CMP. In this way, the structure shown in FIG. 12 is obtained.
  • interlayer insulating film 60 is formed on gate oxide film 31 and gate electrode 32, and dielectric layer 61 is formed on JTE region 26, guard ring region 27, and field stop region 28. .
  • the interlayer insulating film 60 and the dielectric layer 61 may be formed integrally or separately.
  • a source electrode layer 50 is formed. Specifically, etching is first performed so that openings are formed in the gate oxide film 31 and the interlayer insulating film 60. Through the opening, each of the source region 23 and the contact region 24 is exposed on the upper surface P2. Next, ohmic portion 51 in contact with each of source region 23 and n contact region 24 is formed on upper surface P2. Next, the wiring part 52 is formed. In this way, the MOSFET 102 is obtained.
  • the peripheral region groove 70 is formed prior to the formation of the trench TR.
  • the peripheral region groove 70 may be formed after the trench TR is formed.
  • the function and effect of MOSFET 102 according to Reference Example 1 will be described. Since the MOSFET 102 according to the reference example 1 has a plurality of peripheral region trenches 70, the creepage distance of the upper surface P2 can be increased in the direction from the device region 20E to the outer peripheral end of the wide band gap semiconductor device. it can. Further, the electric field relaxation region 25 is provided without being divided by the peripheral region groove 70. Therefore, the depletion layer easily expands at the interface between the drift layer 21 and the electric field relaxation region 25, and in particular, the depletion layer easily expands in a direction parallel to the upper surface P2. As a result, the electric field concentration in the vicinity of the device region 20E and the peripheral region 20T can be effectively reduced, and the breakdown voltage of the wide band gap semiconductor device can be improved.
  • the entire electric field relaxation region 25 can be set to the same potential.
  • the entire electric field relaxation region 25 JTE region 26 and guard ring region 27
  • the conduction ions (carriers) in the electric field relaxation region 25 also when the application of the voltage is interrupted. ) Can be recovered quickly. Therefore, the wide band gap semiconductor device can be turned on in a state where the conduction ions in the electric field relaxation region 25 are reliably recovered, and the characteristic fluctuation during the ON operation can be suppressed.
  • the wide band gap semiconductor device according to the reference example 2 basically has the same configuration as the wide band gap semiconductor device according to the first embodiment, except that the side wall surface 70c of the peripheral region trench 70 extends from the electric field relaxation region 25. It differs in that it extends to the drift layer 21. At this time, the bottom surface 70 a of the peripheral region groove 70 is formed in the drift layer 21. That is, in the wide band gap semiconductor device according to Reference Example 2, the thin portion 27b is not formed. In this case, a plurality of thick portions 27 a of the guard ring region 27 are formed on the side wall surface 70 c of the peripheral region groove 70, but have a so-called floating guard ring structure that is not connected to each other.
  • the wide band gap semiconductor device according to the reference example 2 can increase the breakdown voltage without increasing the size, similarly to the wide band gap semiconductor device according to the reference example 1.
  • MOSFET 101 may further include peripheral region groove 70 in electric field relaxation region 25.
  • the peripheral region groove 70 is formed in the electric field relaxation region 25 located closer to the device region 20E than the plurality of stepped portions 71.
  • the peripheral region groove 70 is formed in the electric field relaxation region 25.
  • the side wall surface 70c of the peripheral region groove 70 extends from the electric field relaxation region 25 to the drift layer 21, and the bottom surface 70a. May be formed in the drift layer 21.
  • MOSFETs 101, 102, and 103 according to the first embodiment and Reference Examples 1 and 2 are formed as a trench gate type, they may be formed as a planar type.
  • FIG. 17 shows a planar MOSFET 102 according to Reference Example 1.
  • the width W1 of the peripheral region groove 70 in the direction perpendicular to the extending direction of the peripheral region groove 70 is the JFET region (the body layer in the drift layer 21). It is preferable that the gap is formed to be narrower than the interval W3 between the body regions 22 facing each other across the region 22).
  • the depth D1 of the peripheral region groove 70 in the direction perpendicular to the upper surface P2 is preferably formed to be shallower than the depth D3 from the upper surface P2 at the bottom of the body region 22. Even in this case, since the width of the peripheral region groove 70 is sufficiently narrow, the peripheral region groove 70 between the depletion layers extending from the electric field relaxation region 25 opposed to the peripheral region groove 70 to the drift layer 21 side is formed. The interval in the direction perpendicular to the extending direction can be narrowed, or the depletion layers can be easily spread so as to extend across the peripheral region groove 70. As a result, electric field concentration in the vicinity of the device region 20E and the peripheral region 20T can be relaxed, and the breakdown voltage of the wide band gap semiconductor device can be improved.
  • the step of forming the peripheral region groove 70 and the stepped portion 71 in the peripheral region 20T, and the device structure in the device region 20E is not restricted to the order mentioned above, It can select suitably.
  • the wide band gap semiconductor device according to the first embodiment and the reference examples 1 and 2 described above can be applied to a semiconductor device made of any semiconductor material.
  • the semiconductor device includes a semiconductor substrate (epitaxial substrate 20) having a main surface (upper surface P2) and made of silicon (Si) or a wide band gap semiconductor. Includes a device region 20E formed in the semiconductor substrate 20 and a peripheral region 20T formed so as to surround the device region 20E.
  • the semiconductor substrate 20 is formed on the first semiconductor region (drift layer 21) having the first conductivity type and the first semiconductor region (drift layer 21), and has a main surface P2.
  • the second semiconductor region (electric field relaxation region 25) having a second conductivity type different from the first conductivity type, and the semiconductor substrate 20 annularly surrounds the device region 20E in the outermost periphery of the peripheral region 20T.
  • a step portion 71 is provided, and the second semiconductor region is formed along the step portion 71.
  • the stepped portion 71 includes an upper surface (terrace surface 71a) parallel to the main surface (upper surface P2) and an inclined surface with respect to the main surface (upper surface P2).
  • the thickness T1 (see FIG. 1) on the inclined surface 71c of the second semiconductor region is the thickness T2 (on the inclined surface 71c of the second semiconductor region (electric field relaxation region 25)). It may be thicker than that shown in FIG.
  • a plurality of stepped portions (71) are formed, and the plurality of stepped portions (71) are closer to the outer peripheral side of the peripheral region (20T).
  • the main surface (P2) may be formed in a step shape with a depth in a direction perpendicular to the main surface (P2).
  • the dielectric layer 61 is formed on the step portion 71, and the second semiconductor region (electric field relaxation region 25) It may be formed so as to be sandwiched between one semiconductor region (drift layer 21) and the dielectric layer 61.
  • the material constituting the dielectric layer may include at least one selected from the group consisting of silicon dioxide, polyimide, and silicon nitride.
  • the main surface (P2) of the second semiconductor region (25) located inside the stepped portion (71) is A plurality of peripheral region grooves (70) surrounding the device region (20E) in an annular shape may be formed.
  • the bottom (70a) of the peripheral region trench (70) is formed from the interface between the first semiconductor region (21) and the second semiconductor region (25). , May be located on the second semiconductor region (25) side.
  • the bottom (70a) of the peripheral region trench (70) is formed from the interface between the first semiconductor region (21) and the second semiconductor region (25). It may be located on the first semiconductor region (21) side.
  • the main surface (P2) of the semiconductor substrate is provided with a device trench TR and is perpendicular to the direction in which the peripheral region trench 70 extends.
  • the width of the peripheral region groove 70 on the main surface (P2) in the right direction is smaller than the width of the device groove TR on the main surface (P2) in the direction perpendicular to the direction in which the device groove TR extends.
  • the depth of the peripheral region groove 70 in the direction perpendicular to the surface (upper surface P2) may be smaller than the depth of the device groove TR in the direction perpendicular to the main surface (upper surface P2).
  • the semiconductor substrate is spaced from the first semiconductor region (drift layer 21) having the main surface (upper surface P2) by the main surface P2. And a pair of third semiconductor regions (body region 22) having the second conductivity type and a pair of third semiconductor regions (body region 22) having the first conductivity type, respectively.
  • the width of the peripheral region groove 70 in the main surface (P2) in the direction perpendicular to the direction in which the peripheral region groove 70 extends includes the first semiconductor region in the main surface P2.
  • the depth of the peripheral region trench 70 in the direction perpendicular to the main surface is smaller than the interval between the third semiconductor regions (p body regions 22) opposed to each other, and the depth of the third semiconductor region (p body region 22). Even if it is smaller than the depth from the main surface of the bottom Good.
  • the side wall of the peripheral region trench 70 may be inclined with respect to the main surface P2.
  • the first conductivity type may be n-type
  • the second conductivity type may be p-type
  • the present invention is particularly advantageously applied to a semiconductor device that requires a high breakdown voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 主面(上部表面P2)を有し、ワイドバンドギャップ半導体からなる半導体基板(エピタキシャル基板20)を備え、半導体基板(20)は、半導体基板(20)に形成されたデバイス領域(20E)と、デバイス領域(20E)を囲むように形成された周辺領域(20T)とを含む。周辺領域(20T)において、半導体基板(20)は、第1の導電型を有する第1の半導体領域(ドリフト層21)と、第1の半導体領域(ドリフト層21)上に形成され、主面(P2)を有し、第1の導電型と異なる第2の導電型を有する第2の半導体領域(電界緩和領域25)とを含む。周辺領域(20T)の最外周において、半導体基板(20)は、デバイス領域(20E)を環状に囲む複数の段差部(71)を有しており、第2の半導体領域は、段差部(71)に沿うように形成されている。

Description

ワイドバンドギャップ半導体装置
 本発明は、ワイドバンドギャップ半導体装置に関し、特に周辺領域を有するワイドバンドギャップ半導体装置に関する。
 近年、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などの半導体装置の高耐圧化、低損失化、高温環境下での使用などを可能とするため、半導体装置を構成する材料として炭化珪素の採用が進められつつある。炭化珪素は、従来から半導体装置を構成する材料として広く使用されている珪素に比べてバンドギャップが大きいワイドバンドギャップ半導体である。そのため、半導体装置を構成する材料として炭化珪素を採用することにより、半導体装置の高耐圧化、オン抵抗の低減などを達成することができる。また、炭化珪素を材料として採用した半導体装置は、珪素を材料として採用した半導体装置に比べて、高温環境下で使用された場合の特性の低下が小さいという利点も有している。
 また、半導体装置を高耐圧化する1つの方法として、複数のガードリングを素子領域を囲うように同心円状に設け、外側のガードリング領域ほど不純物濃度が低くなるように形成することが知られている。
 特開2011-44688号公報には、活性領域から間隔を開けてp型のガードリングが複数形成された周辺領域(終端領域)を有する半導体装置が記載されている。各ガードリングは、エピタキシャル層の表層部に形成されたフローティングガードリングであり、ゲート絶縁膜および層間絶縁膜により覆われている。
特開2011-44688号公報
 しかしながら、特開2011-44688号公報に記載のガードリング構造を用いて、半導体装置のさらなる高耐圧化を実現するためには、ガードリングが形成される周辺領域(終端領域)を広く設ける必要がある。このとき、半導体素子領域(デバイス領域)の広さを維持するためには、半導体装置自体のサイズを大きくする必要がある。しかし、このような半導体装置の大型化は、半導体装置の製造コストの増大につながる。
 本発明は、上記のような課題を解決するためになされたものである。本発明の主たる目的は、サイズを大きくすることなく、高耐圧化することができるワイドバンドギャップ半導体装置を提供することにある。
 本発明に係るワイドバンドギャップ半導体装置は、主面を有し、ワイドバンドギャップ半導体からなる半導体基板と、半導体基板に形成されたデバイス領域と、デバイス領域を囲むように形成された周辺領域とを備え、周辺領域において、半導体基板は、第1の導電型を有する第1の半導体領域と、第1の半導体領域上に形成され、主面を有し、第1の導電型と異なる導電型を有する第2の半導体領域とを含み、周辺領域の最外周において、半導体基板は、デバイス領域を環状に囲む複数の段差部を有しており、第2の半導体領域は、段差部に沿うように形成されている。
 本発明によれば、サイズを大きくすることなく、高耐圧化することができるワイドバンドギャップ半導体装置を提供することができる。
実施の形態1に係るワイドバンドギャップ半導体装置の断面図である。 実施の形態1に係るワイドバンドギャップ半導体装置の製造方法を説明するための断面図である。 実施の形態1に係るワイドバンドギャップ半導体装置の製造方法を説明するための断面図である。 実施の形態1に係るワイドバンドギャップ半導体装置の製造方法を説明するための断面図である。 実施の形態1に係るワイドバンドギャップ半導体装置の製造方法を説明するための断面図である。 実施の形態1に係るワイドバンドギャップ半導体装置の製造方法を説明するための断面図である。 実施の形態1に係るワイドバンドギャップ半導体装置の製造方法を説明するための断面図である。 参考例1に係るワイドバンドギャップ半導体装置の断面図である。 参考例1に係るワイドバンドギャップ半導体装置の製造方法を説明するための断面図である。 参考例1に係るワイドバンドギャップ半導体装置の製造方法を説明するための断面図である。 参考例1に係るワイドバンドギャップ半導体装置の製造方法を説明するための断面図である。 参考例1に係るワイドバンドギャップ半導体装置の製造方法を説明するための断面図である。 参考例1に係るワイドバンドギャップ半導体装置の製造方法を説明するための断面図である。 参考例1に係るワイドバンドギャップ半導体装置の製造方法を説明するための断面図である。 参考例2に係るワイドバンドギャップ半導体装置の断面図である。 実施の形態1に係るワイドバンドギャップ半導体装置の変形例の断面図である。 参考例1に係るワイドバンドギャップ半導体装置の変形例の断面図である。
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。また、本明細書中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また、負の指数については、結晶学上、”-”(バー)を数字の上に付けることになっているが、本明細書中では、数字の前に負の符号を付けている。また角度の記載には、全方位角を360度とする系を用いている。
 [本願発明の実施形態の説明]
 はじめに、本発明の実施の形態の概要について説明する。
 (1)本実施の形態に係るワイドバンドギャップ半導体装置は、主面(上部表面P2)を有し、ワイドバンドギャップ半導体からなる半導体基板(エピタキシャル基板20)を備え、半導体基板20は、半導体基板20に形成されたデバイス領域20Eと、デバイス領域20Eを囲むように形成された周辺領域20Tとを含む。周辺領域20Tにおいて、半導体基板20は、第1の導電型を有する第1の半導体領域(ドリフト層21)と、第1の半導体領域(ドリフト層21)上に形成され、主面P2を有し、第1の導電型と異なる第2の導電型を有する第2の半導体領域(電界緩和領域25)とを含む。周辺領域20Tの最外周において、半導体基板20は、デバイス領域20Eを環状に囲む段差部71を有しており、第2の半導体領域は、段差部71に沿うように形成されている。
 このようにすれば、周辺領域20Tにはデバイス領域20Eを環状に囲む複数の段差部71が形成されているため、デバイス領域20Eからワイドバンドギャップ半導体装置の外周端部に至る方向において、主面(上部表面P2)の沿面距離を長くすることができる。つまり、周辺領域20Tの空間距離(デバイス領域20Eからワイドバンドギャップ半導体装置の外周端部までの最短直線距離)を長くすることなく、周辺領域20Tにおける主面P2の沿面距離を長くすることができる。また、ワイドバンドギャップ半導体装置に高電圧を印加したときには、周辺領域20Tにおいて、第1の半導体領域と第2の半導体領域との界面には空乏層が形成される。この結果、本実施の形態に係るワイドバンドギャップ半導体装置は、サイズを大きくすることなく、高耐圧化を実現することができる。
 (2)本実施の形態に係るワイドバンドギャップ半導体装置において、段差部71は、主面(上部表面P2)に沿った方向に延びる上面(テラス面71a)と、主面(上部表面P2)に対しする傾斜面(ステップ面71c)とを有し、第2の半導体領域の傾斜面71cにおける厚みT1(図1参照)は、第2の半導体領域(電界緩和領域25)の傾斜面71cにおける厚みT2(図1参照)よりも厚くてもよい。
 このようにすれば、第1の半導体領域(ドリフト層21)と第2の半導体領域(電界緩和領域25)との界面において、空乏層を主面(上部表面P2)と垂直な方向に拡げやすくすることができる。そのため、第1の半導体領域21と、第1の半導体領域21上に複数の段差部71に沿うように形成された第2の半導体領域25との界面に形成される空乏層が、主面(上部表面P2)と平行な方向においても互いにつながることができ、周辺領域20Tにおいて主面(上部表面P2)に平行な方向および垂直な方向のいずれの方向においても空乏層を広く形成することができる。その結果、ワイドバンドギャップ半導体装置の耐圧をより効果的に向上することができる。
 (3)本実施の形態に係るワイドバンドギャップ半導体装置において、段差部(71)は複数形成されており、複数の段差部(71)は、周辺領域(20T)の外周側に向かうほど主面(上部表面P2)と垂直な方向における深さが深くなる、階段状に形成されていてもよい。このようにしても、周辺領域20Tの空間距離(デバイス領域20Eからワイドバンドギャップ半導体装置の外周端部までの最短直線距離)を長くすることなく、周辺領域20Tにおける主面P2の沿面距離を長くすることができる。また、ワイドバンドギャップ半導体装置に高電圧を印加したときには、周辺領域20Tにおいて、第1の半導体領域と第2の半導体領域との界面には空乏層が形成される。この結果、本実施の形態に係るワイドバンドギャップ半導体装置は、サイズを大きくすることなく、高耐圧化を実現することができる。
 (4)本実施の形態に係るワイドバンドギャップ半導体装置において、段差部71上には誘電体層61が形成されており、第2の半導体領域(電界緩和領域25)は、段差部71において、第1の半導体領域(ドリフト層21)と誘電体層61とに挟まれるように形成されていてもよい。
 このようにすれば、誘電体層61は、第2の半導体領域(電界緩和領域25)を保護することができるとともに、周辺領域20Tにおいて半導体基板20内および半導体基板20と誘電体層61との界面における電界集中をより効果的に緩和することができる。また、上述のように、段差部71が階段状に複数形成されている場合、つまり、複数の段差部71が外周側に行くにしたがい下部表面P1に近づくように形成されている場合には、第2の半導体領域25においてワイドバンドギャップ半導体装置の外周側に位置する端部(第2の半導体領域25の最外周端)は、第2の半導体領域25における他の部分よりも主面(上部表面P2)の反対側に位置する下部表面P1に最も近い位置に形成されている。このとき、段差部71を埋め込むように誘電体層61が形成されることにより、第2の半導体領域25においてデバイス領域20E側に位置する端部(第2の半導体領域25の最内周端)上から第2の半導体領域25の最外周端上にかけて、誘電体層61は厚く形成される。そのため、本実施の形態に係るワイドバンドギャップ半導体装置は、ガードリング構造を有する一般的な半導体装置において高電圧印加時に電界集中の起こりやすい周辺領域20Tの外周側において電界集中を緩和することができる。また、周辺領域20Tの外周側に向かうほど誘電体層61は厚く形成されているため、周辺領域20Tの外周側における誘電体層61の表面上の電位を下げることができる。その結果、本実施の形態に係るワイドバンドギャップ半導体装置は、誘電体層61上での放電発生リスクを低減することができる。
 (5)本実施の形態に係るワイドバンドギャップ半導体装置において、誘電体層61を構成する材料は、二酸化珪素、ポリイミド、および窒化珪素からなる群から選択される少なくとも1つを含んでもよい。このようにしても、第1の半導体領域(ドリフト層21)と第2の半導体領域(電界緩和領域25)との界面から空乏層は拡がりやすくなるため、半導体基板20内および半導体基板20と誘電体層61との界面において電界集中を緩和することができ、ワイドバンドギャップ半導体装置の耐圧を向上することができる。
 (6)本実施の形態に係るワイドバンドギャップ半導体装置の周辺領域20Tにおいて、段差部(71)よりも内側に位置する第2の半導体領域(25)の主面(上部表面P2)には、デバイス領域(20E)を環状に囲む複数の周辺領域用溝(70)が形成されていてもよい。
 このようにすれば、周辺領域用溝70が複数形成されているため、デバイス領域20Eからワイドバンドギャップ半導体装置の外周端部に至る方向において、周辺領域20Tの空間距離(デバイス領域20Eからワイドバンドギャップ半導体装置の外周端部までの最短直線距離)を長くすることなく、主面(上部表面P2)の沿面距離をさらに長くすることができる。この結果、本実施の形態に係るワイドバンドギャップ半導体装置は、サイズを大きくすることなく高耐圧化することができる。
 (7)本実施の形態に係るワイドバンドギャップ半導体装置において、周辺領域用溝70は、第2の半導体領域(電界緩和領域25)内に形成されていてもよい。つまり、第2の半導体領域(電界緩和領域25)は周辺領域用溝70によって分断されることなく設けられている。そのため、第1の半導体領域(ドリフト層21)と第2の半導体領域25との界面が延びる方向、つまり主面P2と平行な方向において空乏層が拡がりやすい。その結果、デバイス領域20E近傍および周辺領域20Tにおける電界集中を効果的に緩和することができ、ワイドバンドギャップ半導体装置の耐圧を向上することができる。また、第2の半導体領域25は、周辺領域用溝70によって分断されることなく設けられているため、たとえば第2の半導体領域25をデバイス領域20E側においてソース領域23と接続させることにより、第2の半導体領域25全体(図8中JTE領域26およびガードリング領域27)をソース接地することができる。この結果、たとえばソースドレイン間に電圧が印加されて第1の半導体領域21と第2の半導体領域25との界面が空乏化した後、該電圧の印加を中断したときにも、第2の半導体領域25の伝導イオン(キャリア)をすばやく回復させることができる。そのため、第2の半導体領域25の伝導イオンが確実に回復している状態で、ワイドバンドギャップ半導体装置をON動作させることができ、ON動作時の特性変動を抑制することができる。
 (8)本実施の形態に係るワイドバンドギャップ半導体装置において、周辺領域用溝70の側壁は、第2の半導体領域(電界緩和領域25)から第1の半導体領域(ドリフト層21)にまで延びていてもよい。
 このようにしても、周辺領域用溝70が複数形成されているため、デバイス領域20Eからワイドバンドギャップ半導体装置の外周端部に至る方向において、周辺領域20Tの空間距離(デバイス領域20Eからワイドバンドギャップ半導体装置の外周端部までの最短直線距離)を長くすることなく、主面(上部表面P2)の沿面距離を長くすることができる。この結果、本実施の形態に係るワイドバンドギャップ半導体装置は、サイズを大きくすることなく高耐圧化することができる。
 (9)本実施の形態に係るワイドバンドギャップ半導体装置のデバイス領域において、半導体基板(20)の主面(上部表面P2)にはデバイス用溝TRが設けられており、周辺領域用溝70の延びる方向に対して垂直な方向における周辺領域用溝70の幅は、デバイス用溝TRの延びる方向に対して垂直な方向における主面(P2)でのデバイス用溝TRの幅より小さく、主面(上部表面P2)と垂直な方向における周辺領域用溝70の深さは、主面(上部表面P2)と垂直な方向におけるデバイス用溝TRの深さよりも小さくてもよい。
 つまり、デバイス領域20Eにデバイス用溝TRが形成されているトレンチ型ワイドバンドギャップ半導体装置においては、周辺領域用溝70の延びる方向に対して垂直な方向における周辺領域用溝70の幅は、デバイス用溝TRの延びる方向におけるデバイス用溝TRの幅より小さくしてもよい。また、主面(上部表面P2)と垂直な方向における周辺領域用溝70の深さは、主面と垂直な方向におけるデバイス用溝TRの深さよりも小さくてもよい。このようにすれば、周辺領域用溝70の幅が十分に狭いため、周辺領域用溝70を挟んで対向する第2の半導体領域(電界緩和領域25)から第1の半導体領域(ドリフト層21)側に拡がる空乏層同士の周辺領域用溝70が延びる方向に対して垂直な方向における間隔を狭めることができ、あるいは空乏層同士を周辺領域用溝70を跨いで連なるように拡げることができる。この結果、デバイス領域20E近傍および周辺領域20Tにおける電界集中を緩和することができ、ワイドバンドギャップ半導体装置の耐圧を向上することができる。
 (10)本実施の形態に係るワイドバンドギャップ半導体装置のデバイス領域において、半導体基板は、主面(上部表面P2)を有する第1の半導体領域(ドリフト層21)と、主面P2において間隔を隔てて対向し、第2の導電型を有する1組の第3の半導体領域(ボディ領域22)と、1組の第3の半導体領域(ボディ領域22)中にそれぞれ第1の導電型を有する第4の半導体領域とを含み、周辺領域用溝70の延びる方向に対して垂直な方向における主面(P2)での周辺領域用溝70の幅は、主面(P2)において、第1の半導体領域を挟んで対向する第3の半導体領域(pボディ領域22)の間隔よりも小さく、主面と垂直な方向における周辺領域用溝70の深さは、第3の半導体領域(pボディ領域22)の底部の主面からの深さよりも小さくてもよい。
 つまり、プレナー型ワイドバンドギャップ半導体装置においては、周辺領域用溝70の延びる方向に対して垂直な方向における周辺領域用溝70の幅は、第1の半導体領域を挟んで対向する1組の第3の半導体領域(pボディ領域22)の間隔よりも小さくしてもよい。また、主面(上部表面P2)と垂直な方向における周辺領域用溝70の深さは、第3の半導体領域22の底部の主面からの深さよりも小さくしてもよい。このようにすれば、周辺領域用溝70の幅が十分に狭いため、周辺領域用溝70を挟んで対向する第2の半導体領域(電界緩和領域25)から第1の半導体領域(ドリフト層21)側に拡がる空乏層同士の周辺領域用溝70が延びる方向に対して垂直な方向における間隔を狭めることができ、あるいは空乏層同士を周辺領域用溝70を跨いで連なるように拡がりやすくすることができる。この結果、デバイス領域20E近傍および周辺領域20Tにおける電界集中を緩和することができ、ワイドバンドギャップ半導体装置の耐圧を向上することができる。
 (11)本実施の形態に係るワイドバンドギャップ半導体装置において、周辺領域用溝70の側壁は、主面(上部表面P2)に対して傾斜していてもよい。この場合、第2の半導体領域(電界緩和領域25)は、主面P2側よりも第1の半導体領域(ドリフト層21)との界面側において、厚肉部27a同士の間隔を狭めることができる。これにより、特に第2の半導体領域(電界緩和領域25)が周辺領域用溝70によって複数に分断されている場合において、各厚肉部27aと第1の半導体領域21との界面から延びる空乏層同士が、周辺領域用溝70を跨いで連なるように拡がりやすくすることができる。また、主面P2に対して傾斜している側壁を有する周辺領域用溝70は、たとえばドライエッチングすることにより主面P2に対して垂直な側壁を有する溝を形成した後、ドライエッチングにより生じた加工ダメージ層をウエットエッチング等により除去することによって、形成することができる。これにより、第2の半導体領域25に加工ダメージ層が形成されることによって空乏層の拡がり方等に変動が生じることを抑制することができる。
 (12)本実施の形態に係るワイドバンドギャップ半導体装置において、第1の導電型はn型であり、第2の導電型はp型であってもよい。このようにしても、第1の導電型を有する第1の半導体領域(ドリフト層21)と第2の導電型を有する第2の半導体領域(電界緩和領域25)との界面にはpn接合面が形成されている。そのため、周辺領域20Tにおいて空乏層を形成することができ、ワイドバンドギャップ半導体装置の耐圧を向上することができる。
 なお、本実施の形態に係るワイドバンドギャップ半導体装置において、半導体基板は、単結晶基板などのベース基板上にエピタキシャル層が形成されたエピタキシャル基板であってもよいし、エピタキシャル基板からベース基板が除去されたエピタキシャル層であってもよい。
 [本願発明の実施形態の詳細]
 次に、本発明の実施の形態についてより詳細に説明する。
 (実施の形態1)
 次に、図1を参照して、実施の形態1に係るワイドバンドギャップ半導体装置について説明する。実施の形態1に係るワイドバンドギャップ半導体装置の一例としてのMOSFET101はトレンチゲート型トランジスタである。MOSFET101は、エピタキシャル基板20(半導体基板)と、ゲート酸化膜31(ゲート絶縁膜)と、ゲート電極32と、ドレイン電極層40(第1の電極層)と、ソース電極層50(第2の電極層)と、層間絶縁膜60とを有する。
 MOSFET101は、ドレイン電極層40およびソース電極層50の間でスイッチングを行う電力用半導体装置である。具体的には、MOSFET101はドレイン電極層40およびソース電極層50の間に電圧を600V以上印加可能に構成されていることが好ましく、1200V以上印加可能に構成されていることがより好ましく、3300V以上印加可能に構成されていることがさらに好ましい。
 エピタキシャル基板20はワイドバンドギャップ半導体から作られている。ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウムまたはダイヤモンドから作られていることが好ましい。実施の形態1においては、エピタキシャル基板20を構成するワイドバンドギャップ半導体材料は炭化珪素であり、結晶構造は六方晶を有している。エピタキシャル基板20は、上部表面P2と、下部表面P1と、下部表面P1および上部表面P2をつなぐ基板側面PSとを有する。エピタキシャル基板20は、デバイス領域20Eと、平面視したときにデバイス領域20Eの外側に位置する周辺領域20Tとを有する。
 エピタキシャル基板20は、デバイス領域20Eにおいて、単結晶基板29と、n型を有するドリフト層21と、p型を有するボディ領域22と、n型を有するソース領域23と、p型を有するコンタクト領域24とを含む。単結晶基板29の一方面は下部表面P1を構成している。単結晶基板29の下部表面P1と反対の面上にはドリフト層21が設けられている。ボディ領域22はドリフト層21に接している。ボディ領域22はドリフト層21によって下部表面P1から隔てられている。ボディ領域22の不純A物濃度は、5×1017/cm程度以上3×1018/cm程度以下が好ましく、たとえば1×1018/cm程度である。ソース領域23はボディ領域22に接している。ソース領域23は上部表面P2を部分的に構成している。コンタクト領域24はボディ領域22に接している。コンタクト領域24は上部表面P2を部分的に構成している。コンタクト領域24はボディ領域22の不純物濃度よりも高い不純物濃度を有する。
 ソース電極層50はエピタキシャル基板20の上部表面P2上においてデバイス領域20E上に設けられている。ソース電極層50はオーミック部51および配線部52を有する。オーミック部51は、エピタキシャル基板20の上部表面P2にオーミックに接続されている。具体的にはオーミック部51はソース領域23およびコンタクト領域24にオーミックに接続されている。
 デバイス領域20Eにおいて、エピタキシャル基板20の上部表面P2にはトレンチTRが設けられている。トレンチTRは側壁面SWおよび底面BTを有する。側壁面SWはソース領域23およびボディ領域22を貫通してドリフト層21に至っている。これによりボディ領域22は上部表面P2のうち側壁面SWの部分を構成している。側壁面SWはボディ領域22上において、MOSFET101のチャネル面を含む。トレンチTRの側壁面SWは、面方位{0-33-8}を有し、好ましくは面方位(0-33-8)を有する所定の面を含んでいてもよい。
 ゲート酸化膜31は、トレンチTRの側壁面SWおよび底面BTを覆っている。つまり、ゲート酸化膜31は側壁面SW上においてボディ領域22を被覆している。ゲート電極32はゲート酸化膜31上に設けられている。
 エピタキシャル基板20は、周辺領域20Tにおいて、単結晶基板29と、n型を有するドリフト層21と、電界緩和領域25と、フィールドストップ領域28とを含む。電界緩和領域25は、JTE(Junction Termination Extension)領域26と、ガードリング領域27とを有している。エピタキシャル基板20は、周辺領域20Tにおいて、複数の段差部71を有している。複数の段差部71は、上部表面P2に対して傾斜しているステップ面71cと、該ステップ面71cと交差する底面70aとを有している。段差部71のステップ面71cと、トレンチTRの側壁面SWとは、平行に設けられていてもよい。段差部71は、デバイス領域20Eの外周を環状に囲むように形成されており、好ましくはデバイス領域20Eの外周に沿う方向に延びている。電界緩和領域25およびフィールドストップ領域28は、上部表面P2を含み、複数の段差部71に沿うように形成されている。なお、本実施の形態において、段差部71は階段状に複数形成されているが、これに限られるものではない。段差部71は、1段以上構成されていれば、周辺領域20Tにおいて上部表面PS2の沿面距離を長くすることができる。
 JTE領域26は、p型を有し、ボディ領域22と接続されている。JTE領域26の不純物濃度は、1×1016cm-3以上1×1019cm-3以下程度であり、好ましくは1×1017cm-3以上1×1018cm-3以下程度である。JTE領域26の少なくとも一部は、ゲート酸化膜31により覆われていてもよい。このとき、JTE領域26は、デバイス領域20Eにおけるボディ領域22の外側に位置するように形成されており、上部表面P2を含んでいる。
 ガードリング領域27は、p型を有し、JTE領域26と接続されている。つまり、ガードリング領域27は、JTE領域26を介してボディ領域22と接続されている。ガードリング領域27は、上述のように、ドリフト層21に形成されている複数の段差部71に沿って、かつ上部表面P2を含むように形成されている。つまり、ガードリング領域27は、周辺領域20Tにおいて、JTE領域26と接続されてかつ上部表面P2を含む位置から、フィールドストップ領域28と接して誘電体層61の表面から最も離れた位置(下部表面P1に最も近い位置)まで、上部表面P2を含むように形成されている。本実施の形態において、ガードリング領域27の不純物濃度は、JTE領域26の不純物濃度と等しく、1×1016cm-3以上1×1019cm-3以下程度であり、好ましくは1×1017cm-3以上1×1018cm-3以下程度である。
 段差部71のテラス面71a上に形成されているガードリング領域27の厚みT1は、段差部71のステップ面71c上に形成されているガードリング領域27の厚みT2よりも厚く形成されている。
 段差部71のステップ面71cは、上部表面P2に対して任意の角度を有する傾斜面であってもよく、上部表面P2に対して垂直に形成されていてもよい。好ましくは、ステップ面71cは、熱エッチング等により自己形成される面である。この場合、後述するように、トレンチTRと同様の方法により段差部71を形成することができ、これにより加工によるダメージ層がステップ面71cに生じることを抑制することができる。
 フィールドストップ領域28は、n型を有し、ドリフト層21の不純物濃度よりも高い不純物濃度を有する。フィールドストップ領域28はエピタキシャル基板20の上部表面P2上においてガードリング領域27を囲むようにMOSFET101の外周側に形成されている。つまり、フィールドストップ領域28は、周辺領域20Tにおいて、誘電体層61の表面から最も離れた位置に、上部表面P2を含むように形成されている。
 ドレイン電極層40はエピタキシャル基板20の下部表面P1上に設けられている。ドレイン電極層40はエピタキシャル基板20の下部表面P1にオーミックに接続されている。
 層間絶縁膜60はエピタキシャル基板20の上部表面P2上に設けられており、ゲート電極32を覆っている。ゲート酸化膜31および層間絶縁膜60は、上部表面P2上においてソース領域23およびコンタクト領域24の各々を露出する開口部を有する。この開口部においてソース電極層50のオーミック部51はソース領域23およびコンタクト領域24の各々にオーミックに接触している。
 誘電体層61は、周辺領域20Tにおいて、上部表面P2上に形成されて段差部71を埋め込むように形成されている。つまり、周辺領域20Tは、誘電体層61によって平坦化されている。異なる観点から言えば、誘電体層61は、周辺領域20Tにおいて、デバイス領域20E側よりも外周側において厚く形成されている。誘電体層61は、層間絶縁膜60と一体として形成されていてもよいし、別体として形成されていてもよい。誘電体層61を構成する材料は、たとえば二酸化珪素、(SiO)、ポリイミド、窒化珪素(SiN)、および酸化ハフニウム(HfO)からなる群から選択される少なくとも1つを含んでいればよい。本実施の形態においては、誘電体層61は層間絶縁膜60と一体として形成されており、二酸化珪素により構成されている。
 次に、図1~図7を参照して、実施の形態1に係るワイドバンドギャップ半導体装置の製造方法について説明する。
 まず、下部表面P1を有する単結晶基板29を準備する。次に、下部表面P1と反対の面上におけるエピタキシャル成長によって、ドリフト層21が形成される。このエピタキシャル成長はCVD(Chemical Vapor Deposition)法により行われ得る。この際、キャリアガスとして水素ガスを用い得る。原料ガスとしては、たとえば、シラン(SiH4)とプロパン(C38)との混合ガスを用い得る。この際、不純物として、たとえば窒素(N)やリン(P)を導入することが好ましい。
 次に、ドリフト層21上に、ボディ領域22、ソース領域23、コンタクト領域24、電界緩和領域25を形成する。これらの形成はイオン注入によって行い得る。次に、イオン注入によって導入された不純物を活性化するための活性化アニール処理が行われる。たとえばアルゴン(Ar)ガスの雰囲気中での1700℃程度の温度での30分間の加熱が行われる。
 次に、電界緩和領域25上に開口部を有するマスク層90をたとえばフォトリソグラフィ法を用いて形成する。マスク層90には、たとえば二酸化珪素やシリコン酸化膜などを用いることができる。
 次に、マスク層90を用いたエッチングによってエピタキシャル基板20にトレンチTRが形成される。このエッチングとしては熱エッチングが好ましい。熱エッチングは、たとえば、少なくとも1種類以上のハロゲン原子を有する反応性ガスを含む雰囲気中での加熱によって行い得る。少なくとも1種類以上のハロゲン原子は、塩素(Cl)原子およびフッ素(F)原子の少なくともいずれかを含む。この雰囲気は、たとえば、Cl2、BCl3、SF6、またはCF4である。たとえば、塩素ガスと酸素ガスとの混合ガスを反応ガスとして用い、熱処理温度を、たとえば700℃程度以上1000℃程度以下として、熱エッチングが行われる。なお、反応ガスは、上述した塩素ガスと酸素ガスとに加えて、キャリアガスを含んでいてもよい。キャリアガスとしては、たとえば窒素(N2)ガス、アルゴンガス、ヘリウムガスなどを用いることができる。これにより、エピタキシャル基板20において、上部表面P2に対して傾斜した側壁面SWを有するトレンチTRが形成される。このようにして形成されたトレンチTRの側壁面SWは、面方位{0-33-8}を有する所定の面を含んでいる。トレンチTRの形成後、マスク層90はエッチングなど任意の方法により除去される。このようにして、図2に示す構造を得る。
 次に、複数の段差部71を形成する。具体的には、まず、電界緩和領域25上に開口部を有するマスク層81をたとえばフォトリソグラフィ法を用いて形成する。マスク層81には、たとえば二酸化珪素やシリコン酸化膜などを用いることができる。
 次に、マスク層81を用いたエッチングによって、エピタキシャル基板20に1段の段差部71を形成する。このエッチングとしては熱エッチングが好ましい。熱エッチングは、たとえば、少なくとも1種類以上のハロゲン原子を有する反応性ガスを含む雰囲気中での加熱によって行い得る。少なくとも1種類以上のハロゲン原子は、塩素(Cl)原子およびフッ素(F)原子の少なくともいずれかを含む。この雰囲気は、たとえば、Cl2、BCl3、SF6、またはCF4である。たとえば、塩素ガスと酸素ガスとの混合ガスを反応ガスとして用い、熱処理温度を、たとえば700℃程度以上1000℃程度以下として、熱エッチングが行われる。なお、反応ガスは、上述した塩素ガスと酸素ガスとに加えて、キャリアガスを含んでいてもよい。キャリアガスとしては、たとえば窒素(N2)ガス、アルゴンガス、ヘリウムガスなどを用いることができる。これにより、図3を参照して、電界緩和領域25において、上部表面P2に対して傾斜したステップ面71cを有する1段の段差部71が形成される。このとき、段差部71のステップ面71cは、面方位{0-33-8}を有する所定の面を含んでいる。
 次に、電界緩和領域25上に開口部を有するマスク層82を形成する。マスク層82は、マスク層81を加工することにより、あるいは新たにフォトリソグラフィ法を用いて形成される。このとき、マスク層82の開口部は、マスク層81の開口部と比べて、デバイス領域20E側に広く形成されるのが好ましい。このようにして、図4を参照して、周辺領域20Tに2段の段差部71が形成される。同様の工程を繰り返すことにより、所定の数の段差部71を形成することができる。
 次に、図5を参照して、周辺領域20Tに形成された複数の段差部71上に、ガードリング領域27およびフィールドストップ部を形成する。これらの形成はデバイス領域20Eをイオン注入マスク(図示しない)で覆った後、イオン注入によって行い得る。次に、イオン注入によって導入された不純物を活性化するための活性化アニール処理が行われる。たとえばアルゴン(Ar)ガスの雰囲気中での1700℃程度の温度での30分間の加熱が行われる。このようにして、図5に示す構造を得る。
 次に、図6を参照して、トレンチTRの側壁面SWおよび底面BTの各々を覆うゲート酸化膜31を形成する。ゲート酸化膜31は、たとえば、エピタキシャル基板20の熱酸化により形成され得る。ゲート酸化膜31は、周辺領域20Tにおいて、たとえばJTE領域26上の少なくとも一部上にまで形成されていてもよいし、周辺領域用溝70の側壁面および底面の各々を覆うように形成されていてもよい。
 次に、ゲート酸化膜31上にゲート電極32を形成する。具体的には、トレンチTRの内部の領域(側壁面SWおよび底面BTで囲われた領域)をゲート酸化膜31を介して埋めるようにゲート電極32を形成する。まず、ゲート酸化膜31上においてゲート電極32となるべき導電体膜を、スパッタリング法などを用いて形成する。導電体膜の材料としては導電性を有する材料であれば金属など任意の材料を用いることができる。その後、エッチバックあるいはCMP法など任意の方法を用いて、トレンチTRの内部以外の領域に形成された導電体膜の部分を除去する。このようにして、図6に示す構造を得る。
 次に、図7を参照して、ゲート酸化膜31およびゲート電極32上に層間絶縁膜60を、JTE領域26、ガードリング領域27、およびフィールドストップ領域28の上に誘電体層61を形成する。層間絶縁膜60と誘電体層61とは、一体として形成されてもよいし、別体として形成されてもよい。
 次に、ソース電極層50を形成する。具体的には、まずゲート酸化膜31および層間絶縁膜60に開口部が形成されるようにエッチングを行う。この開口部により上部表面P2上においてソース領域23およびコンタクト領域24の各々が露出される。次に上部表面P2上においてソース領域23およびnコンタクト領域24の各々に接するオーミック部51を形成する。次に、配線部52が形成される。このようにして、図1に示すMOSFET101が得られる。
 なお、上述した実施の形態1に係るMOSFET101の製造方法において、トレンチTRの形成の後に段差部71を形成したが、トレンチTRを形成する前に段差部71を形成しても構わない。
 次に、実施の形態1に係るMOSFET101の作用効果について説明する。実施の形態1に係るMOSFET101は、周辺領域20Tにはデバイス領域20Eを環状に囲む段差部71が複数形成されているため、デバイス領域20Eからワイドバンドギャップ半導体装置の外周端部に至る方向において、上部表面P2の沿面距離を長くすることができる。つまり、周辺領域20Tの空間距離(デバイス領域20Eからワイドバンドギャップ半導体装置の外周端部までの最短直線距離)を長くすることなく、周辺領域20Tにおける主面P2の沿面距離を長くすることができる。この結果、実施の形態1に係るMOSFET101は、サイズを大きくすることなく、高耐圧化を実現することができる。
 さらに、実施の形態1に係るMOSFET101において、電界緩和領域25のテラス面71a上における厚みT1は、電界緩和領域25のステップ面71c上における厚みT2よりも厚い。そのため、ドリフト層21と電界緩和領域25との界面において、空乏層を上部表面P2と垂直な方向に拡げやすくすることができる。そのため、ドリフト層21と、ドリフト層21上に複数の段差部71に沿うように形成された電界緩和領域25との界面に形成される空乏層が、上部表面P2と平行な方向においても互いにつながることができ、周辺領域20Tにおいて上部表面P2に平行な方向および垂直な方向のいずれの方向においても空乏層を広く形成することができる。その結果、実施の形態1に係るMOSFET101は、耐圧をさらに向上することができる。
 さらに、段差部71上には誘電体層61が形成されており、電界緩和領域25は、段差部71において、ドリフト層21と誘電体層61とに挟まれるように形成されている。そのため、誘電体層61は、電界緩和領域25を保護することができるとともに、周辺領域20Tにおいて半導体基板20内および半導体基板20と誘電体層61との界面(上部表面P2)における電界集中をより効果的に緩和することができる。
 さらに、実施の形態1に係るMOSFET101において、複数の段差部71は、外周側に行くにしたがい下部表面P1に近づくように階段状に形成されている。つまり、電界緩和領域25においてワイドバンドギャップ半導体装置の外周側に位置する端部(フィールドストップ領域28と接している部分)は、電界緩和領域25における他の部分よりも下部表面P1に最も近い位置に形成されている。このとき、誘電体層61が、段差部71を埋め込むように形成されているため、電界緩和領域25においてデバイス領域20E側に位置する端部(JTE領域26)上から電界緩和領域25の最外周端上にかけて、誘電体層61は厚く形成されている。そのため、実施の形態1に係るMOSFET101は、ガードリング構造を有する一般的な半導体装置において高電圧印加時に電界集中の起こりやすい周辺領域20Tの外周側において電界集中を緩和することができるとともに、周辺領域20Tの外周側に位置する誘電体層61の表面の電位を下げることができる。その結果、実施の形態1に係るMOSFET101は、誘電体層61上での放電発生リスクを低減することができる。
 (参考例1)
 図8を参照して、参考例1に係るワイドバンドギャップ半導体装置について説明する。参考例1におけるワイドバンドギャップ半導体装置の一例としてのMOSFET102はトレンチゲート型トランジスタである。MOSFET102は、エピタキシャル基板20(半導体基板)と、ゲート酸化膜31(ゲート絶縁膜)と、ゲート電極32と、ドレイン電極層40(第1の電極層)と、ソース電極層50(第2の電極層)と、層間絶縁膜60とを有する。
 MOSFET102は、ドレイン電極層40およびソース電極層50の間でスイッチングを行う電力用半導体装置である。具体的には、MOSFET102はドレイン電極層40およびソース電極層50の間に電圧を600V以上印加可能に構成されていることが好ましく、1200V以上印加可能に構成されていることがより好ましく、3300V以上印加可能に構成されていることがさらに好ましい。
 エピタキシャル基板20はワイドバンドギャップ半導体から作られている。ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウムまたはダイヤモンドから作られていることが好ましい。実施の形態1においては、エピタキシャル基板20を構成するワイドバンドギャップ半導体材料は炭化珪素であり、結晶構造は六方晶を有している。エピタキシャル基板20は、上部表面P2と、下面20Bと、下面20Bおよび上部表面P2をつなぐ基板側面PSとを有する。エピタキシャル基板20は、デバイス領域20Eと、平面視したときにデバイス領域20Eの外側に位置する周辺領域20Tとを有する。
 エピタキシャル基板20は、デバイス領域20Eにおいて、単結晶基板29と、n型を有するドリフト層21と、p型を有するボディ領域22と、n型を有するソース領域23と、p型を有するコンタクト領域24とを含む。単結晶基板29の一方面は下面20Bを構成している。単結晶基板29の下面20Bと反対の面上にはドリフト層21が設けられている。ボディ領域22はドリフト層21に接している。ボディ領域22はドリフト層21によって下面20Bから隔てられている。ボディ領域22の不純物濃度は、5×1017/cm程度以上3×1018/cm程度以下が好ましく、たとえば1×1018/cm程度である。ソース領域23はボディ領域22に接している。ソース領域23は上部表面P2を部分的に構成している。コンタクト領域24はボディ領域22に接している。コンタクト領域24は上部表面P2を部分的に構成している。コンタクト領域24はボディ領域22の不純物濃度よりも高い不純物濃度を有する。
 ソース電極層50はエピタキシャル基板20の上部表面P2上においてデバイス領域20E上に設けられている。ソース電極層50はオーミック部51および配線部52を有する。オーミック部51は、エピタキシャル基板20の上部表面P2にオーミックに接続されている。具体的にはオーミック部51はソース領域23およびコンタクト領域24にオーミックに接続されている。
 デバイス領域20Eにおいて、エピタキシャル基板20の上部表面P2にはトレンチTRが設けられている。トレンチTRは側壁面SWおよび底面BTを有する。側壁面SWはソース領域23およびボディ領域22を貫通してドリフト層21に至っている。これによりボディ領域22は上部表面P2のうち側壁面SWの部分を構成している。側壁面SWはボディ領域22上において、MOSFET102のチャネル面を含む。トレンチTRの側壁面SWは、面方位{0-33-8}を有し、好ましくは面方位(0-33-8)を有する所定の面を含んでいてもよい。
 ゲート酸化膜31は、トレンチTRの側壁面SWおよび底面BTを覆っている。つまり、ゲート酸化膜31は側壁面SW上においてボディ領域22を被覆している。ゲート電極32はゲート酸化膜31上に設けられている。
 エピタキシャル基板20は、周辺領域20Tにおいて、単結晶基板29と、n型を有するドリフト層21と、電界緩和領域25と、フィールドストップ領域28とを含む。電界緩和領域25は、JTE領域26と、ガードリング領域27とを有する。電界緩和領域25には、複数の周辺領域用溝70が形成されている。具体的には、複数の周辺領域用溝70は、デバイス領域20Eの外周を囲むように形成されており、好ましくはデバイス領域20Eの外周に沿う方向に延びている。各々の周辺領域用溝70の延びる方向に垂直な方向において、各周辺領域用溝70同士の間隔は、一定に設けられていてもよい。
 周辺領域用溝70は、電界緩和領域25内に底面70aと側壁面70cとを有している。これにより、電界緩和領域25には、周辺領域用溝70の側壁面70cにより規定されている厚肉部27aと、周辺領域用溝70の底面70aにより規定されている薄肉部27bとを有するガードリング領域27が形成されている。本実施の形態において、ガードリング領域27の不純物濃度は、JTE領域26の不純物濃度と等しく、1×1016cm-3以上1×1019cm-3以下程度であり、好ましくは1×1017cm-3以上1×1018cm-3以下程度である。
 周辺領域用溝70の側壁面70cは、上部表面P2に対して垂直に形成されていてもよいし、任意の角度を有する傾斜面であってもよい。周辺領域用溝70の側壁面70cが、上部表面P2に対して垂直もしくは略垂直に形成されている場合には、周辺領域用溝70によって周辺領域20Tにおける上部表面P2の沿面距離を効果的に長く伸ばすことができる。一方、周辺領域用溝70の側壁面70cがトレンチTRの側壁面SWと同等程度に上部表面P2に対して傾斜して形成されている場合には、後述するように、トレンチTRと同様の方法により周辺領域用溝70を形成することができ、これにより側壁面70cに加工によるダメージ層が生じることを抑制することができる。
 周辺領域用溝70の延びる方向に対して垂直な方向における周辺領域用溝70の幅(W1:図8)は、トレンチTRの延びる方向に対し垂直な方向における幅(W2:図8)より狭い。また、上部表面P2と垂直な方向における周辺領域用溝70の深さ(D1:図8)は、上部表面P2と垂直な方向におけるトレンチTRの深さ(D2:図8)よりも浅い。各々の周辺領域用溝70の幅W1および深さD1は、それぞれ同一であってもよいし、異なっていてもよい。
 JTE領域26は、p型を有し、ボディ領域22と接続されている。JTE領域26の不純物濃度は、1×1016cm-3以上1×1019cm-3以下程度であり、好ましくは1×1017cm-3以上1×1018cm-3以下程度である。JTE領域26の少なくとも一部は、ゲート酸化膜31により覆われていてもよい。このとき、JTE領域26は、デバイス領域20Eにおけるボディ領域22の外側に位置するように形成されている。
 ガードリング領域27は、p型を有し、JTE領域26と接続されている。つまり、ガードリング領域27は、JTE領域26を介してボディ領域22と接続されている。ガードリング領域27は、JTE領域26を囲むようにMOSFET101の外周側に形成されている。
 フィールドストップ領域28は、n型を有し、ドリフト層21の不純物濃度よりも高い不純物濃度を有する。フィールドストップ領域28はエピタキシャル基板20の上部表面P2上においてガードリング領域27よりも外側に配置されている。フィールドストップ領域28は、ガードリング領域27を囲むようにMOSFET101の外周側に形成されている。
 ドレイン電極層40はエピタキシャル基板20の下面20B上に設けられている。ドレイン電極層40はエピタキシャル基板20の下面20Bにオーミックに接続されている。
 層間絶縁膜60はエピタキシャル基板20の上部表面P2上に設けられており、ゲート電極32を覆っている。ゲート酸化膜31および層間絶縁膜60は、上部表面P2上においてソース領域23およびコンタクト領域24の各々を露出する開口部を有する。この開口部においてソース電極層50のオーミック部51はソース領域23およびコンタクト領域24の各々にオーミックに接触している。
 誘電体層61は、周辺領域20Tにおいて、上部表面P2上に形成されて周辺領域用溝70を覆っている。このとき、誘電体層61は、周辺領域用溝70を平坦化するように形成されている。異なる観点から言えば、誘電体層61は、厚肉部27a上においては膜厚が薄く、薄肉部27b上においては厚く形成されている。誘電体層61は、層間絶縁膜60と一体として形成されていてもよいし、別体として形成されていてもよい。誘電体層61を構成する材料は、たとえば二酸化珪素、(SiO)、ポリイミド、窒化珪素(SiN)、および酸化ハフニウム(HfO)からなる群から選択される少なくとも1つを含んでいればよい。本実施の形態においては、誘電体層61は層間絶縁膜60と一体として形成されており、二酸化珪素により構成されている。
 次に、図9~図14を参照して、参考例1に係るワイドバンドギャップ半導体装置の製造方法について説明する。
 図9を参照して、まず、下部表面P1を有する単結晶基板29を準備する。次に、下部表面P1と反対の面上におけるエピタキシャル成長によって、ドリフト層21が形成される。このエピタキシャル成長はCVD法により行われ得る。この際、キャリアガスとして水素ガスを用い得る。原料ガスとしては、たとえば、シラン(SiH4)とプロパン(C38)との混合ガスを用い得る。この際、不純物として、たとえば窒素(N)やリン(P)を導入することが好ましい。
 次に、ドリフト層21上に、ボディ領域22、ソース領域23、コンタクト領域24、電界緩和領域25およびフィールドストップ領域28を形成する。これらの形成はイオン注入によって行い得る。次に、イオン注入によって導入された不純物を活性化するための活性化アニール処理が行われる。たとえばアルゴン(Ar)ガスの雰囲気中での1700℃程度の温度での30分間の加熱が行われる。
 次に、図10を参照して、電界緩和領域25上に開口部を有するマスク層80をたとえばフォトリソグラフィ法を用いて形成する。マスク層80には、たとえば二酸化珪素やシリコン酸化膜などを用いることができる。
 次に、マスク層80を用いたエッチングによってエピタキシャル基板20に周辺領域用溝70が形成される。このエッチングとしては熱エッチングが好ましい。熱エッチングは、たとえば、少なくとも1種類以上のハロゲン原子を有する反応性ガスを含む雰囲気中での加熱によって行い得る。少なくとも1種類以上のハロゲン原子は、塩素(Cl)原子およびフッ素(F)原子の少なくともいずれかを含む。この雰囲気は、たとえば、Cl2、BCl3、SF6、またはCF4である。たとえば、塩素ガスと酸素ガスとの混合ガスを反応ガスとして用い、熱処理温度を、たとえば700℃程度以上1000℃程度以下として、熱エッチングが行われる。なお、反応ガスは、上述した塩素ガスと酸素ガスとに加えて、キャリアガスを含んでいてもよい。キャリアガスとしては、たとえば窒素(N2)ガス、アルゴンガス、ヘリウムガスなどを用いることができる。これにより、電界緩和領域25において、上部表面P2に対して傾斜した側壁面70cを有する周辺領域用溝70が形成される。周辺領域用溝70が形成されることにより、電界緩和領域25において、ボディ領域22と接しているJTE領域26と、該JTE領域26と接続されている厚肉部27aと薄肉部27bとが形成される。このとき、周辺領域用溝70の側壁面70cは、面方位{0-33-8}を有する所定の面を含んでいる。周辺領域用溝70の形成後、マスク層80はエッチングなど任意の方法により除去される。
 次に、図11を参照して、電界緩和領域25上に開口部を有するマスク層90をたとえばフォトリソグラフィ法を用いて形成する。マスク層90には、たとえば二酸化珪素やシリコン酸化膜などを用いることができる。
 次に、マスク層90を用いたエッチングによってエピタキシャル基板20にトレンチTRが形成される。このエッチングとしては熱エッチングが好ましい。熱エッチングは、たとえば、少なくとも1種類以上のハロゲン原子を有する反応性ガスを含む雰囲気中での加熱によって行い得る。少なくとも1種類以上のハロゲン原子は、塩素(Cl)原子およびフッ素(F)原子の少なくともいずれかを含む。この雰囲気は、たとえば、Cl2、BCl3、SF6、またはCF4である。たとえば、塩素ガスと酸素ガスとの混合ガスを反応ガスとして用い、熱処理温度を、たとえば700℃程度以上1000℃程度以下として、熱エッチングが行われる。なお、反応ガスは、上述した塩素ガスと酸素ガスとに加えて、キャリアガスを含んでいてもよい。キャリアガスとしては、たとえば窒素(N2)ガス、アルゴンガス、ヘリウムガスなどを用いることができる。これにより、エピタキシャル基板20において、上部表面P2に対して傾斜した側壁面SWを有するトレンチTRが形成される。このようにして形成されたトレンチTRの側壁面SWは、面方位{0-33-8}を有する所定の面を含んでいる。トレンチTRの形成後、マスク層90はエッチングなど任意の方法により除去される。
 次に、図12を参照して、トレンチTRの側壁面SWおよび底面BTの各々を覆うゲート酸化膜31を形成する。ゲート酸化膜31は、たとえば、エピタキシャル基板20の熱酸化により形成され得る。ゲート酸化膜31は、周辺領域20Tにおいて、たとえばJTE領域26上の少なくとも一部上にまで形成されていてもよいし、周辺領域用溝70の側壁面および底面の各々を覆うように形成されていてもよい。
 次に、ゲート酸化膜31上にゲート電極32を形成する。具体的には、トレンチTRの内部の領域(側壁面SWおよび底面BTで囲われた領域)をゲート酸化膜31を介して埋めるようにゲート電極32を形成する。まず、ゲート酸化膜31上においてゲート電極32となるべき導電体膜を、スパッタリング法などを用いて形成する。導電体膜の材料としては導電性を有する材料であれば金属など任意の材料を用いることができる。その後、エッチバックあるいはCMP法など任意の方法を用いて、トレンチTRの内部以外の領域に形成された導電体膜の部分を除去する。このようにして、図12に示す構造を得る。
 次に、図13を参照して、ゲート酸化膜31およびゲート電極32上に層間絶縁膜60を、JTE領域26、ガードリング領域27、およびフィールドストップ領域28の上に誘電体層61を形成する。層間絶縁膜60と誘電体層61とは、一体として形成されてもよいし、別体として形成されてもよい。
 次に、図14を参照して、ソース電極層50を形成する。具体的には、まずゲート酸化膜31および層間絶縁膜60に開口部が形成されるようにエッチングを行う。この開口部により上部表面P2上においてソース領域23およびコンタクト領域24の各々が露出される。次に上部表面P2上においてソース領域23およびnコンタクト領域24の各々に接するオーミック部51を形成する。次に、配線部52が形成される。このようにして、MOSFET102が得られる。
 なお、上述した参考例1に係るMOSFET102の製造方法において、トレンチTRの形成に先だって周辺領域用溝70を形成したが、トレンチTRを形成した後に周辺領域用溝70を形成しても構わない。
 次に、参考例1に係るMOSFET102の作用効果について説明する。参考例1に係るMOSFET102は、周辺領域用溝70が複数形成されているため、デバイス領域20Eからワイドバンドギャップ半導体装置の外周端部に至る方向において、上部表面P2の沿面距離を長くすることができる。さらに、電界緩和領域25は周辺領域用溝70によって分断されることなく設けられている。そのため、ドリフト層21と電界緩和領域25との界面において空乏層が拡がりやすく、特に上部表面P2と平行な方向において空乏層が拡がりやすい。その結果、デバイス領域20E近傍および周辺領域20Tにおける電界集中を効果的に緩和することができ、ワイドバンドギャップ半導体装置の耐圧を向上することができる。
 また、電界緩和領域25は、周辺領域用溝70によって分断されることなく設けられているため、電界緩和領域25の全体を同電位とすることができる。これにより、たとえば電界緩和領域25をデバイス領域20E側においてソース領域23と接続させることにより、電界緩和領域25全体(JTE領域26およびガードリング領域27)をソース領域23と同電位とすることができる。この結果、たとえばソースドレイン間に電圧が印加されてドリフト層21と電界緩和領域25との界面が空乏化した後、該電圧の印加を中断したときにも、電界緩和領域25の伝導イオン(キャリア)をすばやく回復させることができる。そのため、電界緩和領域25の伝導イオンが確実に回復している状態で、ワイドバンドギャップ半導体装置をON動作させることができ、ON動作時の特性変動を抑制することができる。
 (参考例2)
 次に、図15を参照して、参考例2に係るワイドバンドギャップ半導体装置について説明する。参考例2に係るワイドバンドギャップ半導体装置は、基本的には実施の形態1に係るワイドバンドギャップ半導体装置と同様の構成を備えるが、周辺領域用溝70の側壁面70cが電界緩和領域25からドリフト層21にまで延びている点で異なる。このとき、周辺領域用溝70の底面70aは、ドリフト層21内に形成されている。つまり、参考例2に係るワイドバンドギャップ半導体装置において、薄肉部27bは形成されていない。この場合、ガードリング領域27の厚肉部27aは、周辺領域用溝70の側壁面70cに規定されて複数形成されているが、互いに接続されていないいわゆるフローティングガードリング構造を有している。
 このようにしても、周辺領域用溝70が複数形成されているため、デバイス領域20Eからワイドバンドギャップ半導体装置の外周端部に至る方向において、周辺領域20Tの空間距離(デバイス領域20Eからワイドバンドギャップ半導体装置の外周端部までの最短直線距離)を長くすることなく、上部表面P2の沿面距離を長くすることができる。この結果、参考例2に係るワイドバンドギャップ半導体装置は、参考例1に係るワイドバンドギャップ半導体装置と同様に、サイズを大きくすることなく高耐圧化することができる。
 また、図16を参照して、実施の形態1に係るMOSFET101は、電界緩和領域25において、周辺領域用溝70をさらに備えていてもよい。この場合、複数の段差部71よりもデバイス領域20E側に位置する電界緩和領域25に周辺領域用溝70が形成されているのが好ましい。図16に示す例では、周辺領域用溝70は電界緩和領域25内に形成されているが、周辺領域用溝70の側壁面70cが電界緩和領域25からドリフト層21にまで延びて、底面70aがドリフト層21内に形成されていてもよい。このようにすることで、上述した参考例1および2に係るMOSFET102、103と同様の効果をさらに奏することができる。
 なお、実施の形態1ならびに参考例1および2に係るMOSFET101,102,103は、トレンチゲート型として形成されているが、プレナー型として形成されていてもよい。図17、参考例1に係るプレナー型のMOSFET102を示す。ワイドバンドギャップ半導体装置がプレナー型のMOSFET102として形成されている場合には、周辺領域用溝70の延びる方向に垂直な方向における周辺領域用溝70の幅W1は、JFET領域(ドリフト層21においてボディ領域22間に位置する領域)を挟んで対向するボディ領域22間の間隔W3よりも狭く形成されているのが好ましい。また、上部表面P2と垂直な方向における周辺領域用溝70の深さD1は、ボディ領域22の底部の上部表面P2からの深さD3よりも浅く形成されているのが好ましい。このようにしても、周辺領域用溝70の幅が十分に狭いため、周辺領域用溝70を挟んで対向する電界緩和領域25からドリフト層21側に拡がる空乏層同士の周辺領域用溝70が延びる方向に対して垂直な方向における間隔を狭めることができ、あるいは空乏層同士を周辺領域用溝70を跨いで連なるように拡がりやすくすることができる。この結果、デバイス領域20E近傍および周辺領域20Tにおける電界集中を緩和することができ、ワイドバンドギャップ半導体装置の耐圧を向上することができる。
 また、実施の形態1ならびに参考例1および2に係るワイドバンドギャップ半導体装置の製造方法において、周辺領域20Tにおいて周辺領域用溝70や段差部71を形成する工程と、デバイス領域20Eにおいてデバイス構造を形成する各工程との順序は、上述した順序に限られず、適宜選択することができる。
 以上のように本発明の実施の形態について説明を行ったが、上述の実施の形態を様々に変形することも可能である。また、本発明の範囲は上述の実施の形態に限定されるものではない。本発明の範囲は、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。
 [付記]
 上述した実施の形態1ならびに参考例1および2に係るワイドバンドギャップ半導体装置は、任意の半導体材料からなる半導体装置にも適用可能である。
 (2-1)本実施の形態に係る半導体装置は、主面(上部表面P2)を有し、珪素(Si)またはワイドバンドギャップ半導体からなる半導体基板(エピタキシャル基板20)を備え、半導体基板20は、半導体基板20に形成されたデバイス領域20Eと、デバイス領域20Eを囲むように形成された周辺領域20Tとを含む。周辺領域20Tにおいて、半導体基板20は、第1の導電型を有する第1の半導体領域(ドリフト層21)と、第1の半導体領域(ドリフト層21)上に形成され、主面P2を有し、第1の導電型と異なる第2の導電型を有する第2の半導体領域(電界緩和領域25)とを含み、周辺領域20Tの最外周において、半導体基板20は、デバイス領域20Eを環状に囲む段差部71を有しており、第2の半導体領域は、段差部71に沿うように形成されている。
 (2-2)本実施の形態に係る半導体装置において、段差部71は、主面(上部表面P2)と平行な上面(テラス面71a)と、主面(上部表面P2)に対しする傾斜面(ステップ面71c)とを有し、第2の半導体領域の傾斜面71c上における厚みT1(図1参照)は、第2の半導体領域(電界緩和領域25)の傾斜面71c上における厚みT2(図1参照)よりも厚くてもよい。
 (2-3)本実施の形態に係るワイドバンドギャップ半導体装置において、段差部(71)は複数形成されており、複数の段差部(71)は、周辺領域(20T)の外周側に向かうほど主面(P2)と垂直な方向における深さが深くなる、階段状に形成されていてもよい。
 (2-4)本実施の形態に係る半導体装置において、段差部71上には誘電体層61が形成されており、第2の半導体領域(電界緩和領域25)は、段差部71において、第1の半導体領域(ドリフト層21)と誘電体層61とに挟まれるように形成されていてもよい。
 (2-5)本実施の形態に係る半導体装置において、誘電体層を構成する材料は、二酸化珪素、ポリイミド、および窒化珪素からなる群から選択される少なくとも1つを含んでもよい。
 (2-6)本実施の形態に係る半導体装置では、周辺領域(20T)において、段差部(71)よりも内側に位置する第2の半導体領域(25)の主面(P2)には、デバイス領域(20E)を環状に囲む複数の周辺領域用溝(70)が形成されていてもよい。
 (2-7)本実施の形態に係る半導体装置において、周辺領域用溝(70)の底部(70a)は、第1の半導体領域(21)と第2の半導体領域(25)との界面より、第2の半導体領域(25)側に位置してもよい。
 (2-8)本実施の形態に係る半導体装置において、周辺領域用溝(70)の底部(70a)は、第1の半導体領域(21)と第2の半導体領域(25)との界面より、第1の半導体領域(21)側に位置してもよい。
 (2-9)本実施の形態に係る半導体装置のデバイス領域において、半導体基板の主面(P2)にはデバイス用溝TRが設けられており、周辺領域用溝70の延びる方向に対して垂直な方向における主面(P2)での周辺領域用溝70の幅は、デバイス用溝TRの延びる方向に対して垂直な方向における主面(P2)でのデバイス用溝TRの幅より小さく、主面(上部表面P2)と垂直な方向における周辺領域用溝70の深さは、主面(上部表面P2)と垂直な方向におけるデバイス用溝TRの深さよりも小さくてもよい。
 (2-10)本実施の形態に係る半導体装置のデバイス領域において、半導体基板は、主面(上部表面P2)を有する第1の半導体領域(ドリフト層21)と、主面P2において間隔を隔てて対向し、第2の導電型を有する1組の第3の半導体領域(ボディ領域22)と、1組の第3の半導体領域(ボディ領域22)中にそれぞれ第1の導電型を有する第4の半導体領域とを含み、周辺領域用溝70の延びる方向に対して垂直な方向における主面(P2)での周辺領域用溝70の幅は、主面P2において、第1の半導体領域を挟んで対向する第3の半導体領域(pボディ領域22)の間隔よりも小さく、主面と垂直な方向における周辺領域用溝70の深さは、第3の半導体領域(pボディ領域22)の底部の主面からの深さよりも小さくてもよい。
 (2-11)本実施の形態に係る半導体装置において、周辺領域用溝70の側壁は、主面P2に対して傾斜していてもよい。
 (2-12)本実施の形態に係る半導体装置において、第1の導電型はn型であり、第2の導電型はp型であってもよい。
 本発明は、高耐圧が要求される半導体装置に特に有利に適用される。
 20 半導体基板、20E デバイス領域、20T 周辺領域、21 ドリフト層(第1の半導体領域)、22 ボディ領域(第3の半導体領域)、23 ソース領域(第4の半導体領域)、24 コンタクト領域、25 電界緩和領域(第2の半導体領域)、27 ガードリング領域、27a 厚肉部、27b 薄肉部、28 フィールドストップ領域、29 単結晶基板、31 ゲート酸化膜、32 ゲート電極、40 ドレイン電極層、50 ソース電極層、51 オーミック部、52 配線部、60 層間絶縁膜、61 誘電体層、70 周辺領域用溝、70a 底面、70c 側壁面、71 段差部、71a テラス面、71c ステップ面、80,81,82,90 マスク層、101,102,103 MOSFET、TR トレンチ、BT 底面、SW 側壁面、P1 下部表面、P2 上部表面(主面)、PS 基板側面。

Claims (12)

  1.  主面を有し、ワイドバンドギャップ半導体からなる半導体基板と、
     前記半導体基板に形成されたデバイス領域と、
     前記デバイス領域を囲むように形成された周辺領域とを備え、
     前記周辺領域において、前記半導体基板は、第1の導電型を有する第1の半導体領域と、前記第1の半導体領域上に形成され、前記主面を有し、前記第1の導電型と異なる第2の導電型を有する第2の半導体領域とを含み、
     前記周辺領域において、前記半導体基板は、前記デバイス領域を環状に囲む段差部を有しており、
     前記第2の半導体領域は、前記段差部に沿うように形成されている、ワイドバンドギャップ半導体装置。
  2.  前記段差部は、前記主面に沿った方向に延びる上面と、前記主面に対する傾斜面とを有し、
     前記第2の半導体領域の前記上面における厚みは、前記第2の半導体領域の前記傾斜面における厚みよりも厚い、請求項1に記載のワイドバンドギャップ半導体装置。
  3.  前記段差部は複数形成されており、
     複数の前記段差部は、前記周辺領域の外周側に向かうほど前記主面と垂直な方向における深さが深くなる、階段状に形成されている、請求項1または請求項2に記載のワイドバンドギャップ半導体装置。
  4.  前記段差部上には誘電体層が形成されており、
     前記第2の半導体領域は、前記段差部において、前記第1の半導体領域と前記誘電体層とに挟まれるように形成されている、請求項1~請求項3のいずれか1項に記載のワイドバンドギャップ半導体装置。
  5.  前記誘電体層を構成する材料は、二酸化珪素、ポリイミド、および窒化珪素からなる群から選択される少なくとも1つである、請求項4に記載のワイドバンドギャップ半導体装置。
  6.  前記周辺領域において、前記段差部よりも内側に位置する前記第2の半導体領域の前記主面には、前記デバイス領域を環状に囲む複数の周辺領域用溝が形成されている、請求項1~請求項5のいずれか1項に記載のワイドバンドギャップ半導体装置。
  7.  前記周辺領域用溝の底部は、前記第1の半導体領域と前記第2の半導体領域との界面より、前記第2の半導体領域側に位置する、請求項6に記載のワイドバンドギャップ半導体装置。
  8.  前記周辺領域用溝の底部は、前記第1の半導体領域と前記第2の半導体領域との界面より、前記第1の半導体領域側に位置する、請求項6に記載のワイドバンドギャップ半導体装置。
  9.  前記デバイス領域において、前記半導体基板の前記主面には、デバイス用溝が設けられており、
     前記周辺領域用溝の延びる方向に対して垂直な方向における前記主面での前記周辺領域用溝の幅は、前記デバイス用溝の延びる方向に対して垂直な方向における前記主面での前記デバイス用溝の幅より小さく、
     前記主面と垂直な方向における前記周辺領域用溝の深さは、前記主面と垂直な方向における前記デバイス用溝の深さよりも小さい、請求項6~請求項8のいずれか1項に記載のワイドバンドギャップ半導体装置。
  10.  前記デバイス領域において、前記半導体基板は、前記第1の導電型を有する第1の不純物領域と、前記主面において間隔を隔てて対向し、前記第2の導電型を有する1組の第3の半導体領域と、前記1組の第3の半導体領域中にそれぞれ前記第1の導電型を有する第4の半導体領域とを含み、
     前記周辺領域用溝の延びる方向に対して垂直な方向における前記主面での前記周辺領域用溝の幅は、前記主面において、前記第1の半導体領域を挟んで対向する前記第3の半導体領域の間隔よりも小さく、
     前記主面と垂直な方向における前記周辺領域用溝の深さは、前記第3の半導体領域の底部の前記主面からの深さよりも小さい、請求項6~請求項8のいずれか1項に記載のワイドバンドギャップ半導体装置。
  11.  前記周辺領域用溝の側壁は、前記主面に対して傾斜している、請求項6~請求項10のいずれか1項に記載のワイドバンドギャップ半導体装置。
  12.  前記第1の導電型はn型であり、前記第2の導電型はp型である、請求項1~請求項11のいずれか1項に記載のワイドバンドギャップ半導体装置。
PCT/JP2014/066113 2013-08-01 2014-06-18 ワイドバンドギャップ半導体装置 WO2015015934A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/909,015 US9691891B2 (en) 2013-08-01 2014-06-18 Wide band gap semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013160609A JP2015032665A (ja) 2013-08-01 2013-08-01 ワイドバンドギャップ半導体装置
JP2013-160609 2013-08-01

Publications (1)

Publication Number Publication Date
WO2015015934A1 true WO2015015934A1 (ja) 2015-02-05

Family

ID=52431476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066113 WO2015015934A1 (ja) 2013-08-01 2014-06-18 ワイドバンドギャップ半導体装置

Country Status (3)

Country Link
US (1) US9691891B2 (ja)
JP (1) JP2015032665A (ja)
WO (1) WO2015015934A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9455328B1 (en) * 2015-11-23 2016-09-27 Pfc Device Holdings Limited Low-temperature oxide method for manufacturing backside field stop layer of insulated gate bipolar transistor
CN106847679A (zh) * 2015-10-09 2017-06-13 英飞凌科技股份有限公司 通过去除非晶化的部分来制造碳化硅半导体器件的方法
CN113517356A (zh) * 2021-05-21 2021-10-19 浙江芯国半导体有限公司 基于台阶状P型CBN与SiC混合结构的4H-SiC二极管及制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6274968B2 (ja) * 2014-05-16 2018-02-07 ローム株式会社 半導体装置
WO2017119064A1 (ja) * 2016-01-05 2017-07-13 株式会社日立製作所 半導体装置
JP6524950B2 (ja) * 2016-03-29 2019-06-05 豊田合成株式会社 半導体装置およびその製造方法
EP3477692A4 (en) 2016-06-22 2020-02-19 Murata Manufacturing Co., Ltd. CAPACITOR
US9991379B1 (en) * 2016-11-17 2018-06-05 Sanken Electric Co., Ltd. Semiconductor device with a gate insulating film formed on an inner wall of a trench, and method of manufacturing the same
DE102017125244B3 (de) 2017-10-27 2019-02-28 Infineon Technologies Ag HALBLEITERVORRICHTUNG MIT JUNCTION-ABSCHLUSSZONE und Verfahren zu deren Herstellung
JP2019125623A (ja) * 2018-01-12 2019-07-25 トヨタ自動車株式会社 半導体装置の製造方法
CN109065631A (zh) * 2018-07-12 2018-12-21 武汉华星光电半导体显示技术有限公司 薄膜晶体管结构及其制作方法
US11158703B2 (en) * 2019-06-05 2021-10-26 Microchip Technology Inc. Space efficient high-voltage termination and process for fabricating same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187698A (ja) * 1997-09-02 1999-03-30 Kansai Electric Power Co Inc:The 高耐圧半導体装置及びこの装置を用いた電力変換器
JP2010225833A (ja) * 2009-03-24 2010-10-07 Toshiba Corp 半導体装置
WO2012096010A1 (ja) * 2011-01-14 2012-07-19 三菱電機株式会社 半導体装置の製造方法
JP2013012568A (ja) * 2011-06-29 2013-01-17 Mitsubishi Electric Corp 半導体装置およびその製造方法
WO2013021636A1 (ja) * 2011-08-10 2013-02-14 株式会社デンソー 炭化珪素半導体装置およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6218254B1 (en) * 1999-09-22 2001-04-17 Cree Research, Inc. Method of fabricating a self-aligned bipolar junction transistor in silicon carbide and resulting devices
JP5525940B2 (ja) 2009-07-21 2014-06-18 ローム株式会社 半導体装置および半導体装置の製造方法
SE537101C2 (sv) * 2010-03-30 2015-01-07 Fairchild Semiconductor Halvledarkomponent och förfarande för utformning av en struktur i ett målsubstrat för tillverkning av en halvledarkomponent
JP5881322B2 (ja) * 2011-04-06 2016-03-09 ローム株式会社 半導体装置
JP6037499B2 (ja) * 2011-06-08 2016-12-07 ローム株式会社 半導体装置およびその製造方法
US9202940B2 (en) * 2011-09-28 2015-12-01 Mitsubishi Electric Corporation Semiconductor device
DE112013004846T5 (de) * 2012-10-02 2015-06-11 Mitsubishi Electric Corporation Halbleitervorrichtung und Verfahren zu ihrer Herstellung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187698A (ja) * 1997-09-02 1999-03-30 Kansai Electric Power Co Inc:The 高耐圧半導体装置及びこの装置を用いた電力変換器
JP2010225833A (ja) * 2009-03-24 2010-10-07 Toshiba Corp 半導体装置
WO2012096010A1 (ja) * 2011-01-14 2012-07-19 三菱電機株式会社 半導体装置の製造方法
JP2013012568A (ja) * 2011-06-29 2013-01-17 Mitsubishi Electric Corp 半導体装置およびその製造方法
WO2013021636A1 (ja) * 2011-08-10 2013-02-14 株式会社デンソー 炭化珪素半導体装置およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106847679A (zh) * 2015-10-09 2017-06-13 英飞凌科技股份有限公司 通过去除非晶化的部分来制造碳化硅半导体器件的方法
US9455328B1 (en) * 2015-11-23 2016-09-27 Pfc Device Holdings Limited Low-temperature oxide method for manufacturing backside field stop layer of insulated gate bipolar transistor
CN113517356A (zh) * 2021-05-21 2021-10-19 浙江芯国半导体有限公司 基于台阶状P型CBN与SiC混合结构的4H-SiC二极管及制备方法
CN113517356B (zh) * 2021-05-21 2023-08-04 浙江芯科半导体有限公司 基于台阶状P型CBN与SiC混合结构的4H-SiC二极管及制备方法

Also Published As

Publication number Publication date
US20160181415A1 (en) 2016-06-23
JP2015032665A (ja) 2015-02-16
US9691891B2 (en) 2017-06-27

Similar Documents

Publication Publication Date Title
JP6277623B2 (ja) ワイドバンドギャップ半導体装置
WO2015015934A1 (ja) ワイドバンドギャップ半導体装置
JP5742657B2 (ja) 炭化珪素半導体装置およびその製造方法
JP5996671B2 (ja) 炭化珪素半導体装置及びその製造方法
WO2015005010A1 (ja) 半導体装置およびその製造方法
JP6244665B2 (ja) 半導体装置
JP5994604B2 (ja) 炭化珪素半導体装置およびその製造方法
JP6135364B2 (ja) 炭化珪素半導体装置およびその製造方法
WO2015040966A1 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
WO2017179377A1 (ja) 炭化珪素半導体装置およびその製造方法
WO2014192437A1 (ja) 炭化珪素半導体装置
US20170263745A1 (en) Semiconductor device and method of manufacturing the same
JP2017092355A (ja) 半導体装置および半導体装置の製造方法
WO2017051616A1 (ja) 炭化珪素半導体装置およびその製造方法
US9806167B2 (en) Method for manufacturing silicon carbide semiconductor device
JP2018206872A (ja) 半導体装置
JP2013105856A (ja) 炭化珪素半導体装置およびその製造方法
JP7156313B2 (ja) 炭化珪素半導体装置
WO2013051343A1 (ja) 炭化珪素半導体装置およびその製造方法
JP2024125439A (ja) 半導体装置及び半導体装置の製造方法
JP2023104658A (ja) 炭化珪素半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832532

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14909015

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832532

Country of ref document: EP

Kind code of ref document: A1