WO2015015750A1 - インライン型濃度計及び濃度検出方法 - Google Patents

インライン型濃度計及び濃度検出方法 Download PDF

Info

Publication number
WO2015015750A1
WO2015015750A1 PCT/JP2014/003830 JP2014003830W WO2015015750A1 WO 2015015750 A1 WO2015015750 A1 WO 2015015750A1 JP 2014003830 W JP2014003830 W JP 2014003830W WO 2015015750 A1 WO2015015750 A1 WO 2015015750A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
detection
concentration
unit
light source
Prior art date
Application number
PCT/JP2014/003830
Other languages
English (en)
French (fr)
Inventor
出口 祥啓
正明 永瀬
池田 信一
山路 道雄
Original Assignee
国立大学法人徳島大学
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人徳島大学, 株式会社フジキン filed Critical 国立大学法人徳島大学
Priority to CN201480022888.7A priority Critical patent/CN105556283B/zh
Priority to KR1020157027686A priority patent/KR101737377B1/ko
Priority to US14/909,424 priority patent/US10371630B2/en
Priority to SG11201600596YA priority patent/SG11201600596YA/en
Publication of WO2015015750A1 publication Critical patent/WO2015015750A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/5907Densitometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3148Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using three or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/5907Densitometers
    • G01N2021/5969Scanning of a tube, a cuvette, a volume of sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8411Application to online plant, process monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N2021/8578Gaseous flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • G01N2201/0627Use of several LED's for spectral resolution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/069Supply of sources
    • G01N2201/0691Modulated (not pulsed supply)

Definitions

  • the present invention relates to an improvement of an in-line type concentration meter and a concentration detection method used in a raw material fluid supply device of a semiconductor manufacturing apparatus, in particular, an improvement in sensitivity, reproducibility and measurement accuracy of the concentration meter, and a reduction in size and space.
  • the present invention relates to an ultraviolet absorption type in-line gas concentration meter and a gas concentration detection method capable of reducing costs.
  • a bubbling-type raw material fluid supply device having a structure as shown in FIG. 7, an infrared absorption type concentration meter is provided near the raw material vapor outlet of the temperature-controlled raw material tank 21. 22, and by adjusting the temperature of the raw material tank 21, the flow rate of the carrier gas CG, the vapor pressure Po in the tank, etc. according to the concentration detection signal from the densitometer 22, the process gas 24 having a predetermined raw material concentration is supplied to the reaction furnace 23.
  • a process gas containing an organometallic vapor such as trimethylgallium TMGa is supplied.
  • 25 is a thermal mass flow controller for carrier gas
  • 26 is a pressure regulator for tank internal pressure
  • 33 is a carrier gas supply line
  • 34 is an exhaust gas line
  • G is a source gas.
  • a source gas source in the process gas 24 not only a liquid source but also a sublimable solid source may be used.
  • the infrared absorption type densitometer 22 various types of densitometers have been put to practical use, but as the in-line type densitometer 22, as shown in FIG. From the control cell 30b in which the cell 30a and the control gas C circulate, the light source 28 that irradiates each cell with infrared light, the detector 29 of the amount of light that has passed through each cell, and the detection signal of the detector 29 It is formed from an arithmetic unit (not shown) that calculates the raw material concentration by obtaining the absorbance. Note that A is a preamplifier, S is a semiconductor manufacturing apparatus, and SC is a light transmission window. The light source 28 and the light receiver 29 are moved up and down together to transmit light into the material cell 30a and the reference cell 30b. Irradiate (Japanese Patent Publication No. 2000-206045).
  • the gas concentration in the material cell 30a is measured and the gas concentration is calculated by applying a law such as Lambert Beer to the absorbance measurement result.
  • the light source 28 and the light receiver 29 are integrally slid upward and the absorbance of the reference cell 30b is detected, whereby measurement value correction such as zero adjustment is appropriately performed.
  • the infrared absorption type densitometer 22 has (I) a relatively large fluctuation of the light source 28, lack of stability of the detector 29, and (II) an averaging process of absorbance. There is a difficulty in that the response is low and the so-called concentration detection sensitivity is relatively poor. Further, (III) there is a problem that the cells 30a and 30b having a relatively long optical path length are required, the detector 29 is increased in size, and the manufacturing cost is increased.
  • the transparency of the light transmission window SC needs to be stable over a long period of time, and when the transparency changes over time, it is stable. It becomes difficult to measure the gas concentration.
  • an interferometer is used for non-dispersion.
  • Fourier transform processing is performed on the detected values to calculate the light intensity for each wavelength component, and the Fourier transform infrared spectroscopy (FT-IR) spectrophotometer. Totals are being developed and used.
  • the measurement wavelength range is basically the infrared range, so the problem of poor measurement accuracy and reproducibility due to fluctuations in the light source is It remains unresolved.
  • FIG. 9 shows an outline of the apparatus configuration.
  • the light source 28 includes an ultraviolet light lamp (deuterium lamp or Hg-Xe lamp) that emits ultraviolet light of 200 to 400 nm, a spectroscope, and the like. 28b.
  • the gas concentration measuring apparatus includes a material cell 30a through which a source gas G flows, a control cell 30b through which a control gas C flows, and a light source that irradiates ultraviolet light into each cell. 28a and spectroscope 28b, a detector 29 for the amount of light that has passed through each cell, an arithmetic unit (not shown) that calculates the concentration of the raw material by obtaining the absorbance from the detection signal of the detector output 29a, and the like. .
  • 31 is a gas purification device
  • 32 is a pump
  • 35 is an exhaust gas treatment device
  • M is a mirror
  • MP is a diffraction grating
  • ML is a slit
  • MS is a sector mirror
  • MG is a grating mirror
  • the ultraviolet light type gas concentration measuring apparatus is configured to detect the absorbance of the control cell 30b using a double beam type spectroscope 28b and appropriately correct a measured value such as zero adjustment. Since the basic configuration is exactly the same as that of the infrared absorption type densitometer, the problems that the fluctuation of the light source 28 is large and that the response and detection sensitivity are relatively poor remain as they are. ing.
  • the present invention relates to the above-described problems in the concentration meter of the raw material gas used in the conventional raw material fluid supply device and the like and the concentration measurement method using the same. Simplification of the structure of the densitometer, miniaturization, and reduction in product cost, and (II) low responsiveness and measurement sensitivity of concentration measurement, (III) poor reproducibility of measurement and stability In addition, it solves the problems such as the high concentration of the source gas being impossible and (IV) the measurement accuracy is likely to be lowered due to the change in the transparency of the light transmission window.
  • UV light absorption type in-line type densitometer that can perform stable concentration measurement with high responsiveness, high sensitivity, and high accuracy over a long period of time, and can be manufactured at low cost and concentration measurement using this It is the main object of the invention to provide a method.
  • a first aspect of the densitometer according to the present invention includes a light source unit that emits mixed light having at least two wavelengths having a phase difference, and a light incident unit that enters the mixed light from the light source unit into the fluid passage of the detector body. And a detection unit having at least two light detection units for receiving the mixed light transmitted through the fluid passage, and a frequency analysis of the detection signal of the mixed light from each light detection unit, and at least two of the detection signals.
  • An arithmetic processing unit that calculates an intensity change amount corresponding to the absorbance in one frequency range, and calculates a fluid concentration in the fluid passage from the intensity change amount in at least two frequency ranges of each detection signal; And a recording / displaying unit for recording and displaying the calculated value of the fluid concentration at the basic structure of the present invention.
  • the light source unit in the first aspect is a light source unit that emits mixed light of three wavelengths.
  • the light source unit includes an LED or a laser diode.
  • the light source unit in the first aspect is a light source unit that emits ultraviolet light having a wavelength range of 200 to 400 nm.
  • the arithmetic processing unit is an arithmetic processing unit that performs frequency analysis by Fourier transform or wavelet transform.
  • a sixth aspect of the present invention is the arithmetic processing unit according to the first aspect, wherein the concentration of the organic metal material gas in the mixed gas flowing through the fluid passage is calculated.
  • a seventh aspect of the present invention is a detection unit having one light incident part and two light detection parts in the first aspect.
  • the light source unit is a light source unit that emits mixed light of three wavelengths of ultraviolet light.
  • the arithmetic processing unit is an arithmetic processing unit that performs frequency analysis on each of the detection signals of the mixed light of three wavelengths by Fourier transform.
  • one light incident portion is disposed on one side surface of the detector body, and two light detections are performed on the other side surface facing the one side surface.
  • the parts are arranged.
  • one light incident portion is disposed on one side surface of the detector body, and three light detections are performed on the other side surface facing the one side surface.
  • the parts are arranged.
  • one light incident part and one light detection part are arranged on one side surface of the detector body, and the other one faced to the one side surface.
  • Two light detection units are arranged on the side surface.
  • the light source unit is a light source unit that emits mixed light in which ultraviolet light having different wavelengths is mixed by a beam combiner.
  • mixed light of three different wavelengths of ultraviolet light having a phase difference from a light source is incident from one light incident portion provided in a detector body having a fluid passage into the fluid passage.
  • each ultraviolet light transmitted through the fluid passage is detected by at least two light detectors provided in the detector body, and frequency detection is performed on the detection signals of the mixed light detected by each light detector by Fourier transform or the like.
  • the intensity change amount corresponding to the absorbance in the three frequency ranges is calculated for each detection signal detected by the light detection unit, and then at least a total of six of the calculations in the three frequency ranges of the detection signals are performed.
  • the basic constitution of the invention is to calculate the concentration of the organometallic material gas in the mixed gas flowing in the fluid passage from the intensity change amount.
  • the number of the light detection units is three, and the amount of intensity change corresponding to a total of nine calculated absorbances is determined in the mixed gas flowing in the fluid passage.
  • the organic metal material gas concentration is calculated.
  • the mixed light incident from the light incident part is detected by one light detection part, and the reflected light from the light detection part is detected by the other light. It is made to enter into the part.
  • a seventeenth aspect of the present invention is the above fourteenth aspect, wherein the mixed light incident from the light incident part is dispersed and incident on the two light detection parts.
  • a light source unit that emits mixed light having at least two wavelengths having a phase difference
  • a detector having at least two light detectors for receiving mixed light transmitted through the fluid passage and a light incident portion for entering the mixed light from the light source portion into the fluid passage of the detector body;
  • Each of the detection signals of the mixed light from each light detection unit is frequency-analyzed, and the intensity change amount corresponding to the absorbance in at least two frequency regions of each detection signal is calculated, and at least two frequencies of each detection signal are calculated.
  • An arithmetic processing unit for calculating a fluid concentration in the fluid passage from the intensity change amount in a region;
  • a recording / display unit for recording and / or displaying the calculated value of the fluid concentration in the arithmetic processing unit;
  • the densitometer is made up of
  • At least two light detection units detect the intensity change amount at the time of incidence and after absorption of the mixed light of at least two wavelengths having a phase difference, and the intensity of the mixed light detected by each light detection unit.
  • the detection value corresponding to the amount of change is subjected to frequency analysis to obtain a calculation value corresponding to the absorbance in at least two frequency ranges, and the fluid concentration is calculated based on the at least six calculated absorbances.
  • the configuration of the optical system can be greatly simplified and simplified as compared with a conventional dispersion type optical system using a diffraction grating, a slit, or the like, and the apparatus can be greatly downsized.
  • the power consumption is significantly reduced and the life of the light source is greatly extended compared to the case of a conventional infrared light source.
  • ultraviolet light of different wavelengths can be obtained easily and easily.
  • ultraviolet light having at least two phase differences with different wavelengths is used and absorbance is measured using at least two light detection units, high measurement accuracy and measurement reproducibility can be obtained.
  • the so-called fluctuation phenomenon of the light source is substantially eliminated, and stable concentration measurement is possible.
  • the detection unit is composed of a detector main body having a fluid passage, and a light incident unit and a light detection unit arranged on the side surface thereof, the detection unit can be greatly reduced in size, and the piping path Can be easily installed and removed from the piping.
  • (A)-(c) is explanatory drawing of the detected value process in an arithmetic processing part.
  • (D) is an explanatory diagram of the calculated absorbance matrices ⁇ , ⁇ , ⁇ . It is a figure which shows the example of application of the gas concentration meter which concerns on this invention. It is a figure which shows the example of application of the conventional in-line type gas concentration meter. It is a schematic diagram of the structure of the conventional in-line type gas concentration meter. It is a schematic diagram of the structure of the conventional ultraviolet absorption type gas concentration meter.
  • FIG. 1 is a schematic configuration diagram of a raw material fluid concentration meter according to an embodiment of the present invention.
  • the raw material gas concentration meter GD of the present invention includes a light source unit 1 having an LED light source 1a, a detector body 6 having a light incident part 9 and a fluid passage 6a, and a detection part 2 having a light detection part 10, and a calculation
  • the detection unit 2 is formed in an in-line type that can be inserted into the process piping, as will be described later.
  • the three ultraviolet light different from the light source unit 1 wavelength is emitted by shifting the respective phases, and enters the beam combiner 1a 4 ( Figure 2).
  • Each incident ultraviolet light is mixed in the beam combiner 1 a 4 , and the mixed light enters the light incident part 9 of the detection part 2 through the optical fiber 5.
  • the ultraviolet light incident on the light incident part 9 of the detection part 2 travels through the raw material gas G in the fluid passage 6a and travels at each light detection part 10 provided at at least two different positions. Detected.
  • three ultraviolet lights having phase differences of ⁇ 1 , ⁇ 2 , and ⁇ 3 are emitted from the LED light source 1 a, and the three ultraviolet lights are emitted.
  • the so-called absorbance of the ultraviolet light is detected by entering the mixed light of light into one light incident portion 9 and detecting the ultraviolet light emitted from the light incident portion 9 into the fluid gas G by the two light detection portions 10.
  • the reflected light from the sapphire light transmission window 9a of the first light detection unit is incident on the second light detection unit.
  • the light detection values (light reception values) of the mixed light (combined light) of the wavelengths ⁇ 1 , ⁇ 2 , and ⁇ 3 detected by the two light detection units 10a and 10b are respectively sent to the arithmetic processing unit 3.
  • the light detection value intensities for the three frequency domain components are calculated, corresponding to a total of six types (2 light detection units ⁇ 3 frequency areas) of absorbance. The calculated value is calculated.
  • the concentration of the raw material gas finally flowing in the fluid passage 6a is calculated and displayed.
  • the light source unit 1 includes a multi-LED light source 1a and the beam combiner 1a 4 is composed of a reflecting mirror 1b and the optical fiber 5 and other, also 1 wavelength ⁇ from the multi-LED light source 1a, Three types of ultraviolet light of ⁇ 2 and ⁇ 3 are emitted, mixed into one light by the beam combiner 1 a 4 , and then input to the detection unit 2 through the reflection mirror 1 b and the optical fiber 5.
  • the LED light sources 1a 1 , 1a 2 , and 1a 3 have a difference in light emission start time and a phase difference ⁇ is provided between the ultraviolet lights. It is also possible to emit ultraviolet light simultaneously from 1 , 1a 2 , 1a 3 and to provide a phase difference ⁇ between the ultraviolet light using a separately provided phase adjuster (not shown).
  • a so-called multi-LED is used as the LED light source 1a.
  • a three-color small high-intensity LED having a wavelength range of 200 nm to 400 nm is used.
  • an LED light source is used as a light source, but it is a matter of course that a so-called LD (laser diode) included in the category of LEDs may be used as a light source.
  • LD laser diode
  • the detection unit 2 includes a detector body 6, one light incident unit 9, two light detection units 10a, 10b, and the like.
  • the detector main body 6 is made of stainless steel, and a fluid passage 6a is provided in the detector main body 6. Further, the inlet block 7 and the outlet block 8 are hermetically fixed to both sides of the detector body 6 by bolts (not shown) via gasket type seals 11.
  • Reference numeral 6b denotes a leak inspection hole
  • 6c denotes a mounting hole for the light incident portion 9
  • 6d denotes a mounting hole for the light detection portion 10.
  • the light incident portion 9 is disposed on the upper surface side of the detector body 6, and the light detection portions 10 a and 10 b are disposed obliquely opposite to the lower surface side and the upper surface side of the detector body 6, respectively.
  • the mixed light of the three kinds of ultraviolet light having the wavelengths ⁇ 1 , ⁇ 2 , and ⁇ 3 having the phase difference ⁇ from the light source unit 1 through the optical fiber 5 is a sapphire light transmission window 9 a in the light incident unit 9. Is incident on.
  • the incident mixed light passes through the sapphire light transmission window 9a and enters the fluid passage 6a, but a part of the incident mixed light is reflected by the sapphire light transmission window 9a.
  • the intensity of the reflected light is detected by the photodiode 12 and used for detecting so-called fluctuation of the light source.
  • the light incident part 9 is provided obliquely opposite to the first light detection part 10a, and most of the light incident from the light incident part 9 is composed of the gas fluid G in the fluid passage 6a and the first fluid.
  • the light is incident on the photodiode 12 in the first light detection unit 10a through the sapphire light transmission window 9a of the light detection unit 10a, and the light intensity of the incident light is detected.
  • the mixed light incident on the sapphire light transmission window 9a in the first light detection unit 10a is incident on the sapphire light transmission window 9a with a certain inclination angle. Some are reflected.
  • the reflected light from the first light detection unit 10a is incident on the second light detection unit 10b on the upper surface side through the fluid passage 6a.
  • Each light intensity of the mixed light having the wavelengths ⁇ 1 , ⁇ 2 , and ⁇ 3 detected by the light detection units 10a and 10b is absorbed by the raw material fluid G (process fluid) flowing in the fluid passage 6a.
  • the light intensity changes depending on the concentration of the raw material gas G.
  • Each light intensity signal detected by the photodiode 12 is input to an arithmetic processing unit 3 to be described later, where the concentration in the raw material fluid G is automatically calculated.
  • the light incident part 9 and the light detection parts 10a and 10b are identical in structure.
  • a holding and fixing body 9c having a flange housing hole 9b at the center, and a detector main body.
  • the first fixed flange 9d, the second fixed flange 9e, the light transmitting plate 9a made of sapphire and hermetically sandwiched between the flanges 9d and 9e, and the light transmitting plate 9a.
  • the photodiode 12 is fixed to the first fixing flange 9d.
  • the second fixing flange 9e and the first fixing flange 9d are in a state where the sapphire light transmission plate 9a is sandwiched and fixed by press-fitting the protruding portion of the first fixing flange 9d into the recess of the second fixing flange 9e. It is airtight and integrated.
  • the integrated second fixing flange 9e and first fixing flange 9d are inserted into the flange receiving hole 9b of the holding fixing body 9c, and the holding fixing body 9c is sealed with a gasket type by a fixing bolt (not shown). 11, the light incident portion 9 and the light detection portions 10a and 10b are airtightly fixed to the detector main body 6 by being pressed and fixed to the detector main body 6.
  • 7b and 8b are joint portions
  • 6b is a leakage inspection hole
  • 6c is a mounting hole for the light incident portion
  • 6d is a mounting hole for the light detection portions 10a and 10b.
  • the light incident part 9 and the light detection parts 10a and 10b are fixed by fixing bolts (not shown).
  • the light incident part 9 is arranged on the upper surface side of the detector body 6 and the light detection part 10 is arranged on the upper surface side and the lower surface side of the detector body 6, respectively. It is also possible to place the light incident part 9 and the light detection part 10 side by side on the same surface side. Further, in the embodiment of FIG. 3, the number of the light detection units 10 is two, but the number of the light detection units may be three or four. From the viewpoint of the cost of the densitometer and the like, it is optimal that the number of the light detection units 10 is two to three.
  • the light intensity detected by each of the light detection units 10a and 10b on the upper surface side varies depending on the optical path length in the fluid passage 6a, the concentration of the flowing raw material fluid G, etc., and the detected light intensity signal corresponding to the absorbance is calculated.
  • FIG. 4 shows an example of the absorbance (transmittance) characteristic of the organometallic material gas with respect to ultraviolet light, which is for ultraviolet light with a wavelength of 200 nm to 350 nm.
  • curve E 1 indicates the ultraviolet light transmittance of 0.10% TMGa gas
  • E 2 indicates 0.01% TMIn gas
  • E 3 indicates 0.81% TMAl gas.
  • the concentration Cd of the raw material is basically calculated by the following equation (1) based on the absorbance A obtained with a spectrophotometer.
  • I 0 is the incident light intensity from the light incident part 9
  • I is the transmitted light intensity (incident light intensity to the photodiode 12 of the light detection part 10)
  • is the molar absorption coefficient of the raw material
  • Cd Raw material concentration
  • A absorbance.
  • the mixed light of the three kinds of ultraviolet light having the phase difference ⁇ at the wavelengths ⁇ 1 , ⁇ 2 and ⁇ 3 transmitted from the multi-LED light source 1a of the light source unit 1 is It is sent to the light incident part 9 of the detection part 2 and is emitted from the light incident part 9 into the source gas G.
  • the three kinds of ultraviolet light having the phase difference ⁇ with wavelengths ⁇ 1 , ⁇ 2 , and ⁇ 3 transmitted through the source gas G are intensity-modulated, and the mixed light mixed by the beam combiner 1a 4 is transmitted to each light detection unit 10a. 10b, respectively.
  • the incident mixed light is absorbed by the source gas G while being transmitted through the source gas G, and the light intensity of the mixed light incident on the light detection unit is detected by each photodiode 12.
  • (B) of FIG. 5 shows an example of the measured value of the detected light intensity, and the change in intensity after absorption by the organic raw material gas is measured.
  • the light intensity of the mixed light after absorption detected by each of the light detection units 10a and 10b varies depending on the light detection position, the light wavelength, the raw material gas concentration, and the transmitted optical path distance. It becomes like the curve S of 5 (b).
  • the detected value S of each light intensity detected by each of the light detection units 10a and 10b is input to the arithmetic processing unit 3, where the arithmetic processing unit 3 continues to perform frequency analysis by fast Fourier transform and in three frequency ranges.
  • Intensity ie, intensity corresponding to absorbance
  • the raw material gas concentration is calculated according to Lambert-Beer's law.
  • FIG. 5 (c) shows the amount of change in the intensity of ultraviolet light having wavelengths ⁇ 1 , ⁇ 2 , and ⁇ 3 in the above three frequency ranges, and the absorbance that forms the basis for calculating the raw material gas concentration.
  • An example of the intensity value corresponding to is shown.
  • a frequency analysis using the fast FFT (Fast Fourier Transform) and a calculation result of the light intensity change amount corresponding to the absorbance in each frequency region are shown in FIG.
  • matrixes ⁇ , ⁇ , and ⁇ of the respective absorbances are obtained, and a raw material gas concentration calculation algorithm prepared in advance based on the absorbance matrices ⁇ , ⁇ , and ⁇ is used.
  • the concentration of gas G is continuously calculated in real time.
  • the zero point adjustment of the densitometer and the diagnosis of abnormality for example, the occurrence of fogging of the light transmission window 9a made of sapphire are detected.
  • higher measurement accuracy and measurement reproducibility can be obtained as compared with the conventional F 2 gas measurement apparatus using ultraviolet light, and the time required for concentration measurement can be greatly shortened and the apparatus can be obtained. It has been confirmed that costs can be reduced.
  • FIG. 6 shows an application example of the concentration meter GD according to the present invention, and feedback control is performed on the tank pressure control device 13 and / or the mass flow rate controller 14 of the carrier gas CG with the concentration detection value of the concentration meter GD. By doing so, the concentration of the raw material gas G is maintained at a constant value.
  • the configuration of the raw material gas generator 15 is substantially the same as that of the prior art shown in FIG.
  • the present invention can continuously detect the concentration of the fluid in the pipe line, regardless of the raw material, whether it is a liquid or a sublimable solid, as long as it is a raw material fluid that absorbs light, particularly ultraviolet light. It can be used for continuous detection of fluid concentration not only in a semiconductor manufacturing gas supply system, but also in all fluid supply pipes and fluid-using devices that handle precipitation, photoreactivity, and corrosive fluids.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

 本発明は、有機原料流体の供給系等で使用する濃度計の構造の簡素化、小型化、製品コストの引下げを図り、高精度、高感度で且つ再現性の高い濃度測定が出来る濃度計を提供する。 本発明は、位相差を有する少なくとも二つの波長の光を発する光源部と,光源部からの光を検出器本体の流体通路内へ入射する光入射部及び流体通路内を透過した光を受光する少なくとも二つの光検出部を備えた検出部と,検出部からの少なくとも二つの波長の検出信号を夫々周波数解析すると共に、前記各検出信号の少なくとも三つの周波数域での吸光度に対応する強度を演算し、当該各検出信号の少なくとも三つの周波数域での吸光度強度から流体通路内の流体濃度を演算する演算処理部と,演算処理部での流体濃度の演算値を記録及び又は表示する記録表示部と,から構成する。

Description

インライン型濃度計及び濃度検出方法
 本発明は、半導体製造装置の原料流体供給装置等で使用するインライン型濃度計及び濃度検出方法の改良に関し、殊に、濃度計の感度や再現性・測定精度の向上、小型・省スペース化及び低コスト化を可能とした紫外吸収方式のインライン型ガス濃度計及びガス濃度検出方法に関する。
 半導体製造装置の原料流体供給装置等では、半導体製品の品質向上を図る観点から安定した濃度のプロセスガスを処理装置へ供給することが必要とされる。
 そのため、従前のこの種原料流体供給装置、例えば図7のような構成のバブリング方式の原料流体供給装置においては、温度制御された原料タンク21の原料蒸気出口の近傍に赤外吸収方式の濃度計22を設け、当該濃度計22からの濃度検出信号により原料タンク21の温度、キャリアガスCGの流量、タンク内蒸気圧力Po等を調整することにより、反応炉23へ所定の原料濃度のプロセスガス24、例えばトリメチルガリウムTMGa等の有機金属材料蒸気を含んだプロセスガスを供給するようにしている。
 尚、図7において、25はキャリアガスの熱式マスフローコントローラ、26はタンク内圧の圧力調整装置、33はキャリアガス供給ライン、34は排気ガスライン、Gは原料ガスである。また、プロセスガス24内の原料ガス源としては、液体原料だけでなく、昇華性の固体原料が使用されることもある。
 又、上記赤外吸収方式の濃度計22としては、各種構成の濃度計が実用化されているが、インライン型濃度計22としては、図8に示すように、原料ガスGが流通する資料用セル30aおよび対照用ガスCが流通する対照用セル30bと、各セル内へ赤外光を照射する光源28と、各セル内を通過した光量の検出器29と、検出器29の検出信号から吸光度を求めて原料濃度を算出する演算装置(図示省略)等から形成されている。尚、Aはプリアンプ、Sは半導体製造装置、SCは光透過窓であり、光源28及び受光器29は一体となって上下方向へ移動し、資料用セル30a及び対照用セル30b内へ光を照射する(日本国特許公開2000-206045号)。
 そして、上記図8の濃度計22においては、資料用セル30a内におけるガスの吸光度を測定すると共に、吸光度の測定結果にランバート・ベール等の法則を適用してガス濃度を演算するようにしている。
 又、光源28及び受光器29を一体として上方へスライドさせ、対照用セル30bの吸光度を検出することにより、零点調整等の測定値補正を適宜に行うようにしている。
 しかし、上記赤外吸収方式の濃度計22には、(I)光源28の揺らぎが比較的大きく、検出器29の安定性に欠けること、及び(II)吸光度の平均化処理をしているため応答性が低く、所謂濃度の検出感度が相対的に悪いと云う難点が存在する。更に、(III)比較的長い光路長のセル30a、30bを必要とし、検出器29が大型化する上、製造コストが高くなると云う問題がある。
 又、安定したガス濃度測定を長期に亘って連続的に行う為には、光透過窓SCの透明度が長期に亘って安定している必要があり、透明度が経時変化をする場合には、安定したガス濃度測定が困難となる。
 尚、赤外吸収方式の分光光度計に於ける測定速度やS/N比等の向上を図るため、回折格子やスリットを用いる分散型光学系に代えて、干渉計を用いて非分散で全波長を同時に検出するようにした光学系を使い、検出値をフーリエ変換処理して各波長成分毎の光度を夫々演算する構成とした、フーリエ変換型赤外分光(FT-IR)型の分光光度計が開発、利用されている。
 しかし、当該FT-IR光度計を用いた濃度計であっても、測定波長域が基本的に赤外領域であるため、光源の揺らぎに起因する測定精度や再現性が悪いと云う問題は、依然として未解決のまま残されている。
 また、光源やビームスリッター、検出器、光透過窓等を交換することにより、遠赤外から可視光まで測定周波数域を拡大することは可能であるが、交換に要する手数や赤外方式に起因する様様な問題により、現実にはその実用化が困難な状態にある。
 一方、上記赤外吸収法に於ける応答性や測定感度が悪い等の問題を解決するものとして、紫外光を用いたガス濃度測定装置が開発されている。
 図9は、その装置構成の概要を示すものであり、光源28が、200~400nmの紫外光を放射する紫外光ランプ(重水素ランプやHg-Xeランプ)から成る光源部28aと、分光器28bとから形成されている。
 即ち、当該ガス濃度測定装置は、図9に示すように、原料ガスGが流通する資料用セル30a及び対照用ガスCが流通する対照用セル30bと、各セル内へ紫外光を照射する光源部28a及び分光器28bと、各セル内を通過した光量の検出器29と、検出器出力29aの検出信号から吸光度を求めて原料濃度を算出する演算装置(図示省略)等から形成されている。尚、31はガス精製装置、32はポンプ、35は排ガス処理装置、Mはミラー、MPは回折格子、MLはスリット、MSはセクターミラー、MGは格子ミラーである(日本国特許公開2005-241249号)。
 上記紫外光方式のガス濃度測定装置は、ダブルビーム方式の分光器28bを用いて対照用セル30bの吸光度を検出し、零点調整等の測定値補正を適宜に行う構成としているものの、光学系の基本的な構成は赤外吸収方式の濃度計の場合と全く同一であるため、光源28の揺らぎが大きいこと、及び応答性や検出感度が相対的に悪いと云う問題点は、依然としてそのまま残されている。
 上述のように、従前の赤外吸収方式や紫外吸収方式の濃度計を用いた場合には、設備の小型化や設備費の低減が困難なだけでなく、濃度測定の応答性や検出感度、検出精度やその再現性、ガス気密性やガス純度の保持等の点に多くの問題が残されており、その基本的な解決が急がれている。
日本国特許公開2000-206045号公報 日本国特許公開2005-241249公報
 本発明は、従前の原料流体供給装置等で使用する原料ガスの濃度計やこれを用いた濃度測定方法に於ける上述のような問題、即ち、(I).濃度計の構造の簡素化及び小型化並びに製品コストの引下げが容易に図れないこと、及び、(II)濃度測定の応答性や測定感度が低いこと、(III)測定の再現性が悪く、安定且つ高精度な原料ガスの濃度測定が出来ないこと、(IV)光透過窓の透明度の変化により測定精度が低下し易いこと等の問題を解決し、高腐食性の有機原料ガスであっても、長期に亘って高応答性及び高感度、高精度でもって安定した濃度測定が行え、しかも、小型で安価に製造できるようにした紫外光吸収方式のインライン型濃度計及びこれを用いた濃度測定方法を提供することを発明の主目的とする。
 本発明に係る濃度計の第一の態様は、位相差を有する少なくとも二つの波長の混成光を発する光源部と, 光源部からの混成光を検出器本体の流体通路内へ入射する光入射部及び流体通路内を透過した混成光を受光する少なくとも二つの光検出部を備えた検出部と, 各光検出部からの混成光の検出信号を夫々周波数解析すると共に、前記各検出信号の少なくとも二つの周波数域での吸光度に対応する強度変化量を演算し、当該各検出信号の少なくとも二つの周波数域での前記強度変化量から流体通路内の流体濃度を演算する演算処理部と, 演算処理部での流体濃度の演算値を記録及び表示する記録表示部と,を発明の基本構成とするものである。
 本発明の第2の態様は、上記第1の態様に於いて、光源部を、三つの波長の混成光を発する光源部としたものである。
 本発明の第3の態様は、上記第1の態様に於いて、光源部が、LED又はレーザーダイオードを備える。
 本発明の第4の態様は、上記第1の態様に於いて、光源部を、波長域が200~400nmの紫外光を発する光源部としたものである。
 本発明の第5の態様は、上記第1の態様に於いて、演算処理部を、フーリエ変換又はウエーブレット変換により周波数解析する演算処理部としたものである。
 本発明の第6の態様は、上記第1の態様に於いて、流体通路内を流通する混合ガス内の有機金属材料ガス濃度を演算する演算処理部としたものである。
 本発明の第7の態様は、上記第1の態様に於いて、一つの光入射部と二つの光検出部を備えた検出部としたものである。
 本発明の第8の態様は、上記第1の態様に於いて、光源部を、三つの波長の紫外光の混成光を発する光源部としたものである。
 本発明の第9の態様は、上記第1の態様に於いて、前記演算処理部を、三つの波長の混成光の検出信号を夫々フーリエ変換により周波数解析する演算処理部としたものである。
 本発明の第10の態様は、上記第7の態様に於いて、検出器本体の一側面に一つの光入射部を配置するとともに、前記一側面と対向する他の一側面に二つの光検出部を配置するようにしたものである。
 本発明の第11の態様は、上記第2の態様に於いて、検出器本体の一側面に一つの光入射部を配置するとともに、前記一側面と対向する他の一側面に三つの光検出部を配置するようにしたものである。
 本発明の第12の態様は、上記第7の態様に於いて、検出器本体の一側面に一つの光入射部及び一つの光検出部を配置するとともに、前記一側面と対向する他の一側面に二つの光検出部を配置するようにしたものである。
 本発明の第13の態様は、上記第1の態様に於いて、光源部を、波長の異なる紫外光をビームコンバイナーで混成した混成光を発する光源部としたものである。
 本発明の第14の態様は、流体通路を有する検出器本体に設けた一つの光入射部から流体通路内へ、光源部からの位相差を有する三つの波長の異なる紫外光の混成光を入射し、流体通路内を透過した各紫外光を検出器本体に設けた少なくとも二つの光検出部で検出すると共に、フーリエ変換等により各光検出部で検出した混成光の検出信号を夫々周波数解析し、当該光検出部で検出した各検出信号について三つの周波数域での吸光度に対応する強度変化量を演算し、その後、当該各検出信号の三つの周波数域での少なくとも合計6個の前記演算した前記強度変化量から、流体通路内を流通する混合ガス内の有機金属材料ガス濃度を演算することを発明の基本構成とするものである。
 本発明の第15の態様は、上記第14の態様に於いて、光検出部を三つとし、合計9個の演算した吸光度に対応する強度変化量から、流体通路内を流通する混合ガス内の有機金属材料ガス濃度を演算するようにしたものである。
 本発明の第16の態様は、上記第14の態様に於いて、光入射部から入射した混成光を一つの光検出部で検出すると共に、当該光検出部からの反射光を他方の光検出部へ入射するようにしたものである。
 本発明の第17の態様は、上記第14の態様に於いて、光入射部から入射した混成光を分散させて二つの光検出部へ入射するようにしたものである。
 本発明では、位相差を有する少なくとも二つの波長の混成光を発する光源部と,
 光源部からの混成光を検出器本体の流体通路内へ入射する光入射部及び流体通路内を透過した混成光を受光する少なくとも二つの光検出部を備えた検出部と,
 各光検出部からの混成光の検出信号を夫々周波数解析すると共に、前記各検出信号の少なくとも二つの周波数域での吸光度に対応する強度変化量を演算し、当該各検出信号の少なくとも二つの周波数域での前記強度変化量から流体通路内の流体濃度を演算する演算処理部と,
 演算処理部での流体濃度の演算値を記録及び又は表示する記録表示部と,
から濃度計を構成するようにしている。
 その結果、先ず、位相差を有する少なくとも二つの波長の混成光の入射時と吸光後の強度変化量を、少なくとも二つの光検出部で検出すると共に、各光検出部で検出した混成光の強度変化量に対応する検出値を周波数解析して、少なくとも二つの周波数域についての吸光度に対応する演算値を求め、当該少なくとも6個の演算した吸光度に基いて流体濃度を演算するようにしている。
 その結果、従前の回折格子やスリット等を用いる分散型光学系に比較して、光学系の構成を大幅に単純且つ簡単化することができ、装置の大幅な小型化が可能となる。
 また、光源部を、LED又はレーザーダイオードを用いた光源部とすることにより、従前の赤外光源の場合に比較して、消費電力が著しく減少すると共に光源寿命が大幅に延伸され、実用上極めて有利となると共に、異なる波長の紫外光を簡単且つ容易に得ることができる。
 更に、波長の異なる少なくとも二つの位相差を有する紫外光を使用し、且つ少なくとも二つの光検出部を用いて吸光度の測定をするようにしているため、高い測定精度と測定の再現性を得ることが可能となると共に、光源の所謂揺らぎ現象が略皆無となり、安定した濃度測定が可能となる。
 加えて、検出部を、流体通路を有する検出器本体と、その側面に配置した光入射部及び光検出部とから構成するようにしているため、検出部の大幅な小型化が図れ、配管路への装着や配管路からの取外しが簡単に行える。
本発明の実施形態に係る原料流体濃度計の構成の概要図である。 光源部の構成の概要図である。 検出部の構成を示す縦断面概要図である。 有機金属材料ガスの紫外光吸光(透過)特性の一例を示すものである。 (a)~(c)は、演算処理部に於ける検出値処理の説明図である。       (d)は、演算した吸光度マトリックスα、β、γの説明図である。 本発明に係るガス濃度計の適用例を示す図である。 従前のインライン型ガス濃度計の適用例を示す図である。 従前のインライン型ガス濃度計の構成の概要図である。 従前の紫外吸収型ガス濃度計の構成の概要図である。
 以下、図面に基づいて本発明の実施の形態を説明する。
 図1は、本発明の実施形態に係る原料流体の濃度計の構成概要図である。
 本発明の原料ガスの濃度計GDは、LED光源1aを備えた光源部1と、光入射部9と流体通路6aを有する検出器本体6と光検出部10を備えた検出部2と、演算処理部3と記録・表示部4等から構成されており、前記検出部2は後述するように、プロセス配管路内へ挿着可能なインライン型に形成されている。
 即ち、前記光源部1から波長の異なる三つの紫外光が夫々位相をずらせて放射され、ビームコンバイナー1a(図2)へ入射される。入射された各紫外光はビームコンバイナー1aに於いて混成され、混成光が光ファイバ5を通して検出部2の光入射部9へ入射される。
 また、検出部2の光入射部9へ入射された紫外光は、流体通路6aの原料ガスG内を透過して進行し、少なくとも2箇所の異なる位置に設けられた各光検出部10で夫々検出される。
 本実施形態では、図2~図5に基づいて後述するように、LED光源1aから、波長がλ、λ、λの位相差を有する三つの紫外光を発光させ、当該三つの紫外光の混成光を一基の光入射部9へ入射し、当該光入射部9から流体ガスG内へ放射した紫外光を2基の光検出部10により検出することにより、紫外光の所謂吸光度を検出する構成としていおり、第2の光検出部へは、第1の光検出部のサファイア製光透過窓9aからの反射光が入射されることになる。
 尚、図示されてはいないが、一つの光入射部9から入射光を分散させ、少なくとも二以上の光検出部10へ混成光を直接入射する構成とすることも可能である。
 また、上記2基の各光検出部10a、10bで検出された波長λ、λ、λの混成光(合成光)の光検出値(光受光値)は、演算処理部3へ夫々各別に入力され、ここでフーリエ変換等により周波数解析を行なうことにより、3周波数領域成分についての光検出値強度が演算され、合計6種(2光検出部×3周波数領域)の吸光度に対応する演算値が演算される。
 そして、上記6個の吸光度に対応する演算値のマトリックスから、最終的に流体通路6a内を流通する原料ガスの濃度が演算され、表示される。
 図2を参照して、光源部1は、マルチLED光源1aとビームコンバイナー1aと反射ミラー1bと光ファイバ5等から構成されており、また、前記マルチLED光源1aからは波長がλ、λ、λの3種類の紫外光が発光され、ビームコンバイナー1aで一つの光に混成された後、反射ミラー1b及び光ファイバ5を介して検出部2へ入力される。
 尚、図2の実施形態では、各LED光源1a1、1a、1aの発光開始時間に差を設け、各紫外光間に位相差Φを設けるようにしているが、各LED発信器1a1、1a、1aから同時に紫外光を発光させ、別途に設けた位相調整器(図示省略)を用いて各紫外光間に位相差Φを設けるようにすることも可能である。
 前記LED光源1aとしては、所謂マルチLEDが使用されており、本実施形態にあっては、波長域が200nm~400nmの3色小型高輝度LEDを使用している。
 尚、図1や図2の実施例では、光源としてLED光源を用いているが、LEDの範疇に含まれる所謂LD(レーザーダイオード)を光源としても良いことは勿論である。
 前記検出部2は、図3に示すように、検出器本体6、1基の光入射部9及び2基の光検出部10a、10b等から形成されている。
 また、前記検出器本体6はステンレス鋼製であり、その内部には流体通路6aが設けられている。
 更に、検出器本体6の両側部には、ガスケット型シール11を介して入口ブロック7及び出口ブロック8がボルト(図示省略)により気密に固定されている。尚、6bは漏洩検査用孔、6cは光入射部9の取付孔、6dは光検出部10の取付孔である。
 上記光入射部9は、検出器本体6の上面側に配置されており、また、上記光検出部10a及び10bは、検出器本体6の下面側と上面側に夫々斜め対向状に配置されており、光源部1から光ファイバ5を経て、位相差Φを有する波長λ、λ、λの3種の紫外光の混成光が、前記光入射部9内のサファイア製光透過窓9aへ入射される。
 前記入射された混成光の大部分は、サファイア製光透過窓9aを透過して流体通路6a内へ入射されるが、入射された混成光の一部はサファイア製光透過窓9aにより反射され、この反射光の強度がフォトダイオード12により検出され、光源の所謂揺らぎ等の検出に用いられる。
 前記光入射部9は、第1の光検出部10aと斜め対向状に設けられており、光入射部9から入射された光の大部分は、流体通路6a内のガス流体G及び第1の光検出部10aのサファイア製光透過窓9aを通して第1の光検出部10a内のフォトダイオード12へ入射され、当該入射光の光強度が検出される。
 また、第1の光検出部10a内のサファイア製光透過窓9aへ入射された混成光は、そのサファイア製光透過窓9aへ一定の傾斜角度を持って入射されるため、ここで混成光の一部が反射される。そして、この第1の光検出部10a内からの反射光は、流体通路6aを通して上面側の第2の光検出部10bへ入射されることになる。
 前記各光検出部10a、10bに於いて検出された波長λ、λ、λの混成光の各光強度は、流体通路6a内を流通する原料流体G(プロセス用流体)の吸光によって変化する、即ち、原料ガスGの濃度等によって各光強度が変化する。
 尚、フォトダイオード12により検出された各光強度信号は、後述する演算処理部3へ入力され、ここで原料流体G内の濃度が自動演算される。
 前記光入射部9及び各光検出部10a、10bは、構造的には全く同一のものであり、図3に示すように、中央にフランジ収容孔9bを有する保持固定体9cと、検出器本体6の外表面に設けた第一固定フランジ9dと、第二固定フランジ9eと、両フランジ9d、9e間に気密に挟み込み固定したサファイア製光透過板9aと、光透過板9aの上方に位置して第一固定フランジ9dに固定したフォトダイオード12等から形成されている。
 即ち、第二固定フランジ9eと第一固定フランジ9dとは、第一固定フランジ9dの突出部を第二固定フランジ9eの凹部内へ圧入することにより、サファイア製光透過板9aを挟み込み固定した状態で気密に一体化されている。
 そして、この第二固定フランジ9eと第一固定フランジ9dを一体化したものを保持固定体9cのフランジ収容孔9b内へ挿入し、保持固定体9cを固定用ボルト(図示省略)によりガスケット型シール11を介設して検出器本体6へ押圧固定することにより、光入射部9及び各光検出部10a、10bが検出器本体6へ気密に固定されている。
 尚、図3において、7b、8bは継手部、6bは漏洩検査用孔、6cは光入射部9の取付孔、6dは光検出部10a、10bの取付孔である。また、光入射部9及び光検出部10a、10bは、固定用ボルト(図示省略)により固定されている。
 上記図3の実施形態においては、光入射部9を検出器本体6の上面側に、及び、光検出部10を検出器本体6の上面側と下面側に夫々配置するようにしているが、光入射部9と光検出部10を同一面側に横一列に並置することも可能である。
 また、図3の実施形態においては、光検出部10を2基としているが、当該光検出部を3基であっても、或いは4基であっても良いことは勿論であるが、測定精度や濃度計のコスト等の点から、光検出部10は2~3基とするのが最適である。
 前記上面側の各光検出部10a、10bにおいて検出された光強度は、流体通路6a内の光路長さや流通する原料流体Gの濃度等によって変化し、吸光度に対応する検出した光強度信号は演算処理部3へ入力され、ここで原料流体内の原料濃度が演算される。
 図4は、有機金属材料ガスの紫外光に対する吸光度(透過度)特性の一例を示すものであり、波長200nm~350nmの紫外光に対するものである。尚、図4において、曲線E1は0.10%TMGaガス、Eは0.01%TMInガス、Eは0.81%TMAlガスの紫外光透過度を夫々示すものである。
 尚、原料の濃度Cdは、基本的には分光光度計で求めた吸光度Aを基にして、次の(1)式により演算される。
 A=log10(I0/I)=ε×Cd×I・・・(1)
 但し、1式において、I0は光入射部9からの入射光強度、Iは透過光強度(光検出部10のフォトダイオード12への入射光強度)、εは原料のモル吸光係数、Cdは原料濃度、Aは吸光度である。
 図5の(a)を参照して、前記光源部1のマルチLED光源1aから発信された波長λ、λ、λで位相差Φを有する3種の紫外光の混成光は、前記検出部2の光入射部9へ送られ、当該光入射部9から原料ガスG中へ放射される。
 上記原料ガスG内を透過した波長λ、λ、λで位相差Φを有する3種の紫外光を強度変調し、ビームコンバイナー1aで混成された混成光は、各光検出部10a、10bへ夫々到達する。入射された混成光は、原料ガスG内を透過中に原料ガスGにより特定の波長の光が吸光され、光検出部へ入射した混成光の光強度が各フォトダイオード12により検出される。図5の(b)は上記検出した光強度の測定値の一例を示すものであり、有機原料ガスによる吸光後の強度の変化が計測される。
 尚、各光検出部10a、10bで検出された吸光後の混成光の光強度は、光の検出位置や光の波長、原料ガス濃度や透過光路距離に応じて変化し、その検出値は図5(b)の曲線Sのようになる。
 上記各光検出部10a、10bで検出された各光強度の検出値Sは演算処理部3へ入力され、当該演算処理部3において、引き続き高速フーリエ変換による周波数解析及びや三つの周波数域に於ける強度(即ち吸光度に対応する強度)の演算解析が行なわれ、ランベルト・ベールの法則により原料ガス濃度が演算される。
 尚、図5の(c)は、前記三つの周波数域中の波長λ、波長λ2、波長λの紫外光の強度変化量を示すものであり、原料ガス濃度算出の基礎を成す吸光度に対応する強度値の一例を示すものである。
 次に、上記高速FFT(高速フーリエ変換)による周波数解析や各周波数域(本実施形態では3個の周波数域)での吸光度に対応する光強度変化量の演算結果から、演算処理部3において図5(d)に示すような各吸光度のマトリックスα、β、γが求められると共に、当該吸光度マトリックスα、β、γを基にして、予め作成した原料ガスの濃度の演算アルゴリズムを用いて、原料ガスGの濃度をリアルタイムで連続的に演算される。
 また、上記図5(d)の吸光度マトリックスの変化を基にして、濃度計の零点調整や異常の診断、例えばサファイア製光透過窓9aの曇りの発生等が検知される。本発明によれば、従前の紫外光を用いたF2ガス測定装置に比較して、より高い測定精度や測定の再現性が得られるうえ、濃度測定に必要とする時間の大幅な短縮及び装置コストの引き下げが可能なことが確認されている。
 図6は、本発明に係る濃度計GDの適用例を示すものであり、濃度計GDの濃度検出値でもってタンク内圧力制御装機13及び又はキャリアガスCGの質量流量制御機14をフィードバック制御することにより、原料ガスGの濃度を一定値に保持するようにしたものである。
 尚、原料ガス発生装置15の構成そのものは図7に示した従来技術と略同一であるため、ここではその説明を省略する。
 本願発明は、光、特に紫外光に対する吸光性を有する原料流体であれば、液体や昇華性固体を問わず如何なる原料であっても、配管路内における流体の濃度を連続的に検出することができ、半導体製造用ガス供給系のみならず、析出性や光反応性、腐食性流体を取り扱うあらゆる流体供給管路や流体使用機器類における流体濃度の連続的検出に使用することが可能である。
 1 光源部
 1a LED光源
 1a~1a3 LED光源
 1a4 ビームコンバイナー
 1b 反射ミラー
 2 検出部
 3 演算処理部
 3a 流体通路
 3b 継手部
 4 記録・表示部
 5 光ファイバ
 6 検出器本体
 6a 流体通路
 6b 漏洩検査孔
 6c 光入射部取付孔
 6d 光検出部取付孔
 7 入口ブロック
 8 出口ブロック
 9 光入射部
 9a サファイア製光透過窓
 9b フランジ収容孔
 9c 保持固定体
 9d 第一固定フランジ
 9e 第二固定フランジ
 10 光検出部
 10a~10b 光検出部
 11 ガスケット型シール
 12 フォトダイオード
 13 タンク内圧力制御器
 14 質量流量制御器
 15 ガス発生装置
 GD ガス濃度計
 Φ 位相差
 λ1~λ3 波長
 S 光検出部の検出光強度曲線
 E1~E3 有機原材料に対する紫外光の透過度曲線
 A1~A3 波長λ1~λ3の紫外光の光強度変化特性
 α,β,γ 吸光度マトリックス

Claims (17)

  1.  位相差を有する少なくとも二つの波長の混成光を発する光源部と,
     光源部からの混成光を検出器本体の流体通路内へ入射する光入射部及び流体通路内を透過した混成光を受光する少なくとも二つの光検出部を備えた検出部と,
     各光検出部からの混成光の検出信号を夫々周波数解析すると共に、前記各検出信号の少なくとも二つの周波数域での吸光度に対応する強度変化量を演算し、当該各検出信号の少なくとも二つの周波数域での前記強度変化量から流体通路内の流体濃度を演算する演算処理部と,
     演算処理部での流体濃度の演算値を記録及び表示する記録表示部と,
    を備えることを特徴とするインライン型濃度計。
  2.  光源部を、三つの波長の混成光を発する光源部とした請求項1に記載のインライン型濃度計。
  3.  光源部を、LED又はレーザーダイオードを光源とするものとした請求項1に記載のインライン型濃度計。
  4.  光源部を、波長域が200~400nmの紫外光を発する光源部とした請求項1に記載のインライン型濃度計。
  5.  演算処理部を、フーリエ変換又はウエーブレット変換により周波数解析する演算処理部とした請求項1に記載のインライン型濃度計。
  6.  演算処理部を、流体通路内を流通する混合ガス内の有機金属材料ガス濃度を演算する演算処理部とした請求項1に記載のインライン型濃度計。
  7.  検出部を、一つの光入射部と二つの光検出部を備えた検出部とした請求項1に記載のインライン型濃度計。
  8.  光源部を、三つの波長の紫外光の混成光を発する光源部とした請求項1に記載のインライン型濃度計。
  9.  演算処理部を、三つの波長の混成光の検出信号を夫々フーリエ変換により周波数解析する演算処理部とした請求項1に記載のインライン型濃度計。
  10.  検出器本体の一側面に一つの光入射部を、また、該一側面と対向する他の一側面に二つの光検出部を配置するようにした請求項7に記載のインライン型濃度計。
  11.  検出器本体の一側面に一つの光入射部を、また、該一側面と対向する他の一側面に三つの光検出部を配置するようにした請求項2に記載のインライン型濃度計。
  12.  検出器本体の一側面に一つの光入射部及び一つの光検出部を、また、該一側面と対向する他の一側面に二つの光検出部を配置するようにした請求項7に記載のインライン型濃度計。
  13.  光源部を、波長の異なる紫外光をビームコンバイナーで混成した混成光を発する光源部とした請求項1に記載のインライン型濃度計。
  14.  流体通路を有する検出器本体に設けた一つの光入射部から流体通路内へ、光源部からの位相差を有する三つの波長の異なる紫外光の混成光を入射し、流体通路内を透過した各紫外光を検出器本体に設けた少なくとも二つの光検出部で検出すると共に、各光検出部で検出した混成光の検出信号を夫々周波数解析し、当該光検出部で検出した各検出信号について三つの周波数域での吸光度に対応する強度変化量を演算し、その後、当該各検出信号の三つの周波数域での少なくとも合計6個の前記演算した前記強度変化量から、流体通路内を流通する混合ガス内の有機金属材料ガス濃度を演算することを特徴とする濃度検出方法。
  15.  光検出部を三つとし、合計9個の演算した吸光度に対応する強度変化量から、流体通路内を流通する混合ガス内の有機金属材料ガス濃度を演算するようにした請求項14に記載の濃度検出方法。
  16.  光入射部から入射した混成光を一つの光検出部で検出すると共に、当該光検出部からの反射光を他方の光検出部へ入射するようにした請求項14に記載の濃度検出方法。
  17. 光入射部から入射した混成光を分散させて二つの光検出部へ入射するようにした請求項14に記載の濃度検出方法。
PCT/JP2014/003830 2013-07-31 2014-07-18 インライン型濃度計及び濃度検出方法 WO2015015750A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480022888.7A CN105556283B (zh) 2013-07-31 2014-07-18 在线型浓度计和浓度检测方法
KR1020157027686A KR101737377B1 (ko) 2013-07-31 2014-07-18 인라인형 농도계 및 농도 검출 방법
US14/909,424 US10371630B2 (en) 2013-07-31 2014-07-18 Inline concentration meter and concentration detection method
SG11201600596YA SG11201600596YA (en) 2013-07-31 2014-07-18 Inline concentration meter and concentration detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013159836A JP5973969B2 (ja) 2013-07-31 2013-07-31 インライン型濃度計及び濃度検出方法
JP2013-159836 2013-07-31

Publications (1)

Publication Number Publication Date
WO2015015750A1 true WO2015015750A1 (ja) 2015-02-05

Family

ID=52431312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003830 WO2015015750A1 (ja) 2013-07-31 2014-07-18 インライン型濃度計及び濃度検出方法

Country Status (7)

Country Link
US (1) US10371630B2 (ja)
JP (1) JP5973969B2 (ja)
KR (1) KR101737377B1 (ja)
CN (1) CN105556283B (ja)
SG (1) SG11201600596YA (ja)
TW (1) TWI586955B (ja)
WO (1) WO2015015750A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6912766B2 (ja) * 2016-07-29 2021-08-04 国立大学法人徳島大学 濃度測定装置
EP3677899A4 (en) * 2017-08-28 2020-11-04 Panasonic Intellectual Property Management Co., Ltd. FUNCTIONAL WATER CONCENTRATION SENSOR AND CALCULATION PROCESS
KR101850252B1 (ko) 2017-09-21 2018-06-01 김민정 광학밀도 분석계
US11199449B1 (en) * 2017-09-26 2021-12-14 The United States Of America, As Represented By The Secretary Of The Navy Automated noncontact method to discriminate whether cooling or heating is occurring
KR102461186B1 (ko) 2017-12-29 2022-11-01 삼성전자주식회사 광 센서, 이를 이용한 흡광도 측정 장치 및 방법
JP7000197B2 (ja) * 2018-02-16 2022-01-19 浜松ホトニクス株式会社 濃度測定方法及び濃度測定装置
US11686671B2 (en) * 2018-10-26 2023-06-27 Fujikin Incorporated Concentration measurement device
KR102208863B1 (ko) * 2018-10-29 2021-01-28 경북대학교 산학협력단 시료 변화 감지 장치 및 시료 변화 감지 방법
FR3092665A1 (fr) * 2019-02-07 2020-08-14 IFP Energies Nouvelles Procede pour la mesure de la concentration en especes gazeuses dans un biogaz
JP7249031B2 (ja) * 2019-07-30 2023-03-30 株式会社フジキン 異常検知方法
WO2024018807A1 (ja) * 2022-07-19 2024-01-25 株式会社フジキン 濃度測定装置およびその異常検知方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545279A (ja) * 1991-08-19 1993-02-23 Tokyo Gas Co Ltd ガス検知装置
JPH1026584A (ja) * 1995-06-23 1998-01-27 Inter Tec:Kk フローセル
JP2010203855A (ja) * 2009-03-02 2010-09-16 Taiyo Nippon Sanso Corp フッ素濃度測定方法
JP2012142355A (ja) * 2010-12-28 2012-07-26 Horiba Stec Co Ltd 材料ガス制御装置、材料ガス制御方法、材料ガス制御プログラム及び材料ガス制御システム

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3811776A (en) * 1973-02-26 1974-05-21 Environmental Res & Tech Gas analyzer
JP2635021B2 (ja) * 1985-09-26 1997-07-30 宣夫 御子柴 堆積膜形成法及びこれに用いる装置
DE3819531A1 (de) * 1988-06-08 1989-12-14 Reiner Dipl Phys Szepan Signalprozess- und betriebstechnik zur laserspektroskopischen mengenbestimmung von ammoniak in gasgemischen
US4926021A (en) * 1988-09-09 1990-05-15 Amax Inc. Reactive gas sample introduction system for an inductively coupled plasma mass spectrometer
US5693945A (en) * 1994-07-30 1997-12-02 Horiba Ltd. Gas analyzer
US5652431A (en) * 1995-10-06 1997-07-29 The United States Of America As Represented By The Secretary Of The Navy In-situ monitoring and feedback control of metalorganic precursor delivery
US5818578A (en) * 1995-10-10 1998-10-06 American Air Liquide Inc. Polygonal planar multipass cell, system and apparatus including same, and method of use
US5963336A (en) * 1995-10-10 1999-10-05 American Air Liquide Inc. Chamber effluent monitoring system and semiconductor processing system comprising absorption spectroscopy measurement system, and methods of use
US5672869A (en) * 1996-04-03 1997-09-30 Eastman Kodak Company Noise and background reduction method for component detection in chromatography/spectrometry
US5949537A (en) * 1996-04-18 1999-09-07 American Air Liquide Inc. In-line cell for absorption spectroscopy
US5770156A (en) * 1996-06-04 1998-06-23 In Usa, Inc. Gas detection and measurement system
US5751416A (en) * 1996-08-29 1998-05-12 Mississippi State University Analytical method using laser-induced breakdown spectroscopy
US6084668A (en) * 1997-07-10 2000-07-04 American Air Liquide Inc. In-line cell for absorption spectroscopy
US6719842B2 (en) * 1998-09-07 2004-04-13 Showa Denko Kabushiki Kaisha Ammonia for use in manufacture of GaN-type compound semiconductor and method for manufacturing GaN-type compound semiconductor
JP2000206045A (ja) 1999-01-18 2000-07-28 Horiba Ltd インラインモニタ
US6421127B1 (en) * 1999-07-19 2002-07-16 American Air Liquide, Inc. Method and system for preventing deposition on an optical component in a spectroscopic sensor
US6862535B2 (en) * 2002-08-14 2005-03-01 Robin L. Binder Fourier transform infrared (ftir) spectrometric toxic gas monitoring system, and method of detecting toxic gas species in a fluid environment containing or susceptible to the presence of such toxic gas species
NL1024364C2 (nl) * 2003-09-24 2005-03-29 Berli B V Gassensor.
JP4317728B2 (ja) * 2003-09-29 2009-08-19 三菱重工業株式会社 ガス濃度フラックス計測装置
ITBA20030066A1 (it) * 2003-12-22 2005-06-23 I N F M Istituto Naz Per La Fisica Della Ma Sistema ottico di rivelazione della concentrazione di prodotti di combustione
JP4211983B2 (ja) 2004-02-24 2009-01-21 セントラル硝子株式会社 F2ガス濃度の測定方法並びに測定装置
WO2005083416A1 (ja) * 2004-02-27 2005-09-09 Japan Science And Technology Agency 質量スペクトルと略同時に吸収・発光・散乱スペクトルを分析する分析装置および分析方法、並びに、エレクトロスプレーイオン化法を用いた質量分析装置および分析方法
US7433652B2 (en) * 2005-03-07 2008-10-07 Polaris Wireless, Inc. Electro-magnetic propagation modeling
US20080035848A1 (en) * 2005-12-23 2008-02-14 Wong Jacob Y Ultra-high sensitivity NDIR gas sensors
US7259374B2 (en) * 2005-12-23 2007-08-21 Airware, Inc. Method for detecting a gas species using a super tube waveguide
WO2007119399A1 (ja) * 2006-03-22 2007-10-25 Kabushiki Kaisha Kobe Seiko Sho 分析装置
JP2007285842A (ja) * 2006-04-17 2007-11-01 Nippon Koden Corp ガス濃度測定装置
US7398672B2 (en) * 2006-07-12 2008-07-15 Finesse Solutions, Llc. System and method for gas analysis using photoacoustic spectroscopy
US7570360B1 (en) * 2007-02-01 2009-08-04 Bah Holdings, Llc Optical absorption spectrometer and method for measuring concentration of a substance
US7835005B2 (en) 2008-02-21 2010-11-16 Thermo Fisher Scientific Inc. Gas analyzer system
CN101504367B (zh) * 2009-03-10 2011-07-20 哈尔滨工业大学 同时监测一氧化碳和二氧化碳浓度的装置
WO2011102315A1 (ja) * 2010-02-16 2011-08-25 浜松ホトニクス株式会社 ガス濃度算出装置、ガス濃度計測モジュールおよび光検出器
US20120009694A1 (en) * 2010-07-12 2012-01-12 National Institute Of Standards And Technology Apparatus and method for monitoring precursor flux
JP2012026949A (ja) * 2010-07-27 2012-02-09 Shimadzu Corp ガス濃度測定装置
CN101949838B (zh) * 2010-09-02 2012-07-04 西安交通大学 一种分光型红外吸收式瓦斯检测装置及方法
EP2693198B1 (en) * 2012-07-31 2017-12-13 Alphasense Limited Gas analyser and method for measuring the concentration of formaldehyde
DE102012215660B4 (de) * 2012-09-04 2014-05-08 Robert Bosch Gmbh Optische Gassensorvorrichtung und Verfahren zum Bestimmen der Konzentration eines Gases
JP5907442B2 (ja) * 2013-01-11 2016-04-26 富士電機株式会社 レーザ式ガス分析計
JP5885699B2 (ja) * 2013-05-09 2016-03-15 株式会社フジキン 脆性破壊性光透過窓板の固定構造及びこれを用いた脆性破壊性光透過窓板の固定方法
KR101722013B1 (ko) * 2013-05-09 2017-03-31 가부시키가이샤 후지킨 원료 유체 농도 검출기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545279A (ja) * 1991-08-19 1993-02-23 Tokyo Gas Co Ltd ガス検知装置
JPH1026584A (ja) * 1995-06-23 1998-01-27 Inter Tec:Kk フローセル
JP2010203855A (ja) * 2009-03-02 2010-09-16 Taiyo Nippon Sanso Corp フッ素濃度測定方法
JP2012142355A (ja) * 2010-12-28 2012-07-26 Horiba Stec Co Ltd 材料ガス制御装置、材料ガス制御方法、材料ガス制御プログラム及び材料ガス制御システム

Also Published As

Publication number Publication date
TWI586955B (zh) 2017-06-11
SG11201600596YA (en) 2016-02-26
CN105556283A (zh) 2016-05-04
CN105556283B (zh) 2019-01-29
JP2015031544A (ja) 2015-02-16
US20160169800A1 (en) 2016-06-16
KR101737377B1 (ko) 2017-05-18
JP5973969B2 (ja) 2016-08-23
TW201520532A (zh) 2015-06-01
US10371630B2 (en) 2019-08-06
KR20150133745A (ko) 2015-11-30

Similar Documents

Publication Publication Date Title
WO2015015750A1 (ja) インライン型濃度計及び濃度検出方法
JP2015031544A5 (ja)
JP6326284B2 (ja) 原料流体濃度検出器
US8139222B2 (en) Pressure controlled spectroscopic heating value sensor
US8106361B2 (en) Method and device for determining an alcohol content of liquids
US7248357B2 (en) Method and apparatus for optically measuring the heating value of a multi-component fuel gas using nir absorption spectroscopy
US7755763B2 (en) Attenuated total reflection sensor
CN102162791B (zh) 实时在线吸收检测系统
JP2009510480A (ja) 2線のガス分光法の較正
JP5885699B2 (ja) 脆性破壊性光透過窓板の固定構造及びこれを用いた脆性破壊性光透過窓板の固定方法
JP2014219294A5 (ja)
US11815380B2 (en) Measuring component concentrations of nonhomogeneous immiscible mixtures in multiphase flows using near-infrared (NIR) filter photometry
JPH0688782A (ja) 濃度測定方法および濃度測定装置
Wang et al. Sensitive dual sensing system for oxygen and pressure based on deep ultraviolet absorption spectroscopy
Davis et al. Compact methane sensor using an integrating sphere and interband cascade laser at 3313 nm
US8538717B2 (en) Method of absorbance correction in a spectroscopic heating value sensor
CN202092947U (zh) 烟气气体含量激光在线检测系统的光轴调节机构
KR20040080257A (ko) 근적외선 분광법을 이용한 휘발유 분석장치 및 방법
US20140104613A1 (en) Spectral calibration method
CN206740638U (zh) 一种并联式气体光谱分析双气室
Sotnikova et al. Performance analysis of diode optopair gas sensors
CN115598095A (zh) 一种新型氯气浓度在线检测装置
CN114577742A (zh) 一种水中污染物检测方法及装置
CN118130406A (zh) 一种水质分析方法、装置及设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480022888.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832118

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157027686

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14909424

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14832118

Country of ref document: EP

Kind code of ref document: A1