WO2014181522A1 - 脆性破壊性板材の固定構造及びこれを用いた脆性破壊性板材から成る光透過窓板の固定方法 - Google Patents

脆性破壊性板材の固定構造及びこれを用いた脆性破壊性板材から成る光透過窓板の固定方法 Download PDF

Info

Publication number
WO2014181522A1
WO2014181522A1 PCT/JP2014/002333 JP2014002333W WO2014181522A1 WO 2014181522 A1 WO2014181522 A1 WO 2014181522A1 JP 2014002333 W JP2014002333 W JP 2014002333W WO 2014181522 A1 WO2014181522 A1 WO 2014181522A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixing
flange
brittle
light
fixed
Prior art date
Application number
PCT/JP2014/002333
Other languages
English (en)
French (fr)
Inventor
正明 永瀬
土肥 亮介
池田 信一
西野 功二
山路 道雄
薬師神 忠幸
Original Assignee
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン filed Critical 株式会社フジキン
Priority to KR1020157018579A priority Critical patent/KR20150093235A/ko
Priority to KR1020177030347A priority patent/KR101852802B1/ko
Priority to CN201480010081.1A priority patent/CN105164512B/zh
Priority to SG11201509118YA priority patent/SG11201509118YA/en
Priority to US14/889,388 priority patent/US9983051B2/en
Publication of WO2014181522A1 publication Critical patent/WO2014181522A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0403Mechanical elements; Supports for optical elements; Scanning arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0875Windows; Arrangements for fastening thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/5907Densitometers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • G02B27/022Viewing apparatus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • G02B27/028Viewing or reading apparatus characterised by the supporting structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/007Pressure-resistant sight glasses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0014Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light

Definitions

  • the present invention relates to an improvement in the fixing structure of a brittle destructible plate material such as quartz glass or sapphire plate material, and mainly an in-line type optical analytical process fluid concentration meter used in a raw material fluid supply device of a semiconductor manufacturing apparatus, etc.
  • the light transmission window material can be fixed and held airtight without using a sealing material for highly precipitation, high light reactivity, and corrosive process fluids.
  • a fixing structure of a brittle destructible plate material that can maintain high transparency and high cleanliness (particle resistance) inside the sensor for a long period of time, and a light transmission window plate comprising a brittle destructible plate material using the same It relates to the fixing method.
  • a raw material fluid supply device or the like of a semiconductor manufacturing apparatus needs to supply a process raw material fluid having a stable concentration to a processing device from the viewpoint of improving the quality of a semiconductor product. Therefore, in this conventional raw material fluid supply device, for example, a bubbling-type raw material fluid supply device as shown in FIG. 9, a photometric densitometer 22 is provided in the vicinity of the raw material vapor outlet of the temperature-controlled raw material tank 21.
  • a process gas 24 for example, a predetermined raw material concentration
  • Process gas containing an organic metal material vapor such as trimethylgallium TMGa stored in the tank 21 is supplied.
  • 25 is a thermal mass flow controller
  • 26 is a pressure adjusting device for tank internal pressure.
  • densitometers 22 of various configurations have been put to practical use.
  • Most densitometers 22 are shown in FIG. 10 (Japanese Patent Laid-Open No. 9-178652) and FIG. As shown in No. 108981), an optical cell (gas cell) 27 through which the gas G to be measured flows, a light source 28 for irradiating the optical cell 27 with a light beam, a light receiving device 29 for the light beam that has passed through the optical cell 27, It is formed of an arithmetic unit 30 or the like that calculates the raw material concentration by obtaining the absorbance from the signal of the light receiving device 29.
  • 31 is a main pipeline and 32 is a branch pipeline.
  • photometric densitometer 22 itself is well known, and a detailed description thereof is omitted here.
  • various structures forming the optical cell 27 such as a light transmission window material, are firmly attached to the main body of the optical cell 27 with high airtightness. Must be fixedly held. Therefore, in the conventional optical cell 27, various synthetic resin sealing materials, silver brazing, gold brazing and the like are used.
  • the transparency of the light transmission window material forming the optical cell 27 needs to be stable over a long period of time, and when the transparency changes with time. This makes it difficult to measure a stable gas concentration.
  • quartz glass is often used as a constituent material of the light transmission window. Therefore, the light transmission window is corroded when measuring the concentration of organic source gas having high corrosivity or high precipitation.
  • the transparency of the raw material is lowered at an early stage due to the deposition of the raw material, and there remains a problem that a stable raw material gas concentration cannot be measured.
  • the conventional optical analysis type densitometer has many features such as downsizing equipment, reducing equipment costs, ensuring stability of concentration measurement accuracy, maintaining high gas purity, and maintaining gas tightness.
  • the transparency of the light-transmitting window material is caused by securing the sealing property between the light-transmitting window material and the structure, preventing the gas purity from being lowered by using the sealing material, and the corrosiveness of the organic source gas.
  • the present invention has the above-mentioned problems in the raw material concentration meter used in the conventional raw material fluid supply device, that is, (I) when the light transmission window material is fixedly held using a sealing material or the like, The purity of the fluid is likely to be lowered due to the emission of particles from the sealing material itself or the release gas such as moisture, (II) the simplification and downsizing of the structure of the densitometer and the reduction of the product cost cannot be easily achieved (III ) Since the transparency of the light transmission window fluctuates, stable and highly accurate measurement of the raw material fluid concentration cannot be performed, and (IV) it is difficult to improve the airtight performance of the connection portion between the optical cell and the conduit.
  • a brittle destructible plate material (light transmission window material) that forms a sensor part without using a seal material is fixed and held in a highly airtight manner, and a brittle destructible plate material using the mechanism is used.
  • Light transmission window plate fixing method The main object of the present invention is to provide an organic raw material fluid that can be easily and leak-free inserted into and fixed in the fluid passage, and can perform highly accurate and stable concentration measurement.
  • An in-line optical analytical process fluid concentration meter that is small and inexpensive to manufacture.
  • the first aspect of the brittle fracture destructible plate material fixing structure includes a light transmission window plate made of a brittle destructive plate material sandwiched between a first fixed flange and a second fixed flange.
  • the two fixing flanges are hermetically fitted and fixed.
  • the second aspect of the structure for fixing a brittle destructible plate material according to the present invention has an insertion recess whose inner peripheral surface is reduced in a step shape by a plurality of steps, and the step portion in the insertion recess is made of a brittle destructive plate material.
  • a first fixed flange as a support surface of the light transmissive window plate; a light transmissive window plate made of a brittle destructible plate material disposed on the support surface of the light transmissive window plate in the insertion recess of the first fixed flange; A second fixing flange that is airtightly fitted and fixed to the insertion recess by inserting a projection having a stepped outer peripheral surface into the insertion recess of the fixing flange and sandwiching the light transmission window plate made of the brittle destructible plate material; Prepare.
  • the light transmitting window plate made of the brittle destructible plate material is a sapphire light transmitting window plate in the second aspect, and the first fixing flange is used. And the second fixing flange are held by a pressure of 6 to 12 N.
  • the tip surface of the protruding portion of the second fixing flange and the support surface of the insertion recess of the first fixing flange are light transmissive.
  • the sealing surface of the window plate was used.
  • a gasket housing portion is formed on the lower surface side of the first fixing flange, and the bottom surface of the gasket housing portion is a gasket seal surface. It was.
  • the sixth aspect of the fixing structure of the brittle fracture plate according to the present invention is configured such that, in the second aspect, an optical fiber insertion hole and a photodiode housing recess are provided in the second fixing flange.
  • a light transmission window plate comprising a brittle fracture material is fixed by sandwiching a light transmission window plate comprising a brittle fracture material between a first fixing flange and a second fixing flange. Is fitted and fixed, and a recess is provided on the surface of the main body, and a gasket-type seal is mounted therein, and then both the fixed and fixed flanges are mounted in the recess to mount the first fixed flange and the gasket. Both fixings that are fixedly fitted in the recesses by facing the mold seal, further arranging a holding fixing body surrounding the both fixing and fixing flanges, and fixing the holding fixing body to the main body. The flange is hermetically fixed through a gasket type seal.
  • a light transmission window plate made of a brittle destructible plate material is sandwiched between the first fixing flange and the second fixing flange, and both the fixing flanges are hermetically fitted and fixed.
  • the inner peripheral surface has an insertion concave portion whose diameter is reduced in a stepped manner by a plurality of steps, and the step in the insertion concave portion is used as a support surface of a light transmission window plate made of a brittle destructible plate material.
  • the light transmission window plate which is a plate material 11 made of a brittle fracture material, is sandwiched between the first fixing flange 14 and the second fixing flange 16 to be fitted and fixed in an airtight manner, and the light transmission window plate is attached to be airtight.
  • the two flanges that have been fitted and fixed are hermetically inserted into the recess 17 by the holding and fixing body 12 fixed to the main body 2, so that the light transmission window plate has higher airtightness without using a sealing material. Thus, it can be easily and firmly held and fixed.
  • the light transmission window plate 11 is made of sapphire, the light transmittance does not decrease even if it is a depositing, reactive, or corrosive fluid, and stable and highly accurate concentration measurement is possible. Since the gasket type seal is used, it is possible to eliminate contamination of impurities in the fluid as compared with a seal structure using other synthetic resin seal material, silver wax material, gold wax material or the like.
  • the fixing structure of the brittle destructible plate material according to the present invention and the fixing method of the light transmission window plate made of the brittle destructible plate material using the same are downsizing the equipment, reducing the equipment cost, maintaining the airtightness, It has excellent utility in terms of ensuring stability of concentration measurement accuracy and maintaining high gas purity.
  • FIG. 1 It is a front view of the raw material fluid density
  • FIG. 1 is a front view of a raw material fluid concentration detector to which a brittle fracture destructive plate fixing structure according to the present invention is applied
  • FIG. 2 is a plan view thereof
  • FIG. 3 is an application of a brittle destructible plate fixing structure according to the present invention.
  • FIG. 4 is a longitudinal sectional view and a plan view of a holding and fixing body of the light incident portion.
  • the raw material fluid concentration detector 1 to which the brittle fracture plate fixing structure of the present invention is applied includes a detector main body 2, an inlet block 3 and outlet blocks 4 fixed to both sides thereof as shown in FIGS. And a light incident part 5a provided on the upper surface side of the main body 2 of the detector, a light detection part 5b provided on the lower surface side of the main body 2 of the detector, and the like.
  • the main body 2, the inlet block 3, and the outlet block 4 of the detector are made of stainless steel or the like, and are provided with fluid passages 2a and 2b, respectively.
  • the inlet block 3 and the outlet block 4 are airtightly fixed to both sides of the main body 2 of the detector through bolts (not shown) through gasket type seals (not shown).
  • 3b and 4b are joint parts
  • 7 is a leak inspection hole
  • 8 is a fixing bolt for the light incident part 5a.
  • the light detection unit 5b is also fixed by a fixing bolt 8 (not shown) in the same manner as the light incident unit 5a.
  • the light incident part 5a and the light detection part 5b are respectively provided on the upper surface side and the lower surface side of the main body 2 of the detector, and are visible from a light source device (not shown) including a light source, a diffraction grating, a mirror, and the like.
  • a light source device including a light source, a diffraction grating, a mirror, and the like.
  • FIG. 3 light having a predetermined wavelength in the region or ultraviolet region passes through an optical fiber 9 and is made of a plate material 11 made of a brittle fracture material in the light incident portion 5a, that is, a light transmission window plate 11a made of a sapphire light transmission plate.
  • reference numeral 14 denotes a first fixing flange and 16 denotes a second fixing flange.
  • the incident light passes through the sapphire light transmission window plate 11a and enters the fluid passage 2b, but a part of the incident light is sapphire light.
  • the light is reflected by the transmission window plate 11 a and the intensity of the reflected light is detected by the photodiode 10.
  • the light detection unit 5b is provided on the lower surface side of the detector body 2 obliquely below the light incident unit 5a so as to face the light incident unit 5a, and is incident from the light incident unit 5a through the fluid passage 2b. Light enters the photodiode (not shown) in the light detection section 5b through the sapphire light transmission window plate 11a, and the light intensity of the incident light is detected.
  • the light intensity detected by the light detecting unit 5b on the lower surface side changes depending on the concentration of the raw material fluid (process fluid) flowing in the fluid passage 2b, and the detected light intensity signal is sent to a computing device (not shown).
  • the raw material concentration in the raw material fluid is calculated.
  • the raw material concentration C is basically calculated by the following equation (1) based on the absorbance A obtained with a spectrophotometer.
  • I 0 is the incident light intensity from the light incident part 5a
  • I is the transmitted light intensity (incident light intensity to the photodiode 10 of the light detection part 5b)
  • is the molar extinction coefficient of the raw material
  • C is the raw material concentration
  • A is the absorbance.
  • the light incident part 5a and the light detection part 5b are identical in structure, and as shown in FIG. 3, a holding and fixing body 12 having a flange housing hole 12a in the center made of stainless steel, and a detector A first fixing flange 14 provided on the outer surface of the main body 2, a second fixing flange 16, a light transmission window plate 11 a made of sapphire that is airtightly sandwiched between the flanges 14 and 16, and a light transmission window plate 11 a It is formed of a photodiode 10 and the like that are positioned above and fixed to the second fixing flange 16.
  • the brittle destructible plate material fixing structure of the present invention is composed of the second fixing flange 16 and the first fixing flange 14, and the protrusion 16b of the second fixing flange 16 is used as the first fixing flange as will be described later.
  • 14 is inserted into the insertion recess 14b with a force of 8 to 12N, so that the front end surface of the protrusion 16b of the second fixing flange 16 and the support surface 14c of the insertion recess 14b of the first fixing flange 14 are light-transmitting window plates.
  • the sealing surface 11a is airtightly integrated with a sapphire light transmissive window plate 11a, which is a brittle destructible plate material, sandwiched and fixed.
  • the second fixing flange 16 and the first fixing flange 14 integrated by sandwiching the sapphire light transmission window plate 11a are inserted into the flange receiving hole 12a of the holding fixture 12, and then the holding fixture. 12 is press-fixed to the detector main body 2 with a gasket type seal 6 interposed between the fixing bolt 8 and the light incident portion 5a and the light detection portion 5b are hermetically fixed to the detector main body 2. .
  • 17 is a recess formed on the outer surface of the main body 2 of the detector, 6a is a gasket, 13 is a sealing surface between both fixing flanges 14 and 16, and 14e is between the gasket 6a and the first fixing flange 14.
  • the sealing surface 9a is an optical fiber insertion hole.
  • the holding and fixing body 12 is provided with a flange receiving hole 12a at the center of a square steel plate having a thickness of 12 to 15 mm, and insertion holes for fixing bolts 8 on both sides thereof. 12b is provided.
  • a lower end portion of the holding and fixing body 12 is formed with a step portion 12c that fits and presses the upper surface of the outer periphery of the first fixing flange 14, and the lower portion of the flange accommodation hole 12a is enlarged. The diameter is formed in the accommodating portion of the first fixed flange 14.
  • the second fixing flange 16 constituting the fixing structure of the brittle destructible plate (light transmission window plate) is formed in a short cylindrical body made of stainless steel, and one side (lower surface) thereof.
  • the central part is formed in a protruding part 16b whose diameter is reduced stepwise by two step parts 16a.
  • the distal end surface 16d of the distal end portion of the projecting portion 16b having a reduced diameter is a seal surface that comes into contact with the thin light transmission window plate 11a having a thickness of about 0.8 to 1.5 mm.
  • reference numeral 16c denotes a photodiode housing recess.
  • the first fixing flange 14 is formed in a disk shape from stainless steel as shown in FIG. 6, and the diameter of the first fixing flange 14 is reduced in a step shape by a plurality of (in this case, three steps) step portions 14a. It is formed in the insertion recess 14b.
  • the insertion recess 14b is formed in a penetrating shape and communicates with the recess 17 of the main body 2 of the detector (see FIG. 3).
  • the intermediate portion of the three step portions 14a constitutes a housing portion for the light transmission window plate 11a, and the light transmission window plate 11a made of sapphire is formed on the support surface 14c which is the step portion of the intermediate portion. Placed and fixed.
  • An accommodating portion 14d of the gasket 6a is formed on the lower surface side of the first fixing flange 14, and the upper half portion of the gasket type seal 6 is inserted and fixed therein.
  • the protrusion 16b of the second fixing flange 16 is inserted into the insertion recess 14b.
  • the both fixing flanges 14 and 16 are fixed and integrated.
  • sandwiching the flange portion it comes into contact with the pressure contact surface between the outer peripheral surface of the protruding portion 16b of both the fixing flanges 14 and 16 and the inner peripheral surface of the insertion concave portion 14b, and the outer peripheral edge portion of the light transmission window plate 11a.
  • the front end surface 16d of 16b and the light transmission window plate support surface 14c of the insertion recess 14b serve as sealing surfaces, respectively, and leakage of the fluid in the fluid passage to the outside is completely prevented.
  • the gasket type seal 6 includes a gasket accommodating portion 14d of the first fixing flange 14, a gasket accommodating portion 17a on the detector body 2 side, a ring-shaped gasket 6a, and a ring-shaped seal.
  • the retainer 6b, the ring-shaped guide ring 6c, and the like are configured to be double-sealed by the seal surfaces 15 and 15.
  • the sapphire light transmission window plate 11a constituting the light transmission window made of the plate material 11 made of the brittle fracture material is a so-called high-purity alumina (Al 2 O 3 ) single crystal and is formed to a thickness of 0.8 to 1.5 mm. It has excellent wear resistance, corrosion resistance (chemical resistance), heat resistance, etc., and is hardly corroded or altered by organic raw material gas used for semiconductor manufacturing, and its light transparency hardly changes. It has been confirmed. Similarly, it is confirmed that the sapphire light transmission window plate 11a (outer diameter 5 to 15 mm) is not damaged at all by integrating both the fixing flanges 14 and 16 with a clamping force of 8 to 12N. ing.
  • Al 2 O 3 high-purity alumina
  • the gasket-type seal 6, the sapphire light transmission window plate 11a, the photodiode 10, and the like are well known, and detailed description thereof is omitted here.
  • the raw material fluid concentration detector 1 is connected in-line to a process gas (organic raw material TMGa vapor) supply line for a semiconductor manufacturing apparatus, and light is incident from the light source device 18 through the optical fiber 9. Light was incident on the part 5a.
  • the photodiodes 10 of the light incident part 5a and the light detection part 5b are selected to have a light receiving surface of 1.0 mm ⁇ 1.1 mm, a diameter of 504 mm, and a height of 3.6 mm, and the sapphire light transmission window plate 11a is thick.
  • the length of the fluid passage 2b between the light incident portion 5a and the light detection portion 5b is set to 30 mm, and the inner diameter of the fluid passage is set to 4.0 mm ⁇ .
  • the detection output from the photodiode 10 of the light incident portion 5a is input to the arithmetic device 19 via the reflected light detection device 18a, and the detection from the photodiode 10 of the light detection portion 5b.
  • the output is input to the arithmetic device 19 via the output light detection device 18b.
  • the concentration of the organic raw material TMGa vapor flowing in the fluid passage 2a is set at a predetermined time interval using the equation (1). Calculate and record and display the result.
  • the detection output from the reflected light detection device 18a is used for correction of the raw material concentration detection value in the arithmetic device 19, whereby the so-called fluctuation of the incident light from the light source device 18 and the light transmission window plate 11a made of sapphire.
  • the measurement error of the raw material concentration caused by the secular change of the light transmittance is corrected.
  • the brittle destructible plate material (sapphire light transmissive window plate) ⁇ fixing structure ensures highly accurate concentration measurement while ensuring the required level of confidentiality without using any sealing material. It was confirmed that this was possible.
  • the present invention provides not only a fluid concentration meter for a semiconductor manufacturing gas supply system, but also a fluid concentration meter, a conduit and a device in all fluid supply pipelines and fluid-using devices that handle precipitation, photoreactivity, and corrosive fluids. It can also be used for observing windows.
  • 1 is a raw material fluid concentration detector 2 is a detector body 2a is a fluid passage 2b is a fluid passage 3 is an inlet block 3b is a joint portion 4 is an outlet block 4b is a joint portion 5a is a light incident portion 5b is a light detection portion 6 is a gasket type Seal 6a is a gasket 6b is a ring retainer 6c is a guide ring 7 is a leak inspection hole 8 is a fixing bolt 9 is an optical fiber 9a is an optical fiber insertion hole 10 is a photodiode 11 is a plate made of a brittle fracture material (light transmission window) Board) 11a is a light transmission window plate made of sapphire 12 is a holding and fixing body 12a is a flange housing portion 12b is a bolt insertion hole 12c is a stepped portion 13 is a sealing surface 14 is a first fixing flange 14a is a stepped portion 14b is an insertion recess 14c is an insertion recess Light transmission window plate support

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 本発明は、有機原料流体の供給系等で使用する濃度計の構造の簡素化、小型化、製品コストの引下げを図り、光透過窓の透明度を一定に保って安定した濃度測定が出来ると共に、気密密性能や耐パーティクル性を高めた濃度計を提供する。 本発明は、検出器の本体2と、検出器の本体の上面に設けた光発信部5a及び検出器の本体の下面に設けた光検出部5bとから成る光分析式原料流量濃度検出器において、検出器本体2の上面及び下面に設けた流体通路2bにより連通された凹部17と、当該凹部17内に装着したガスケット型シール6と、ガスケット型シール6と対向して配置され、サファイア製光透過窓板11aを挟着して気密に嵌合固定した第一固定フランジ14及び第二固定フランジ16と、第二固定フランジ16内に設けた光ファイバ9及びフォトダイオード10と、前記嵌合固定した両固定フランジ14、16をガスケット型シール6を介して検出器本体2の凹部17内へ気密に固定する保持固定体12とから構成する。

Description

脆性破壊性板材の固定構造及びこれを用いた脆性破壊性板材から成る光透過窓板の固定方法
 本発明は、石英ガラスやサファイア製板材等の脆性破壊性板材の固定構造の改良に関するものであり、主として、半導体製造装置の原料流体供給装置等で使用するインライン型光分析式プロセス流体濃度計等に使用され、濃度計センサー部の小型化を図ると共に、高析出性や高光反応性、腐食性のプロセス流体に対してもシール材を用いることなしに光透過窓材を気密に固定保持でき、更に、長期に亘って高透明度と、センサー内部の高清浄度(耐パーティクル性)を保つことを可能にした脆性破壊性板材の固定構造及びこれを用いた脆性破壊性板材から成る光透過窓板の固定方法に関する。
 一般に、半導体製造装置の原料流体供給装置等では、半導体製品の品質向上を図る点から安定した濃度のプロセス原料流体を処理装置へ供給することが必要とされる。
 そのため、従前のこの種原料流体供給装置、例えば図9に示す如きバブリング型の原料流体供給装置においては、温度制御された原料タンク21の原料蒸気出口の近傍に光分析方式の濃度計22を設け、当該濃度計22からの濃度検出信号によって原料タンク21の温度、キャリアガスCGの流量、タンク内蒸気圧力Po等を調整することにより、反応炉23へ所定の原料濃度のプロセスガス24(例えば、タンク21内に貯留したトリメチルガリウムTMGa等の有機金属材料蒸気を含んだプロセスガス)が供給されて行く。
 尚、図9において、25は熱式マスフローコントローラ、26はタンク内圧の圧力調整装置である。
 上記光分析方式の濃度計22としては、各種の構成の濃度計22が実用化されているが、大多数の濃度計22は図10(特開平9-178652)及び図11(特開2004-108981号)に示すように、被測定ガスGが流通する光学セル(ガスセル)27と、光学セル27内へ光線を照射する光源28と、光学セル27内を通過した光線の受光装置29と、受光装置29の信号から吸光度を求めて原料濃度を算出する演算装置30等から形成されている。尚、31は主管路、32は分岐管路である。
 そして、光学セル27内におけるガスの所謂吸光光度を測定すると共に、吸光度の測定結果にランバート・ベールの法則を適用してガス濃度を演算するようにしている。
 又、後者の特開2004-108981号においては、図11に示すように、光学セル(吸光セル)を内蔵したインラインセンサー33を管路31へ固定し、前記光学セルを透過した光の光度測定を行なうようにしている。
 尚、上記光分析方式の濃度計22そのものは公知であるため、ここではその詳細な説明を省略する。
 而して、原料ガス濃度の測定に際しては、先ず、光学セル27を管路32(又は管路31)へ接続固定することが必要になるが、光学セル27と管路32(又は管路31)の接続部の気密性の確保は容易でなく、例えば、通常のパッキン材やシール材を用いたねじ込み接続やフランジ接続では、高度な気密性を備えた接続固定が困難であり、半導体製造装置の分野で要求される気密性能(外部リーク1×10-10Pa・m/sec以下)を確保することが容易でないと云う問題がある。
 また、安定したガス濃度測定を長期に亘って連続的に行なう為には、光学セル27を形成する各種構造物、例えば光透過窓材等は、高い気密性をもって光学セル27の本体に堅固に固定保持する必要がある。そのため、従前の光学セル27では、各種の合成樹脂製シール材や銀蝋付け、金蝋付け等が使用されている。
 更に、安定したガス濃度測定を連続的に行なう為には、光学セル27を形成する光透過窓材の透明度が長期に亘って安定している必要があり、透明度が経時変化をする場合には、安定したガス濃度測定が困難となる。
 ところが、従前のガス濃度計においては、前述の通り光学セル27を形成する各種構造物の固定保持に際して、気密性の確保のために各種の合成樹脂製シール材や銀蝋付け、金蝋付け等が使用されているため、これ等の合成樹脂製シール材や銀蝋付け、金蝋付け等が、その内部に含有するガスやパーティクルを有機原料ガス内へ放出する放出源になる危険性があり、現実に、パーティクルの放出によるガス純度の低下が生ずると云う問題がある。即ち、半導体製造用ガス供給系に於いては、銀蝋付けや金蝋付けの使用は避けることが望ましい。
 また、従前のガス濃度計においては、光透過窓の構成材として石英ガラスが多く用いられているため、高腐食性又は高析出性を有する有機原料ガスの濃度測定においては、光透過窓が腐食され、又は原料の析出によりその透明度が早期に低下することになり、安定した原料ガス濃度の測定ができないと云う問題が残されている。
 一方、シール材等の使用に代えて、各種構造物を機械的に所要箇所へ直接、或いは挟着固定する方法が一部で着想されている。しかし、直接或いは挟着による固定では、気密性の確保が困難なうえ、被固定部材が石英ガラス板やサファイア材のような脆性破壊性材料から成る板材の場合には、シール材を用いないで機械的な挟着のみによる固定では、容易に高いシール性が得られないと云う難点がある。
 上述のように、従前の光分析方式の濃度計には、設備の小型化や設備費の低減、濃度測定精度の安定性確保、高ガス純度の保持及びガス気密性の保持等の点に多くの問題が残されており、光透過窓材と構造体間のシール性の確保、シール材の使用によるガス純度の低下防止及び有機原料ガスの腐食性に起因して生ずる光透過窓材の透明度の低下防止等の対策が急がれている。
 その中でも、特に、シール材等を用いることなしに、センサー部の重要部を形成する光透過窓材を高気密性下に堅固に固定保持することを可能とした方策の提供が、緊急に要請されている。
特開平9-178652号公報 特開2004-108981号公報 特開平11-280967号公報
 本発明は、従前の原料流体供給装置等で使用する原料濃度計に於ける上述のような問題
、即ち、(I)シール材等を用いて光透過窓材等を固定保持した場合には、シール材自体からのパーティクルの放出や水分等の放出ガスにより流体純度が低下しやすいこと、(II)濃度計の構造の簡素化及び小型化並びに製品コストの引下げを容易に図れないこと、(III)光透過窓の透明度が変動するため、安定且つ高精度な原料流体濃度の測定が出来ないこと、及び、(IV)光学セルと管路との接続部の気密性能を高めることが困難なこと等の問題を解決するために、シール材を用いることなしにセンサー部を形成する脆性破壊性板材(光透過窓材)を高気密に固定保持する機構及びこれを用いた脆性破壊性板材から成る光透過窓板の固定方法を提供することを発明の主目的とするものであり、これにより、有機原料流体であっても流体通路内へ簡単にリークフリーで挿着固定することが出来る共に高精度で安定した濃度測定が行なえ、小型で安価に製造できるようにしたインライン型光分析式プロセス流体濃度計を提供せんとするものである。
 上記目的を達成するため、本発明に係る脆性破壊性板材の固定構造の第1の態様は、第一固定フランジと第二固定フランジの間に脆性破壊製板材から成る光透過窓板を挟着し、両固定フランジを気密に嵌合固定する構成とした。
 本発明に係る脆性破壊性板材の固定構造の第2の態様は、内周面が複数段による階段状に縮径した挿入凹部を有すると共に、挿入凹部内の段部を脆性破壊性板材から成る光透過窓板の支持面とした第一固定フランジと、前記第一固定フランジの挿入凹部の光透過窓板の支持面上に配置した脆性破壊性板材から成る光透過窓板と、前記第一固定フランジの挿入凹部内に階段状外周面を有する突出部を挿入して前記脆性破壊性板材から成る光透過窓板を挟んで前記挿入凹部へ気密に嵌合固定した第二固定フランジと、を備える。
 本発明に係る脆性破壊性板材の固定構造の第3の態様は、上記第2の態様において、脆性破壊性板材から成る光透過窓板をサファイア製光透過窓板とすると共に、第一固定フランジと第二固定フランジとを6~12Nの加圧力により持挟する構成とした。
 本発明に係る脆性破壊性板材の固定構造の第4の態様は、上記第2の態様において、第二固定フランジの突出部の先端面と、第一固定フランジの挿入凹部の支持面を光透過窓板のシール面とした。
 本発明に係る脆性破壊性板材の固定構造の第5の態様は、上記第2の態様において、第一固定フランジの下面側にガスケット収容部を形成し、当該ガスケット収容部の底面をガスケットシール面とした。
 本発明に係る脆性破壊性板材の固定構造の第6の態様は、上記第2の態様において、第二固定フランジに光ファイバ挿入孔及びフォトダイオード収納凹部を設ける構成とした。
 本発明に係る脆性破壊性板材からなる光透過窓板の固定方法は、第一固定フランジと第二固定フランジの間に脆性破壊材料から成る光透過窓板を挟着して両固定フランジを気密に嵌合固定すると共に、本体の表面に凹部を設けてその内部へガスケット型シールを装着し、次に、当該凹部内へ前記嵌合固定した両固定フランジを装着して第一固定フランジとガスケット型シールとを対向させ、更に、前記嵌合固定した両固定フランジを囲繞して保持固定体を配設し、当該保持固定体を本体へ固定することにより前記凹部内に嵌合固定した両固定フランジを、ガスケット型シールを介して気密に固定することを特徴とする。
 本発明では、第一固定フランジと第二固定フランジの間に脆性破壊性板材から成る光透過窓板を挟着し、両固定フランジを気密に嵌合固定する構成としている。
 また、本発明では、内周面が複数段による階段状に縮径した挿入凹部を有すると共に、挿入凹部内の段部を脆性破壊性板材から成る光透過窓板の支持面とした第一固定フランジと、前記第一固定フランジの挿入凹部の光透過窓板の支持面上に配置した脆性破壊性板材から成る光透過窓板と、前記第一固定フランジの挿入凹部内に階段状外周面を有する突出部を挿入して前記脆性破壊性板材から成る光透過窓板を挟んで前記挿入凹部へ気密に嵌合固定した第二固定フランジとから脆性破壊性板材から成る光透過窓板の固定構造を構成している。
 その結果、脆性破壊性板材から成る光透過窓板の固定が簡単且つ確実に行えると共に、必要とするレベルの機密性を、シール材を用いることなしに容易に得ることが出来る。
 また、脆性破壊材料から成る板材11である光透過窓板を第一固定フランジ14と第二固定フランジ16の間に挟み込み気密に嵌合固定すると共に、当該光透過窓板を装着して気密に嵌合固定した両フランジを、本体2へ固定した保持固定体12により凹部17内へ気密に挿着するようにしているため、シール材を用いないで光透過窓板をより高い気密性で持って、容易に且つ堅固に保持固定することが出来る。
 加えて、光透過窓板11をサファイア製とした場合には、析出性や反応性、腐食性流体であっても光透過率が低下せず、安定した高精度な濃度測定が可能となると共に、ガスケット型シールを用いているため、他の合成樹脂製シール材や銀蝋材、金蝋材等を用いるシール構造に比較して、流体内への不純物の混入を皆無にすることが出来る。
 このように、本発明に係る脆性破壊性板材の固定構造及びこれを用いた脆性破壊性板材から成る光透過窓板の固定方法は、設備の小型化や設備費の削減、気密性の保持、濃度測定精度の安定性確保及び高ガス純度の保持等の点で、優れた効用を奏するものである。
本発明に係る脆性破壊性板材の固定構造を適用した原料流体濃度検出器の正面図ある。 図1の平面図である。 本発明に係る脆性破壊性板材の固定構造を適用した原料流体濃度検出器の光入射部の縦断面概要図である。 図3の光入射部の保持固定体の縦断面図及び平面図である。 本発明の実施例に係る第二固定フランジの縦断面図である。 本発明の実施例に係る第一固定フランジの縦断面図である。 本発明の脆性破壊性板材の固定構造を適用した光入射部のガスケット型シールの概要を示す断面図である。 本発明の脆性破壊性板材の固定構造を適用した濃度計の試験装置の概要系統図である。 従前の半導体製造装置用原料ガス供給装置の概要説明図である。 従前のガス濃度計の使用例を示すものである。 従前の他のガス濃度計の使用例を示すものである。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。
 図1は本発明に係る脆性破壊性板材の固定構造を適用した原料流体濃度検出器の正面図、図2はその平面図、図3は本発明に係る脆性破壊性板材の固定構造を適用した原料流体濃度検出器の光入射部の縦断面概要図、図4は光入射部の保持固定体の縦断面図及び平面図である。
 本発明の脆性破壊性板材の固定構造を適用した原料流体濃度検出器1は、図1乃至図4に示すように検出器の本体2と、その両側部に固定した入口ブロック3及び出口ブロック4と、検出器の本体2の上面側に設けた光入射部5aと、検出器の本体2の下面側に設けた光検出部5b等から構成されている。
 上記検出器の本体2、入口ブロック3及び出口ブロック4はステンレス鋼等から形成されており、流体通路2a、2b等が夫々設けられている。また、検出器の本体2の両側部にはガスケット型シール(図示省略)を介して入口ブロック3及び出口ブロック4がボルト(図示省略)により気密に固定されている。尚、3b、4bは継手部、7は漏洩検査用孔、8は光入射部5aの固定用ボルトである。また、光検出部5bも前記光入射部5aと同様に固定用ボルト8により固定されている(図示省略)。
 上記光入射部5a及び光検出部5bは、検出器の本体2の上面側と下面側に其々設けられており、光源や回析格子やミラー等から成る光源装置(図示省略)からの可視領域又は紫外領域の所定波長の光が、図3に示すように光ファイバ9を経て光入射部5a内の脆性破壊材料から成る板材11、即ち、サファイア製光透過板から成る光透過窓板11aへ入射される。
 尚、図3において、14は第一固定フランジ、16は第二固定フランジであり、当該両固定フランジ14,16により、後述するように本発明に係る脆性破壊性板材(光透過窓板)の固定構造が構成されている。
 図3を参照して、前記入射された光の大部分は、サファイア製光透過窓板11aを透過して流体通路2b内へ入射されるが、前記入射された光の一部はサファイア製光透過窓板11aにより反射され、この反射光の強度がフォトダイオード10により検出される。
 前記光検出部5bは、光入射部5aの斜め下方の検出器の本体2の下面側に前記光入射部5aと対向状に設けられており、流体通路2bを通して光入射部5aから入射された光が、サファイア製光透過窓板11aを通して光検出部5b内のフォトダイオード(図示省略)へ入射され、当該入射光の光強度が検出される。
 前記下面側の光検出部5bにおいて検出された光強度は、流体通路2b内を流通する原料流体(プロセス用流体)の濃度等によって変化し、検出した光強度信号は演算装置(図示省略)へ入力され、ここで原料流体内の原料濃度が演算される。
 尚、原料濃度Cは、基本的には、分光光度計で求めた吸光度Aを基にして、次の(1)式により演算される。
 A=log10(I0/I)=ε×C×I・・・(1)
 但し、(1)式において、I0は光入射部5aからの入射光強度、Iは透過光強度(光検出部5bのフォトダイオード10への入射光強度)、εは原料のモル吸光係数、Cは原料濃度、Aは吸光度である。
 前記光入射部5a及び光検出部5bは、構造的には全く同一のものであり、図3に示すように、ステンレス鋼製の中央にフランジ収容孔12aを有する保持固定体12と、検出器の本体2の外表面に設けた第一固定フランジ14と、第二固定フランジ16と、両フランジ14,16間に気密に挟み込み固定したサファイア製光透過窓板11aと、光透過窓板11aの上方に位置して第二固定フランジ16に固定したフォトダイオード10等とから形成されている。
 即ち、本発明の脆性破壊性板材の固定構造は、第二固定フランジ16と第一固定フランジ14とから構成されており、後述するように第二固定フランジ16の突出部16bを第一固定フランジ14の挿入凹部14b内へ8~12Nの力で挟持することにより、第二固定フランジ16の突出部16bの先端面と、第一固定フランジ14の挿入凹部14bの支持面14cを光透過窓板11aのシール面として、脆性破壊性板材であるサファイア製光透過窓板11aを挟み込み固定した状態で、気密に一体化されている。
 そして、このサファイア製光透過窓板11aを挟み込みこんで一体化した第二固定フランジ16と第一固定フランジ14とを、保持固定体12のフランジ収容孔12a内へ挿入し、その後、保持固定体12を固定用ボルト8によりガスケット型シール6を介設して検出器の本体2へ押圧固定することにより、光入射部5a及び光検出部5bが検出器の本体2に気密に固定されている。
 尚、図3において、17は検出器の本体2の外表面に形成した凹部、6aはガスケット、13は両固定フランジ14,16間のシール面、14eはガスケット6aと第一固定フランジ14間のシール面、9aは光ファイバの挿入孔である。
 更に、前記保持固定体12は、図4に示すように、厚さ12~15mmの四角型鋼板の中央部にフランジ収容孔12aが設けられており、その両側部に固定用ボルト8の挿入孔12bが設けられている。そして、当該保持固定体12の下端部には、第一固定フランジ14の外周部上面に嵌合してこれを押圧するための段部12cが形成されており、フランジ収容孔12aの下方は拡径されて、第一固定フランジ14の収容部に形成されている。
 次に、本発明の脆性破壊性板材(光透過窓板)の固定構造を図5乃至図7に基づいて説明する。
 脆性破壊性板材(光透過窓板)の固定構造を構成する前記第二固定フランジ16は、図5に示すように、ステンレス鋼製の短い円柱体に形成されており、その一側(下面)の中央部は、2段の段部16aにより階段状に縮径された突出部16bに形成されている。
 又、縮径された突出部16bの先端部の先端面16dは、厚さ0.8~1.5mm程度の薄い光透過窓板11aに当接するシール面になっている。尚、図5において、16cはフォトダイオード収納凹部である。
 一方、前記第一固定フランジ14は、図6に示すようにステンレス鋼により円盤状に形成されており、中央部には複数(ここでは3段)の段部14aにより階段状に縮径された挿入凹部14bに形成されている。又、この挿入凹部14bは貫通状に形成されており、検出器の本体2の凹部17に連通されている(図3参照)。
 また、上記3段の段部14aの中間部は、光透過窓板11aの収納部を成しており、その中間部の段部である支持面14c上にサファイア製の光透過窓板11aが載置固定されている。
 尚、第一固定フランジ14の下面側にはガスケット6aの収容部14dが形成されており、ここにガスケット型シール6の上半部が挿入固定される。
 前記第一固定フランジ14の挿入凹部14bの中間部の段部である支持面14c上にサファイア製の光透過窓板11aを載置したあと、第二固定フランジ16の突出部16bを挿入凹部14b内へ挿入し、第二固定フランジ16を第一固定フランジ14内へ8~12Nの力で挟持することにより、両固定フランジ14,16を固定一体化する。
 フランジ部を挟持することにより、両固定フランジ14,16の突出部16bの 外周面と挿入凹部14bの内周面との圧接面、及び光透過窓板11aの外周縁部に当接するが突出部16bの先端面16dと挿入凹部14bの光透過窓板支持面14cが夫々シール面となり、流体通路内の流体の外部への漏出が完全に防止される。w
 尚、前記ガスケット型シール6は、図7に示すように、第一固定フランジ14のガスケット収容部14dと、検出器の本体2側のガスケット収容部17aと、リング状のガスケット6aと、リング状のリテイナー6bと、リング状のガイドリング6c等から構成されており、シール面15、15によって2重にシールされる構成となっている。
 前記脆性破壊材料から成る板材11製の光透過窓を構成するサファイア製光透過窓板11aは、所謂高純度のアルミナ(Al2O3)の単結晶であり、厚さ0.8~1.5mmに形成されていて、耐摩耗性、耐腐食性(耐薬品性)、耐熱性等に優れており、半導体製造用に使用され有機原料ガスにより腐食や変質され、その光透明度が変化することは殆ど無いことが確認されている。
 同様に、8~12Nの挟持力により両固定フランジ14,16を一体化することにより、サファイア製光透過窓板11a(外径5~15mm)にひび割れ等の損傷が一切生じないことが確認されている。
 尚、上記ガスケット型シール6、サファイア製光透過窓板11a及びフォトダイオード10等は公知なものであるため、ここではその詳細な説明は省略する。
 次に、本発明に係る原料流体濃度検出器1の濃度検出試験とその結果について説明する。
 先ず、図8に示すように、半導体製造装置用のプロセスガス(有機原料TMGa蒸気)の供給管路へ原料流体濃度検出器1をインライン状に接続し、光源装置18より光ファイバ9を通して光入射部5aへ光を入射した。尚、光入射部5a及び光検出部5bのフォトダイオード10は、受光面1.0mm×1.1mm、直径504mm、高さ3.6mmに選定されている、また、サファイア製光透過窓板11aは、厚さ1.0mm、直径8.0mm、であり、更に、光入射部5aと光検出部5b間の流体通路2bの長さは30mm、流体通路の内径は4.0mmΦに設定されている。
 光入射部5aへ光を入射し、光入射部5aのフォトダイオード10からの検出出力を反射光検出装置18aを介して演算装置19へ入力すると共に、光検出部5bのフォトダイオード10からの検出出力を出力光検出装置18bを介して演算装置19へ入力し、ここで、前記(1)式を用いて、流体通路2a内を流通する有機原料TMGa蒸気の濃度を所定の時間間隔を置いて演算し、その結果を記録、表示する。
 前記反射光検出装置18aからの検出出力は、演算装置19に於ける原料濃度検出値の補正に用いられ、これにより、光源装置18からの入射光の所謂揺らぎやサファイア製光透過窓板11aの光透過率の経年変化等により生ずる原料濃度の測定誤差が補正される。
 試験の結果から、本発明に係る脆性破壊性板材(サファイア製光透過窓板) の固定構造により、シール材を一切用いないで必要とするレベルの機密性を確保しつつ、高精度な濃度測定が可能なことが、確認された。
 本願発明は、半導体製造用ガス供給系の流体濃度計のみならず、析出性や光反応性、腐食性流体を取り扱うあらゆる流体供給管路や流体使用機器類における流体濃度計や、管路及び機器等の覗き窓設等にも使用することができる。
 1は原料流体濃度検出器
 2は検出器本体
 2aは流体通路
 2bは流体通路
 3は入口ブロック
 3bは継手部
 4は出口ブロック
 4bは継手部
 5aは光入射部
 5bは光検出部
 6はガスケット型シール
 6aはガスケット
 6bはリング状リテイナー
 6cはガイドリング
 7は漏洩検査用孔
 8は固定用ボルト
 9は光ファイバ
 9aは光ファイバ挿入孔
 10はフォトダイオード
 11は脆性破壊材料から成る板材(光透過窓板)
 11aはサファイア製光透過窓板
 12は保持固定体
 12aはフランジ収納部
 12bはボルト挿入孔
 12cは段部
 13はシール面
 14は第一固定フランジ
 14aは階段部
 14bは挿入凹部
 14cは挿入凹部の光透過窓板支持面(シール面)
 14dはガスケット収容部
 16は第二固定フランジ
 16aは階段部
 16bは突出部
 16cはフォトダイオード収納凹部
 16dは突出部の先端面(シール面)
 17は凹部
 17aはガスケット収容部
 18は光源装置
 18aは反射光検出装置
 18bは出力光検出装置
 19は演算装置
 20は標準濃度計

Claims (7)

  1.  第一固定フランジと第二固定フランジの間に脆性破壊性板材から成る光透過窓板を挟着し、両固定フランジを気密に嵌合固定する構成とした脆性破壊性板材の固定構造。
  2.  内周面が複数段による階段状に縮径した挿入凹部を有すると共に、挿入凹部内の段部を脆性破壊性板材から成る光透過窓板の支持面とした第一固定フランジと、前記第一固定フランジの挿入凹部の光透過窓板の支持面上に配置した脆性破壊性板材から成る光透過窓板と、前記第一固定フランジの挿入凹部内に階段状外周面を有する突出部を挿入して前記脆性破壊性板材から成る光透過窓板を挟んで前記挿入凹部へ気密に嵌合固定した第二固定フランジと、を有する脆性破壊性板材の固定構造。
  3.  脆性破壊性板材から成る光透過窓板をサファイア製光透過窓板とすると共に、第一固定フランジと第二固定フランジとを6~12Nの加圧力により挟持する構成とした請求項2に記載の脆性破壊性板材の固定構造。
  4.  第二固定フランジの突出部の先端面と、第一固定フランジの挿入凹部の支持面を光透過窓板のシール面とした請求項2に記載の脆性破壊性板材の固定構造。
  5.  第一固定フランジの下面側にガスケット収容部を形成し、当該ガスケット収容部の底面をガスケットシール面とした請求項2に記載の脆性破壊性板材の固定構造。
  6.  第二固定フランジに光ファイバ挿入孔及びフォトダイオード収納凹部を設けた請求項2に記載の脆性破壊性板材の固定構造。
  7.  第一固定フランジと第二固定フランジの間に脆性破壊性板材から成る光透過窓板を挟着して両固定フランジを気密に嵌合固定すると共に、本体の表面に凹部を設けてその内部へガスケット型シールを装着し、次に、当該凹部内へ前記嵌合固定した両固定フランジを装着して第一固定フランジとガスケット型シールとを対向させ、更に、前記嵌合固定した両固定フランジを囲繞して保持固定体を配設し、当該保持固定体を本体へ固定することにより前記凹部内に嵌合固定した両固定フランジを、ガスケット型シールを介して気密に固定することを特徴とする脆性破壊性板材から成る光透過窓板の固定方法。
PCT/JP2014/002333 2013-05-09 2014-04-25 脆性破壊性板材の固定構造及びこれを用いた脆性破壊性板材から成る光透過窓板の固定方法 WO2014181522A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157018579A KR20150093235A (ko) 2013-05-09 2014-04-25 취성 파괴성 판재의 고정 구조 및 이것을 사용한 취성 파괴성 판재로 이루어지는 광 투과 창판의 고정 방법
KR1020177030347A KR101852802B1 (ko) 2013-05-09 2014-04-25 취성 파괴성 판재의 고정 구조 및 이것을 사용한 취성 파괴성 판재로 이루어지는 광 투과 창판의 고정 방법
CN201480010081.1A CN105164512B (zh) 2013-05-09 2014-04-25 脆性破坏性板材的固定构造和使用该固定构造的由脆性破坏性板材构成的透光窗板的固定方法
SG11201509118YA SG11201509118YA (en) 2013-05-09 2014-04-25 Fastening structure for brittle-fracturable panel, and method for fastening light transmission window panel comprising brittle-fracturable panel employing same
US14/889,388 US9983051B2 (en) 2013-05-09 2014-04-25 Fastening structure for brittle-fracturable panel, and method for fastening light transmission window panel comprising brittle-fracturable panel employing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-099126 2013-05-09
JP2013099126A JP5885699B2 (ja) 2013-05-09 2013-05-09 脆性破壊性光透過窓板の固定構造及びこれを用いた脆性破壊性光透過窓板の固定方法

Publications (1)

Publication Number Publication Date
WO2014181522A1 true WO2014181522A1 (ja) 2014-11-13

Family

ID=51867013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002333 WO2014181522A1 (ja) 2013-05-09 2014-04-25 脆性破壊性板材の固定構造及びこれを用いた脆性破壊性板材から成る光透過窓板の固定方法

Country Status (7)

Country Link
US (1) US9983051B2 (ja)
JP (1) JP5885699B2 (ja)
KR (2) KR20150093235A (ja)
CN (1) CN105164512B (ja)
SG (1) SG11201509118YA (ja)
TW (1) TWI512279B (ja)
WO (1) WO2014181522A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5973969B2 (ja) * 2013-07-31 2016-08-23 国立大学法人徳島大学 インライン型濃度計及び濃度検出方法
JP6912766B2 (ja) 2016-07-29 2021-08-04 国立大学法人徳島大学 濃度測定装置
KR102454649B1 (ko) 2018-09-25 2022-10-17 가부시키가이샤 후지킨 농도 측정 장치
US11460396B2 (en) 2018-09-28 2022-10-04 Fujikin Incorporated Concentration measurement method
KR102498481B1 (ko) 2018-10-26 2023-02-10 가부시키가이샤 후지킨 농도 측정 장치
US11796458B2 (en) 2019-01-31 2023-10-24 Fujikin Incorporated Concentration measurement device
US11953434B2 (en) 2019-02-22 2024-04-09 Shell Oil Compny Spectroscopic devices, systems, and methods for optical sensing of molecular species
CN113646620A (zh) 2019-04-19 2021-11-12 株式会社富士金 浓度测定装置
US20220283081A1 (en) 2019-09-18 2022-09-08 Fujikin Incorporated Density measurement device
JP7228209B2 (ja) 2020-03-13 2023-02-24 国立大学法人徳島大学 濃度測定方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331000A (ja) * 1992-05-26 1993-12-14 Kobe Steel Ltd 高圧下物質観察装置
JPH11280967A (ja) * 1998-03-31 1999-10-15 Fujikin Inc 流体継手
JP2005331045A (ja) * 2004-05-20 2005-12-02 Japan Atom Energy Res Inst 光学計測機器用フランジ付き超高真空観測窓の気密方法
JP2007305945A (ja) * 2006-05-15 2007-11-22 Univ Waseda モールド支持構造及びモールド支持方法
JP2008218698A (ja) * 2007-03-05 2008-09-18 Hitachi Kokusai Electric Inc 熱処理装置
JP3155842U (ja) * 2009-09-18 2009-12-03 テルモ株式会社 成分測定装置
JP2010530067A (ja) * 2007-06-15 2010-09-02 ビーピー ケミカルズ リミテッド 気相プロセス流のオンライン分析方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3155842B2 (ja) * 1992-10-30 2001-04-16 キヤノン株式会社 像ぶれ補正装置
JP3093049B2 (ja) * 1992-09-22 2000-10-03 ローム株式会社 光分岐結合器
JPH09178652A (ja) 1995-12-26 1997-07-11 Ebara Jitsugyo Kk ガス濃度測定装置及び方法
CN2262986Y (zh) * 1996-07-09 1997-09-24 北京化工大学 聚合物加工过程检测视窗装置
JP3821227B2 (ja) 2002-09-19 2006-09-13 信越化学工業株式会社 有機金属化合物の気化供給装置
US20070108378A1 (en) * 2005-11-14 2007-05-17 Toru Terabayashi High pressure optical cell for a downhole optical fluid analyzer
CN201307087Y (zh) * 2008-12-06 2009-09-09 中国海洋大学 海洋环境下的光谱观测窗口
JP5301983B2 (ja) * 2008-12-26 2013-09-25 株式会社フジキン ガスケット型オリフィス及びこれを用いた圧力式流量制御装置
JP2011257146A (ja) * 2010-06-04 2011-12-22 Horiba Ltd 光学測定用セル
CN102128720B (zh) * 2011-01-07 2012-03-21 北京理工大学 一种自紧密封式定容弹光学玻璃窗口
CN202033283U (zh) * 2011-05-09 2011-11-09 中国海洋大学 一种耐高压流通池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331000A (ja) * 1992-05-26 1993-12-14 Kobe Steel Ltd 高圧下物質観察装置
JPH11280967A (ja) * 1998-03-31 1999-10-15 Fujikin Inc 流体継手
JP2005331045A (ja) * 2004-05-20 2005-12-02 Japan Atom Energy Res Inst 光学計測機器用フランジ付き超高真空観測窓の気密方法
JP2007305945A (ja) * 2006-05-15 2007-11-22 Univ Waseda モールド支持構造及びモールド支持方法
JP2008218698A (ja) * 2007-03-05 2008-09-18 Hitachi Kokusai Electric Inc 熱処理装置
JP2010530067A (ja) * 2007-06-15 2010-09-02 ビーピー ケミカルズ リミテッド 気相プロセス流のオンライン分析方法
JP3155842U (ja) * 2009-09-18 2009-12-03 テルモ株式会社 成分測定装置

Also Published As

Publication number Publication date
CN105164512B (zh) 2017-10-20
KR101852802B1 (ko) 2018-04-27
JP2014219294A (ja) 2014-11-20
TW201512643A (zh) 2015-04-01
SG11201509118YA (en) 2015-12-30
KR20170120213A (ko) 2017-10-30
CN105164512A (zh) 2015-12-16
KR20150093235A (ko) 2015-08-17
US20160084700A1 (en) 2016-03-24
TWI512279B (zh) 2015-12-11
JP5885699B2 (ja) 2016-03-15
US9983051B2 (en) 2018-05-29

Similar Documents

Publication Publication Date Title
JP6326284B2 (ja) 原料流体濃度検出器
JP5885699B2 (ja) 脆性破壊性光透過窓板の固定構造及びこれを用いた脆性破壊性光透過窓板の固定方法
JP2014219294A5 (ja)
JP5973969B2 (ja) インライン型濃度計及び濃度検出方法
US7755763B2 (en) Attenuated total reflection sensor
JP2015031544A5 (ja)
TWI721570B (zh) 濃度測定裝置
KR100859744B1 (ko) 분광기를 이용한 액체내의 조성물 농도측정장치
WO2023281816A1 (ja) 光学測定用セル、光学分析装置、窓形成部材、及び光学測定用セルの製造方法
US20230228679A1 (en) Optical measurement cell, optical analyzer, window forming member, and method of manufacturing optical measurement cell
KR20230054126A (ko) 광결정 기반 색변화 센서의 감지능 평가용 투명 챔버 및 이를 포함하는 검사 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480010081.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14793991

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157018579

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14889388

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14793991

Country of ref document: EP

Kind code of ref document: A1