WO2023281816A1 - 光学測定用セル、光学分析装置、窓形成部材、及び光学測定用セルの製造方法 - Google Patents

光学測定用セル、光学分析装置、窓形成部材、及び光学測定用セルの製造方法 Download PDF

Info

Publication number
WO2023281816A1
WO2023281816A1 PCT/JP2022/009928 JP2022009928W WO2023281816A1 WO 2023281816 A1 WO2023281816 A1 WO 2023281816A1 JP 2022009928 W JP2022009928 W JP 2022009928W WO 2023281816 A1 WO2023281816 A1 WO 2023281816A1
Authority
WO
WIPO (PCT)
Prior art keywords
window
measurement cell
optical measurement
flange member
window material
Prior art date
Application number
PCT/JP2022/009928
Other languages
English (en)
French (fr)
Inventor
有平 坂口
武 赤松
雅和 南
嘉昭 中田
Original Assignee
株式会社堀場エステック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場エステック filed Critical 株式会社堀場エステック
Publication of WO2023281816A1 publication Critical patent/WO2023281816A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/61Non-dispersive gas analysers

Definitions

  • the present invention relates to an optical measurement cell and an optical analysis device using the optical measurement cell.
  • an optical measurement cell used in an optical analysis device such as NDIR, for example, has a configuration in which a window forming member having a window material is attached to the cell body, as shown in Patent Document 1.
  • a structure to ensure airtightness as shown in FIG. 6, a structure is considered in which a joint formed in a flange member is joined to the plane portion (main surface) of the window material.
  • the joints of this structure are required not only to have a very low leak rate, but also to have heat resistance that can withstand the temperature (200°C) during the process, and to prevent cracking of the window material during the manufacturing process.
  • Various performances are required, such as the need to prevent
  • the inventors of the present application conducted further intensive studies and found the possibility of satisfying all the various required performances by bonding the window material and the bonding portion by atomic diffusion bonding.
  • the flange member is made of, for example, stainless steel, and due to the material, it is not possible to achieve a high level of flatness on the joint surface. It is necessary to pressurize with a large pressure, which causes a problem that the window material cracks.
  • the present invention has been made to solve the above-described problems at once, and is intended for manufacturing an optical measurement cell that satisfies various required performances such as airtightness and heat resistance by atomic diffusion bonding. , the main subject of which is to prevent cracking of the window material.
  • an optical measurement cell is an optical measurement cell having a translucent window through which light is transmitted and into which a sample is introduced, wherein the window material forming the translucent window; a flange member that supports a window material; and a buffer material that is interposed between the window material and the flange member and to which the window material is joined via a metal thin film, wherein the buffer material is more rigid than the window material. is also characterized by a large Young's modulus.
  • the window material is bonded to the buffer material through the metal film. It can satisfy various performances such as airtightness and heat resistance required for In addition, since the cushioning material has a higher Young's modulus than the window material and is less deformable, the cushioning material is pressurized and joined to the flange member with a large pressure, so that the cushioning material is not cracked. It can also satisfy various performances such as airtightness and heat resistance required during the process.
  • the method of joining the cushioning material and the flange member has a wider range of options than the method of joining the cushioning material and the window material.
  • the cushioning material is bonded to the flange member via a metal film. is preferred.
  • the cushioning material has a lower coefficient of thermal expansion than the flange member.
  • the thermal deformation of the cushioning material is smaller than the thermal deformation of the flange member, so the thermal stress applied to the window material can be reduced, and cracking of the window material can be prevented.
  • the cushioning material has a large Young's modulus and is difficult to deform, so there is no risk of cracking the cushioning material.
  • the coefficient of thermal expansion of the cushioning material is closer to the coefficient of expansion of the window material than the coefficient of expansion of the flange member.
  • the cushioning material has a higher degree of flatness than the flange member.
  • the cushioning material include those made of sapphire or titanium. In this case, since the Young's modulus is large, cracking of the cushioning material due to pressure bonding can be prevented, and since the coefficient of thermal expansion is lower than that of stainless steel, cracking of the window material due to thermal stress can also be prevented.
  • the window material transmits light of 7 ⁇ m or more, more specifically zinc selenide (ZnSe) or barium fluoride (BaF 2 ).
  • ZnSe zinc selenide
  • BaF 2 barium fluoride
  • the window material is required to transmit light with a long wavelength of 7 ⁇ m or more, and when ZnSe or BaF 2 is used, these materials have a particularly low coefficient of thermal expansion. The function and effect of such a cushioning material are exhibited more remarkably.
  • an optical analysis apparatus comprises the above-described optical measurement cell, a light irradiation section for irradiating light onto the optical measurement cell, and a light detection section for detecting light transmitted through the optical measurement cell. and a concentration calculator for calculating the concentration of the component in the sample using the light intensity signal obtained by the light detector.
  • a method for manufacturing an optical measurement cell is a method for manufacturing an optical measurement cell having a translucent window through which light is transmitted and into which a sample is introduced, wherein the translucent window is formed.
  • a buffer material having a higher Young's modulus than the window material is interposed between a flat window material and a flange member that supports the window material, and the buffer material and the window material are atomically diffusion bonded. characterized by
  • the window forming member according to the present invention is a window forming member used in an optical measurement cell into which a sample is introduced, and is a flat window member forming a translucent window through which light passes; a flange member that supports the window material; and a buffer material that is interposed between the window material and the flange member and to which the window material is joined via a metal thin film, wherein the buffer material is the window material. It is characterized by having a larger Young's modulus than
  • FIG. 1 is an overall schematic diagram of a gas analyzer according to an embodiment of the present invention
  • FIG. It is the (a) perspective view and (b) front view which show the structure of the window formation member of the same embodiment.
  • It is sectional drawing which shows the structure of the window formation member of the same embodiment.
  • It is a schematic diagram which shows an example of the formation method of the window formation member of the same embodiment.
  • It is a schematic diagram which shows an example of the formation method of the window formation member of the same embodiment.
  • FIG. 3 is a cross-sectional view showing the structure of a conventional window forming member;
  • the gas analyzer 100 of this embodiment analyzes components in a sample gas using, for example, non-dispersive infrared absorption spectroscopy (NDIR).
  • NDIR non-dispersive infrared absorption spectroscopy
  • the gas analyzer 100 includes an optical measurement cell 2 into which a sample gas is introduced, a light irradiation unit 3 that irradiates the optical measurement cell 2 with infrared light, and an optical measurement A photodetector 4 for detecting infrared light that has passed through the cell 2, and a concentration calculator 5 for calculating the component concentration in the sample gas using the light intensity signal obtained by the photodetector 4. .
  • the optical measurement cell 2 has a pair of translucent windows W1 and W2 through which infrared light is transmitted, and is of a flow cell type into which the sample gas is introduced from the inlet port P1 and is discharged from the outlet port P2. is.
  • the optical measurement cell 2 has a cell body 21 provided with an inlet port P1 and an outlet port P2, and a window material 221 forming translucent windows W1 and W2. and a forming member 22 .
  • the detailed structure of the window forming member 22 of the optical measurement cell 2 will be described later.
  • the light irradiation unit 3 irradiates the optical measurement cell 2 with infrared light, and is an infrared lamp, for example. Alternatively, an LED that emits infrared light may be used. Infrared light emitted from the light irradiation unit 3 passes through one translucent window W1 of the optical measurement cell 2, passes through the internal space of the optical measurement cell 2, and passes through the other translucent window W2. , and is detected by the photodetector 4 .
  • the photodetector 4 detects infrared light that has passed through the optical measurement cell 2, and includes a photodetector 41 that detects infrared light emitted from the other translucent window W2 of the optical measurement cell 2. , and a wavelength selection filter 42 which is provided on the optical path between the other translucent window W2 and the photodetector 41 and which allows only part of the wavelengths of the infrared light to pass therethrough.
  • a light intensity signal obtained by the photodetector 41 is output to the concentration calculator 5 .
  • the functions of the density calculation unit 5 are exhibited by a computer including, for example, a CPU, a memory, an AD converter, an input/output interface, and the like.
  • the window forming member 22 is composed of a flat window material 221 that forms the translucent window W1 and a flange member 222 that supports the window material 221 by joining the window material 221. and is also referred to as a flanged viewing window.
  • a flat window material 221 that forms the translucent window W1
  • a flange member 222 that supports the window material 221 by joining the window material 221. and is also referred to as a flanged viewing window.
  • flat shape as used herein is a concept that includes not only flat plates with no bends, but also spherical or aspheric plano-convex lens shapes, wedge shapes with wedge angles, and the like.
  • the window member 221 is made of a material that transmits infrared light, and is a flat plate having a circular shape in a plan view.
  • the window material 221 of this embodiment transmits infrared light having a long wavelength of 7 ⁇ m or longer, and is made of zinc selenide (ZnSe) in this embodiment.
  • ZnSe zinc selenide
  • the window material 221 may be made of barium fluoride (BaF 2 ).
  • the flange member 222 includes a tubular joint support portion 222a that supports the window member 221, and a flange portion 222b that is provided continuously with the joint support portion 222a so as to surround the window member 221. have.
  • a passage hole H ⁇ b>1 through which infrared light passing through the window member 221 passes is formed in the central portion of the flange member 222 .
  • the joining support portion 222a and the flange portion 222b are integrally formed, and the flange member 222 is made of, for example, stainless steel.
  • the joining support portion 222a is to which a cushioning material 223, which will be described later, is joined, and which supports the main surface (flat portion) of the window member 221 via the cushioning material 223.
  • the joining support portion 222a has a cylindrical shape. is.
  • the flange portion 222b is provided with a joining support portion 222a on one surface thereof, and has an annular shape in this embodiment.
  • the flange portion 222b is attached to the cell body 21 via, for example, a metal gasket (not shown), and an ICF standard knife edge portion 222x is provided on the mounting surface of the flange portion 222b to the cell body 21. formed.
  • a plurality of through holes 222h for screw fixing to the cell body 21 are formed in the circumferential direction in the flange portion 222b.
  • the window forming member 22 of the present embodiment further includes a cushioning material 223 interposed between the window material 221 and the flange member 222.
  • the cushioning material 223 and the flange member 222 are joined by atomic diffusion bonding, It is configured by bonding the material 223 and the window material 221 by atomic diffusion bonding.
  • the bonding method between the cushioning material 223 and the flange member 222 is not limited to atomic diffusion bonding.
  • Atomic diffusion bonding is a method of bonding by interposing a metal film between the bonding surfaces of two members and applying pressure to these members.
  • the cushioning material 223 and the flange member 222 are pressure-bonded via a metal thin film M such as an Au film having a thickness of, for example, several hundred nm, and the cushioning material 223 and the window material 221 are, for example, several hundred nm thick.
  • a metal thin film M such as an Au film having a thickness of about 100 mm is interposed therebetween.
  • the flange member 222 of this embodiment is made of, for example, stainless steel as described above, and it is difficult to process to ensure a high degree of flatness (for example, flatness on the order of several nanometers). For this reason, when attempting to atomic diffusion bond the cushioning material 223 to the flange member 222, a large pressure is required. For this reason, the cushioning material 223 is required to have mechanical strength, and at least a material having a Young's modulus greater than that of the window material 221 is used. The Young's modulus described below is measured based on, for example, the following standards. ⁇ JIS Z 2280 Test method for high temperature Young's modulus of metallic materials ⁇ IS R 1602 Test method for elastic modulus of fine ceramics ⁇ JIS R 1605 Test method for high temperature elastic modulus of fine ceramics
  • the buffer material 223 preferably has a coefficient of thermal expansion at least lower than that of the flange member 222 , and more preferably has a coefficient of thermal expansion closer to that of the window member 221 than that of the flange member 222 .
  • the cushioning material 223 of this embodiment is made of sapphire (Al 2 O 3 ).
  • the cushioning material 223 is formed with a communication hole H2 communicating with the passage hole H1 described above. be.
  • the coefficient of thermal expansion of zinc selenide (ZnSe) forming the window material 221 is 7.1 ⁇ 10E-6/°C
  • the coefficient of thermal expansion of the stainless steel (SUS316L) forming the flange member 222 is 16 ⁇ 10E-6/°C.
  • the coefficient of thermal expansion of sapphire (Al 2 O 3 ) forming the buffer material 223 is 5.0 ⁇ 10E-6/°C.
  • the Young's modulus of zinc selenide (ZnSe) forming the window material 221 is 67.2 GPa
  • the Young's modulus of stainless steel (SUS316L) forming the flange member 222 is 200 GPa
  • the sapphire (Al 2 O 3 ) has a Young's modulus of about 335 GPa.
  • the cushioning material 223 made of sapphire can be processed with higher accuracy in terms of flatness and surface roughness than the flange member 222 made of stainless steel.
  • the pressure required for bonding can be smaller than the pressure for atomic diffusion bonding of the cushioning material 223 and the flange member 222 .
  • FIG. 4 An example of a method for joining the flange member 222, the cushioning material 223, and the window material 221 described above will be described with reference to FIGS. 4 and 5.
  • FIG. 4 An example of a method for joining the flange member 222, the cushioning material 223, and the window material 221 described above will be described with reference to FIGS. 4 and 5.
  • FIG. 4 An example of a method for joining the flange member 222, the cushioning material 223, and the window material 221 described above will be described with reference to FIGS. 4 and 5.
  • a metal thin film M is formed on each of the joint surfaces T1, which are opposing surfaces of the flange member 222 and the cushioning material 223 (S1).
  • the metal thin film M is formed by sputtering on the bonding surface T1.
  • the bonding surfaces T1 on which the metal thin films M are provided face each other (S2), and the flange member 222 and the cushioning material 223 are pressurized in the facing directions, whereby the flange member 222 and the cushioning material 223 are atomic diffusion bonded (pressed). pressure bonding) (S3).
  • a metal thin film M is formed on each of the joint surfaces T2, which are the facing surfaces of the buffer material 223 and the window material 221 (S4).
  • the metal thin film M is formed by sputtering on the bonding surface T2.
  • the bonding surfaces T2 on which the metal thin films M are provided face each other (S5), and the cushioning material 223 and the window material 221 are pressurized in the facing directions, whereby the cushioning material 223 and the window material 221 are atomic diffusion bonded (stressed). pressure bonding) (S6).
  • the flange member 222 and the buffer material 223 are atomically diffusion bonded, and the buffer material 223 and the window material 221 are atomically diffusion bonded to form the window forming member 22 .
  • the joint portion between the cushioning material 223 and the joint support portion 222a is made difficult to be subjected to thermal stress due to the thermal expansion of the flange portion 222b.
  • an annular groove 222M is formed on the surface of the flange portion 222b on the joint support portion 222a side (the surface opposite to the mounting surface) so as to surround the joint support portion 222a.
  • the groove 222M has an annular shape formed coaxially with the joining support portion 222a.
  • the depth of the groove 222M may be, for example, half or more of the plate thickness of the flange portion 222b.
  • the wall thickness (thickness) of the inner wall portion 222K located inside the groove 222M in the flange member 222 is configured to be smaller than the wall thickness (thickness) of the joint support portion 222a.
  • the joint area between the cushioning material and the joint support portion 222a is increased while the joint area between the cushioning material and the joint support portion 222a is increased.
  • Thermal stress due to thermal expansion of the flange portion 222b can be made less likely to be applied to the joint portion with the support portion 222a.
  • the groove 222M in this way, the distortion of the flange member 222 that occurs when the flange member 222 is attached to another member with screws or the like is transmitted to the joint portion between the cushioning material 223 and the joint support portion 222a. You can also make it harder.
  • the window material 221 is atomic diffusion bonded to the buffer material 223, various performances such as airtightness and heat resistance required between them can be achieved. can satisfy Moreover, since the cushioning material 223 has a Young's modulus larger than that of the window material 221, the cushioning material 223 can be pressed against the flange member 222 with a large force for atomic diffusion bonding. It can also satisfy various performances such as airtightness and heat resistance required during the process.
  • the cushioning material 223 is made of sapphire, which has a lower coefficient of thermal expansion than the flange member 222, the thermal deformation of the cushioning material 223 is smaller than that of the flange member 222, reducing the thermal stress applied to the window member 221. It is possible to prevent the window material 221 from cracking. Moreover, although the thermal stress due to the thermal deformation of the flange member 222 is transmitted to the cushioning material 223, there is no fear that the cushioning material 223 will crack because the cushioning material 223 has a large Young's modulus.
  • the buffer material 223 is made of sapphire and the flatness and surface roughness of the buffer material 223 can be processed with high accuracy, the pressure required to bond the window material 221 to the buffer material 223 by atomic diffusion bonding can be suppressed. , cracking of the window material 221 can be prevented.
  • the window material 221 and the flange member 222 can be joined via the cushioning material 223 described above, the selection of the material for the window material 221 can be made more flexible. Since it becomes possible to use the window material 221 made of low zinc selenide, it contributes to the analysis in the long wavelength region (for example, 7 ⁇ m or more).
  • the window material 221 is made of zinc selenide, but the window material may be made of barium fluoride (BaF 2 ).
  • Zinc selenide has a transmission wavelength of 0.5 to 22 ⁇ m
  • barium fluoride has a transmission wavelength of 0.15 to 12 ⁇ m.
  • a window material made of crystal SiO 2 ) may be used.
  • the cushioning material 223 is made of sapphire in the above embodiment, it may be made of titanium. Note that the Young's modulus of titanium is 106 GPa.
  • the flange member 222 and the cushioning material 223 are atomic diffusion bonded, but these members may be bonded by welding, soldering, brazing, adhesive, anodic bonding, or the like.
  • an Au thin film is used as the metal thin film M used for atomic diffusion bonding, but the metal thin film is not limited to this, and may be a thin film made of Al, Cr, or the like.
  • the buffer material 223 and the window material 221 are atomic diffusion bonded.
  • the flange member 222 and the buffer material 223 may be atom diffusion bonded.
  • the optical measurement cell 2 of the above embodiment has a pair of translucent windows W1 and W2, it may have a single translucent window. In this case, light is incident and emitted through one translucent window. Also, the optical measurement cell 2 may be configured to have three or more translucent windows.
  • joint support portion 222a and the flange portion 222b are integrally formed in the above embodiment, they may be separate parts.
  • the window material 221 in the above embodiment has a circular shape in plan view, it may have another shape such as a rectangular shape in plan view.
  • the cushioning material 223 has an annular shape in plan view, it may have other shapes such as a rectangular shape in plan view as long as the communication hole H2 communicating with the passage hole H1 is formed. Also good.
  • the gas analyzer of the above embodiment uses non-dispersive infrared spectroscopy (NDIR), but may use Fourier transform infrared spectroscopy (FTIR).
  • NDIR non-dispersive infrared spectroscopy
  • FTIR Fourier transform infrared spectroscopy
  • an optical analysis method using light other than infrared light may be used.
  • the optical analysis apparatus of the present invention may analyze a liquid as a sample in addition to analyzing a gas.
  • cracking of the window material can be prevented when an optical measurement cell that satisfies various required performances such as airtightness and heat resistance is manufactured by atomic diffusion bonding.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Measuring Cells (AREA)

Abstract

気密性や耐熱性等の要求される種々の性能を満たす光学測定用セルを原子拡散接合により製造するうえで、窓材の割れを防ぐべく、光が透過する透光窓W1、W2を有し、内部に試料が導入される光学測定用セル2であって、透光窓W1、W2を形成する窓材221と、窓材221を支持するフランジ部材222と、窓材221及びフランジ部材222の間に介在するとともに、金属薄膜Mを介して窓材221が接合された緩衝材223とを備え、緩衝材223として、窓材221よりもヤング率が大きいものを用いた。

Description

光学測定用セル、光学分析装置、窓形成部材、及び光学測定用セルの製造方法
 本発明は、光学測定用セル、及び、当該光学測定用セルを用いた光学分析装置等に関するものである。
 従来、例えばNDIRなどの光学分析装置に用いられる光学測定用セルは、特許文献1に示すように、セル本体に窓材を有する窓形成部材を取り付ける構成のものが考えられる。
 この窓形成部材において窓材を気密に固定する構造としてOリングを用いた場合には、わずかではあるがガスがOリングとシール箇所との隙間から又はOリング自体を透過して漏れてしまい、高気密のシールができない。また、ガスが反応性を有するものの場合には、当該ガスによってOリングが劣化することもある。
 このOリングに代えてメタルOリングを用いることも考えられるが、この場合には、シール時の線荷重が小さいと一時的にはシール性を保てても、熱サイクルが繰り返されるとリークに至る。一方、線荷重を大きくすると、窓材が割れてしまう。
 そこで、気密性を担保する構造として、図6に示すように、窓材の平面部(主面)にフランジ部材に形成した接合部を接合させる構造が考えられている。
 そして、この構造の接合部分には、非常に低いリークレートが要求されるだけでなく、プロセス中の温度(200℃)に耐えられる耐熱性をも求められ、しかも製造過程における窓材の割れをも防ぐ必要があるなど、種々の性能が要求される。
 このような中で、本願発明者は、窓材をフランジ部材の接合部に気密に接合する方法として、例えば接着剤やろう付けを検討したものの、何れの方法も要求される種々の性能を全て満たすことは極めて困難であるとの結論に到った。
 そこで、本願発明者はさらなる鋭意検討を重ねた結果、窓材と接合部とを原子拡散接合により接合することで、要求される種々の性能を全て満たし得る可能性を見出した。
 しかしながら、フランジ部材は例えばステンレス鋼等からなり、その材質上、接合面に高度な平坦度を出すことができないので、原子拡散接合により高気密性を担保するためには、接合面に窓材を大きな圧力で加圧する必要があり、これにより窓材が割れてしまうという問題が発生する。
特開2017-40655号公報
 そこで、本発明は、上述した問題点を一挙に解決すべくなされたものであり、気密性や耐熱性等の要求される種々の性能を満たす光学測定用セルを原子拡散接合により製造するうえで、窓材の割れを防ぐことをその主たる課題とするものである。
 すなわち、本発明に係る光学測定用セルは、光が透過する透光窓を有し、内部に試料が導入される光学測定用セルであって、前記透光窓を形成する窓材と、前記窓材を支持するフランジ部材と、前記窓材及び前記フランジ部材の間に介在するとともに、金属薄膜を介して前記窓材が接合された緩衝材とを備え、前記緩衝材が、前記窓材よりもヤング率が大きいことを特徴とするものである。
 このように構成された光学測定用セルによれば、緩衝材に金属膜を介して窓材が接合されており、言い換えれば、緩衝材に窓材が原子拡散接合されているので、これらの間に要求される気密性や耐熱性等の種々の性能を満たすことができる。
 しかも、緩衝材が、窓材よりもヤング率が大きく変形しにくい部材であるので、この緩衝材をフランジ部材に大きな圧力で加圧して加圧接合することで、緩衝材を割ることなく、これらの間に要求される気密性や耐熱性等の種々の性能をも満たすことができる。
 緩衝材のヤング率が大きく、割れる恐れが殆どないことから、緩衝材とフランジ部材との接合方法としては、緩衝材と窓材との接合方法よりも選択肢が広がるものの、これらの間に要求される種々の性能を確実に満たすようにするためには、緩衝材をフランジ部材に原子拡散接合することが好ましく、言い換えれば、前記緩衝材が金属膜を介して前記フランジ部材と接合されていることが好ましい。
 ここで、光学測定用セルへの熱影響によりフランジ部材が熱変形すると、その変形応力により窓材が割れる恐れがある。
 そこで、前記緩衝材が前記フランジ部材よりも熱膨張率の低いものであることが好ましい。
 これならば、フランジ部材の熱変形よりも、緩衝材の熱変形の方が小さいので、窓材に加わる熱応力を低減させることができ、窓材の割れを防ぐことができる。また、フランジ部材の熱変形による熱応力が緩衝材に伝わるものの、緩衝材はヤング率が大きく変形しにくいので、緩衝材が割れる恐れもない。
 窓材の割れをより確実に防ぐためには、前記緩衝材の熱膨張率が、前記フランジ部材の膨張率よりも前記窓材の膨張率に近いことが好ましい。
 窓材を緩衝材に大きな圧力を加圧することなく原子拡散接合できるようにするためには、前記緩衝材が前記フランジ部材よりも平坦度が高いことが好ましい。
 緩衝材の具体的な実施態様としては、サファイア又はチタンからなるものを挙げることができる。
 これならば、ヤング率が大きいので、加圧接合による緩衝材の割れを防ぐことができ、しかもステンレス鋼よりも熱膨張率が低いので、熱応力による窓材の割れも防ぐことができる。
 具体的な実施態様としては、前記窓材が7μm以上の光を透過するものであり、より具体的にはセレン化亜鉛(ZnSe)又はフッ化バリウム(BaF2)からなるものを挙げることができる。
 このように、窓材として、7μm以上の長波長の光を透過するものが求められ、ZnSeやBaF2からなるものを用いる場合、これらの材質は特に熱膨張率が低いことから、本発明に係る緩衝材の作用効果がより顕著に発揮される。
 また、本発明に係る光学分析装置は、上記の光学測定用セルと、前記光学測定用セルに光を照射する光照射部と、前記光学測定用セルを透過した光を検出する光検出部と、前記光検出部により得られた光強度信号を用いて前記試料中の成分濃度を算出する濃度算出部とを備えることを特徴とする。
 さらに、本発明に係る光学測定用セルの製造方法は、光が透過する透光窓を有し、内部に試料が導入される光学測定用セルの製造方法であって、前記透光窓を形成する平板状の窓材と、前記窓材を支持するフランジ部材との間に前記窓材よりもヤング率が高い緩衝材を介在させて、前記緩衝材と前記窓材とを原子拡散接合させることを特徴とする。
 加えて、本発明に係る窓形成部材は、内部に試料が導入される光学測定用セルに用いられる窓形成部材であって、光が透過する透光窓を形成する平板状の窓材と、前記窓材を支持するフランジ部材と、前記窓材及び前記フランジ部材の間に介在するとともに、金属薄膜を介して前記窓材が接合された緩衝材とを備え、前記緩衝材が、前記窓材よりもヤング率が大きいことを特徴とする。
 以上に述べた本発明によって、気密性や耐熱性等の要求される種々の性能を満たす光学測定用セルを原子拡散接合により製造する際に発生する窓材の割れを防ぐことができる。
本発明の一実施形態に係るガス分析装置の全体模式図である。 同実施形態の窓形成部材の構造を示す(a)斜視図、及び(b)正面図である。 同実施形態の窓形成部材の構造を示す断面図である。 同実施形態の窓形成部材の形成方法の一例を示す模式図である。 同実施形態の窓形成部材の形成方法の一例を示す模式図である。 従来の窓形成部材の構造を示す断面図である。
100・・・ガス分析装置(光学分析装置)
2・・・光学測定用セル
3・・・光照射部
4・・・光検出部
5・・・濃度算出部
W1、W2・・・透光窓
221・・・窓材
222a・・・接合支持部
222b・・・フランジ部
223・・・緩衝材
T1、T2・・・接合面
M・・・金属薄膜
 以下に、本発明の一実施形態に係るガス分析装置について、図面を参照して説明する。
<1.全体構成>
 本実施形態のガス分析装置100は、例えば非分散型赤外線吸収法(NDIR)を用いて試料ガス中の成分を分析するものである。なお、試料ガスとしては、半導体製造プロセスに用いられる材料ガスや内燃機関から排出される排ガス等が考えられる。
 具体的にガス分析装置100は、図1に示すように、試料ガスが導入される光学測定用セル2と、当該光学測定用セル2に赤外光を照射する光照射部3と、光学測定用セル2を通過した赤外光を検出する光検出部4と、光検出部4により得られた光強度信号を用いて試料ガス中の成分濃度を算出する濃度算出部5とを備えている。
 光学測定用セル2は、赤外光が透過する一対の透光窓W1、W2を有し、導入ポートP1から試料ガスが導入されて、導出ポートP2から試料ガスが導出されるフローセルタイプのものである。
 具体的に光学測定用セル2は、導入ポートP1及び導出ポートP2が設けられたセル本体21と、透光窓W1、W2を形成する窓材221を有し、セル本体21に固定される窓形成部材22とを有している。なお、光学測定用セル2の窓形成部材22の詳細構造は、後述する。
 光照射部3は、光学測定用セル2に赤外光を照射するものであり、例えば赤外線ランプである。その他、赤外光を射出するLEDであっても良い。この光照射部3から射出された赤外光は、光学測定用セル2の一方の透光窓W1を通って、光学測定用セル2の内部空間を通過し、他方の透光窓W2を通って、光検出部4により検出される。
 光検出部4は、光学測定用セル2を通過した赤外光を検出するものであり、光学測定用セル2の他方の透光窓W2から出た赤外光を検出する光検出器41と、他方の透光窓W2及び光検出器41の間の光路上に設けられ、赤外光のうち一部の波長のみを通過させる波長選択フィルタ42とを有している。光検出器41により得られた光強度信号は濃度算出部5に出力される。
 濃度算出部5は、光検出器41により得られた光強度信号を用いて試料ガス中の所定成分の濃度を算出するものである。具体的に濃度算出部5は、光強度信号から吸光度を演算し、当該吸光度と予め作成されメモリに記録された検量線とに基づいて試料ガス中の所定成分の分圧を求める。そして、濃度算出部5は、光学測定用セル2又はその前後の配管に設けられた圧力計(不図示)によって測定された光学測定用セル2内の試料ガスの全圧に基づいて、所定成分の濃度(=所定成分の分圧/試料ガスの全圧)を算出する。なお、濃度算出部5は、例えばCPU、メモリ、AD変換器、入出力インターフェース等からなるコンピュータにより、その機能が発揮される。
<2.光学測定用セル2の窓形成部材22の詳細構造>
 次に、光学測定用セル2の窓形成部材22の詳細構造について説明する。
 なお、一方の透光窓W1を形成する窓形成部材22の詳細構造と、他方の透光窓W2を形成する窓形成部材22の詳細構造とは同一又は類似しているので、以下では、一方の透光窓W1を形成する窓形成部材22の詳細構造を代表して説明する。
 窓形成部材22は、図2及び図3に示すように、透光窓W1を形成する平板状の窓材221と、当該窓材221が接合されることにより窓材221を支持するフランジ部材222とを有しており、フランジ付き観察窓とも称されるものである。なお、ここでいう平板状とは、全く曲がりのない平板のみならず、球面又は非球面の平凸のレンズ形状やウエッジ角度の付いたくさび形状なども含む概念である。
 窓材221は、赤外光を透過させる材質から形成されており、平面視において円形状をなす平板である。本実施形態の窓材221は、7μm以上の長波長の赤外光を透過するものであり、この実施形態ではセレン化亜鉛(ZnSe)から形成されている。なお、窓材221としては、フッ化バリウム(BaF2)から形成されていても良い。
 フランジ部材222は、特に図3に示すように、窓材221を支持する筒状の接合支持部222aと、窓材221を取り囲むように接合支持部222aに連続して設けられたフランジ部222bとを有している。また、フランジ部材222の中央部には、窓材221を通過した赤外光が通過する通過孔H1が形成されている。さらに、本実施形態では、接合支持部222a及びフランジ部222bは一体形成されており、フランジ部材222は、例えばステンレス鋼から形成されている。
 接合支持部222aは、後述する緩衝材223が接合されるとともに、この緩衝材223を介して窓材221の主面(平面部)を支持するものであり、本実施形態では円筒形状をなすものである。
 フランジ部222bは、その一方の面に接合支持部222aが設けられており、本実施形態では円環形状をなすものである。このフランジ部222bは、例えば金属製のガスケット(不図示)を介してセル本体21に取り付けられるものであり、フランジ部222bにおけるセル本体21への取付面には、ICF規格のナイフエッジ部222xが形成されている。また、フランジ部222bには、セル本体21にネジ固定するための貫通孔222hが周方向に複数形成されている。
 上述した構成において、窓材221とフランジ部材222との間を気密に接合する方法としては、これらの部材を例えば接着剤、ろう付け等により接合する方法が考えられる。
 しかしながら、接着剤を用いる場合は、接着剤からの脱ガス、腐食性ガスによる劣化、窓材221とフランジ部材222との熱膨張率の差による窓材221の割れなどが懸念される。
 また、ろう付けをする場合は、ろう材に銀や銅などが含まれていると、半導体プロセスにおけるメタルコンタミとなるので使用することができず、そうするとセレン化亜鉛からなる窓材221に適するろう材が無い。仮に、使用可能なろう材があったとしても、接着剤と同様に窓材221の割れが懸念される。
 そこで、本実施形態の窓形成部材22は、窓材221及びフランジ部材222の間に介在する緩衝材223をさらに備え、この緩衝材223とフランジ部材222とを原子拡散接合により接合するとともに、緩衝材223と窓材221とを原子拡散接合により接合することで構成されている。ただし、緩衝材223とフランジ部材222との接合方法は、原子拡散接合に限らない。
 原子拡散接合とは、2つの部材それぞれの接合面の間に金属膜を介在させ、これらの部材を加圧することにより接合する方法である。この実施形態では、緩衝材223及びフランジ部材222は、例えば数百nm程度のAu膜等の金属薄膜Mを介して加圧接合されており、緩衝材223及び窓材221は、例えば数百nm程度のAu膜等の金属薄膜Mを介して加圧接合されている。
 ところで、本実施形態のフランジ部材222は、上述したように例えばステンレス鋼からなるものであり、高度な平坦度(例えば数nmオーダの平坦度)を確保する加工が難しい。このことから、フランジ部材222に緩衝材223を原子拡散接合しようとすると、大きな加圧力が必要となる。このことから、緩衝材223には機械的強度が求められ、少なくとも窓材221よりもヤング率が大きいものを用いている。
 なお、以下で述べるヤング率は、例えば下記の規格に基づいて測定したものである。
・JIS Z 2280 金属材料の高温ヤング率試験方法
・IS R 1602 ファインセラミックスの弾性率試験方法
・JIS R 1605 ファインセラミックスの高温弾性率試験方法
 また、フランジ部材222が熱変形してその変形応力が窓材221に伝わると、窓材221が割れる恐れがある。そこで、緩衝材223としては、少なくともフランジ部材222よりも低い熱膨張率ものが好ましく、フランジ部材222の熱膨張率よりも窓材221の熱膨張率に近いものがより好ましい。
 以上の理由から、本実施形態の緩衝材223は、サファイア(Al2O3)からなるものを用いている。具体的にこの緩衝材223は、図3に示すように、上述した通過孔H1と連通する連通孔H2が形成されたものであり、ここでは平面視において円環状をなす例えば平板状のものである。なお、窓材221を形成するセレン化亜鉛(ZnSe)の熱膨張率は7.1×10E-6/℃、フランジ部材222を形成するステンレス鋼(SUS316L)の熱膨張率は16×10E-6/℃、緩衝材223を形成するサファイア(Al2O3)の熱膨張率は5.0×10E-6/℃である。
 また、窓材221を形成するセレン化亜鉛(ZnSe)のヤング率は67.2GPa、フランジ部材222を形成するステンレス鋼(SUS316L)のヤング率は200GPa、緩衝材223を形成するサファイア(Al2O3)のヤング率は約335GPaである。
 このサファイアからなる緩衝材223は、ステンレス鋼からなるフランジ部材222に比べて、平坦度や表面粗さを高精度に加工することができるので、この緩衝材223と窓材221とを原子拡散接合する際に必要な加圧力は、緩衝材223とフランジ部材222とを原子拡散接合する際の加圧力よりも小さくて済む。
 次に、上述したフランジ部材222、緩衝材223、及び窓材221の接合方法の一例について図4及び図5を参照しながら説明する。
 まず、図4に示すように、フランジ部材222及び緩衝材223の対向面である接合面T1それぞれに、金属薄膜Mを形成する(S1)。本実施形態では、金属薄膜Mを、接合面T1にスパッタして形成する。
 そして、金属薄膜Mが設けられた接合面T1を互いに対面させ(S2)、フランジ部材222及び緩衝材223を対向する向きに加圧することにより、フランジ部材222及び緩衝材223を原子拡散接合(加圧接合)する(S3)。
 次に、図5に示すように、緩衝材223及び窓材221の対向面である接合面T2それぞれに、金属薄膜Mを形成する(S4)。本実施形態では、金属薄膜Mを、接合面T2にスパッタして形成する。
 そして、金属薄膜Mが設けられた接合面T2を互いに対面させ(S5)、緩衝材223及び窓材221を対向する向きに加圧することにより、緩衝材223及び窓材221を原子拡散接合(加圧接合)する(S6)。
 このようにして、フランジ部材222及び緩衝材223が原子拡散接合されるとともに、緩衝材223及び窓材221が原子拡散接合されて、窓形成部材22が構成される。
 このように構成された窓形成部材22において、図3に示すように、緩衝材223と接合支持部222aとの間の接合部分に、フランジ部222bの熱膨張による熱応力が加わりにくくするように構成してある。
 具体的には、フランジ部222bにおいて接合支持部222a側の面(取付面とは反対側の面)には、接合支持部222aを取り囲むように環状の溝222Mが形成されている。ここでは、溝222Mは、接合支持部222aと同軸上に形成された円環状をなすものである。この溝222Mの深さは、例えば、フランジ部222bの板厚の半分以上とすることが考えられる。
 ここで、フランジ部材222における溝222Mの内側に位置する内側壁部222Kの壁厚(肉厚)は、接合支持部222aの壁厚(肉厚)よりも小さくなるように構成されている。このように、接合支持部222aの壁厚を大きくし、内側壁部222Kの壁厚を小さくすることにより、緩衝材と接合支持部222aとの間の接合面積を大きくしつつ、緩衝材と接合支持部222aとの間の接合部分に対してフランジ部222bの熱膨張による熱応力が加わりにくくすることができる。
 さらに、このように溝222Mを設けることにより、フランジ部材222を例えばネジ等で別部材に取り付ける際に生じるフランジ部材222の歪みを、緩衝材223と接合支持部222aとの間の接合部分に伝わりにくくすることもできる。
<3.本実施形態の効果>
 このように構成した本実施形態のガス分析装置100によれば、緩衝材223に窓材221が原子拡散接合されているので、これらの間に要求される気密性や耐熱性等の種々の性能を満たすことができる。
 しかも、緩衝材223が、窓材221よりもヤング率が大きいので、この緩衝材223をフランジ部材222に大きな力で加圧して原子拡散接合することができ、緩衝材223を割ることなく、これらの間に要求される気密性や耐熱性等の種々の性能をも満たすことができる。
 さらに、緩衝材223がフランジ部材222よりも熱膨張率の低いサファイアからなるので、フランジ部材222の熱変形よりも、緩衝材223の熱変形の方が小さく、窓材221に加わる熱応力を低減させることができ、窓材221の割れを防ぐことができる。また、フランジ部材222の熱変形による熱応力が緩衝材223に伝わるものの、緩衝材223はヤング率が大きいので、緩衝材223が割れる恐れもない。
 そのうえ、緩衝材223がサファイアからなり、平坦度や表面粗さを高精度に加工することができるので、窓材221を緩衝材223に原子拡散接合する際に必要な加圧力を抑えることができ、窓材221の割れを防ぐことができる。
 加えて、上述した緩衝材223を介して窓材221とフランジ部材222とを接合できるので、窓材221としての材料の選択に幅を持たすことができ、本実施形態のように熱膨張率の低いセレン化亜鉛からなる窓材221を用いることが可能となるので、長波長域(例えば7μm以上)の分析に資する。
<4.その他の実施形態>
 例えば、前記実施形態では、窓材221がセレン化亜鉛からなるものであったが、窓材としてはフッ化バリウム(BaF2)からなるものであっても良い。なお、セレン化亜鉛の透過波長は0.5~22μmであり、フッ化バリウムの透過波長は0.15~12μmであり、何れも長波長(例えば7μm以上)の赤外線を透過するものでる。また、透過する赤外線の波長は約4.0μmまでとなるが、窓材として水晶(SiO2)からなるものを用いても良い。
 また、緩衝材223としては、前記実施形態ではサファイアからなるものであったが、チタンからなるものであっても良い。なお、チタンのヤング率は106GPaである。
 前記実施形態では、フランジ部材222と緩衝材223とが原子拡散接合されていたが、これらの部材は、例えば溶接、半田付け、ロウ付け、接着剤、陽極接合などにより接合されていても良い。
 さらに、前記実施形態では、原子拡散接合に用いる金属薄膜MとしてAu薄膜を採用していたが、金属薄膜としてはこれに限らず、例えば、AlやCrなどからなる薄膜であっても良い。
 前記実施形態では、フランジ部材222と緩衝材223とを原子拡散接合した後に、緩衝材223と窓材221とを原子拡散接合しているが、緩衝材223と窓材221とを原子拡散接合した後に、フランジ部材222と緩衝材223とを原子拡散接合しても良い。
 前記実施形態の光学測定用セル2は、一対の透光窓W1、W2を有する構成であったが、1つの透光窓を有する構成としても良い。この場合、1つの透光窓において光の入射及び出射が行われる。また、光学測定用セル2は、3つ以上の透光窓を有する構成としても良い。
 前記実施形態では、接合支持部222aとフランジ部222bとは一体形成されるものであったが、それらを別部品としても良い。
 前記実施形態の窓材221は平面視において円形状をなすものであったが、例えば平面視において矩形状をなすなどのその他の形状であっても良い。また、緩衝材223は、平面視において円環状をなすものであったが、通過孔H1と連通する連通孔H2が形成されていれば、平面視において矩形状をなすなどその他の形状であっても良い。
 加えて、前記実施形態のガス分析装置は、非分散型赤外吸収法(NDIR)を用いたものであったが、フーリエ変換赤外分光法(FTIR)を用いたものであっても良いし、赤外光以外の光を用いた光学分析法を用いたものであっても良い。また、本発明の光学分析装置は、試料としてガスを分析する他に、液体を分析するものであっても良い。
 その他、本発明の趣旨に反しない限りにおいて様々な実施形態の変形や組み合わせを行っても構わない。
 本発明であれば、気密性や耐熱性等の要求される種々の性能を満たす光学測定用セルを原子拡散接合により製造するうえで、窓材の割れを防ぐことができる。
 

Claims (11)

  1.  光が透過する透光窓を有し、内部に試料が導入される光学測定用セルであって、
     前記透光窓を形成する窓材と、
     前記窓材を支持するフランジ部材と、
     前記窓材及び前記フランジ部材の間に介在するとともに、金属薄膜を介して前記窓材が接合された緩衝材とを備え、
     前記緩衝材が、前記窓材よりもヤング率が大きいことを特徴とする光学測定用セル。
  2.  前記緩衝材が金属膜を介して前記フランジ部材と接合されている、請求項1記載の光学測定用セル。
  3.  前記緩衝材が前記フランジ部材よりも熱膨張率の低いものである、請求項1又は2記載の光学測定用セル。
  4.  前記緩衝材の熱膨張率が、前記フランジ部材の膨張率よりも前記窓材の膨張率に近い、請求項1乃至3のうち何れか一項に記載の光学測定用セル。
  5.  前記緩衝材が前記フランジ部材よりも平坦度が高いものである、請求項1乃至4のうち何れか一項に記載の光学測定用セル。
  6.  前記緩衝材がサファイア又はチタンからなる、請求項1乃至5のうち何れか一項に記載の光学測定用セル。
  7.  前記窓材が7μm以上の光を透過するものである、請求項1乃至6のうち何れか一項に記載の光学測定用セル。
  8.  前記窓材がセレン化亜鉛又はフッ化バリウムからなる、請求項7記載の光学測定用セル。
  9.  請求項1乃至8の何れか一項に記載の光学測定用セルと、
     前記光学測定用セルに光を照射する光照射部と、
     前記光学測定用セルを透過した光を検出する光検出部と、
     前記光検出部により得られた光強度信号を用いて前記試料中の成分濃度を算出する濃度算出部とを備える、光学分析装置。
  10.  光が透過する透光窓を有し、内部に試料が導入される光学測定用セルの製造方法であって、
     前記透光窓を形成する窓材と、前記窓材を支持するフランジ部材との間に前記窓材よりもヤング率が大きい緩衝材を介在させて、
     前記緩衝材と前記窓材とを原子間接合させる、光学測定用セルの製造方法。
  11.  内部に試料が導入される光学測定用セルに用いられる窓形成部材であって、
     光が透過する透光窓を形成する窓材と、
     前記窓材を支持するフランジ部材と、
     前記窓材及び前記フランジ部材の間に介在するとともに、金属薄膜を介して前記窓材が接合された緩衝材とを備え、
     前記緩衝材が、前記窓材よりもヤング率が大きいことを特徴とする窓形成部材。
     
PCT/JP2022/009928 2021-07-09 2022-03-08 光学測定用セル、光学分析装置、窓形成部材、及び光学測定用セルの製造方法 WO2023281816A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021114537 2021-07-09
JP2021-114537 2021-07-09

Publications (1)

Publication Number Publication Date
WO2023281816A1 true WO2023281816A1 (ja) 2023-01-12

Family

ID=84801588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009928 WO2023281816A1 (ja) 2021-07-09 2022-03-08 光学測定用セル、光学分析装置、窓形成部材、及び光学測定用セルの製造方法

Country Status (2)

Country Link
TW (1) TW202303119A (ja)
WO (1) WO2023281816A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07282785A (ja) * 1994-04-06 1995-10-27 Fuji Electric Co Ltd 赤外線光源
JP2015215253A (ja) * 2014-05-12 2015-12-03 株式会社堀場製作所 分析装置
JP2017040655A (ja) * 2015-08-20 2017-02-23 株式会社堀場エステック Cp2Mg濃度測定装置
WO2017038140A1 (ja) * 2015-08-28 2017-03-09 並木精密宝石株式会社 観察用窓部材、観察用窓部材を備えた観察装置、圧力容器、配管、濁度計、及び観察用窓部材の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07282785A (ja) * 1994-04-06 1995-10-27 Fuji Electric Co Ltd 赤外線光源
JP2015215253A (ja) * 2014-05-12 2015-12-03 株式会社堀場製作所 分析装置
JP2017040655A (ja) * 2015-08-20 2017-02-23 株式会社堀場エステック Cp2Mg濃度測定装置
WO2017038140A1 (ja) * 2015-08-28 2017-03-09 並木精密宝石株式会社 観察用窓部材、観察用窓部材を備えた観察装置、圧力容器、配管、濁度計、及び観察用窓部材の製造方法

Also Published As

Publication number Publication date
TW202303119A (zh) 2023-01-16

Similar Documents

Publication Publication Date Title
KR101722013B1 (ko) 원료 유체 농도 검출기
JP5885699B2 (ja) 脆性破壊性光透過窓板の固定構造及びこれを用いた脆性破壊性光透過窓板の固定方法
JP5586595B2 (ja) 光学干渉方式の圧力センサ
JP2014219294A5 (ja)
JP5714977B2 (ja) 光学測定装置
JP2009080017A (ja) 多重反射セル式ガス分析システム用のフローセル、多重反射セル式ガス分析システム及びフローセルのミラー間距離の調整方法
JP4712745B2 (ja) 透過光測定用フローセル
WO2023281816A1 (ja) 光学測定用セル、光学分析装置、窓形成部材、及び光学測定用セルの製造方法
US20230228679A1 (en) Optical measurement cell, optical analyzer, window forming member, and method of manufacturing optical measurement cell
JP2013500461A (ja) 光学式の隔膜圧力測定セルを備えた圧力測定セル構造
WO2007119872A1 (ja) 排ガス分析装置
JP2005329330A (ja) 高温・高圧用容器用窓の構造
US20110292677A1 (en) Highly inert fluid-handling optical systems
TW202212798A (zh) 光學測定用池和光學分析裝置
JP5555908B2 (ja) 光学的測定室
JP5199584B2 (ja) 排ガス分析用センサ
JP2018204966A (ja) ガス濃度モニタ用プローブ及びガス濃度モニタ
JP2021139668A (ja) 光学セル及び光学分析装置
JPH0579464U (ja) 赤外線分析計の赤外線透過窓接合構造
JPH08247938A (ja) 赤外線ガス分析計
JPH0577758U (ja) ニューマティック型赤外線分析計の赤外線透過窓接合構造
JP2009092613A (ja) 検出器および赤外線ガス分析計
JP2011007602A (ja) レーザガス分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE