WO2024018807A1 - 濃度測定装置およびその異常検知方法 - Google Patents

濃度測定装置およびその異常検知方法 Download PDF

Info

Publication number
WO2024018807A1
WO2024018807A1 PCT/JP2023/022881 JP2023022881W WO2024018807A1 WO 2024018807 A1 WO2024018807 A1 WO 2024018807A1 JP 2023022881 W JP2023022881 W JP 2023022881W WO 2024018807 A1 WO2024018807 A1 WO 2024018807A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
photodetector
emitting element
intensity
Prior art date
Application number
PCT/JP2023/022881
Other languages
English (en)
French (fr)
Inventor
一輝 田中
正明 永瀬
耕祐 杉本
Original Assignee
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン filed Critical 株式会社フジキン
Publication of WO2024018807A1 publication Critical patent/WO2024018807A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light

Definitions

  • the present invention relates to a concentration measuring device and an abnormality detection method thereof, and more particularly to a concentration measuring device and an abnormality detection method thereof that measure the concentration of a fluid based on the intensity of light passing through the fluid in a measurement cell.
  • concentration measurement device In this type of concentration measurement device, light of a predetermined wavelength is input from a light source into a measurement cell through which a gas flows through a light entrance window, and the absorbance is measured by receiving the transmitted light that has passed through the measurement cell with a light receiving element. are doing. Furthermore, the concentration of gas within the measurement cell can be determined from the measured absorbance according to the Beer-Lambert law (for example, Patent Documents 1 to 3).
  • the measurement cell includes not only a measurement cell branched from the fluid supply line and arranged separately, but also an in-line transmitted light detection structure provided in the middle of the fluid supply line as shown in Patent Documents 1 to 3. included.
  • Some in-line concentration measuring devices are configured with a measuring cell built into the fluid supply line and an electrical unit located at a location separate from the measuring cell. Even when the measurement cell is heated to high temperatures (for example, 150° C.), damage and malfunctions due to heat can be prevented by installing optical elements and circuit elements with low high temperature resistance in the electrical unit.
  • high temperatures for example, 150° C.
  • the measurement cell and the electrical unit are connected to each other via an optical cable (optical fiber cable) or an electrical cable.
  • an optical cable is used to guide the light source light from the electrical unit to the measurement cell
  • an optical cable is used to guide the detection light that has passed through the measurement cell to the electrical unit.
  • Two optical cables are used.
  • Patent Document 3 discloses an aspect in which incident light and emitted light are transmitted using one common optical cable in a reflection type concentration measuring device.
  • Optical cables are connected, for example, by fixing an optical connector provided at the end of the cable to an adapter attached to the housing of the electrical unit using a screw tightening method or the like.
  • the connector of each optical fiber cable is detachably fixed to each of the light source light adapter and detection light adapter provided in the electrical unit.
  • ultraviolet light for example, near-ultraviolet light with a wavelength of 200 nm to 400 nm
  • ultraviolet light may leak to the outside of the device from a defective location. There was a risk of it getting lost. Since ultraviolet light is harmful to the human body, it is required that it not leak to the outside.
  • the connector may be connected and disconnected not only during the initial installation but also afterwards. Further, even during use, there is a possibility that the optical cable may be manually disconnected while the light source is on due to some mistake, or the optical fiber may be broken and damaged.
  • the present invention has been made in view of the above-mentioned problems, and provides a concentration measuring device and a method for detecting an abnormality in the concentration measuring device, which are configured to be able to detect an abnormality in an optical system. is its main purpose.
  • a concentration measuring device includes an electric unit having a light source and a photodetector including a plurality of light emitting elements that emit light of different wavelengths, a fluid unit having a measurement cell, the electric unit and the fluid unit. and a control circuit connected to the light source and the photodetector, the photodetector detects light that enters the measurement cell from the light source and exits from the measurement cell.
  • the control circuit is configured to measure the concentration of the fluid in the measurement cell by determining the concentration of the fluid in the measurement cell based on the intensity of light emitted from the plurality of light emitting elements and the output of the photodetector.
  • the optical system is configured to detect the presence or absence of an abnormality in an optical system including a light source, the transmission member, and the photodetector.
  • the concentration measuring device described above is configured to turn off the plurality of light emitting elements and issue a warning to the user when it is determined that an abnormality has occurred in the optical system.
  • At least one of the lights emitted by the plurality of light emitting elements is ultraviolet light with a wavelength of 200 nm to 400 nm.
  • the electrical unit further includes a reference light detector that receives part of the light from the light source before the light is incident on the transmission member, and the control circuit is configured to detect light emitted from the plurality of light emitting elements. The presence or absence of the abnormality can be detected based on the intensity of light, the output of the photodetector, and the output of the reference photodetector.
  • the light source includes two light emitting elements, one of the two light emitting elements is arranged to face the reference photodetector across an inclined half mirror, and one of the two light emitting elements The other light emitting element is arranged so as not to face the reference photodetector but to face the half mirror.
  • the transmission member includes a first optical fiber cable for guiding light from the light source to the measurement cell, and a first optical fiber cable for guiding light emitted from the measurement cell to the photodetector. a second optical fiber cable.
  • An abnormality detection method for a concentration measuring device includes: an electric unit having a light source and a photodetector including a plurality of light emitting elements that emit light of different wavelengths; a fluid unit having a measurement cell; and the electric unit. and a transmission member connecting the fluid unit and the light source, and a control circuit connected to the light source and the photodetector.
  • a method for detecting an abnormality in a concentration measuring device configured to measure the concentration of a fluid in the measuring cell by detecting it with a device, the method comprising: emitting light of different wavelengths from the plurality of light emitting elements; measuring the intensity of the light received by the photodetector; and comparing the intensity of the light emitted from the plurality of light emitting elements with the intensity of the light received by the photodetector.
  • the method includes the step of detecting the presence or absence of an abnormality in an optical system including a transmission member and the photodetector.
  • the light source is constituted by two light emitting elements, a first light emitting element and a second light emitting element, and the electric unit transmits a part of the light from the plurality of light emitting elements to the transmission member.
  • the abnormality detection method further includes a reference light detector that receives light before the light is incident, and the above abnormality detection method calculates the light intensity of the first light emitting element from the intensity of the light from the first light emitting element detected by the light detector.
  • the result of subtraction and the result of subtracting the light intensity of the second light emitting element from the intensity of light from the second light emitting element detected by the photodetector are below a threshold, and the reference light detector the second light emitting element from the result of subtracting the light intensity of the first light emitting element from the detected intensity of light from the first light emitting element and the intensity of light from the second light emitting element detected by the photodetector a step of determining that a light attenuation abnormality has occurred in the optical system when the result of subtracting the light intensity of the first light emitting element is below a threshold; and a step of determining that an optical attenuation abnormality has occurred in the optical system; and The result of subtracting the light intensity of the first light emitting element from the intensity of the second light emitting element is less than or equal to the threshold, and the intensity of the light from the second light emitting element detected by the photodetector is determining that an abnormality has occurred in the photodetector when the result of subtracting the light
  • the method further includes the step of determining that an abnormality has occurred in the reference photodetector when the result is less than or equal to a threshold value.
  • occurrence of an abnormality in the optical system can be detected in a relatively simple manner, and the abnormality can be detected in a relatively simple manner.
  • the light source can be stopped to prevent light leakage to the outside, and a warning can be issued to notify the user.
  • FIG. 1 is a schematic diagram showing the overall configuration of a concentration measuring device according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing an abnormality occurrence pattern in the optical system of the concentration measuring device, in which (a) shows a state where the connector of the optical fiber cable on the photodetector side has come off, and (b) shows a state where the connector of the optical fiber cable on the light source side has come off. shows.
  • FIG. 3 is a diagram illustrating abnormality occurrence patterns in the optical system of the concentration measuring device, in which (a) shows a disconnection state of the optical fiber cable, and (b) shows a state such as an extremely contaminated state in a measurement cell or a malfunction of a reflective member. shows.
  • FIG. 3 is a diagram showing a flowchart for performing an abnormality detection step during operation of the concentration measuring device.
  • FIG. 3 is a schematic diagram showing the overall configuration of a concentration measuring device in another embodiment.
  • the measurement target may be a fluid other than a gas such as a liquid.
  • FIG. 1 is a diagram showing the overall configuration of a concentration measuring device 100 according to an embodiment of the present invention.
  • the concentration measuring device 100 includes a fluid unit 10 having a measurement cell 1 incorporated in a gas supply line, an electric unit 20 that is placed apart from the fluid unit 10 and includes a light source 22 and a photodetector (or light receiving element) 241. It is equipped with
  • the electrical unit 20 While the fluid unit 10 may be heated to, for example, 100° C. to 150° C. depending on the type of gas to be measured, the electrical unit 20 is normally maintained at room temperature. This prevents the circuits and elements provided in the electrical unit 20 from being damaged or malfunctioning due to heat.
  • An external control device configured to transmit a control signal to the concentration measuring device 100 and receive a measurement signal from the concentration measuring device 100 may be connected to the electric unit 20 .
  • the separated fluid unit 10 and electrical unit 20 include a first optical fiber cable 11 (hereinafter sometimes referred to as the first optical fiber 11) and a second optical fiber cable 12 (hereinafter referred to as the second optical fiber). fiber 12) and a sensor cable (not shown).
  • the first optical fiber 11 is connected by an optical connector 13 to a light source 22 of the electrical unit 20, and the second optical fiber 12 is connected by an optical connector 14 to a photodetector 241 of the electrical unit 20.
  • the optical connectors 13 and 14 for example, FC connectors are used.
  • the transmission member 15 of this embodiment includes a first optical fiber 11, a second optical fiber 12, and optical connectors 13 and 14.
  • the first optical fiber 11 constituting the transmission member 15 is used to guide light from the light source 22 to the measurement cell 1
  • the second optical fiber 12 is used to guide light from the measurement cell 1. It is used to guide the emitted light to the photodetector 241.
  • a measurement cell 1 is provided in a fluid unit 10 that is incorporated into a gas supply line.
  • One end of the measurement cell 1 is provided with a translucent window 2 (here, a translucent plate) in contact with the flow path, and the other end of the measurement cell 1 is provided with a reflective member 4. ing.
  • the measurement cell 1 is used not only as a part of the flow path but also as an optical path for measurement light.
  • a so-called reflection type measurement cell which has a reflection member 4 and the light travels back and forth within the measurement cell 1, but the invention is not limited to this.
  • a so-called transmission type measurement cell may be used, in which light enters from one end of the measurement cell and light that has passed through the measurement cell is emitted from the other end (without a reflective member).
  • the source light and the transmitted light are each transmitted by separate optical fibers connected to both ends of the measurement cell.
  • a collimator (or collimating lens) 3 to which optical fibers 11 and 12 are connected is attached near the window 2 of the measurement cell 1.
  • the collimator 3 is configured to allow the light from the light source to enter the measurement cell 1 as parallel light, and to collect the reflected light from the reflection member 4 and make it enter the second optical fiber 12 .
  • the window portion 2 for example, a sapphire plate is used, and as the reflective member 4, for example, a sapphire plate having an aluminum layer or a dielectric multilayer film as a reflective layer on the back side is used.
  • the reflective surface of the reflective member 4 is provided perpendicular to the traveling direction of the incident light or the central axis of the measurement cell 1 .
  • the window portion 2 may be arranged at a slight inclination (for example, 1° to 5°) from a plane perpendicular to the central axis of the measurement cell 1, thereby preventing surface-reflected light from entering the measurement. The impact can be suppressed.
  • the fluid unit 10 of this embodiment further includes a pressure sensor 5 for detecting the pressure of the measurement gas flowing inside the measurement cell 1, and a temperature sensor 6 for measuring the temperature of the measurement gas.
  • the outputs of the pressure sensor 5 and the temperature sensor 6 are sent to the electrical unit 20 via a sensor cable (not shown).
  • the outputs of the pressure sensor 5 and the temperature sensor 6 can be used to measure the concentration of gas, as will be described later.
  • the electric unit 20 includes a light source 22 that generates incident light to the measurement cell 1, a photodetector 241 that receives the light emitted from the measurement cell 1, and a detection signal outputted by the photodetector 241 (receiving the received light).
  • the control circuit 28 calculates the concentration of the measurement gas based on the detection signal (detection signal corresponding to the intensity).
  • the light source 22 includes two light emitting elements (LEDs in this case), a first light emitting element 221 and a second light emitting element 222, which emit light of different wavelengths.
  • Driving currents of different frequencies are passed through the first and second light emitting elements 221 and 222 using an oscillation circuit, and the photodetector 241 is detected by frequency analysis (for example, fast Fourier transform or wavelet transform).
  • the intensity of light corresponding to each wavelength component can be measured from the detected detection signal.
  • LDs laser diodes
  • the emission wavelengths of the first light emitting element 221 and the second light emitting element 222 may be arbitrarily set in accordance with the absorption wavelength band of the fluid to be measured.
  • the emission wavelength of the first light emitting element 221 is set to, for example, 280 to 320 nm
  • the emission wavelength of the second light emitting element 222 is set to, for example, 340 to 380 nm. Set.
  • this is not limited to this; one element emits near-ultraviolet rays of 200 to 400 nm, while the other element emits near-infrared rays of 800 to 2000 nm, which can be absorbed by water vapor.
  • the emission wavelength may be selected as appropriate.
  • One or both elements may be elements that emit visible light.
  • light includes not only visible light but also at least infrared rays and ultraviolet rays, and may include electromagnetic waves of any wavelength.
  • light transmittance means that the internal transmittance of the light incident on the measurement cell is sufficiently high to enable concentration measurement.
  • the first and second light emitting elements 221 and 222 are arranged so as to irradiate light onto the half mirror 23 at an angle of 45°. Further, a reference light detector 242 is provided so as to face the second light emitting element 222 with the half mirror 23 in between. On the other hand, the first light emitting element 221 is arranged so as not to face the reference light detector 242 but to face the half mirror 23.
  • a portion of the light emitted by the first light emitting element 221 and the second light emitting element 222 is incident on the reference light detector 25, and is used to examine deterioration of the light emitting element and the optical element.
  • the remaining light is focused by the ball lens 25 and then enters the optical fiber 11 for incident light.
  • a photodiode or a phototransistor is used as a light receiving element that constitutes the photodetector 241 and the reference photodetector 25.
  • FIG. 1 shows a mode in which the optical connector 13 and the ball lens 25 and the optical connector 14 and the photodetector 241 are connected by optical fibers
  • the present invention is not limited to this. do not have.
  • the light source 22 and the optical connector 13 may be arranged adjacent to each other, and these may be directly connected, similar to the concentration measuring device described in Patent Document 2.
  • the photodetector 241 and the optical connector 14 may be arranged adjacent to each other and directly connected.
  • the control circuit 28 is configured by, for example, a processor or memory provided on a circuit board, includes a computer program that executes a predetermined operation based on an input signal, and can be realized by a combination of hardware and software.
  • the control circuit 28 is connected to the first light emitting element 221, the second light emitting element 222, the photodetector 241, and the reference photodetector 242, and performs on/off control of the first and second light emitting elements 221 and 222. , based on the outputs of the respective photodetectors 241 and 242, it is configured to calculate the fluid concentration within the measurement cell and to detect an abnormality in the concentration measuring device 100, which will be described later.
  • the processing section 28 is built into the electrical unit 20, but some or all of its components (such as a CPU) may be provided in a device outside the electrical unit 20.
  • the optical path length L of light traveling back and forth inside the measurement cell 1 can be defined as twice the distance between the window portion 2 and the reflection member 4.
  • the concentration measuring device 100 light having a wavelength ⁇ that is incident on the measuring cell 1 and then reflected by the reflecting member 4 is absorbed depending on the concentration of gas within the cell.
  • the control circuit 28 can measure the absorbance A ⁇ at the wavelength ⁇ by frequency-analyzing the detection signal from the photodetector 241, and can further measure the absorbance A ⁇ at the wavelength ⁇ based on the Beer-Lambert law shown in the following equation.
  • the molar concentration CM of the gas in the cell can be calculated from the absorbance A ⁇ .
  • I 0 is the intensity of the incident light entering the measurement cell
  • I is the intensity of the light passing through the gas in the measurement cell
  • ⁇ ' is the molar extinction coefficient (m 2 /mol)
  • L is the measurement cell.
  • the optical path length (m) of CM is the molar concentration (mol/m 3 ).
  • the molar extinction coefficient ⁇ ' is a coefficient determined by the substance.
  • the incident light intensity I0 in the above formula is calculated when there is no light-absorbing gas in the measurement cell 1 (for example, when it is filled with a gas that does not absorb ultraviolet light or when it is evacuated). ) may be regarded as the incident light intensity I0 .
  • the concentration measuring device 100 may be configured to refer to the outputs of the pressure sensor 5 and the temperature sensor 6 to determine the concentration of the gas flowing through the measurement cell 1.
  • the concentration measuring device 100 may be configured to refer to the outputs of the pressure sensor 5 and the temperature sensor 6 to determine the concentration of the gas flowing through the measurement cell 1.
  • Cv is the concentration (volume %) of the measurement gas in the total gas
  • ⁇ a is the extinction coefficient of the measurement gas
  • Pt is the total pressure that can be measured by the pressure sensor 5
  • T is the temperature sensor 6.
  • R is the gas constant.
  • L is the optical path length of the measurement cell
  • I0 is the incident light intensity
  • I is the transmitted light intensity.
  • the concentration measurement device 100 can determine the concentration of the fluid in the measurement cell 1 based on the output of the photodetector 241 (transmitted light intensity I).
  • the concentration measurement device 100 can determine the concentration of the fluid in the measurement cell 1 based on the output of the photodetector 241 (transmitted light intensity I).
  • the concentration measurement device 100 can determine the concentration of the fluid in the measurement cell 1 based on the output of the photodetector 241 (transmitted light intensity I).
  • the concentration measurement device 100 can determine the concentration of the fluid in the measurement cell 1 based on the output of the photodetector 241 (transmitted light intensity I).
  • an abnormality occurs in the optical system based on the outputs of the first light emitting element 221 and the second light emitting element 222 and the intensity of light received by the photodetector 241. It is configured to be able to detect whether or not it has been done.
  • FIGS. 2(a), 2(b), 3(a), and 3(b) are diagrams illustrating patterns of abnormality occurrence in the optical path of the optical system. Each figure shows a different pattern of abnormality occurrence.
  • the first light emitting element 221 is described as LED1
  • the second light emitting element 222 is described as LED2
  • the photodetector 241 is described as PD1
  • the reference photodetector 242 is described as PD2.
  • measurement cell 1 is described as Cell.
  • pattern 1 there is a case where the connector 14 of the second optical fiber 12 that guides the detection light that has traveled back and forth through the measurement cell 1 is disconnected in the electrical unit 20. .
  • detection light for example, ultraviolet light
  • the photodetector 241 then receives no light from the measurement cell 1, and its output typically becomes zero.
  • the optical fiber 12 may be broken in the middle, resulting in a disconnection state.
  • the light source light will be exposed to the outside through the damaged portion of the optical fiber 12.
  • the optical fiber 11 for incident light is damaged instead of the optical fiber 12 for emitted light.
  • the photodetector 241 then receives no light from the measurement cell 1, and its output typically becomes zero.
  • the photodetector 241 does not receive light of sufficient intensity from the measurement cell 1, and its output becomes small, and in some cases becomes zero.
  • the first light emitting element 221 and the second light emitting element 222 can emit light of different wavelengths.
  • the photodetector 241 can measure the intensity of light emitted from each light emitting element by frequency-analyzing the detection signal. Therefore, by turning on both light-emitting elements and measuring the intensity of light from each light-emitting element with the photodetector 241, it is possible to determine whether an abnormality has occurred in the optical path of the optical system for light of at least two wavelengths. It is possible to appropriately judge whether or not.
  • FIG. 4 is a flowchart showing an example of an abnormality detection process using the output of the photodetector 241.
  • a process for performing abnormality detection in advance such as when starting the operation of the concentration measuring device 100, will be described.
  • step S1 both the first light emitting element 221 (LED1) and the second light emitting element 222 (LED2) are turned on.
  • step S2 it is determined whether the output of the photodetector 241 (PD1) is below a threshold value.
  • the received light intensity from the first light emitting element 221 and the received light intensity from the second light emitting element 222 are detected, and each received light intensity is set to a predetermined threshold value. It is determined whether the following is true.
  • the threshold value may be arbitrarily set, for example, to a value that is added to zero by an amount equivalent to an assumed error, or to a value that is half the output value when the light source is normally turned on.
  • step S2 when the output of the photodetector (PD1) exceeds the threshold (or is greater than or equal to the threshold), it is determined that no abnormality has occurred in the optical system, and the abnormality detection process ends, as shown in step S3. Then, the process shifts to normal operation S4, that is, a state in which concentration measurement can be performed.
  • the extent to which light reaches the photodetector (PD1) from two light-emitting elements with different wavelengths is checked, so if, for example, light of one wavelength is unintentionally absorbed by the gas, In this case, the light of the other wavelength sufficiently reaches the optical system, and it can be determined that there is no abnormality in the optical system itself having the same optical path. However, in order to more reliably determine that no abnormality has occurred, it may be confirmed that sufficient light of both wavelengths reaches the photodetector.
  • step S2 when the output of PD1 is below the threshold (or less than the threshold), it is determined that an abnormality has occurred in the optical path of the optical system, as shown in step S5. Then, as shown in step S6, a warning is issued to the user, and the first and second light emitting elements LED1 and LED2 are typically automatically turned off.
  • a warning to the user may be given by any method such as displaying on a display or emitting sound or light to notify of an abnormality.
  • step S7 the user who received the alert can carry out the work of confirming whether or not the optical fiber connector connection is properly performed.
  • the LEDs 1 and 2 are turned off in step S6, even if the connector is disconnected, the user is not exposed to ultraviolet rays and can work safely.
  • the user can also safely check whether an abnormality such as a disconnection of the optical fiber cable has occurred.
  • step S8 after checking and repairing the connection, the first light emitting element (LED1) and the second light emitting element (LED2) are turned on again in accordance with the user's command to prevent further abnormalities. Perform the detection process.
  • step S9 when the output of PD1 exceeds the threshold value (or is more than the threshold value), it is determined that the abnormality in the optical system has been resolved by the repair work in step S7, and the normal operation shown in step S4 is performed. to move to.
  • the threshold value may be the same as the threshold value used in step S2, or may be different.
  • step S9 if the output of the PD 1 is below the threshold (or below the threshold) in step S9, it is determined that an abnormality other than the connector (or optical fiber breakage) has occurred, as shown in step S10, and the step As shown in S11, a warning is issued to the user and the first and second light emitting elements LED1 and LED2 are typically automatically turned off.
  • the user should be aware that the abnormality is not due to a defect that is easily visible from the outside, such as a poor connector connection or disconnection, but rather due to excessive dirt on the translucent member inside the measurement cell 1 or an abnormal placement of the optical element. It can be suspected that this is occurring. It is also possible to suspect that the first light emitting element 221, the second light emitting element 222, or the photodetector 241 in the electric unit 20 is defective. Of course, there is a possibility that the previous repair of the connector or optical fiber was not performed properly, so these repair operations may be performed again.
  • any defect confirmation work can be performed with the first and second light emitting elements LED1 and LED2 turned off, so it is safe, and this process is performed before operation. This makes it possible to avoid, for example, continuing to use the device in a state where ultraviolet rays leak outside.
  • the abnormality detection process can be performed in a relatively simple and short time using the elements included in conventional concentration measuring devices, it operates stably while improving safety without increasing costs. can be done.
  • FIG. 5 is a flowchart of an abnormality detection process that can be performed at any timing during the operation of the concentration measuring device 100. This abnormality detection step can be performed constantly or periodically in parallel with the concentration measurement step.
  • LED1 refers to the first light emitting element 221 or its light intensity (a specified value preset based on measurement results etc.)
  • LED2 refers to the second light emitting element 222 or its light intensity (preliminarily set based on measurement results).
  • PD1 refers to the photodetector 241 or its output
  • PD2 refers to the reference photodetector 242 or its output.
  • the LED 1 is an element that emits light with a wavelength that can be absorbed to some extent by the gas in the measurement cell 1
  • the LED 2 is an element that emits light with a wavelength that is not absorbed in the measurement cell.
  • a value is obtained by subtracting the light intensities of the first and second light emitting elements LED1 and LED2 from the light intensity detected by the photodetector (PD1).
  • the photodetector (PD1) can measure the received light intensity of the light emitted from the light emitting element LED1 and the received light intensity of the light emitted from the light emitting element LED2, respectively, by frequency analysis or the like.
  • a value is obtained by subtracting the light intensities of the light emitting elements LED1 and LED2 from the light intensity detected by the reference photodetector (PD2).
  • the reference photodetector (PD2) can also measure the received light intensity of the light emitted from the light emitting element LED1 and the received light intensity of the light emitted from the light emitting element LED2, respectively, by frequency analysis or the like.
  • step S22 both LEDs are turned off and an alarm is sent to the user to inform the user that a light intensity attenuation abnormality has occurred in the optical system (for example, an abnormality caused by extreme dirt on the measurement cell window or reflective member). can be uttered and communicated. Furthermore, when an abnormality is detected, the subsequent operations are stopped and the system enters a standby state.
  • the light intensity at the photodetector PD1 decreases significantly depending on the concentration of the gas, and becomes below the threshold value. can also be considered.
  • the intensity of light from the second light emitting element LED2 that is not absorbed by the gas is also detected by the photodetector PD1 at the same time, attenuation of light that is not absorbed by the gas is accurately detected. can do. This allows abnormalities in the optical system to be detected more accurately.
  • step S23 the value obtained by subtracting the light intensity of the light emitting element LED1 from the light intensity detected by the photodetector (PD1) is less than or equal to the threshold value, and the value obtained by subtracting the light intensity from the light intensity detected by the photodetector (PD1) , it is determined whether the value obtained by subtracting the light intensity of the light emitting element LED2 is less than or equal to a threshold value.
  • a threshold value if both are below the threshold, it is considered that an abnormality has occurred in the photodetector (PD1), so as shown in step S24, both LEDs are turned off and the photodetector (PD1) is turned off. It is possible to notify the user that an abnormality has occurred in the device (PD1) by issuing an alarm. Furthermore, when an abnormality is detected, the subsequent operations are stopped and the system enters a standby state.
  • step S23 if it is determined in step S23 that the light from both the light emitting element LED1 and the light emitting element LED2 has not sufficiently reached the photodetector (PD1), it does not mean that an abnormality has occurred in the photodetector (PD1). It is also conceivable that the optical connector may have fallen off or the optical fiber cable may have been disconnected, as shown in FIGS. 2(a), 2(b), and 3(a). Therefore, in this case, the user can check the connectors and optical fiber cables and perform repair work if necessary.
  • step S25 the value obtained by subtracting the light intensity of the light emitting element LED1 from the light intensity detected by the photodetector (PD1) is equal to or less than the threshold value, and the light intensity detected by the reference photodetector (PD2) From this, it is determined whether the value obtained by subtracting the light intensity of the light emitting element LED1 is less than or equal to the threshold value.
  • both are below the threshold value, it is considered that an abnormality has occurred in the light emitting element LED1, so as shown in step S26, both LEDs are turned off, and an abnormality has occurred in LED1. It is possible to notify the user by issuing an alarm. Furthermore, when an abnormality is detected, the subsequent operations are stopped and the system enters a standby state.
  • step S27 the value obtained by subtracting the intensity of the light emitting element LED2 from the light intensity detected by the photodetector (PD1) is equal to or less than the threshold value, and the value obtained by subtracting the intensity of the light emitting element LED2 from the light intensity detected by the reference photodetector (PD2) , it is determined whether the value obtained by subtracting the intensity of the light emitting element LED2 is less than or equal to a threshold value.
  • a threshold value if both are below the threshold value, it is considered that an abnormality has occurred in the light emitting element LED2, so as shown in step S28, both LEDs are turned off, and an abnormality has occurred in the LED2. It is possible to send an alarm to the user to notify the user that the Furthermore, when an abnormality is detected, subsequent operations are stopped and the system enters a standby state.
  • step S29 the value obtained by subtracting the intensity of the light emitting element LED1 from the light intensity detected by the reference photodetector (PD2) is equal to or less than the threshold value, and the light intensity detected by the reference photodetector (PD2) From this, it is determined whether the value obtained by subtracting the intensity of the light emitting element LED2 is less than or equal to the threshold value.
  • both are below the threshold, it is considered that an abnormality has occurred in the reference photodetector (PD2), so as shown in step S30, both LEDs are turned off and the reference photodetector (PD2) is turned off. It is possible to issue an alarm to notify the user that an abnormality has occurred in the photodetector (PD2). Furthermore, when an abnormality is detected, subsequent operations are stopped and the system enters a standby state.
  • FIG. 6 shows a concentration measuring device 200 of another embodiment.
  • the concentration measuring device 200 components similar to those in the above-described concentration measuring device 100 are given the same reference numerals, and detailed explanations may be omitted.
  • a single common optical fiber cable is used as the transmission member 15.
  • This optical fiber cable guides the light from the light source 22 to the measurement cell 1 through the window 2, receives the light reflected by the reflection member 4 of the measurement cell 1, and transmits the light through the beam splitter 230.
  • the light can be guided to the detector 241.
  • Beam splitter 230 can also direct a portion of the light from light source 22 onto reference photodetector 242 .
  • the light source 22 includes a first light emitting element 221, a second light emitting element 222, a third light emitting element 223, and four light emitting elements 224, each of which emits light of a different wavelength. It is an LED that emits. Light of a plurality of wavelengths emitted by the light emitting elements 221 to 224 is combined by wavelength division multiplexing (WDM) multiplexers 231, 232, and 233, and is input into the measurement cell 1. In this way, the light source 22 may be configured using three or more light emitting elements. However, it is not necessary to generate source light using all the light emitting elements, and any number of light emitting elements may be driven to generate source light.
  • WDM wavelength division multiplexing
  • the concentration measuring device 200 Similarly to the concentration measuring device 100 shown in FIG. 1, in the concentration measuring device 200, light is emitted simultaneously from a plurality of light emitting elements, and an abnormality in the optical system is detected by referring to the output of the photodetector 242. Is possible. It is also possible to detect an abnormality in the light emitting element or the light receiving element by also referring to the output of the reference light detector 242.
  • the concentration measuring device according to the embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • a configuration may be used in which reflective members are installed at both ends of the measurement cell and light travels back and forth within the measurement cell 1 multiple times.
  • the concentration measuring device and its abnormality detection method according to the embodiments of the present invention are used in semiconductor manufacturing equipment, etc., and are suitably used as a concentration measuring device and its abnormality detection method for measuring the concentration of various fluids. Ru.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

濃度測定装置100は、互いに異なる波長の光を発する複数の発光素子LED1、LED2を含む光源22および光検出器241を有する電気ユニット20と、測定セル1を有する流体ユニット10と、電気ユニットと流体ユニットとを接続する伝送部材15と、光源と前記光検出器とに接続された制御回路28とを備え、複数の発光素子から発せられる光の強度と、光検出器の出力とに基づいて、光源、伝送部材、および光検出器を含む光学系の異常の有無を検出するように構成されている。

Description

濃度測定装置およびその異常検知方法
 本発明は、濃度測定装置およびその異常検知方法に関し、特に、測定セル内の流体を通過した光の強度に基づいて流体の濃度を測定する濃度測定装置およびその異常検知方法に関する。
 従来、有機金属(MO)等の液体材料や固体材料から形成された原料ガスを半導体製造装置へと供給するガス供給ラインに組み込まれ、ガス供給ラインを流れるガスの濃度を測定するように構成された濃度測定装置(いわゆるインライン式濃度測定装置)が知られている。
 この種の濃度測定装置では、ガスが流れる測定セルに、光入射窓を介して光源から所定波長の光を入射させ、測定セル内を通過した透過光を受光素子で受光することによって吸光度を測定している。また、測定した吸光度から、ランベルト・ベールの法則に従って測定セル内のガスの濃度を求めることができる(例えば、特許文献1~3)。
 なお、本明細書において、流体の濃度を検出するために用いられる種々の透過光検出構造を広く、測定セルと呼んでいる。測定セルには、流体供給ラインから分岐して別個に配置された測定セルだけでなく、特許文献1~3に示されるような流体供給ラインの途中に設けられたインライン式の透過光検出構造も含まれる。
国際公開第2021/054097号 国際公開第2020/213385号 国際公開第2018/021311号
 インライン式の濃度測定装置には、流体供給ラインに組み込まれる測定セルと、この測定セルとは離れた場所に配置される電気ユニットとによって構成されているものがある。測定セルが高温(例えば150℃)にまで加熱される場合にも、高温耐性の低い光学素子や回路素子を電気ユニットに設置することによって、熱による損傷や不具合の発生を防止することができる。
 上記構成において、測定セルと電気ユニットは、光ケーブル(光ファイバケーブル)や電気ケーブルを介して互いに接続される。特許文献1および2に記載の濃度測定装置では、光学系を形成するために、電気ユニットから測定セルに光源光を導くための光ケーブルと、測定セル内を通過した検出光を電気ユニットに導くための光ケーブルとの2本の光ケーブルが用いられている。また、特許文献3には、反射型の濃度測定装置において、入射光と出射光とを共通の1本の光ケーブルを用いて伝送する態様が開示されている。
 光ケーブルの接続は、例えば、ケーブル端部に設けた光コネクタを、電気ユニットの筐体に取り付けられたアダプタにネジ締め方式などで固定することによって行われている。上記のように2本の光ケーブルを用いる場合、電気ユニットに設けられた光源光用のアダプタおよび検出光用のアダプタのそれぞれに対して、各光ファイバケーブルのコネクタが着脱可能に固定される。
 しかしながら、この種の濃度測定装置において、意図せずにコネクタが外れた状態であったり、光ケーブルが破損するなどして、光学系の光路に不具合が生じることがある。そして、有機金属ガスなどの濃度測定のために、光源光として紫外光(例えば、波長200nm~400nmの近紫外光)を用いる場合に、不具合が生じた箇所から装置の外部に紫外光が漏れてしまうおそれがあった。紫外光は、人体にとって有害であるため、外部に漏れないことが求められている。
 濃度測定装置は、信頼性試験の実施などのために、電気ユニットを取り外して移動させるケースもあり、最初の設置時だけでなく、その後もコネクタの着脱を行う場合がある。また、使用中であっても、何らかの手違いで、光源をオンにしたまま人為的に光ケーブルを外してしまう、または、光ファイバが折れて破損することも考えられる。
 したがって、紫外光が外部に暴露した状態でユーザが気付かずに使用することを防止することが求められる。このためには、濃度測定装置の光学系に異常が生じていることを、任意のタイミングで検知できることが有利であった。また、紫外光以外の光を用いる場合においても、濃度測定を適切に行うためには、光学系の異常の発生を、早い段階で簡単に検知できることが有利であった。
 本発明は、上記課題を鑑みてなされたものであり、光学系に異常が生じていることを検知することができるように構成された濃度測定装置および濃度測定装置の異常検知方法を提供することをその主たる目的とする。
 本発明の実施形態による濃度測定装置は、互いに異なる波長の光を発する複数の発光素子を含む光源および光検出器を有する電気ユニットと、測定セルを有する流体ユニットと、前記電気ユニットと前記流体ユニットとを接続する伝送部材と、前記光源と前記光検出器とに接続された制御回路とを備え、前記光源から前記測定セルに入射し前記測定セルから出射した光を前記光検出器で検出することによって前記測定セル内の流体の濃度を測定するように構成されており、前記制御回路は、前記複数の発光素子から発せられる光の強度と、前記光検出器の出力とに基づいて、前記光源、前記伝送部材、および前記光検出器を含む光学系の異常の有無を検出するように構成されている。
 ある実施形態において、上記の濃度測定装置は、前記光学系に異常が生じていると判断されたときに、前記複数の発光素子をオフにし、ユーザに警告を発するように構成されている。
 ある実施形態において、前記複数の発光素子が発する光のうちの少なくとも1つは、波長200nm~400nmの紫外光である。
 ある実施形態において、前記電気ユニットは、前記光源からの光を前記伝送部材に入射させる前に一部を受光する参照光検出器をさらに備え、前記制御回路は、前記複数の発光素子から発せられる光の強度と、前記光検出器の出力と、さらに、前記参照光検出器の出力に基づいて、前記異常の有無を検出することができる。
 ある実施形態において、前記光源は、2つの発光素子を含み、前記2つの発光素子の一方が、傾斜配置されたハーフミラーを挟んで前記参照光検出器と対向するように配置され、前記2つの発光素子の他方が前記参照光検出器と対向せずに前記ハーフミラーに面するように配置されている。
 ある実施形態において、前記伝送部材は、前記光源からの光を前記測定セルに導光するための第1の光ファイバケーブルと、前記測定セルから出射した光を前記光検出器に導光するための第2の光ファイバケーブルとを含む。
 本発明の実施形態による濃度測定装置の異常検出方法は、互いに異なる波長の光を発する複数の発光素子を含む光源および光検出器を有する電気ユニットと、測定セルを有する流体ユニットと、前記電気ユニットと前記流体ユニットとを接続する伝送部材と、前記光源と前記光検出器とに接続された制御回路とを備え、前記光源から前記測定セルに入射し前記測定セルから出射した光を前記光検出器で検出することによって前記測定セル内の流体の濃度を測定するように構成された濃度測定装置の異常を検出する方法であり、前記複数の発光素子から異なる波長の光を発するステップと、前記光検出器で受光した光の強度を測定するステップと、前記複数の発光素子から発せられた光の強度と、前記光検出器で受光した光の強度とを比較することによって、前記光源、前記伝送部材、および前記光検出器を含む光学系の異常の有無を検出するステップとを含む。
 ある実施形態において、前記光源は、第1の発光素子および第2の発光素子の2つの発光素子によって構成され、前記電気ユニットは、前記複数の発光素子からの光の一部を前記伝送部材に入射させる前に受光する参照光検出器をさらに備え、上記の異常検出方法は、前記光検出器で検出した前記第1の発光素子からの光の強度から前記第1の発光素子の光強度を減算した結果および前記光検出器で検出した前記第2の発光素子からの光の強度から前記第2の発光素子の光強度を減算した結果が閾値以下であり、かつ、前記参照光検出器で検出した前記第1の発光素子からの光の強度から前記第1の発光素子の光強度を減算した結果および前記光検出器で検出した前記第2の発光素子からの光の強度から前記第2の発光素子の光強度を減算した結果が閾値以下であるときに、光学系の光減衰異常が生じていると判断するステップと、前記光検出器で検出した前記第1の発光素子からの光の強度から前記第1の発光素子の光強度を減算した結果が閾値以下であり、かつ、前記光検出器で検出した前記第2の発光素子からの光の強度から前記第2の発光素子の光強度を減算した結果が閾値以下であるときに、前記光検出器に異常が生じていると判断するステップと、前記光検出器で検出した前記第1の発光素子からの光の強度から前記第1の発光素子の光強度を減算した結果が閾値以下であり、かつ、前記参照光検出器で検出した前記第1の発光素子からの光の強度から前記第1の発光素子の光強度を減算した結果が閾値以下であるときに、前記第1の発光素子に異常が生じていると判断するステップと、前記光検出器で検出した前記第2の発光素子からの光の強度から前記第2の発光素子の光強度を減算した結果が閾値以下であり、かつ、前記参照光検出器で検出した前記第2の発光素子からの光の強度から第2の発光素子の光強度を減算した結果が閾値以下であるときに、前記第2の発光素子に異常が生じていると判断するステップと、前記参照光検出器で検出した前記第1の発光素子からの光の強度から前記第1の発光素子の光強度を減算した結果が閾値以下であり、かつ、前記参照光検出器で検出した前記第2の発光素子からの光の強度から前記第2の発光素子の光強度を減算した結果が閾値以下であるときに、前記参照光検出器に異常が生じていると判断するステップとをさらに含む。
 本発明の実施形態によれば、測定セルと電気ユニットとが分離して設けられる濃度測定装置において、光学系における異常の発生を比較的簡便な方式で検出することができ、異常が検出されたときには、光源を停止して外部への光漏れを防ぎ、また、ユーザに警告を発して知らせることができる。
本発明の実施形態に係る濃度測定装置の全体構成を示す模式図である。 濃度測定装置の光学系における異常発生パターンを示す図であり、(a)は、光検出器側の光ファイバケーブルのコネクタ脱落状態を示し、(b)は光源側の光ファイバケーブルのコネクタ脱落状態を示す。 濃度測定装置の光学系における異常発生パターンを示す図であり、(a)は、光ファイバケーブルの断線状態を示し、(b)は測定セルにおける極度の汚染状態または反射部材の不具合発生などの状態を示す。 光学系の異常検知工程を行うためのフローチャートを示す図である。 濃度測定装置の動作中に異常検知工程を行うためのフローチャートを示す図である。 他の態様における濃度測定装置の全体構成を示す模式図である。
 以下、図面を参照しながら本発明の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。また、以下には測定対象をガスとする濃度測定装置について説明するが、測定対象は液体などのガス以外の流体であってもよい。
 図1は、本発明の実施形態にかかる濃度測定装置100の全体構成を示す図である。濃度測定装置100は、ガス供給ラインに組み込まれる測定セル1を有する流体ユニット10と、流体ユニット10と離隔して配置され、光源22および光検出器(または受光素子)241を含む電気ユニット20とを備えている。
 流体ユニット10は、測定ガスの種類によって例えば100℃~150℃程度にまで加熱される場合もある一方で、電気ユニット20は、通常は、室温に維持されている。これにより、電気ユニット20に設けられた回路や素子が熱により損傷・動作不良することが防止される。電気ユニット20には、濃度測定装置100への制御信号の送信や、濃度測定装置100からの測定信号の受信を行うように構成された外部制御装置が接続されていてもよい。
 分離された流体ユニット10と電気ユニット20とは、第1の光ファイバケーブル11(以下、第1の光ファイバ11と称することがある)、第2の光ファイバケーブル12(以下、第2の光ファイバ12と称することがある)、および、センサケーブル(図示せず)によって、光学的および電気的に接続されている。第1の光ファイバ11は、光コネクタ13によって電気ユニット20の光源22に接続され、第2の光ファイバ12は、光コネクタ14によって電気ユニット20の光検出器241に接続されている。光コネクタ13、14としては、例えばFCコネクタが用いられる。
 本明細書において、流体ユニット10と電気ユニット20とを光学的に接続するための部材を、まとめて、伝送部材15と称することがある。本実施形態の伝送部材15は、第1の光ファイバ11、第2の光ファイバ12、および光コネクタ13、14を含んでいる。濃度測定装置100において、伝送部材15を構成する第1の光ファイバ11は、光源22からの光を測定セル1に導光するために用いられ、第2の光ファイバ12は、測定セル1から出射した光を光検出器241に導光するために用いられる。
 ガス供給ラインに組み込まれる流体ユニット10には、測定セル1が設けられている。測定セル1の一方の端部には、流路に接する透光性の窓部2(ここでは透光性プレート)が設けられ、測定セル1の他方の端部には反射部材4が設けられている。ガスGが流れる流体ユニット10において、測定セル1は、流路の一部として利用されるとともに、測定光の光路としても利用される。
 なお、本実施形態では、反射部材4を有し、測定セル1内を光が一往復する、いわゆる反射型の測定セルが用いられているが、これに限られない。他の態様において、測定セルの一端から光を入射させ、他端(反射部材なし)から測定セルを通過した光を出射させる、いわゆる透過型の測定セルを用いてもよい。この場合、光源光および透過光は、測定セルの両端に接続された別々の光ファイバによってそれぞれ伝送される。
 測定セル1の窓部2の近傍には、光ファイバ11、12が接続されたコリメータ(またはコリメートレンズ)3が取り付けられている。コリメータ3は、光源からの光を測定セル1に平行光として入射させるとともに、反射部材4からの反射光を集光して第2の光ファイバ12に入射させるように構成されている。
 窓部2としては、例えば、サファイアプレートが用いられ、反射部材4としては、例えば、反射層としてのアルミニウム層や誘電体多層膜を裏面側に有するサファイアプレートが用いられる。反射部材4の反射面は、入射光の進行方向または測定セル1の中心軸に対して垂直になるように設けられている。なお、窓部2は、測定セル1の中心軸に対して垂直な面から、わずかに(例えば1°~5°)傾けて配置されていてもよく、これによって、表面反射光による測定への影響を抑制し得る。
 本実施形態の流体ユニット10は、さらに、測定セル1内を流れる測定ガスの圧力を検出するための圧力センサ5と、測定ガスの温度を測定するための温度センサ6とを備えている。圧力センサ5および温度センサ6の出力は、図示しないセンサケーブルを介して電気ユニット20に送られる。圧力センサ5および温度センサ6の出力は、後述するように、ガスの濃度測定のために用いられ得る。
 一方、電気ユニット20は、測定セル1への入射光を発生させる光源22と、測定セル1から出射した光を受けとる光検出器241と、光検出器241が出力する検出信号(受けとった光の強度に応じた検出信号)に基づいて測定ガスの濃度を演算する制御回路28とを備えている。
 本実施形態において、光源22は、互いに異なる波長の光を発する第1の発光素子221および第2の発光素子222の2つの発光素子(ここではLED)によって構成されている。第1および第2の発光素子221、222には、発振回路を用いて異なる周波数の駆動電流が流され、周波数解析(例えば、高速フーリエ変換やウェーブレット変換)を行うことによって、光検出器241が検出した検出信号から、各波長成分に対応した光の強度を測定することができる。発光素子221、222としては、LED以外にも、LD(レーザダイオード)を用いることもできる。
 第1の発光素子221および第2の発光素子222の発光波長は、測定対象とする流体の吸光波長帯に対応して任意に設定されてよい。近紫外線を吸収する種々の流体の濃度測定を行う場合、第1の発光素子221の発光波長は、例えば280~320nmに設定され、第2の発光素子222の発光波長は、例えば340~380nmに設定される。ただし、これに限られず、一方の素子は200~400nmの近紫外線を発するのに対して、他方の素子は水蒸気が吸収し得る800~2000nmの近赤外線を発するなど、用途に応じて各素子の発光波長は適宜選択されてよい。一方または両方の素子は、可視光線を発する素子であってもよい。なお、本明細書において、「光」とは、可視光線のみならず、少なくとも赤外線、紫外線を含み、任意の波長の電磁波を含み得る。また、透光性とは、測定セルに入射させる前記の光に対する内部透過率が濃度測定を行い得る程度に十分に高いことを意味する。
 光源22において、第1および第2の発光素子221、222は、ハーフミラー23に対していずれも45°の角度で光を照射するように配置されている。また、ハーフミラー23を挟んで第2の発光素子222と対面するように、参照光検出器242が設けられている。一方、第1の発光素子221は、参照光検出器242と対面しないが、ハーフミラー23に面するように配置されている。
 この構成において、第1の発光素子221および第2の発光素子222が発した光の一部は、参照光検出器25に入射され、発光素子や光学素子の劣化等を調べるために用いられる。残りの光は、ボールレンズ25によって集光されてから、入射光用の光ファイバ11に入射される。光検出器241および参照光検出器25を構成する受光素子としては、例えばフォトダイオードやフォトトランジスタが用いられる。
 なお、図1には、光コネクタ13とボールレンズ25との間、および、光コネクタ14と光検出器241との間が光ファイバによって接続される態様が示されているが、これに限られない。電気ユニット20は、特許文献2に記載されている濃度測定装置と同様に、光源22と光コネクタ13とが隣接して配置され、これらが直接的に接続されていても良い。また、光検出器241と光コネクタ14とが隣接して配置され、これらが直接的に接続されていても良い。
 制御回路28は、例えば、回路基板上に設けられたプロセッサやメモリなどによって構成され、入力信号に基づいて所定の演算を実行するコンピュータプログラムを含み、ハードウェアとソフトウェアとの組み合わせによって実現され得る。制御回路28は、第1の発光素子221、第2の発光素子222、光検出器241、参照光検出器242に接続されており、第1および第2の発光素子221、222のオンオフ制御や、各光検出器241、242の出力に基づいて、測定セル内の流体濃度の演算や、後述する濃度測定装置100の異常検知を行うように構成されている。なお、図示する態様では処理部28は、電気ユニット20に内蔵されているが、その構成要素の一部(CPUなど)または全部が電気ユニット20の外側の装置に設けられていてもよい。
 ここで、濃度測定装置100を用いた濃度測定方法について説明する。測定セル1において、測定セル1の内部を往復する光の光路長Lは、窓部2と反射部材4との距離の2倍によって規定することができる。濃度測定装置100において、測定セル1に入射され、その後、反射部材4によって反射された波長λの光は、セル内のガスの濃度に応じて吸収される。そして、制御回路28は、光検出器241からの検出信号を周波数解析することによって、当該波長λでの吸光度Aλを測定することができ、さらに、以下の式に示すランベルト・ベールの法則に基づいて、吸光度Aλからセル内のガスのモル濃度Cを算出することができる。
   Aλ=-log10(I/I)=α’LC   
 上記の式において、Iは測定セルに入射させる入射光の強度、Iは測定セル内のガス中を通過した光の強度、α’はモル吸光係数(m/mol)、Lは測定セルの光路長(m)、Cはモル濃度(mol/m)である。モル吸光係数α’は物質によって決まる係数である。なお、上記式における入射光強度Iについては、測定セル1内に吸光性のガスが存在しないとき(例えば、紫外光を吸収しないガスが充満しているときや、真空に引かれているとき)に光検出器24によって検出された光の強度を入射光強度Iとみなしてよい。
 また、濃度測定装置100は、圧力センサ5および温度センサ6の出力を参照して、測定セル1を流れるガスの濃度を求めるように構成されていてもよい。特許文献1および2に開示されているように、ガスの圧力および温度を用いてランベルト・ベールの式を修正すると、以下の関係式が得られる。
   Cv=(RT/αLPt)・ln(I/I)   
 上記式において、Cvは全体ガス中の測定ガスの濃度(体積%)であり、αは測定ガスの吸光係数であり、Ptは圧力センサ5によって測定できる全圧であり、Tは温度センサ6によって測定できる温度であり、Rは気体定数である。また、ランベルト・ベールの法則と同様に、Lは測定セルの光路長、Iは入射光強度、Iは透過光強度である。
 以上のようにして、濃度測定装置100は、測定セル1内の流体の濃度を、光検出器241の出力(透過光強度I)に基づいて求めることができる。ただし、光源22、伝送部材15、測定セル1を含む光学系に不具合が生じているときには、濃度の測定を適切に行うことが困難である。また、特に測定光として紫外線を用いる場合には、人体に悪影響を及ぼさないように、測定光が外部に漏れないように注意をする必要がある。
 そこで、本実施形態の濃度測定装置100は、第1の発光素子221および第2の発光素子222の出力と、光検出器241での受光強度とに基づいて、上記の光学系に異常が発生してないか否かを検知できるように構成されている。
 図2(a)、図2(b)および図3(a)、図3(b)は、光学系の光路における異常発生のパターンを説明する図である。各図において、異なる異常発生のパターンが示されている。なお、各図において、第1の発光素子221をLED1と記載し、第2の発光素子222をLED2と記載し、光検出器241をPD1と記載し、参照光検出器242をPD2と記載し、測定セル1をCellと記載している。
 まず、図2(a)に示すように、パターン1として、電気ユニット20において、測定セル1を往復した検出光を導光する第2の光ファイバ12のコネクタ14が外れている場合が考えられる。この場合、コネクタ14からは、検出光(例えば紫外光)が外部に暴露してしまうことになる。そして、光検出器241は、測定セル1からの光を受け取ることがなく、その出力が典型的にはゼロとなる。
 次に、図2(b)に示すように、パターン2として、電気ユニット20において、光源光を測定セル1に導光するための光ファイバ11のコネクタ13が外れている場合が考えられる。この場合、コネクタ13と接続されるアダプタから、光源光が外部に暴露してしまうことになる。そして、光検出器241は、測定セル1からの光を受け取ることがなく、その出力が典型的にはゼロとなる。
 次に、図3(a)に示すように、パターン3として、光ファイバ12が途中で折れてしまい、断線状態となることが考えられる。この場合、光ファイバ12の破損部から光源光が外部に暴露してしまうことになる。また、出射光用の光ファイバ12ではなく、入射光用の光ファイバ11が破損した場合も同様である。そして、光検出器241は、測定セル1からの光を受け取ることがなく、その出力が典型的にはゼロとなる。
 次に、図3(b)に示すように、パターン4として、測定セル1において、窓部2に極度の汚れが生じたり、反射部材4の汚れや反射面の傾斜角の変動が生じることによって、測定セル1を一往復した検出光が、適切に光ファイバ12に導光されない場合も考えられる。この場合には、光検出器241は、測定セル1からの十分な強度の光を受け取ることがなく、その出力が小さいものとなり、場合によってはゼロとなる。
 上記のいずれの異常発生パターンの場合にも、光検出器241は、適切な検出光を受け取ることが困難である。したがって、第1および第2の発光素子221、222の双方を発光させた状態で、光検出器241の出力を確認することによって、上記のような光学系の異常が発生しているかどうかを検知することが可能である。
 ここで、第1の発光素子221、第2の発光素子222は、互いに異なる波長の光を発することができる。また、光検出器241は、検出信号を周波数解析することによって、各発光素子から発せられた光の強度をそれぞれ測定することができる。したがって、両方の発光素子をオンにするとともに、光検出器241においてそれぞれの発光素子からの光の強度を測定することによって、少なくとも2つの波長の光について、光学系の光路に異常が生じているか否かを適切に判断することができる。
 図4は、光検出器241の出力を用いた異常検知工程の一例を示すフローチャートである。ここでは、濃度測定装置100の動作を開始させるときなどに、予め異常検知を行う場合の工程について説明する。
 まず、ステップS1に示すように、第1の発光素子221(LED1)および第2の発光素子222(LED2)がともにオンにされる。次に、ステップS2において、光検出器241(PD1)の出力が閾値以下か否かが判定される。ここで、光検出器241の出力から、第1の発光素子221からの光の受光強度と、第2の発光素子222からの光の受光強度とが検出され、それぞれの受光強度が所定の閾値以下であるかが判定される。閾値は、例えば、想定される誤差分だけゼロに付加した値や、通常の光源オン時の出力値の半分の値など、任意に設定されてよい。
 ステップS2において、光検出器(PD1)の出力が閾値を超える(または閾値以上)のときは、ステップS3に示すように、光学系に異常は生じていないと判断して、異常検知工程を終了し、通常動作S4すなわち濃度測定を実行できる状態へと移行する。
 このとき、波長が異なる2つの発光素子からの光検出器(PD1)への光の届き具合が確認されるので、例えば、一方の波長の光が意図せずガスに吸収される状況であっても、もう一方の波長の光は十分に届くことになり、同じ光路を有する光学系自体については、異常が生じていないと判断することができる。ただし、より確実に異常が生じていないと判断するために、両方の波長の光が光検出器に十分に届いていることを確認するようにしてもよい。
 一方、ステップS2において、PD1の出力が閾値以下(または閾値未満)であったときには、ステップS5に示すように、光学系の光路に異常が生じていると判断する。そして、ステップS6に示すように、ユーザに警報を発するとともに、第1および第2の発光素子LED1、LED2を典型的には自動的にオフにする。ユーザへの警報は、ディスプレイへの表示、異常を知らせる音や光の発出など、任意の方法で行われてよい。
 ここで、ステップS7に示すように、警報を受けたユーザは、光ファイバのコネクタ接続が適切に行われているか否かを確認する作業を実施することができる。このとき、ステップS6において、LED1、2がオフにされているので、たとえコネクタが外れていたとしても、ユーザが紫外線を浴びることがなく、安全に作業を行うことができる。また、この工程において、ユーザは、光ファイバケーブルの断線等の異常が生じていないかも、併せて安全にチェックすることができる。
 そして、コネクタが完全に外れていたときや接続不良が見受けられたときには、これをしっかりと固定しなおして修復作業を行う。また、断線を発見した時には、ケーブルを交換して修復作業を行う。これによって、図2(a)、図2(b)、図3(a)に示したような不具合発生パターンは解消することができる。
 次に、ステップS8に示すように、接続の確認・修復作業を行った後に、再度、第1の発光素子(LED1)および第2の発光素子(LED2)をユーザ指令に従ってオンにして、さらなる異常検知工程を行う。
 ここで、ステップS9に示すように、PD1の出力が閾値を超える(または閾値以上)のときは、ステップS7による修復作業によって光学系の異常が解消したものと判断し、ステップS4に示す通常動作に移行する。なお、閾値は、ステップS2において用いた閾値と同じであってもよいし、異なるものであってもよい。
 一方、ステップS9において、PD1の出力が閾値以下(または閾値未満)であったときには、ステップS10に示すように、コネクタ(または光ファイバ断線)以外の異常が発生していると判断して、ステップS11に示すように、ユーザに警報を発するとともに、第1および第2の発光素子LED1、LED2を典型的には自動的にオフにする。
 この場合、ユーザは、コネクタ接続不良や断線等の外部から視認しやすい不良発生によって異常が生じているのではなく、測定セル1内の透光性部材の極度の汚れや、光学素子の配置異常が生じていることを疑うことができる。また、電気ユニット20における第1の発光素子221、第2の発光素子222、または、光検出器241の素子不良を疑うこともできる。もちろん、先に行ったコネクタや光ファイバの修復が適切に行われなかった場合も考えられるので、再度、これらの修復作業を行っても良い。
 以上に説明した異常検知工程において、いずれの不良確認作業も、第1および第2の発光素子LED1、LED2がオフの状態で行うことができるので安全であり、また、動作前にこの工程を行うことによって、例えば紫外線が外部に漏れ出た状態で装置を使用し続けることを回避することができる。また、従来の濃度測定装置が備える素子を利用して比較的簡単な短時間の動作で異常検知工程を行うことができるので、コストを増加させることなく、安全性を向上させながら安定的に動作させることができる。
 以下、電気ユニット20において、メインの光検出器241だけでなく、参照光検出器242の出力も利用して異常検知を行う別の態様の異常検知工程について説明する。
 図5は、濃度測定装置100の動作中に任意のタイミングで行うことができる異常検知工程のフローチャートである。この異常検知工程は、濃度測定工程と平行して常時または定期的に実行することができる。
 図5において、LED1は、第1の発光素子221またはその光強度(予め測定結果などに基づいて設定された規定値)を指し、LED2は、第2の発光素子222またはその光強度(予め測定結果などに基づいて設定された規定値)を指し、PD1は、光検出器241またはその出力を指し、PD2は、参照光検出器242またはその出力を指す。また、ここでは、LED1は、測定セル1においてガスによってある程度吸光され得る波長の光を発する素子であり、LED2は、測定セルにおいて吸光されない波長の光を発する素子である。
 まずステップS21に示すように、光検出器(PD1)で検出した光強度から、第1および第2の発光素子LED1およびLED2の光強度を減算した値が求められる。光検出器(PD1)は、周波数解析などによって、発光素子LED1から発せられた光についての受光強度と、発光素子LED2から発せられた光についての受光強度とをそれぞれ測定することができる。また、参照光検出器(PD2)で検出した光強度から、発光素子LED1およびLED2の光強度を減算した値が求められる。参照光検出器(PD2)も周波数解析などによって、発光素子LED1から発せられた光についての受光強度と、発光素子LED2から発せられた光についての受光強度とをそれぞれ測定することができる。
 そして、これらの減算値がいずれも閾値以下であったときは、光学系の光路において強すぎる光の減衰が生じているものと考えられる。このため、ステップS22において、両LEDをオフにするとともに、光学系において光量減衰異常が生じている(例えば測定セルの窓部や反射部材に生じた極度の汚れによる異常)ことをユーザにアラームを発して伝えることができる。また、異常が検知されたときは、以降の動作を停止して、待機状態へと移行する。
 ここで、第1の発光素子LED1からの光は、測定セル1内のガスによって吸収された結果、ガスの濃度によって光検出器PD1での光強度が大きく低下し、閾値以下となってしまうことも考えられる。これに対して、本実施形態では、ガスによって吸収されない第2の発光素子LED2からの光の強度も同時に光検出器PD1によって検出しているため、ガスによる吸光ではない光の減衰を正確に検知することができる。これによって光学系の異常をより正確に検知することができる。
 次に、ステップS23において、光検出器(PD1)で検出した光強度から、発光素子LED1の光強度を減算した値が閾値以下であり、かつ、光検出器(PD1)で検出した光強度から、発光素子LED2の光強度を減算した値が閾値以下であるか否かが判定される。ここで、いずれもが閾値以下であった場合には、光検出器(PD1)に異常が発生していると考えられるので、ステップS24に示すように、両LEDをオフにするとともに、光検出器(PD1)に異常が生じていることをユーザにアラームを発して伝えることができる。また、異常が検知されたときは、以降の動作を停止して、待機状態へと移行する。
 また、ステップS23において、発光素子LED1および発光素子LED2の双方の光が、光検出器(PD1)に十分に届いていないと判定された場合、光検出器(PD1)に異常が生じたわけではなく、図2(a)、図2(b)、図3(a)に示したような、光コネクタの脱落や、光ファイバケーブルの断線が生じている可能性も考えられる。したがって、この場合には、ユーザは、コネクタや光ファイバケーブルのチェックを行い、必要に応じて修復作業を行うこともできる。
 次に、ステップS25において、光検出器(PD1)で検出した光強度から、発光素子LED1の光強度を減算した値が閾値以下であり、かつ、参照光検出器(PD2)で検出した光強度から、発光素子LED1の光強度を減算した値が閾値以下であるか否かが判定される。ここで、いずれもが閾値以下であった場合には、発光素子LED1に異常が発生していると考えられるので、ステップS26に示すように、両LEDをオフにするとともに、LED1に異常が生じていることをユーザにアラームを発して伝えることができる。また、異常が検知されたときは、以降の動作を停止して、待機状態へと移行する。
 次に、ステップS27において、光検出器(PD1)で検出した光強度から、発光素子LED2の強度を減算した値が閾値以下であり、かつ、参照光検出器(PD2)で検出した光強度から、発光素子LED2の強度を減算した値が閾値以下であるか否かが判定される。ここで、いずれもが閾値以下であった場合には、発光素子LED2に異常が発生していると考えられるので、ステップS28に示すように、両LEDをオフにするとともに、LED2に異常が生じていることをユーザにアラームを発して伝えることができる。また、異常が検知されたときは、以降の動作を停止して、待機状態へと移行する。
 次に、ステップS29において、参照光検出器(PD2)で検出した光強度から、発光素子LED1の強度を減算した値が閾値以下であり、かつ、参照光検出器(PD2)で検出した光強度から、発光素子LED2の強度を減算した値が閾値以下であるか否かが判定される。ここで、いずれもが閾値以下であった場合には、参照光検出器(PD2)に異常が発生していると考えられるので、ステップS30に示すように、両LEDをオフにするとともに、参照光検出器(PD2)に異常が生じていることをユーザにアラームを発して伝えることができる。また、異常が検知されたときは、以降の動作を停止して、待機状態へと移行する。
 以上の全てのチェックを経て、光学系に異常が生じていないと判断されたときには、通常動作を継続して行うことができる。このようにして、濃度測定装置100が動作中であっても、光学系の減衰異常や、発光素子および受光素子の異常を検知することができる。また、異常の原因を確認することができるので、修復可否について確認することができる。
 図6は、別の実施形態の濃度測定装置200を示す。濃度測定装置200において、上述した濃度測定装置100と同様の構成要素には同じ参照符号を付すとともに、詳細な説明を省略する場合がある。
 濃度測定装置200では、伝送部材15として、一本の共通する光ファイバケーブルが用いられている。この光ファイバケーブルは、窓部2を介して光源22からの光を測定セル1に導光するとともに、測定セル1の反射部材4で反射された光を受け取って、ビームスプリッタ230を介して光検出器241に導光することができる。ビームスプリッタ230は、光源22からの光の一部を参照光検出器242に入射させることもできる。
 また、濃度測定装置200では、光源22が、第1の発光素子221、第2の発光素子222、第3の発光素子223、4の発光素子224を備えており、これらはそれぞれ異なる波長の光を発するLEDである。発光素子221~224が発する複数の波長の光は、WDM(波長分割多重方式)の合波器231、232、233によって合成されて測定セル1に入射される。このように、光源22は、3つ以上の発光素子を用いて構成されていても良い。ただし、必ずしも全ての発光素子を用いて光源光を生成する必要はなく、任意の数の発光素子を駆動して光源光を生成してもよい。
 濃度測定装置200においても、図1に示した濃度測定装置100と同様に、複数の発光素子から光を同時に発するともに、光検出器242の出力を参照することによって、光学系の異常を検知することが可能である。また、参照光検出器242の出力も参照して、発光素子や受光素子の異常を検知することも可能である。
 以上、本発明の実施形態による濃度測定装置を説明したが、本発明は、上記実施形態に限定解釈されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更が可能である。例えば、測定セルの両端に反射部材を設置し、測定セル1内を光が複数回往復するような構成を用いても良い。
 本発明の実施形態に係る濃度測定装置およびその異常検知方法は、半導体製造装置などに対して用いられ、種々の流体の濃度を測定するための濃度測定装置およびその異常検知方法として好適に利用される。
 1 測定セル
 2 窓部
 3 コリメータ
 4 反射部材
 5 圧力センサ
 6 温度センサ
 10 流体ユニット
 11、12 光ファイバ
 13、14 光コネクタ
 15 伝送部材
 20 電気ユニット
 22 光源
 221 第1の発光素子
 222 第2の発光素子
 241 光検出器
 242 参照光検出器
 28 制御回路
 100 濃度測定装置
 
 

Claims (8)

  1.  互いに異なる波長の光を発する複数の発光素子を含む光源および光検出器を有する電気ユニットと、測定セルを有する流体ユニットと、前記電気ユニットと前記流体ユニットとを接続する伝送部材と、前記光源と前記光検出器とに接続された制御回路とを備え、前記光源から前記測定セルに入射し前記測定セルから出射した光を前記光検出器で検出することによって前記測定セル内の流体の濃度を測定するように構成された濃度測定装置であって、
     前記制御回路は、前記複数の発光素子から発せられる光の強度と、前記光検出器の出力とに基づいて、前記光源、前記伝送部材、および前記光検出器を含む光学系の異常の有無を検出するように構成されている、濃度測定装置。
  2.  前記光学系に異常が生じていると判断されたときに、前記複数の発光素子をオフにし、ユーザに警告を発するように構成されている、請求項1に記載の濃度測定装置。
  3.  前記複数の発光素子が発する光のうちの少なくとも1つは、波長200nm~400nmの紫外光である、請求項1または2に記載の濃度測定装置。
  4.  前記電気ユニットは、前記光源からの光を前記伝送部材に入射させる前に一部を受光する参照光検出器をさらに備え、
     前記制御回路は、前記複数の発光素子から発せられる光の強度と、前記光検出器の出力と、さらに、前記参照光検出器の出力に基づいて、前記異常の有無を検出するように構成されている、請求項1または2に記載の濃度測定装置。
  5.  前記光源は、2つの発光素子を含み、前記2つの発光素子の一方が、傾斜配置されたハーフミラーを挟んで前記参照光検出器と対向するように配置され、前記2つの発光素子の他方が前記参照光検出器と対向せずに前記ハーフミラーに面するように配置されている、請求項4に記載の濃度測定装置。
  6.  前記伝送部材は、前記光源からの光を前記測定セルに導光するための第1の光ファイバケーブルと、前記測定セルから出射した光を前記光検出器に導光するための第2の光ファイバケーブルとを含む、請求項1または2に記載の濃度測定装置。
  7.  互いに異なる波長の光を発する複数の発光素子を含む光源および光検出器を有する電気ユニットと、測定セルを有する流体ユニットと、前記電気ユニットと前記流体ユニットとを接続する伝送部材と、前記光源と前記光検出器とに接続された制御回路とを備え、前記光源から前記測定セルに入射し前記測定セルから出射した光を前記光検出器で検出することによって前記測定セル内の流体の濃度を測定するように構成された濃度測定装置の異常検知方法であって、
     前記複数の発光素子から異なる波長の光を発するステップと、
     前記光検出器で受光した光の強度を測定するステップと、
     前記複数の発光素子から発せられた光の強度と、前記光検出器で受光した光の強度とを比較することによって、前記光源、前記伝送部材、および前記光検出器を含む光学系の異常の有無を検出するステップと
     を含む、濃度測定装置の異常検知方法。
  8.  前記光源は、第1の発光素子および第2の発光素子の2つの発光素子によって構成され、前記電気ユニットは、前記複数の発光素子からの光の一部を前記伝送部材に入射させる前に受光する参照光検出器をさらに備え、
     前記光検出器で検出した前記第1の発光素子からの光の強度から前記第1の発光素子の光強度を減算した結果および前記光検出器で検出した前記第2の発光素子からの光の強度から前記第2の発光素子の光強度を減算した結果が閾値以下であり、かつ、前記参照光検出器で検出した前記第1の発光素子からの光の強度から前記第1の発光素子の光強度を減算した結果および前記光検出器で検出した前記第2の発光素子からの光の強度から前記第2の発光素子の光強度を減算した結果が閾値以下であるときに、光学系の光減衰異常が生じていると判断するステップと、
     前記光検出器で検出した前記第1の発光素子からの光の強度から前記第1の発光素子の光強度を減算した結果が閾値以下であり、かつ、前記光検出器で検出した前記第2の発光素子からの光の強度から前記第2の発光素子の光強度を減算した結果が閾値以下であるときに、前記光検出器に異常が生じていると判断するステップと、
     前記光検出器で検出した前記第1の発光素子からの光の強度から前記第1の発光素子の光強度を減算した結果が閾値以下であり、かつ、前記参照光検出器で検出した前記第1の発光素子からの光の強度から前記第1の発光素子の光強度を減算した結果が閾値以下であるときに、前記第1の発光素子に異常が生じていると判断するステップと、
     前記光検出器で検出した前記第2の発光素子からの光の強度から前記第2の発光素子の光強度を減算した結果が閾値以下であり、かつ、前記参照光検出器で検出した前記第2の発光素子からの光の強度から第2の発光素子の光強度を減算した結果が閾値以下であるときに、前記第2の発光素子に異常が生じていると判断するステップと、
     前記参照光検出器で検出した前記第1の発光素子からの光の強度から前記第1の発光素子の光強度を減算した結果が閾値以下であり、かつ、前記参照光検出器で検出した前記第2の発光素子からの光の強度から前記第2の発光素子の光強度を減算した結果が閾値以下であるときに、前記参照光検出器に異常が生じていると判断するステップと
     をさらに含む、請求項7に記載の濃度測定装置の異常検知方法。
     
     
PCT/JP2023/022881 2022-07-19 2023-06-21 濃度測定装置およびその異常検知方法 WO2024018807A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022114558 2022-07-19
JP2022-114558 2022-07-19

Publications (1)

Publication Number Publication Date
WO2024018807A1 true WO2024018807A1 (ja) 2024-01-25

Family

ID=89617582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022881 WO2024018807A1 (ja) 2022-07-19 2023-06-21 濃度測定装置およびその異常検知方法

Country Status (1)

Country Link
WO (1) WO2024018807A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058105A (ja) * 2010-09-09 2012-03-22 Dkk Toa Corp 光学式分析計
JP2014116251A (ja) * 2012-12-12 2014-06-26 Hitachi Maxell Ltd リチウムイオン二次電池、およびリチウムイオン二次電池制御方法、リチウムイオン二次電池の状態検出方法。
JP2015031544A (ja) * 2013-07-31 2015-02-16 国立大学法人徳島大学 インライン型濃度計及び濃度検出方法
KR101876553B1 (ko) * 2017-01-25 2018-08-02 한림대학교 산학협력단 호흡가스 분압 측정 시스템의 광 출력 제어 장치 및 방법
JP2021021714A (ja) * 2019-07-30 2021-02-18 株式会社フジキン 異常検知方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058105A (ja) * 2010-09-09 2012-03-22 Dkk Toa Corp 光学式分析計
JP2014116251A (ja) * 2012-12-12 2014-06-26 Hitachi Maxell Ltd リチウムイオン二次電池、およびリチウムイオン二次電池制御方法、リチウムイオン二次電池の状態検出方法。
JP2015031544A (ja) * 2013-07-31 2015-02-16 国立大学法人徳島大学 インライン型濃度計及び濃度検出方法
KR101876553B1 (ko) * 2017-01-25 2018-08-02 한림대학교 산학협력단 호흡가스 분압 측정 시스템의 광 출력 제어 장치 및 방법
JP2021021714A (ja) * 2019-07-30 2021-02-18 株式会社フジキン 異常検知方法

Similar Documents

Publication Publication Date Title
US10928303B2 (en) Concentration measuring device
JP5180088B2 (ja) ガスタービンエンジンの燃焼器内における分光測定の方法及び装置
JP5864870B2 (ja) 光源システム
KR20190032563A (ko) 내부 전반사를 이용한 doe 결함 모니터링
KR20140035944A (ko) 광 도파로를 위한 커플링 장치
US11692931B2 (en) Concentration measurement device
WO2012133430A1 (ja) 光源装置の駆動方法
KR102454649B1 (ko) 농도 측정 장치
JP5762966B2 (ja) 物体の厚さを干渉分析法によって光学的に計測するための方法、計測装置、及び、計測システム
WO2024018807A1 (ja) 濃度測定装置およびその異常検知方法
WO2021182582A1 (ja) 故障検出装置およびレーザ加工システム
CN112352358A (zh) 激光装置和使用了该激光装置的激光加工装置
TW202422035A (zh) 濃度測定裝置以及其異常偵測方法
CN111164404B (zh) 故障检测装置、激光器加工系统以及故障检测方法
WO2021054097A1 (ja) 濃度測定装置
US20090207387A1 (en) Fiber optic imaging apparatus
TWI762233B (zh) 濃度測定方法及濃度測定裝置
JP2024076641A (ja) 濃度測定装置
KR20230079370A (ko) 연소 구역 화학 감지 시스템 및 연관된 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842738

Country of ref document: EP

Kind code of ref document: A1