WO2015014124A1 - 一种电石墨烯复合纤维的制备方法 - Google Patents

一种电石墨烯复合纤维的制备方法 Download PDF

Info

Publication number
WO2015014124A1
WO2015014124A1 PCT/CN2014/072689 CN2014072689W WO2015014124A1 WO 2015014124 A1 WO2015014124 A1 WO 2015014124A1 CN 2014072689 W CN2014072689 W CN 2014072689W WO 2015014124 A1 WO2015014124 A1 WO 2015014124A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
composite fiber
polymer
graphene composite
hyperbranched
Prior art date
Application number
PCT/CN2014/072689
Other languages
English (en)
French (fr)
Inventor
高超
胡晓珍
周晓松
徐焰
Original Assignee
华为技术有限公司
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 浙江大学 filed Critical 华为技术有限公司
Priority to EP14808476.7A priority Critical patent/EP2871268A4/en
Priority to JP2015528869A priority patent/JP2015530492A/ja
Priority to US14/577,609 priority patent/US20150104642A1/en
Publication of WO2015014124A1 publication Critical patent/WO2015014124A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • D01D5/14Stretch-spinning methods with flowing liquid or gaseous stretching media, e.g. solution-blowing
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/04Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/50Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyalcohols, polyacetals or polyketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/16Chemical after-treatment of artificial filaments or the like during manufacture of carbon by physicochemical methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/90Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyamides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2927Rod, strand, filament or fiber including structurally defined particulate matter

Definitions

  • the present invention relates to a composite fiber material, and more particularly to an electrical graphene composite fiber and a preparation method thereof. Background technique
  • Carbon fiber is a new material with excellent properties. It not only has the inherent intrinsic properties of carbon materials, but also has the soft processability of textile fibers. Compared with traditional glass fiber, Young's modulus is more than three times; compared with Kevlar fiber (KF-49), not only is Young's modulus about twice, but also corrosion resistance and stretching. Significant performance such as strength. Therefore, carbon fiber is widely used in civil, military, construction, chemical, industrial, aerospace and super sports cars.
  • Graphene is a two-dimensional carbon atom layer formed by sp2 hybridization of carbon atoms. It has many excellent properties such as ultra high strength, large specific surface area, high thermal conductivity and carrier mobility. It has broad application prospects in many fields such as transistors, supercapacitors, selective permeable films, and reinforcing materials. If the ultra-high strength of graphene monolith can be converted into macroscopic materials, its strength can be comparable to that of carbon fiber. It has been found that a liquid crystal solution of graphene oxide can be converted into a macroscopic graphene fiber by a wet spinning technique. However, the obtained graphene fiber has a strength of about 100 to 200 MPa, which is still much different from the strength of the graphene single sheet, and needs to be improved in strength and electrical conductivity to meet the needs of practical applications. Summary of the invention
  • An object of the present invention is to provide a method for producing a high-strength, electrically conductive electrical graphene composite fiber.
  • a graphene composite fiber comprising a graphene sheet and a polymer polymerizing the graphene sheet together, the polymer comprising one or two of a hyperbranched polymer and polyvinyl alcohol,
  • the graphene sheet and the polymer form a layered structure stacked on each other and the graphene sheets are aligned along the axial direction of the graphene composite fiber.
  • a method for preparing an electrical graphene composite fiber comprising: first, adding 1 part by weight of graphene oxide, 50-2000 parts by weight of a solvent, 0.1-100 parts by weight of a polymer to a reactor, and stirring a nanocomposite spinning slurry of a polymer and graphene, wherein the polymer comprises one or both of a hyperbranched polymer and polyvinyl alcohol; and second, the spinning slurry is 1-100 mL
  • the extrusion speed of /h is passed through a spinning nozzle having a diameter of 5 to 5000 ⁇ m, and is solidified into a filament by 1-3600 S in a rotating coagulant; and the product of the solidified filament is washed and vacuum dried. Thereafter, reduction is carried out to obtain a graphene composite fiber.
  • the strength of the above graphene composite fiber is mainly determined by the interaction between the graphene sheets.
  • the van der Waals force and the ⁇ - ⁇ interaction between the graphene sheets are mainly between the graphene sheets in the present embodiment.
  • FIG. 1 is a photograph of a digital camera in which a graphene composite fiber is wound on a Teflon roller in an embodiment of the present invention
  • FIG. 2 is a partial scanning electron micrograph of a graphene composite fiber wound on a Teflon roller in an embodiment of the present invention
  • FIG. 3 is a cross-sectional scanning electron micrograph of a graphene composite fiber in the embodiment of the present invention. detailed description
  • a graphene composite fiber includes a graphene sheet and a polymer that polymerizes the graphene sheet together, wherein the graphene sheet and the polymer A closely packed layered structure is formed, and the graphene sheets are regularly aligned along the fiber axis, wherein the polymer is one or both of a hyperbranched polymer and polyvinyl alcohol.
  • the above graphene composite fiber is a black fiber having a diameter of 5 to 5000 ⁇ m.
  • the graphene sheets inside the fibers are arranged along the axial direction of the fiber and have a high degree of regularity; in particular, as shown in FIG. 3, the graphene sheets form a tightly packed layer with the added polymer.
  • the hyperbranched polymer comprises one or more of a hyperbranched polyester, a hyperbranched polyamide, and a hyperbranched polyglycidyl ether.
  • the strength of the graphene composite fiber of the embodiment of the invention is mainly determined by the interaction between the graphene sheets.
  • the van der Waals force and the ⁇ - ⁇ interaction are mainly between the graphene sheets, and this embodiment A polymer having a large number of functional groups is introduced between the graphene sheets, and a hydrogen bond or an ionic bond is formed with a hydroxyl group or a carboxyl group on the graphene sheet to "stick" the adjacent graphene sheets like a glue, thereby enhancing the graphene composite.
  • the strength of the fiber is mainly determined by the interaction between the graphene sheets.
  • An embodiment of the present invention provides a method for preparing an electrical graphene composite fiber, comprising: first, adding 1 part by weight of graphene oxide, 50-2000 parts by weight of a solvent, and 0.1-100 parts by weight of a polymerization to a reactor. And stirring to obtain a nanocomposite spinning slurry of polymer and graphene, wherein the polymer comprises one or two of hyperbranched polymer and polyvinyl alcohol; and second, the spinning slurry is Passing through a spinning nozzle with a diameter of 5-5000 ⁇ m at an extrusion speed of 1-100 mL/h, and solidifying into a filament at 1-3600 S in a rotating coagulant;
  • the solidified filament product is washed and vacuum dried, and then reduced to obtain a graphene composite fiber.
  • the electric graphene composite fiber has a diameter of 5-5000 ⁇ .
  • the hyperbranched polymer includes one or more of a hyperbranched polyester, a hyperbranched polyamide, and a hyperbranched polyglycidyl ether.
  • the solvent in the first step includes N-methyl-2-pyrrolidone, hydrazine, hydrazine-dimethylformamide, and one or more of water.
  • the coagulant in the second step includes an aqueous solution of NaOH, an aqueous solution of KOH, an aqueous solution of CaC12, a methanol solution of NaOH, a methanol solution of KOH, a methanol solution of CaC12, an ethanol solution of NaOH, an ethanol solution of KOH, and an ethanol of CaC12.
  • a solution diethyl ether, ethyl acetate, acetone, and petroleum ether.
  • the method for reducing in the third step includes thermal reduction and chemical reduction, and the chemical reduction chemical reducing agent includes hydrazine hydrate, vitamin C, lysine, potassium hydroxide, sodium hydroxide, hydroiodic acid, acetic acid. One or more.
  • the spinning slurry specifically comprises: adding 20 mg of graphene oxide, lg of N-methyl-2-pyrrolidone solvent and 2 g of hyperbranched polyester to the reactor, and stirring for 1 hour to obtain hyperbranched polyester and graphene Nanocomposite spinning slurry;
  • the spinning slurry is passed through a spinning nozzle having a diameter of 5-5000 ⁇ m at an extrusion speed of 1-100 mL/h, and is solidified in a rotating coagulant at 1-3600 S.
  • the method comprises: passing the nano-composite spinning slurry of the hyperbranched polyester and graphene through a spinning nozzle with a diameter of 5000 ⁇ m at an extrusion speed of 1 mL/h, and staying in a rotating methanol solution for 50 s Solidified into silk;
  • the reduction is further carried out to obtain the graphene composite fiber.
  • the method comprises: collecting and solidifying the solidified filament product using a winder and washing and 40 degrees. Vacuum drying for 24 hours, and then reduction by hydrazine hydrate to obtain a diameter of 5000 ⁇ m, a breaking strength of 400 MPa, an elongation at break of 5%, and a conductivity of 200 S/m.
  • the above first step 1 part by weight of graphene oxide, 50-2000 parts by weight of a solvent, 0.1-100 parts by weight of a polymer are added to the reactor, and the nanocomposite of the polymer and graphene is obtained by stirring.
  • the slurry specifically includes: adding 20 mg of graphene oxide, 0.5 g of N-methyl-2-pyrrolidone solvent and 2 mg of hyperbranched polyamide to the reactor, and stirring for 4 hours to obtain nanometer of hyperbranched polyamide and graphene Composite spinning slurry;
  • the spinning slurry is passed through a spinning nozzle having a diameter of 5-5000 ⁇ m at an extrusion speed of 1-100 mL/h, and is solidified in a rotating coagulant at 1-3600 S.
  • the method comprises: passing the nanocomposite of the hyperbranched polyester and graphene through a spinning nozzle with a diameter of 5 ⁇ m at an extrusion speed of 100 mL/h, and solidifying into a wire in a rotating NaOH methanol solution for 5 s;
  • the reduction is further carried out to obtain the graphene composite fiber.
  • the method further comprises: washing and solidifying the solidified filament product using a winder and washing and 60 degrees.
  • the mixture was vacuum dried for 24 hours, and then reduced by vitamin C to obtain a composite fiber of hyperbranched polyamide and graphene having a diameter of 5 ⁇ m, a breaking strength of 450 MPa, an elongation at break of 10%, and a conductivity of 2000 S/m.
  • the nanocomposite of the polymer and graphene is obtained by stirring.
  • the slurry specifically comprises: adding 20 mg of graphene oxide, 40 g of hydrazine, hydrazine-dimethylformamide solvent and 100 mg of hyperbranched polyglycidyl ether to the reactor, and obtaining hyperbranched polyglycidyl ether and graphene after stirring for 6 hours.
  • the spinning slurry is passed through a spinning nozzle having a diameter of 5-5000 ⁇ m at an extrusion speed of 1-100 mL/h, and is solidified in a rotating coagulant at 1-3600 S.
  • the method comprises: passing the hyperbranched polyglycidyl ether and graphene nanocomposite spinning slurry through a spinning nozzle with a diameter of 100 ⁇ m at an extrusion speed of 10 mL/h, and staying in a rotating ether for 3600 s Solidified into silk;
  • the reduction is further carried out to obtain the graphene composite fiber.
  • the method further comprises: washing and solidifying the solidified filament product using a winder and washing and 60 degrees. Vacuum drying for 24 hours, and then reduction by vitamin C and lysine to obtain hyperbranched polyglycidyl ether and graphite with a diameter of 100 ⁇ , a breaking strength of 500 MPa, an elongation at break of 15%, and a conductivity of 3000 S/m.
  • the nanocomposite of the polymer and graphene is obtained by stirring.
  • the slurry specifically comprises: adding 20 mg of graphene oxide, 10 g of N,N-dimethylformamide solvent and 200 mg of polyvinyl alcohol to the reactor, and stirring for 24 hours to obtain a nanocomposite spinning slurry of polyvinyl alcohol and graphene;
  • the spinning slurry is passed through a spinning nozzle having a diameter of 5-5000 ⁇ m at an extrusion speed of 1-100 mL/h, and is solidified in a rotating coagulant at 1-3600 S.
  • the method comprises the following steps: spinning a nanocomposite spinning slurry of polyvinyl alcohol and graphene, passing through a spinning nozzle having a diameter of 50 ⁇ m at an extrusion speed of 20 mL/h, and solidifying into a filament in a rotating acetone for 360 s;
  • the reduction is further carried out to obtain the graphene composite fiber.
  • the method further comprises: washing and solidifying the solidified filament product using a winder and washing and 60 degrees. The mixture was vacuum dried for 24 hours, and then reduced by hydroiodic acid to obtain a composite fiber of polyvinyl alcohol and graphene having a diameter of 50 ⁇ m, a breaking strength of 550 MPa, an elongation at break of 8%, and a conductivity of 3500 S/m.
  • the nanocomposite of the polymer and graphene is obtained by stirring.
  • the slurry specifically comprises: adding 20 mg of graphene oxide, 10 g of water solvent and 200 mg of hyperbranched polyamide to the reactor, and stirring for 3 hours to obtain hyperbranched polyamide and graphene Nanocomposite spinning slurry;
  • the spinning slurry is passed through a spinning nozzle having a diameter of 5-5000 ⁇ m at an extrusion speed of 1-100 mL/h, and is solidified in a rotating coagulant at 1-3600 S.
  • the method comprises the following steps:: spinning the nanocomposite spinning slurry of the hyperbranched polyamide and graphene through a spinning nozzle with a diameter of 800 ⁇ m at an extrusion speed of 1 mL/h, and solidifying in a rotating CaC12 aqueous solution for 1 s.
  • the reduction is further carried out to obtain the graphene composite fiber.
  • the method further comprises: washing the solidified filament product using a winder, washing and 80 degrees. The mixture was vacuum dried for 24 hours, and then reduced by acetic acid to obtain a composite fiber of hyperbranched polyamide and graphene having a diameter of 800 ⁇ m, a breaking strength of 450 MPa, an elongation at break of 5%, and a conductivity of 1000 S/m.
  • the nanocomposite of the polymer and graphene is obtained by stirring.
  • the slurry specifically comprises: adding 10 mg of graphene oxide, 10 g of water solvent, 200 mg of hyperbranched polyamide to the reactor, and stirring for 24 hours to obtain a nanocomposite spinning slurry of hyperbranched polyamide and graphene;
  • the spinning slurry is passed through a diameter of 1-100 mL/h.
  • a spinning nozzle of 5-5000 ⁇ which is solidified in a rotating coagulant at 1-3600 S, specifically comprises: extruding the nanocomposite spinning slurry of the hyperbranched polyamide and graphene at 1 mL/h The exit speed is passed through a spinning nozzle having a diameter of 5000 ⁇ m, and solidified in a rotating CaC12 ethanol solution for 50 s to form a filament;
  • the reduction is further carried out to obtain the graphene composite fiber.
  • the method further comprises: washing the solidified filament product using a winder, washing and 80 degrees. Vacuum drying for 24 hours, and reduction by hydriodic acid and acetic acid mixture to obtain a diameter of 5000 ⁇ m, a breaking strength of 515 MPa, and an elongation at break of 5%.
  • the nanocomposite of the polymer and graphene is obtained by stirring.
  • the slurry specifically comprises: adding 10 mg of graphene oxide, 10 g of hydrazine, hydrazine-dimethylformamide solvent and 200 mg of hyperbranched polyester to the reactor, and stirring for 10 hours to obtain hyperbranched polyester and graphene nanocomposite spinning Silk slurry
  • the spinning slurry is passed through a spinning nozzle having a diameter of 5-5000 ⁇ m at an extrusion speed of 1-100 mL/h, and is solidified in a rotating coagulant at 1-3600 S.
  • the method comprises: passing the hyperbranched polyester and the graphene nanocomposite spinning slurry through a spinning nozzle with a diameter of 5000 ⁇ m at an extrusion speed of 1 mL/h, and solidifying in a rotating ethyl acetate for 50 s.
  • the specific method comprises: collecting and solidifying the solidified filament product using a winder; The mixture was dried under vacuum at 80 degrees for 24 hours, and then reduced by KOH to obtain a composite fiber of hyperbranched polyester and graphene having a diameter of 5000 ⁇ m, a breaking strength of 545 MPa, an elongation at break of 5%, and a conductivity of 4500 S/m.
  • the slurry specifically comprises: adding 10 mg of graphene oxide, 10 g of hydrazine, hydrazine-dimethylformamide solvent, 200 mg of hyperbranched polyamide in a reaction flask, stirring for 10 hours to obtain a hyperbranched polyamide and graphene nanocomposite spinning Silk slurry
  • the spinning slurry is passed through a spinning nozzle having a diameter of 5-5000 ⁇ m at an extrusion speed of 1-100 mL/h, and is solidified in a rotating coagulant at 1-3600 S.
  • the method comprises: passing the hyperbranched polyamide and graphene nanocomposite spinning slurry through a spinning nozzle with a diameter of 100 ⁇ m at an extrusion speed of 10 mL/h, and solidifying into a spinning petroleum ether for 50 s. ;
  • the reduction is further carried out to obtain the graphene composite fiber.
  • the method further comprises: washing the solidified filament product using a winder, washing and 80 degrees.
  • the mixture was vacuum dried for 24 hours, and then reduced by NaOH to obtain a composite fiber of hyperbranched polyamide and graphene having a diameter of 100 ⁇ m, a breaking strength of 460 MPa, a breaking elongation of 5%, and a conductivity of 1200 S/m.
  • the slurry specifically comprises: adding 10 mg of graphene oxide, 10 g of N-methyl-2-pyrrolidone solvent and 200 mg of hyperbranched polyester to the reactor, and stirring for 5 hours to obtain hyperbranched polyester and graphene nanocomposites Spinning slurry
  • the spinning slurry is passed through a spinning nozzle having a diameter of 5-5000 ⁇ m at an extrusion speed of 1-100 mL/h, and is solidified in a rotating coagulant at 1-3600 S.
  • the method comprises: passing the hyperbranched polyester and graphene nanocomposite spinning slurry through a spinning nozzle with a diameter of 50 ⁇ m at an extrusion speed of 5 mL/h, and solidifying into a spinning petroleum ether for 50 s.
  • the reduction is further carried out to obtain the graphene composite fiber.
  • the method further comprises: washing and solidifying the solidified filament product using a winder; The mixture was vacuum dried for 24 hours, and then subjected to thermal reduction at 500 degrees to obtain a composite fiber of hyperbranched ester and graphene having a diameter of 50 ⁇ m, a breaking strength of 525 MPa, an elongation at break of 5%, and an electric conductivity of 2100 S/m.
  • the above first step 1 part by weight of graphene oxide, 50-2000 parts by weight of a solvent, 0.1-100 parts by weight of a polymer are added to the reactor, and the nanocomposite of the polymer and graphene is obtained by stirring.
  • the slurry specifically comprises: adding 10 mg of graphene oxide, 10 g of N-methyl-2-pyrrolidone solvent and 200 mg of polyvinyl alcohol to the reactor, and stirring for 20 hours to obtain polyvinyl alcohol and graphene nanocomposite spinning Slurry
  • the spinning slurry is passed through a spinning nozzle having a diameter of 5-5000 ⁇ m at an extrusion speed of 1-100 mL/h, and is solidified in a rotating coagulant at 1-3600 S.
  • the method comprises: passing the polyvinyl alcohol and graphene nanocomposite spinning slurry through a spinning nozzle with a diameter of 5 ⁇ m at an extrusion speed of 15 mL/h, and solidifying into a wire in a rotating KOH ethanol solution for 50 s;
  • the third step after the solidified filament product is washed and vacuum dried, the reduction is further carried out to obtain the graphene composite fiber.
  • the method comprises: collecting the solidified filament product using a winder, washing, and vacuuming at 80 degrees.
  • the spinneret in the above embodiments includes a spinning capillary.
  • a large piece of graphene oxide is selected as a raw material, which greatly improves the tensile strength of the graphene composite fiber; the addition of the polymer provides good toughness for the composite fiber; the spinning process is compared with the prior, the ventilation is removed, and the heating is performed.
  • the process is greatly simplified, easy to operate, energy-saving, environmentally friendly;
  • the spinning process uses a rotating coagulant to increase the tensile force of the gel fiber, making it highly oriented and regular,
  • the strength of the obtained solid fiber is greatly improved;
  • the final reduction process restores the electrical conductivity of the graphene well, and the obtained fiber has a macroscopic material which can be combined with graphene paper (the graphene paper is filtered by a graphene solution, Its shape is similar to paper) comparable to the conductivity.
  • the graphene composite fiber obtained in the embodiment of the invention has the advantages of high strength, good toughness and high electrical conductivity, and can be mass-produced, and can be widely used in the fields of conductive fabrics, material reinforcement, conductive devices and the like.

Abstract

本发明实施例提供了一种石墨烯复合纤维,包括石墨烯片以及将所述石墨烯片聚合在一起的聚合物,所述聚合物包括超支化聚合物以及聚乙烯醇中的一种或两种,所述石墨烯片与聚合物形成相互堆叠的层状结构且所述石墨烯片沿所述石墨烯复合纤维的轴向规整排列。上述石墨烯复合纤维的制作方法选用氧化石墨烯作为原料,大大提高了石墨烯复合纤维的拉伸强度;所述聚合物的加入为复合纤维提供了良好的韧性;纺丝过程采用旋转的凝固剂,给凝胶纤维增加了拉伸力,使其具有高取向和规整度,大大提高了所得固体纤维的强度;最后的还原过程很好的恢复了石墨烯的导电性能。

Description

一种电石墨烯复合纤维的制备方法 技术领域
本发明涉及一种复合纤维材料, 特别涉及一种电石墨烯复合纤维及其 制备方法。 背景技术
碳纤维是一种性能优异的新材料, 它不仅具有碳材料的固有本征特性, 又兼具纺织纤维的柔软可加工性。与传统的玻璃纤维相比, 杨氏模量是其 3 倍多; 它与凯芙拉纤维 (KF-49)相比, 不仅杨氏模量是其 2倍左右, 而且耐 蚀性以及拉伸强度等性能显著。 因此, 碳纤维广泛用于民用, 军用, 建筑, 化工, 工业, 航天以及超级跑车领域。
石墨烯是一层由碳原子以 sp2 杂化连接而成的二维碳原子层, 具有超 高强度、 极大的比表面积, 高的热导率以及载流子迁移率等多种优异的特 质, 使其在晶体管、 超级电容器、 选择透过性膜、 增强材料等诸多领域具 有广泛的应用前景。 如果能将石墨烯单片超高的强度转化到宏观材料中, 其强度可与碳纤维媲美。 研究发现, 通过湿法纺丝技术, 可将氧化石墨烯 的液晶溶液转化为的宏观的石墨烯纤维。 然而, 所得的石墨烯纤维强度约 为 100-200MPa, 与石墨烯单片的强度仍然相差很多, 需要在强度和导电性 能进一歩提高才能满足实际应用的需求。 发明内容
本发明的目在于提供一种高强度、导电良好的电石墨烯复合纤维的制备 方法。
一种石墨烯复合纤维,包括石墨烯片以及将所述石墨烯片聚合在一起的 聚合物, 所述聚合物包括超支化聚合物以及聚乙烯醇中的一种或两种, 所 述石墨烯片与聚合物形成相互堆叠的层状结构且所述石墨烯片沿所述石墨 烯复合纤维的轴向规整排列。
一种电石墨烯复合纤维的制备方法, 包括: 歩骤一、 在反应器中加入 1 重量份的氧化石墨烯、 50-2000 重量份的溶剂、 0.1-100 重量份的聚合物, 搅拌后得到聚合物与石墨烯的纳米复合材料纺丝浆液, 其中所述聚合物包 括超支化聚合物以及聚乙烯醇中的一种或两种; 歩骤二、 将所述纺丝浆液 以 1-100 mL/h的挤出速度通过直径为 5-5000 μ m的纺丝喷头, 于旋转的凝 固剂中停留 1-3600S凝固成丝; 歩骤三、对所述凝固成丝的产物进行洗涤以 及真空干燥后, 再进行还原得到石墨烯复合纤维。
上述石墨烯复合纤维的强度主要由石墨烯片间相互作用决定,对于石墨 烯片形成的纤维, 石墨烯片间主要是范德华力和 π - π相互作用, 而本实施 例中的石墨烯片间存在具有大量官能团的聚合物, 所述聚合物通过与石墨 烯片上的羟基、羧基形成氢键或离子键,像胶水一样把相邻的石墨烯片"粘" 起来, 进而增强石墨烯复合纤维的强度以及导电性。 附图说明
图 1是本发明实施例中一种石墨烯复合纤维卷绕在聚四氟乙烯滚轴上 的数字相机照片;
图 2是本发明实施例中一种石墨烯复合纤维卷绕在聚四氟乙烯滚轴上 的局部扫描电镜图; 以及
图 3是图 2中本发明实施例中一种石墨烯复合纤维的断面扫描电镜图。 具体实施方式
实施例一
如图 1至 3所示,本发明实施例提供的一种石墨烯复合纤维包括石墨烯 片以及将所述石墨烯片聚合在一起的聚合物, 其中所述石墨烯片与聚合物 形成紧密堆叠的层状结构, 且所述石墨烯片沿纤维轴向规整排列, 其中所 述聚合物为超支化聚合物以及聚乙烯醇中的一种或两种。 上述石墨烯复合 纤维为黑色纤维, 其直径为 5-5000 μ m。
特别如图 2所示,所述纤维内部的石墨烯片均沿纤维轴向排列,具有很 高的规整度; 特别由图 3所示, 石墨烯片与添加的聚合物形成紧密堆积的 层状结构, 为其高强度奠定了基础。
所述超支化聚合物包括超支化聚酯、超支化聚酰胺以及超支化聚缩水甘 油醚中的一种或多种。
本发明实施例的石墨烯复合纤维的强度主要由石墨烯片间相互作用决 定, 对于纯的石墨烯片形成的纤维, 石墨烯片间主要是范德华力和 π - π相 互作用, 而本实施例中在石墨烯片间引入具有大量官能团的聚合物, 通过 与石墨烯片上的羟基、 羧基形成氢键或离子键, 像胶水一样把相邻的石墨 烯片 "粘"起来, 进而增强石墨烯复合纤维的强度。
实施例二
本发明实施例提供一种电石墨烯复合纤维的制备方法, 包括: 歩骤一、 在反应器中加入 1重量份的氧化石墨烯、 50-2000重量份的溶 剂、 0.1-100重量份的聚合物, 搅拌后得到聚合物与石墨烯的纳米复合材料 纺丝浆液, 其中所述聚合物包括超支化聚合物以及聚乙烯醇中的一种或两 种; 歩骤二、 将所述纺丝浆液以 1-100 mL/h的挤出速度通过直径为 5-5000 μ m的纺丝喷头, 于旋转的凝固剂中停留 1-3600S凝固成丝;
歩骤三、对所述凝固成丝的产物进行洗涤以及真空干燥后,再进行还原 得到石墨烯复合纤维。
所述的电石墨烯复合纤维的直径为 5-5000 μ ηι。
所述超支化聚合物包括超支化聚酯、超支化聚酰胺以及超支化聚缩水甘 油醚中的一种或多种。 所述歩骤一中的溶剂包括 N-甲基 -2-吡咯垸酮、 Ν,Ν-二甲基甲酰胺以及 水中的一种或多种。
所述歩骤二中的凝固剂包括 NaOH的水溶液、 KOH的水溶液、 CaC12 的水溶液、 NaOH的甲醇溶液、 KOH的甲醇溶液、 CaC12的甲醇溶液、 NaOH 的乙醇溶液、 KOH的乙醇溶液、 CaC12的乙醇溶液、 乙醚、 乙酸乙酯、 丙 酮以及石油醚中的一种或者多种。
所述歩骤三中进行还原的方法包括热还原和化学还原,所述化学还原的 化学还原剂包括水合肼、 维生素 C、 赖氨酸、 氢氧化钾、 氢氧化钠、 氢碘 酸、 乙酸中的一种或者多种。
本发明实施例中石墨烯复合纤维的上述制备方法,可以包括以下多种具 体实施方式:
1、 在本发明另一实施例中上述歩骤可以具体为:
上述歩骤一中, 在反应器中加入 1重量份的氧化石墨烯、 50-2000重量 份的溶剂、 0.1-100重量份的聚合物聚合物, 搅拌后得到聚合物与石墨烯的 纳米复合材料纺丝浆液具体包括: 在反应器中加入 20mg氧化石墨烯, lg 的 N-甲基 -2-吡咯垸酮溶剂和 2g的超支化聚酯, 搅拌 1小时后得到超支化 聚酯与石墨烯的纳米复合材料纺丝浆液;
上述歩骤二中, 将所述纺丝浆液以 1-100 mL/h的挤出速度通过直径为 5-5000 μ ιη的纺丝喷头,于旋转的凝固剂中停留 1-3600S凝固成丝具体包括: 将所述超支化聚酯与石墨烯的纳米复合材料纺丝浆液以 1 mL/h的挤出速度 通过直径为 5000 μ ιη的纺丝喷头, 于旋转的 ΚΟΗ的甲醇溶液中停留 50 s 凝固成丝;
上述歩骤三中,对所述凝固成丝的产物进行洗涤以及真空干燥后,再进 行还原得到石墨烯复合纤维具体包括: 对所述凝固成丝的产物使用缠绕器 收集后进行洗涤以及 40度真空干燥 24小时处理, 再通过水合肼还原后得 到直径 5000 μ m、断裂强度为 400MPa、断裂伸长率为 5%、导电率为 200S/m 的超支化聚酯与石墨烯的复合纤维。
2、 在本发明又一实施例中上述歩骤可以具体为:
上述歩骤一中, 在反应器中加入 1重量份的氧化石墨烯、 50-2000重量 份的溶剂、 0.1-100重量份的聚合物, 搅拌后得到聚合物与石墨烯的纳米复 合材料纺丝浆液具体包括: 在反应器中加入 20mg氧化石墨烯, 0.5g的 N- 甲基 -2-吡咯垸酮溶剂以及 2 mg的超支化聚酰胺,搅拌 4小时候得到超支化 聚酰胺与石墨烯的纳米复合材料纺丝浆液;
上述歩骤二中, 将所述纺丝浆液以 1-100 mL/h的挤出速度通过直径为 5-5000 μ ιη的纺丝喷头,于旋转的凝固剂中停留 1-3600S凝固成丝具体包括: 将所述超支化聚酯与石墨烯的纳米复合材料以 100 mL/h的挤出速度通过直 径为 5 μ ιη的纺丝喷头, 于旋转的 NaOH甲醇溶液中停留 5 s凝固成丝; 上述歩骤三中,对所述凝固成丝的产物进行洗涤以及真空干燥后,再进 行还原得到石墨烯复合纤维具体包括: 对所述凝固成丝的产物使用缠绕器 收集后进行洗涤以及 60度真空干燥 24小时处理, 再通过维生素 C还原后 得到直径 5 μ m、断裂强度为 450MPa、断裂伸长率为 10%、导电率为 2000S/m 的超支化聚酰胺与石墨烯的复合纤维。
3、 在本发明又一实施例中上述歩骤可以具体为:
上述歩骤一中, 在反应器中加入 1重量份的氧化石墨烯、 50-2000重量 份的溶剂、 0.1-100重量份的聚合物, 搅拌后得到聚合物与石墨烯的纳米复 合材料纺丝浆液具体包括:在反应器中加入 20mg氧化石墨烯, 40g的 Ν,Ν- 二甲基甲酰胺溶剂以及 lOOmg的超支化聚缩水甘油醚, 搅拌 6小时后得到 超支化聚缩水甘油醚与石墨烯的纳米复合材料纺丝浆液;
上述歩骤二中, 将所述纺丝浆液以 1-100 mL/h的挤出速度通过直径为 5-5000 μ ιη的纺丝喷头,于旋转的凝固剂中停留 1-3600S凝固成丝具体包括: 将所述超支化聚缩水甘油醚与石墨烯的纳米复合材料纺丝浆液以 10 mL/h 的挤出速度通过直径为 100 μ ιη的纺丝喷头, 于旋转的乙醚中停留 3600 s 凝固成丝;
上述歩骤三中,对所述凝固成丝的产物进行洗涤以及真空干燥后,再进 行还原得到石墨烯复合纤维具体包括: 对所述凝固成丝的产物使用缠绕器 收集后进行洗涤以及 60度真空干燥 24小时处理, 再通过维生素 C和赖氨 酸还原后得到直径 100 μ ηι、 断裂强度为 500MPa、 断裂伸长率为 15%、 导 电率为 3000S/m的超支化聚缩水甘油醚与石墨烯的复合纤维。
4、 在本发明又一实施例中上述歩骤可以具体为:
上述歩骤一中, 在反应器中加入 1重量份的氧化石墨烯、 50-2000重量 份的溶剂、 0.1-100重量份的聚合物, 搅拌后得到聚合物与石墨烯的纳米复 合材料纺丝浆液具体包括: 在反应器中加入 20mg氧化石墨烯, 10g N,N-二 甲基甲酰胺溶剂以及 200mg聚乙烯醇,搅拌 24小时后得到聚乙烯醇与石墨 烯的纳米复合材料纺丝浆液;
上述歩骤二中, 将所述纺丝浆液以 1-100 mL/h的挤出速度通过直径为 5-5000 μ ιη的纺丝喷头,于旋转的凝固剂中停留 1-3600S凝固成丝具体包括: 将聚乙烯醇与石墨烯的纳米复合材料纺丝浆液, 以 20mL/h的挤出速度通过 直径为 50 μ ιη的纺丝喷头, 于旋转的丙酮中停留 360 s凝固成丝;
上述歩骤三中,对所述凝固成丝的产物进行洗涤以及真空干燥后,再进 行还原得到石墨烯复合纤维具体包括: 对所述凝固成丝的产物使用缠绕器 收集后进行洗涤以及 60度真空干燥 24小时处理, 再通过氢碘酸还原后得 到直径 50 μ m、断裂强度为 550MPa、断裂伸长率为 8%、导电率为 3500S/m 的聚乙烯醇与石墨烯的复合纤维。
5、 在本发明又一实施例中上述歩骤可以具体为:
上述歩骤一中, 在反应器中加入 1重量份的氧化石墨烯、 50-2000重量 份的溶剂、 0.1-100重量份的聚合物, 搅拌后得到聚合物与石墨烯的纳米复 合材料纺丝浆液具体包括: 在反应器中加入 20mg氧化石墨烯, 10g的水溶 剂以及 200mg的超支化聚酰胺, 搅拌 3小时后得到超支化聚酰胺与石墨烯 的纳米复合材料纺丝浆液;
上述歩骤二中, 将所述纺丝浆液以 1-100 mL/h的挤出速度通过直径为 5-5000 μ ιη的纺丝喷头,于旋转的凝固剂中停留 1-3600S凝固成丝具体包括: 将所述超支化聚酰胺与石墨烯的纳米复合材料纺丝浆液以 1 mL/h的挤出速 度通过直径为 800 μ m的纺丝喷头, 于旋转的 CaC12水溶液中停留 1 s凝 固成丝;
上述歩骤三中,对所述凝固成丝的产物进行洗涤以及真空干燥后,再进 行还原得到石墨烯复合纤维具体包括: 对所述凝固成丝的产物使用缠绕器 收集后进行洗涤以及 80度真空干燥 24小时处理, 再通过乙酸还原后得到 直径 800 μ ηι、 断裂强度为 450MPa、 断裂伸长率为 5%、 导电率为 1000S/m 的超支化聚酰胺与石墨烯的复合纤维。
6、 在本发明又一实施例中上述歩骤可以具体为:
上述歩骤一中, 在反应器中加入 1重量份的氧化石墨烯、 50-2000重量 份的溶剂、 0.1-100重量份的聚合物, 搅拌后得到聚合物与石墨烯的纳米复 合材料纺丝浆液具体包括: 在反应器中加入 10mg的氧化石墨烯, 10g的水 溶剂, 200mg的超支化聚酰胺, 搅拌 24小时候得到超支化聚酰胺与石墨烯 的纳米复合材料纺丝浆液;
上述歩骤二中, 将所述纺丝浆液以 1-100 mL/h的挤出速度通过直径为
5-5000 μ ιη的纺丝喷头,于旋转的凝固剂中停留 1-3600S凝固成丝具体包括: 将所述超支化聚酰胺与石墨烯的纳米复合材料纺丝浆液以 1 mL/h的挤出速 度通过直径为 5000 μ m的纺丝喷头, 于旋转的 CaC12的乙醇溶液中停留 50 s凝固成丝;
上述歩骤三中,对所述凝固成丝的产物进行洗涤以及真空干燥后,再进 行还原得到石墨烯复合纤维具体包括: 对所述凝固成丝的产物使用缠绕器 收集后进行洗涤以及 80度真空干燥 24小时处理, 再通过氢碘酸和乙酸混 合物还原后得到直径 5000 μ ιη、 断裂强度为 515MPa、 断裂伸长率为 5%、 导电率为 5000S/m的超支化聚酰胺与石墨烯的复合纤维。
7、 在本发明又一实施例中上述歩骤可以具体为:
上述歩骤一中, 在反应器中加入 1重量份的氧化石墨烯、 50-2000重量 份的溶剂、 0.1-100重量份的聚合物, 搅拌后得到聚合物与石墨烯的纳米复 合材料纺丝浆液具体包括:在反应器中加入 10mg氧化石墨烯, 10g的 Ν,Ν- 二甲基甲酰胺溶剂以及 200mg的超支化聚酯,搅拌 10小时后得到超支化聚 酯与石墨烯纳米复合材料纺丝浆液;
上述歩骤二中, 将所述纺丝浆液以 1-100 mL/h的挤出速度通过直径为 5-5000 μ ιη的纺丝喷头,于旋转的凝固剂中停留 1-3600S凝固成丝具体包括: 将所述超支化聚酯与石墨烯纳米复合材料纺丝浆液以 1 mL/h的挤出速度通 过直径为 5000 μ m的纺丝喷头,于旋转的乙酸乙酯中停留 50 s凝固成丝; 上述歩骤三中,对所述凝固成丝的产物进行洗涤以及真空干燥后,再进 行还原得到石墨烯复合纤维具体包括: 对所述凝固成丝的产物使用缠绕器 收集后进行洗涤以及 80度真空干燥 24小时处理,再通过 KOH还原后得到 直径 5000 μ m、断裂强度为 545MPa、断裂伸长率为 5%、导电率为 4500S/m 的超支化聚酯与石墨烯的复合纤维。
8、 在本发明又一实施例中上述歩骤可以具体为:
上述歩骤一中, 在反应器中加入 1重量份的氧化石墨烯、 50-2000重量 份的溶剂、 0.1-100重量份的聚合物, 搅拌后得到聚合物与石墨烯的纳米复 合材料纺丝浆液具体包括:在反应瓶中加入 10mg氧化石墨烯, 10g的 Ν,Ν- 二甲基甲酰胺溶剂, 200mg的超支化聚酰胺后, 搅拌 10小时得到超支化聚 酰胺与石墨烯纳米复合材料纺丝浆液;
上述歩骤二中, 将所述纺丝浆液以 1-100 mL/h的挤出速度通过直径为 5-5000 μ ιη的纺丝喷头,于旋转的凝固剂中停留 1-3600S凝固成丝具体包括: 将所述超支化聚酰胺与石墨烯纳米复合材料纺丝浆液以 10 mL/h的挤出速 度通过直径为 100 μ m的纺丝喷头,于旋转的石油醚中停留 50 s凝固成丝; 上述歩骤三中,对所述凝固成丝的产物进行洗涤以及真空干燥后,再进 行还原得到石墨烯复合纤维具体包括: 对所述凝固成丝的产物使用缠绕器 收集后进行洗涤以及 80度真空干燥 24小时处理, 再通过 NaOH还原后得 到直径 100 μ m、断裂强度为 460MPa、断裂伸长率为 5%、导电率为 1200S/m 的超支化聚酰胺与石墨烯的复合纤维。
9、 在本发明又一实施例中上述歩骤可以具体为:
上述歩骤一中, 在反应器中加入 1重量份的氧化石墨烯、 50-2000重量 份的溶剂、 0.1-100重量份的聚合物, 搅拌后得到聚合物与石墨烯的纳米复 合材料纺丝浆液具体包括: 在反应器中加入 10mg氧化石墨烯, 10g的 N- 甲基 -2-吡咯垸酮的溶剂以及 200mg的超支化聚酯, 搅拌 5小时候得到超支 化聚酯与石墨烯纳米复合材料纺丝浆液;
上述歩骤二中, 将所述纺丝浆液以 1-100 mL/h的挤出速度通过直径为 5-5000 μ ιη的纺丝喷头,于旋转的凝固剂中停留 1-3600S凝固成丝具体包括: 将所述超支化聚酯与石墨烯纳米复合材料纺丝浆液以 5 mL/h的挤出速度通 过直径为 50 μ ιη的纺丝喷头, 于旋转的石油醚中停留 50 s凝固成丝; 上述歩骤三中,对所述凝固成丝的产物进行洗涤以及真空干燥后,再进 行还原得到石墨烯复合纤维具体包括: 对所述凝固成丝的产物使用缠绕器 收集后进行洗涤以及 80度真空干燥 24小时处理, 再通过 500度热还原后 得到直径 50 μ m、断裂强度为 525MPa、断裂伸长率为 5%、电导率为 2100S/m 的超支化酯与石墨烯的复合纤维。
10、 在本发明又一实施例中上述歩骤可以具体为:
上述歩骤一中, 在反应器中加入 1重量份的氧化石墨烯、 50-2000重量 份的溶剂、 0.1-100重量份的聚合物, 搅拌后得到聚合物与石墨烯的纳米复 合材料纺丝浆液具体包括: 在反应器中加入 10mg氧化石墨烯, 10g的 N- 甲基 -2-吡咯垸酮溶剂以及 200mg的聚乙烯醇, 搅拌 20小时后得到聚乙烯 醇与石墨烯纳米复合材料纺丝浆液; 上述歩骤二中, 将所述纺丝浆液以 1-100 mL/h的挤出速度通过直径为 5-5000 μ ιη的纺丝喷头,于旋转的凝固剂中停留 1-3600S凝固成丝具体包括: 将所述聚乙烯醇与石墨烯纳米复合材料纺丝浆液以 15mL/h 的挤出速度通 过直径为 5 μ m的纺丝喷头,于旋转的 KOH乙醇溶液停留 50 s凝固成丝; 上述歩骤三中,对所述凝固成丝的产物进行洗涤以及真空干燥后,再进 行还原得到石墨烯复合纤维具体包括: 对所述凝固成丝的产物使用缠绕器 收集后进行洗涤以及 80度真空干燥 24小时处理, 再通过乙酸还原后得到 直径 5 μ m、 断裂强度为 520MPa、 断裂伸长率为 5%、导电率为 1300S/m的 聚乙烯醇与石墨烯的复合纤维。
上述具体实施方式中的纺丝喷头包括纺丝毛细管。
本发明实施例选用大片氧化石墨烯作为原料,大大提高了石墨烯复合纤 维的拉伸强度; 聚合物的加入为复合纤维提供了良好的韧性; 纺丝工艺与 之前相比, 去除了通气, 加热, 反应, 离心, 洗涤等繁琐歩骤, 过程大大简 化, 容易操作、 节能、 环保; 纺丝过程采用旋转的凝固剂, 给凝胶纤维增 加了拉伸力,使其具有高取向和规整度,大大提高了所得固体纤维的强度; 最后的还原过程很好的恢复了石墨烯的导电性能, 使所得纤维具有可与石 墨烯纸(石墨烯纸是由石墨烯溶液抽滤而成的宏观材料,其形态类似于纸) 相媲美的电导率。 本发明实施例所得石墨烯复合纤维具有高强度、 良好的 韧性和高导电率等优点, 可以大量生产, 可广泛应用于导电织物、 材料增 强、 导电器件等领域。
下面通过实施例对本发明进行具体描述,本实施例只用于对本发明做进 一歩的说明, 不能理解为对本发明保护范围的限制, 本领域的技术人员根 据本发明的内容做出一些非本质的改变和调整, 均属于本发明的保护范围。

Claims

权利要求
1. 一种石墨烯复合纤维, 包括石墨烯片以及将所述石墨烯片聚合在一 起的聚合物, 其特征在于, 所述聚合物包括超支化聚合物以及聚乙烯醇中 的一种或两种, 所述石墨烯片与所述聚合物形成交错堆叠的层状结构且所 述石墨烯片沿所述石墨烯复合纤维的轴向规整排列。
2. 如权利要求 1所述的一种电石墨烯复合纤维, 其特征在于: 所述超 支化聚合物包括超支化聚酯、 超支化聚酰胺以及超支化聚缩水甘油醚中的 一种或多种。
3. 如权利要求 1所述的一种电石墨烯复合纤维, 其特征在于: 所述聚 合物包括超支化聚酯、 超支化聚酰胺、 超支化聚缩水甘油醚以及聚乙烯醇 中的一种或两种。
4.如权利要求 1至 3任一项所述的一种电石墨烯复合纤维,其特征在于: 所述石墨烯复合纤维的直径为 5-5000 μ m。
5. 一种电石墨烯复合纤维的制备方法, 其特征在于, 所述方法包括: 歩骤一、 在反应器中加入 1重量份的氧化石墨烯、 50-2000重量份的溶 剂、 0.1-100重量份的聚合物, 搅拌后得到聚合物与石墨烯的纳米复合材料 纺丝浆液, 其中, 所述聚合物包括超支化聚合物以及聚乙烯醇中的一种或 两种;
歩骤二、 将所述纺丝浆液以 1-100 mL/h的挤出速度通过直径为 5-5000 μ m的纺丝喷头, 于旋转的凝固剂中停留 1-3600S凝固成丝;
歩骤三、对所述凝固成丝的产物进行洗涤以及真空干燥后,再进行还原 得到石墨烯复合纤维。
6. 如权利要求 5所述的一种电石墨烯复合纤维的制作方法, 其特征在 于: 所述聚合物包括超支化聚酯、 超支化聚酰胺、 超支化聚缩水甘油醚以 及聚乙烯醇中的一种或两种。
7. 如权利要求 6所述的一种电石墨烯复合纤维的制作方法, 其特征在 于: 所述歩骤一中的 50-2000重量份的溶剂包括 N-甲基 -2-吡咯垸酮、 Ν,Ν- 二甲基甲酰胺以及水中的一种或多种。
8. 如权利要求 6所述的一种电石墨烯复合纤维的制作方法, 其特征在 于: 所述歩骤二中的凝固剂包括 NaOH的水溶液、 KOH的水溶液、 CaC12 的水溶液、 NaOH的甲醇溶液、 KOH的甲醇溶液、 CaC12的甲醇溶液、 NaOH 的乙醇溶液、 KOH的乙醇溶液、 CaC12的乙醇溶液、 乙醚、 乙酸乙酯、 丙 酮以及石油醚中的一种或者多种。
9. 如权利要求 6所述的一种电石墨烯复合纤维的制作方法, 其特征在 于: 所述歩骤三中进行还原的方法包括热还原或化学还原, 所述化学还原 中采用的化学还原剂包括水合肼、 维生素 C、 赖氨酸、 氢氧化钾、 氢氧化 钠、 氢碘酸、 乙酸中的一种或者多种。
10. 如权利要求 5至 9任一项所述的一种电石墨烯复合纤维的制作方 法, 其特征在于: 所述歩骤二中的纺丝喷头包括纺丝毛细管。
PCT/CN2014/072689 2013-08-01 2014-03-03 一种电石墨烯复合纤维的制备方法 WO2015014124A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14808476.7A EP2871268A4 (en) 2013-08-01 2014-03-03 METHOD FOR PRODUCING A CONDUCTIVE GRAPHIC FIBER
JP2015528869A JP2015530492A (ja) 2013-08-01 2014-03-03 導電性グラフェン複合繊維の製造方法
US14/577,609 US20150104642A1 (en) 2013-08-01 2014-12-19 Production method of electrically conductive graphene composite fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310332049.2A CN103541043A (zh) 2013-08-01 2013-08-01 一种电石墨烯复合纤维的制备方法
CN201310332049.2 2013-08-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/577,609 Continuation US20150104642A1 (en) 2013-08-01 2014-12-19 Production method of electrically conductive graphene composite fiber

Publications (1)

Publication Number Publication Date
WO2015014124A1 true WO2015014124A1 (zh) 2015-02-05

Family

ID=49964870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072689 WO2015014124A1 (zh) 2013-08-01 2014-03-03 一种电石墨烯复合纤维的制备方法

Country Status (5)

Country Link
US (1) US20150104642A1 (zh)
EP (1) EP2871268A4 (zh)
JP (1) JP2015530492A (zh)
CN (1) CN103541043A (zh)
WO (1) WO2015014124A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018532816A (ja) * 2015-07-29 2018-11-08 セントレ ナシオナル デ ラ ルシェルシェ シエンティフィーク 酸化グラフェンのin situ還元によってポリマー/還元型酸化グラフェンナノ複合材料を生成するための方法およびシステム
CN110029409A (zh) * 2018-11-30 2019-07-19 青岛大学 一种氧化石墨烯纤维的制备方法及得到的纤维
WO2023155282A1 (zh) * 2022-02-16 2023-08-24 浙江大学 大晶区化高结晶度碳质纤维的制备方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103541043A (zh) * 2013-08-01 2014-01-29 华为技术有限公司 一种电石墨烯复合纤维的制备方法
CN104328533A (zh) * 2014-11-10 2015-02-04 沙嫣 高强高模量聚乙烯醇-石墨烯纳米复合纤维的制备方法
CN104451925B (zh) * 2014-11-21 2017-01-04 东华大学 一种水溶性聚合物/石墨烯复合纤维及其制备方法和应用
CN105126750A (zh) * 2015-06-26 2015-12-09 中国航空工业集团公司北京航空材料研究院 一种污水处理用石墨烯宏观体材料的制备方法
CN105126764A (zh) * 2015-06-26 2015-12-09 中国航空工业集团公司北京航空材料研究院 一种污水处理用石墨烯宏观体材料
CN105289539A (zh) * 2015-11-11 2016-02-03 华南理工大学 一种石墨烯/聚乙烯醇纳米纤维膜吸附剂及其制备方法和应用
AU2017216258A1 (en) * 2016-02-03 2018-09-06 Imagine Intelligent Materials Limited Geotextile with conductive properties
WO2018010575A1 (zh) * 2016-07-11 2018-01-18 济南圣泉集团股份有限公司 石墨烯复合聚乙烯醇母粒以及石墨烯复合聚乙烯醇纤维及其制备方法与应用
CN106192201B (zh) * 2016-07-18 2018-09-14 浙江大学 一种石墨烯纤维无纺布及其制备方法
CN106245138B (zh) * 2016-07-27 2019-01-22 南京工程学院 一种高回复应力形状记忆复合纤维材料的制备方法
CN108624980A (zh) * 2017-03-24 2018-10-09 中国石化仪征化纤有限责任公司 一种导电pet纤维及其制备方法
CN106948052B (zh) * 2017-04-18 2019-08-16 江苏陆亿纺织科技有限公司 一种阻燃抗静电纱线及其面料
CN107151829A (zh) * 2017-05-16 2017-09-12 南通凯大纺织有限公司 一种抗菌抗紫外自清洁复合型涤纶的制备方法
CN107164817B (zh) * 2017-06-06 2019-03-26 烟台市烯能新材料有限责任公司 一种石墨烯-氧化石墨烯复合尼龙纤维的制备方法
CN107338498B (zh) * 2017-08-21 2019-01-25 广东富琳健康产业有限公司 一种用于石墨烯远红外护腰的功能纤维及其制备方法
CN108193295A (zh) * 2018-01-23 2018-06-22 杭州高烯科技有限公司 一种高弹性防静电防紫外多功能纤维及其制备方法
KR101973895B1 (ko) * 2018-02-12 2019-04-29 한국과학기술원 그래핀/고분자 복합섬유 구조의 열전재료 및 그의 제조방법
CN108456998B (zh) * 2018-03-05 2020-11-17 绍兴厚创新材料科技有限公司 一种高强度抑菌纳米纤维膜及其制备方法
CN109811426B (zh) * 2019-01-30 2020-05-26 四川大学 一种柔性的具有芯鞘结构的导电纤维及其制备方法
CN109824869A (zh) * 2019-01-31 2019-05-31 厦门源创力科技服务有限公司 一种环氧树脂固化剂及其制备方法
CN109750391B (zh) * 2019-02-12 2021-09-03 青岛大学 一种正压纺丝法制备石墨烯纤维的系统及方法
US20220205139A1 (en) * 2019-04-30 2022-06-30 Qingdao University Preparation method for graphene oxide fiber, and fiber obtained thereby
CN110614040A (zh) * 2019-09-28 2019-12-27 天津工业大学 一种石墨烯杂化全氟聚合物中空纤维膜的制备方法
CN110699772B (zh) * 2019-11-21 2022-03-18 秦皇岛中科瀚祺科技有限公司 一种石墨烯/尼龙纤维复合材料及其制备方法与应用
CN111218732A (zh) * 2020-03-06 2020-06-02 杭州高烯科技有限公司 一种石墨烯加捻纤维的制备方法
CN111235676B (zh) * 2020-03-19 2020-12-04 宁波市雪狼户外服饰有限公司 基于石墨烯的肺炎病菌防护用织物及其制备方法
CN115341307A (zh) * 2022-09-23 2022-11-15 内蒙古大学 一种高取向度氧化石墨烯纤维及其制备方法
CN116876093A (zh) * 2023-08-21 2023-10-13 哈尔滨工业大学 一种聚丙烯酰胺/石墨烯复合纤维及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010107762A1 (en) * 2009-03-16 2010-09-23 Aksay Ilhan A Polymeric fibers and articles made therefrom
CN102352030A (zh) * 2011-07-25 2012-02-15 浙江大学 超支化聚缩水甘油醚接枝石墨烯纳米复合材料及制备方法
CN102586916A (zh) * 2012-01-18 2012-07-18 浙江大学 一种超支化聚合物接枝石墨烯的复合纤维制备方法
WO2012124937A2 (ko) * 2011-03-15 2012-09-20 한양대학교 산학협력단 그라핀 복합 섬유 및 이의 제조 방법
CN102828267A (zh) * 2012-09-10 2012-12-19 浙江大学 一种导电的高强度的石墨烯增强的聚合物纤维的制备方法
CN102926020A (zh) * 2012-11-14 2013-02-13 浙江大学 一种导电的高强度的聚合物接枝石墨烯层状纤维的制备方法
CN103541043A (zh) * 2013-08-01 2014-01-29 华为技术有限公司 一种电石墨烯复合纤维的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328486A (ja) * 1990-12-06 1993-12-10 Agency Of Ind Science & Technol 電気音響変換器
JPH0941224A (ja) * 1995-08-01 1997-02-10 Tokushu Paper Mfg Co Ltd 微細粒子複合化デンプン繊維の製造方法
JP4118479B2 (ja) * 1999-11-19 2008-07-16 旭化成せんい株式会社 ポリケトン繊維の製造方法
JP3749502B2 (ja) * 2002-05-07 2006-03-01 独立行政法人科学技術振興機構 生分解性多孔質極細中空糸及びその製造方法
TW201012749A (en) * 2008-08-19 2010-04-01 Univ Rice William M Methods for preparation of graphene nanoribbons from carbon nanotubes and compositions, thin films and devices derived therefrom
JP5633821B2 (ja) * 2009-12-18 2014-12-03 国立大学法人北海道大学 酸化グラフェンシート及びこれを還元して得られるグラフェン含有物質を含有する物品、並びに、その製造方法
KR101193970B1 (ko) * 2011-03-15 2012-10-24 한양대학교 산학협력단 그라핀 섬유 및 이의 제조 방법
CN102534868B (zh) * 2011-12-26 2013-09-04 浙江大学 一种高强度宏观石墨烯导电纤维的制备方法
CN102664104B (zh) * 2012-05-04 2014-07-02 东南大学 电纺法制备一维石墨烯/半导体纳米线复合光阳极的方法
CN102690426B (zh) * 2012-06-08 2013-11-06 浙江大学 基于红外线辐照的石墨烯/聚合物复合材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010107762A1 (en) * 2009-03-16 2010-09-23 Aksay Ilhan A Polymeric fibers and articles made therefrom
WO2012124937A2 (ko) * 2011-03-15 2012-09-20 한양대학교 산학협력단 그라핀 복합 섬유 및 이의 제조 방법
CN102352030A (zh) * 2011-07-25 2012-02-15 浙江大学 超支化聚缩水甘油醚接枝石墨烯纳米复合材料及制备方法
CN102586916A (zh) * 2012-01-18 2012-07-18 浙江大学 一种超支化聚合物接枝石墨烯的复合纤维制备方法
CN102828267A (zh) * 2012-09-10 2012-12-19 浙江大学 一种导电的高强度的石墨烯增强的聚合物纤维的制备方法
CN102926020A (zh) * 2012-11-14 2013-02-13 浙江大学 一种导电的高强度的聚合物接枝石墨烯层状纤维的制备方法
CN103541043A (zh) * 2013-08-01 2014-01-29 华为技术有限公司 一种电石墨烯复合纤维的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018532816A (ja) * 2015-07-29 2018-11-08 セントレ ナシオナル デ ラ ルシェルシェ シエンティフィーク 酸化グラフェンのin situ還元によってポリマー/還元型酸化グラフェンナノ複合材料を生成するための方法およびシステム
CN110029409A (zh) * 2018-11-30 2019-07-19 青岛大学 一种氧化石墨烯纤维的制备方法及得到的纤维
CN110029409B (zh) * 2018-11-30 2024-03-12 青岛大学 一种氧化石墨烯纤维的制备方法及得到的纤维
WO2023155282A1 (zh) * 2022-02-16 2023-08-24 浙江大学 大晶区化高结晶度碳质纤维的制备方法

Also Published As

Publication number Publication date
EP2871268A1 (en) 2015-05-13
EP2871268A4 (en) 2015-08-05
US20150104642A1 (en) 2015-04-16
CN103541043A (zh) 2014-01-29
JP2015530492A (ja) 2015-10-15

Similar Documents

Publication Publication Date Title
WO2015014124A1 (zh) 一种电石墨烯复合纤维的制备方法
Tafreshi et al. A review on multifunctional aerogel fibers: processing, fabrication, functionalization, and applications
Wang et al. Fluorinated carbon nanotube/nanofibrillated cellulose composite film with enhanced toughness, superior thermal conductivity, and electrical insulation
Zhu et al. Multi-functional and highly conductive textiles with ultra-high durability through ‘green’fabrication process
CN110982114B (zh) 芳纶/碳纳米管杂化气凝胶薄膜、其制备方法及应用
US9453118B2 (en) Hybrid polymer composite fiber including graphene and carbon nanotube, and method for manufacturing same
KR101812534B1 (ko) 이종 접합구조를 가지는 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/그래핀/탄소나노튜브 복합섬유의 제조 방법
KR101812536B1 (ko) 습식 방사공정을 이용한 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/그래핀/탄소나노튜브 복합섬유의 제조 방법
Kou et al. Bioinspired design and macroscopic assembly of poly (vinyl alcohol)-coated graphene into kilometers-long fibers
CN102586916B (zh) 一种超支化聚合物接枝石墨烯的复合纤维制备方法
Jiang et al. Preparation and characterization of graphene/poly (vinyl alcohol) nanocomposites
WO2014166219A1 (zh) 一种石墨烯纤维及其制备方法
Liu et al. Tough and electrically conductive Ti3C2Tx MXene–based core–shell fibers for high–performance electromagnetic interference shielding and heating application
US20200040519A1 (en) Self-fused graphene fiber and method of preparing the same
Song et al. Tunable oriented cellulose/BNNSs films designed for high-performance thermal management
Kou et al. A mini review on nanocarbon-based 1D macroscopic fibers: assembly strategies and mechanical properties
TW201111569A (en) Method of manufacturing conductive composite fibres with a high proportion of nanotubes
CN102912626B (zh) 基于碳纳米管/氧化石墨烯/poss单体的纤维表面上浆剂的制备方法
Fan et al. Constructing fibrillated skeleton with highly aligned boron nitride nanosheets confined in alumina fiber via electrospinning and sintering for thermally conductive composite
Wang et al. Fiber-welded ciliated-like nonwoven fabric nano-composite multiscale architectures for superior mechanical and electromagnetic shielding behaviors
WO2018010575A1 (zh) 石墨烯复合聚乙烯醇母粒以及石墨烯复合聚乙烯醇纤维及其制备方法与应用
Qian et al. Cellulose-based phase change fibres for thermal energy storage and management applications
Jiao et al. Nacre-like robust cellulose nanofibers/MXene films with high thermal conductivity and improved electrical insulation by nanodiamond
Li et al. Ultralight aerogel textiles based on aramid nanofibers composites with excellent thermal insulation and electromagnetic shielding properties
Zhou et al. Highly thermal conductivity of PVA-based nanocomposites by constructing MWCNT-BNNS conductive paths

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2014808476

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014808476

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015528869

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14808476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE