WO2018010575A1 - 石墨烯复合聚乙烯醇母粒以及石墨烯复合聚乙烯醇纤维及其制备方法与应用 - Google Patents

石墨烯复合聚乙烯醇母粒以及石墨烯复合聚乙烯醇纤维及其制备方法与应用 Download PDF

Info

Publication number
WO2018010575A1
WO2018010575A1 PCT/CN2017/091701 CN2017091701W WO2018010575A1 WO 2018010575 A1 WO2018010575 A1 WO 2018010575A1 CN 2017091701 W CN2017091701 W CN 2017091701W WO 2018010575 A1 WO2018010575 A1 WO 2018010575A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
polyvinyl alcohol
controlled
aqueous solution
masterbatch
Prior art date
Application number
PCT/CN2017/091701
Other languages
English (en)
French (fr)
Inventor
唐一林
张金柱
张安
王文平
刘顶
Original Assignee
济南圣泉集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610624203.7A external-priority patent/CN106832399B/zh
Application filed by 济南圣泉集团股份有限公司 filed Critical 济南圣泉集团股份有限公司
Publication of WO2018010575A1 publication Critical patent/WO2018010575A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/50Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyalcohols, polyacetals or polyketals

Definitions

  • the invention relates to the field of graphene materials, in particular to a high-performance graphene composite polyvinyl alcohol masterbatch and graphene composite polyvinyl alcohol fiber and a preparation method and application thereof.
  • Polyvinyl alcohol is a water-soluble high molecular polymer having a molecular formula of [C 2 H 4 O] n .
  • Polyvinyl alcohol fiber can be used as a reinforcing material for plastics, cement and ceramics, as well as for asbestos with carcinogens because of its good hydrophilicity, impact resistance and easy dispersibility during molding.
  • Graphene is a two-dimensional material of a honeycomb structure composed of a single layer of sp2 hybridized carbon atoms, and has many excellent properties. Since its discovery in 2004, graphene has become a research hotspot in the scientific community. While studying the physicochemical properties of graphene, graphene-related composite materials are also emerging. In the direction of nanoscience, graphene is also used to prepare related nanocomposites, especially graphene/metal or graphene/metal oxide nanocomposites. Due to the excellent properties of graphene, these nanocomposites have broad research prospects in new energy, biosensing, catalysis, optical materials and other fields.
  • polyvinyl alcohol-graphene composite there are many related products for polyvinyl alcohol-graphene composite.
  • polyvinyl alcohol-graphene is generally made into functional masterbatch, which is convenient for transportation and storage.
  • Functional masterbatch Facilitate the subsequent application, and then make the related products from the functional masterbatch as raw materials according to actual needs, thus discovering the performance of the functional masterbatch itself, which will directly affect the related performance of the subsequent products, but generally produced
  • the graphene content in the functional masterbatch will be relatively low, and the graphene particles will be dispersed unevenly, the particle size will be uneven, and interlayer agglomeration will occur easily, so that the stress concentration point caused by different chip diameter graphene substances will occur easily.
  • the problem of fracture affects the performance of the subsequently prepared product.
  • the modified PVA prepared by the preparation method of the polyvinyl alcohol-graphene nanocomposite fiber in the prior art generally has a strength and toughness to be further improved, and it does not have other excellent properties such as antistatic property, and cannot Meet the modern people's requirements for the versatility of the material itself.
  • a first object of the present invention is to provide a graphene polyvinyl alcohol masterbatch having high performance. Although the content of graphene in the masterbatch is relatively high, the graphene particles are still uniformly dispersed and the particle size is relatively uniform. The agglomerated particles are produced less and the properties are stable. After the relevant materials are prepared for subsequent applications, the indexes such as lightness and elongation at break are qualitatively improved, and the materials are additionally imparted with high toughness and resistance. The hot water and antistatic properties further expand the market application range of materials and increase the added value of the products, which is conducive to further promotion and application.
  • a second object of the present invention is to provide a method for preparing the above-mentioned graphene composite polyvinyl alcohol masterbatch having high performance.
  • the preparation method has a close connection before and after, and the method is simple and quick, and can be seamlessly connected with existing production process equipment and processes.
  • the invention has the advantages of being able to completely retain the active ingredients of the raw materials, and has the advantages of simple and easy operation, mild operating conditions, and industrial production of graphene composite polyvinyl alcohol masterbatch, and the economic benefit is very good.
  • a third object of the present invention is to provide the above-mentioned high-performance graphene-based polyvinyl alcohol masterbatch, which is widely used in film products, water-absorbent resins, water-absorbent sponges, plastics, and fiber materials.
  • the fiber composite material prepared from the masterbatch further doubles the mechanical properties of the fiber on the basis of realizing the traditional high-strength and high-modulus polyvinyl alcohol fiber spinning process, and at the same time imparts high toughness to the fiber material. Hot water resistance and antistatic properties.
  • a fourth object of the present invention is to provide a method for preparing a graphene composite polyvinyl alcohol fiber having high performance.
  • the preparation method has a close connection before and after, and the method is simple and quick, and can be seamlessly connected with existing production process equipment and processes.
  • the utility model has the advantages that the active ingredient of the raw material can be completely retained, and has the advantages of simple and easy operation, mild operating conditions, industrialized production of graphene composite polyvinyl alcohol fiber, good economic benefit, and the prepared fiber composite material realizes traditional high strength, Based on the high-mold polyvinyl alcohol fiber spinning process, the mechanical properties of the fiber are further doubled, and the fiber material is imparted with high toughness, hot water resistance and antistatic property.
  • a fifth object of the present invention is to provide a high-performance graphene-based polyvinyl alcohol fiber obtained by the above method, wherein the composite fiber has a qualitative improvement in tensile elongation, elongation at break, and the like, and It also gives the fiber material high toughness, hot water resistance and antistatic property, further expands the market application range of the fiber material, and increases the added value of the product, which is beneficial to further popularization and application.
  • a sixth object of the present invention is to provide an application of the above-described graphene-composite polyvinyl alcohol fiber having high performance, which is widely used in various industries.
  • the invention provides a high-performance graphene composite polyvinyl alcohol masterbatch product, which is mainly composed of a graphene-based substance and a polyvinyl alcohol, and the content of the graphene-based substance in the master batch is below 6 wt%, preferably It is 3 wt% or less, more preferably 0.05-1.5 wt%, the D90 index of the graphene-based substance is controlled to 100 ⁇ m or less, the D10 index is controlled to 20 ⁇ m or less, and the D90 index is not more than 20 times, preferably 10 times or less of the D10 index. More preferably, it is 5 times or less.
  • the graphene content in the general polyvinyl alcohol-graphene masterbatch is generally relatively low, because the graphene content is too high to be prone to agglomeration, and subsequent preparation of the relevant downstream products will affect the physical properties of the product,
  • the present invention provides a graphene composite polyvinyl alcohol masterbatch having a relatively high graphene content, relatively uniform particle dispersion, and less agglomeration, and graphene in the master batch.
  • the content of the substance can be up to 6wt%, the particle size of the graphene is required to be D90 below 100 ⁇ m, and the D90 is 100 ⁇ m, which means that the particle size below 100 ⁇ m accounts for 90% of the whole, that is, the maximum particle size of the 90% is 100 ⁇ m; here the D90 is below 100um, and can be 95um, 80um, 60um, 50um and so on.
  • the particle size referred to herein is the particle size, and may be a thin thickness but a large area.
  • the D10 index is controlled to be less than 20 ⁇ m, and D10 can be 18 ⁇ m, 10 ⁇ m, 8 ⁇ m, 5 ⁇ m, 3 ⁇ m, 1 ⁇ m, and the like.
  • the D90 index is not more than 20 times, preferably less than 10 times, more preferably less than 5 times, and it is understood that when D90 is 50 ⁇ m, D10 is not less than 2.5 ⁇ m, and D10 is preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more.
  • such functional masterbatch also ensures the uniformity of the size of the graphene particles and avoids the phenomenon of particle agglomeration. The performance of the product prepared by using such functional masterbatch is obviously superior to that of the market. Ordinary graphene composite polyvinyl alcohol related products.
  • D90 is controlled at 30-100 ⁇ m
  • D10 is controlled at 5-20 ⁇ m
  • D90 is controlled At 5-30 ⁇ m
  • D10 is controlled at 0.5-3 ⁇ m. Because the shape of the final product is different when preparing plastic products and fibers, the graphenes have different sizes.
  • the purpose is to ensure the large-scale structure of the graphenes while ensuring that the graphenes do not undergo interlayer agglomeration and prevent
  • the problem of stress concentration point breakage caused by graphitic materials with different chip diameters if the particle size is too large or too small, it may be detrimental to the subsequent formation of a more uniform inorganic-organic lapped structure with the PVA molecular chain, and the more Graphene-like materials of the same particle size are more favorable for subsequent functional bonding with PVA, and the functional masterbatch obtained has excellent performance in all aspects, so it is necessary to strictly control the particle size.
  • the graphene-based materials used include one or a mixture of graphene, biomass graphene, graphene oxide, and graphene derivatives, and the graphene derivative is a modified graphene.
  • the graphene derivation comprises any one or at least 2 of elemental doped graphene or functionalized graphene. Combination of species.
  • the element doped graphene comprises any one or a combination of at least two of metal doped graphene or non-metal element doped graphene.
  • Metal-doped metal elements typically include, but are not limited to, potassium, sodium, gold, silver, iron, copper, nickel, chromium, titanium, vanadium or cobalt.
  • Non-metallic element doped graphene typically, but not exclusively, includes nitrogen, phosphorus, boron or silicon.
  • the non-metal element doped graphene comprises any one or a combination of at least two of nitrogen-doped graphene, phosphorus-doped graphene or sulfur-doped graphene.
  • the functionalized graphene comprises graphene grafted with a functional group.
  • the functionalized graphene includes graphene grafted with any one or a combination of at least two of a hydroxy compound, a carboxy compound or an amino compound.
  • the hydroxy compound in the embodiment of the present invention includes -R1-OH, wherein R1 includes an alkane group, and a typical but non-limiting hydroxyl group may be a methyl hydroxy group, an ethyl hydroxy group, a propyl hydroxy group, a butyl hydroxy group, a pentyl hydroxy group, Hexyl hydroxyl group and the like.
  • the carboxy compound in the examples of the present invention includes -R2-COOH, wherein R2 includes an alkane group, and a typical but non-limiting hydroxyl group may be a methyl hydroxy group, an ethyl hydroxy group, a propyl hydroxy group, a butyl hydroxy group, a pentyl hydroxy group, Hexyl hydroxyl group and the like.
  • the amino compound in the examples of the present invention includes -R3-NH 3 , wherein R 3 includes an alkane group, and a typical but non-limiting hydroxyl group may be a methyl group, an ethyl group, a propyl group, a butyl group or a pentyl group. , hexyl hydroxyl and the like.
  • the invention also provides a preparation method of high performance graphene composite polyvinyl alcohol masterbatch, which mainly comprises the following steps:
  • it when preparing graphene composite polyvinyl alcohol related products, it is generally direct graphene and polyethylene.
  • the alcohol is uniformly mixed and mixed in a mixed solvent, but the performance of the functional masterbatch prepared by the method is generally, the graphene particles are not uniformly dispersed in the masterbatch, and the particle size is not uniform, and the present invention is in the form of graphene.
  • the substance (graphene) includes one or several kinds of graphene, biomass graphene, graphene oxide, graphene derivatives, wherein the graphene derivative includes element-doped graphene, and finally the graphite is utilized therein.
  • the aqueous solution of the graphene substance is preliminarily pretreated, and the pretreatment method is No art described, the present invention is first of its kind.
  • the specific pretreatment method includes: ultrasonically dispersing a graphene aqueous solution, centrifuging at 2000-3000 rpm to obtain a bottom precipitate and a supernatant, and the supernatant is centrifuged at 5000-7000 rpm. Thereafter, a secondary bottom precipitate and a secondary supernatant are respectively obtained, wherein the graphene-based fractionated aqueous solution is prepared by any one of a bottom precipitate, a secondary bottom precipitate, and a secondary supernatant, preferably from a secondary bottom. Precipitate the prepared aqueous solution.
  • the rate of centrifugation of the bottom precipitate obtained from the aqueous solution of graphene is relatively low, and the rate of further centrifugation by the supernatant is relatively high, because the particle size of the aqueous solution of graphene is generally large, if the rate Too fast is not conducive to the deposition of large particles, and the particle size of the subsequent supernatant is generally small, so the rate needs to be faster, so that the small particle is floating in the supernatant.
  • Such a graphene-like substance having a relatively uniform particle size may be precipitated at the bottom after precipitation, or precipitated at the secondary bottom, or in the secondary supernatant, and the graphene-based fractionated aqueous solution may be selected from any of the above-mentioned classified treatments.
  • the materials can ensure the graphenes with relatively uniform particle size, and the size of the particles is also suitable, so as to ensure the uniformity of the film diameter, which is beneficial to the subsequent performance of the prepared functional masterbatch.
  • the time for ultrasonic dispersion of the graphene-based aqueous solution is preferably controlled to 1-3 h, and the graphene-based material is water-soluble.
  • the time of centrifugation of the liquid at 2000-3000 rpm is preferably controlled between 20-40 min, and the time of centrifugation of the supernatant at 5000-7000 rpm is preferably controlled between 10-30 min, which is controlled in a superior operation.
  • the time is more favorable for the classification of the particle size, and the particle size distribution is more uniform.
  • the mass percentage concentration of the pre-treated graphene-based aqueous solution is preferably controlled appropriately, because if the concentration is too high, agglomeration between sheets is liable to occur during concentration, and a lower concentration of graphene sol solution (a graphene-based aqueous solution) It is advantageous for the ordered orientation of the PVA molecular chain with graphene as a spreading platform, and the sol is used as a raw material for graphene to be compounded with PVA, and the preferred concentration of the graphene aqueous solution is 3 wt% or less, more preferably 2 wt%. Hereinafter, it is preferably between 0.05 and 1.5% by weight.
  • aqueous solution of the graphene material After pretreating the aqueous solution of the graphene material, premixing the aqueous solution of graphene with a lower concentration of PVA aqueous solution, and then gradually increasing the concentration, and finally obtaining a mixed solution having a PVA concentration of 10-20 wt%, preferably a PVA concentration.
  • the control is between 15-16wt% to achieve the purpose of complete dispersion by setting a concentration gradient. If the aqueous graphene solution is directly mixed with the PVA aqueous solution, such a mixing method is prone to agglomeration and is not conducive to mixing.
  • the method of setting the gradient concentration composite of the present invention is more advantageous for the performance of the final product, and the specific operation may be divided into several gradients, such as sequentially adding 2-5 wt% of PVA aqueous solution, 6-8 wt% of PVA aqueous solution,
  • the PVA aqueous solution of 10-12 wt%, 25-40 wt%, etc., the number of gradients is not particularly limited, and the initial concentration of the PVA aqueous solution is controlled to be between 2 and 5 wt%.
  • the stirring time after each addition is controlled at 1-2 h, and the temperature is controlled between 90-100 ° C. If the temperature is too low, the PVA aqueous solution cannot be mixed and stirred uniformly with the graphene aqueous solution. Agglomerated particles will appear, affecting product performance, so the temperature is preferably controlled within a suitable range.
  • the degree of polymerization of PVA in the aqueous solution of PVA is preferably controlled between 1700 and 2500, and the degree of alcoholysis is preferably controlled between 88 and 99%, because the degree of polymerization and the degree of alcoholysis of PVA significantly affect the polyvinyl alcohol.
  • the tensile strength and tensile modulus of the fiber generally the higher the degree of polymerization and the degree of alcoholysis of the PVA, the higher the tensile strength and tensile modulus of the subsequent material made of the polyvinyl alcohol masterbatch.
  • the graphene composite polyvinyl alcohol masterbatch prepared by the above preparation method further improves the mechanical properties of the subsequent products, and at the same time imparts high toughness, hot water resistance and antistatic property, and is widely used for making film products.
  • Water-absorbent resins, water-absorbent sponges, and plastics have a wide range of applications in these areas.
  • the tensile strength of the fiber material can reach 2 GPa or more, the Young's modulus is above 45 GPa, and the elongation at break can be controlled between 3-13%. .
  • the embodiment of the invention further provides a method for preparing a high performance graphene composite polyvinyl alcohol fiber, which mainly comprises the following steps:
  • High-strength polyvinyl alcohol (PVA) fiber itself has good hydrophilicity, cohesiveness, impact resistance and easy dispersion during processing, so it is used as reinforcing material in cement, asbestos sheet, ceramic building materials and polymer matrix composites. There are many applications in other areas. Reinforced concrete and building materials with high-strength PVA fiber can effectively improve the impact resistance, elastic fatigue and crack resistance of the material.
  • the geotextile made of high-strength PVA fiber has high tensile strength, good creep resistance, excellent wear resistance, chemical corrosion resistance, microbial resistance and water conductivity, and can be used for reinforcement, isolation, protection and drainage during construction.
  • Epoxy resin is used to bond high-strength PVA fibers into rods instead of steel bars in concrete, which can be used as civil engineering materials. Greatly reduce the weight of building components. Due to the high breaking strength, impact strength, weather resistance and seawater corrosion resistance of high-strength PVA fiber, it is suitable for various types of fishing nets, fishing gear, fishing lines, ropes, etc., in marine fishing and transportation. Tools and other aspects have a good application market.
  • the present invention provides a high-performance preparation method of graphene composite polyvinyl alcohol fiber, and the composite fiber prepared by the preparation method not only has the traditional polyvinyl alcohol fiber material. All of the excellent performance, but also improved performance, but also give the fiber material itself higher toughness, hot water resistance and antistatic properties.
  • the prior art when preparing graphene composite polyvinyl alcohol fiber, it is generally The graphene and the polyvinyl alcohol are directly mixed uniformly in a mixed solvent, and the polyvinyl alcohol-graphene nanocomposite fiber is obtained by spinning and drawing.
  • the performance of the fiber material prepared by the method is general, and the present invention is used for graphite.
  • the olefinic substance includes one or a mixture of graphene, biomass graphene, graphene oxide, graphene derivative, wherein the graphene derivative includes element-doped graphene, and finally utilizes therein Pre-treatment of the aqueous solution of graphene before the mixing of the graphene structure with the polyvinyl alcohol.
  • the prior art method there is no description, the present invention is first of its kind.
  • the D90 index of the graphene-based substance is controlled to be 50 ⁇ m or less, preferably 30 ⁇ m or less, in order to maintain the large-sized structure of the graphene-like substance as much as possible, and to ensure that the graphene-like substance does not undergo interlayer agglomeration and prevent different sheets.
  • the problem of stress concentration point breakage caused by the diameter of graphene materials if the particle size is too large or too small, it may be detrimental to the subsequent formation of a more uniform inorganic-organic lapped structure with the PVA molecular chain, so in order to ensure the diameter of the film Uniformity, better D90 (representing the particle size corresponding to 90% of the particle size distribution) index is controlled between 5 and 25 ⁇ m, and may also be 7 ⁇ m, 10 ⁇ m, 12 ⁇ m, 14 ⁇ m, 16 ⁇ m, 18 ⁇ m, 40 ⁇ m, 48 ⁇ m, etc.
  • the more the graphene-like substance maintained at the same particle size is more favorable for subsequent compounding with PVA, the obtained product has excellent performance in all aspects, so it is necessary to strictly control the particle size.
  • the graphene-based materials used include one or a mixture of graphene, biomass graphene, graphene oxide, and graphene derivatives, and the graphene derivative is a modified graphene.
  • the graphene derivation comprises any one or a combination of at least two of elemental doped graphene or functionalized graphene.
  • the element doped graphene comprises any one or a combination of at least two of metal doped graphene or non-metal element doped graphene.
  • Metal-doped metal elements typically include, but are not limited to, potassium, sodium, gold, silver, iron, copper, nickel, chromium, titanium, vanadium or cobalt.
  • Non-metallic element doped graphene typically, but not exclusively, includes nitrogen, phosphorus, boron or silicon.
  • the non-metal element doped graphene comprises any one or a combination of at least two of nitrogen-doped graphene, phosphorus-doped graphene or sulfur-doped graphene.
  • the functionalized graphene comprises graphene grafted with a functional group.
  • the functionalized graphene includes graphene grafted with any one or a combination of at least two of a hydroxy compound, a carboxy compound or an amino compound.
  • the hydroxy compound in the examples of the present invention includes -R1-OH, and the R1 includes an alkane group, and the typical but non-limiting hydroxyl group may be a methyl hydroxy group, an ethyl hydroxy group, a propyl hydroxy group, a butyl hydroxy group, a pentyl hydroxy group, Hexyl hydroxyl group and the like.
  • the carboxy compound in the examples of the present invention includes -R2-COOH, and the R2 includes an alkane group, and the typical but non-limiting hydroxyl group may be a methyl hydroxy group, an ethyl hydroxy group, a propyl hydroxy group, a butyl hydroxy group, a pentyl hydroxy group, Hexyl hydroxyl group and the like.
  • the amino compound in the examples of the present invention includes -R3-NH 3 , and the R 3 includes an alkane group, and a typical but non-limiting hydroxyl group may be a methyl group, an ethyl group, a propyl group, a butyl group or a pentyl group. , hexyl hydroxyl and the like.
  • the specific pretreatment method can refer to the pretreatment method in the preparation method of the foregoing high performance graphene composite polyvinyl alcohol masterbatch, which will not be described herein.
  • aqueous graphene material After pretreating the aqueous graphene material, premixing the aqueous solution of graphene with a lower concentration of PVA aqueous solution, and then gradually increasing the concentration, and finally obtaining a boric acid-containing spinning dope having a PVA concentration of 10-20 wt%.
  • the preferred PVA concentration is controlled between 15-16% by weight to achieve the purpose of complete dispersion by setting a concentration gradient, if the aqueous graphene solution is directly mixed with the PVA aqueous solution or the boric acid-containing PVA aqueous solution, such that The mixing mode is prone to agglomeration and is not conducive to the mixing, thereby affecting the performance of the product.
  • the method of setting the gradient concentration composite of the present invention is more advantageous for the performance of the final product, and the specific operation can be divided into several gradients, for example, 2-5 wt% are sequentially added.
  • boric acid-containing PVA aqueous solution After directly adding 2-5 wt% of PVA aqueous solution, then directly adding boric acid-containing PVA aqueous solution (the last added boric acid-containing PVA aqueous solution is ladder)
  • the maximum concentration limit set if the PVA aqueous solution is added in multiple times, after the PVA aqueous solution is mixed with the graphene-based fractionated aqueous solution, the boric acid is finally added, and the concentration of boric acid is preferably controlled between 2 and 5 wt%. .
  • the stirring time after each addition is controlled at 1-2 h, and the temperature is controlled between 90-100 ° C. If the temperature is too low, the PVA aqueous solution cannot be mixed and stirred uniformly with the graphene aqueous solution. Agglomerated particles will appear, affecting product performance, so the temperature is preferably controlled within a suitable range.
  • the degree of polymerization of the aqueous solution of PVA is preferably controlled between 1700 and 2500, and the degree of alcoholysis is preferably controlled between 88 and 99%, because the degree of polymerization and the degree of alcoholysis of PVA can significantly affect the pulling of polyvinyl alcohol fibers.
  • the tensile strength and tensile modulus generally the higher the degree of polymerization and the degree of alcoholysis of PVA, the higher the tensile strength and tensile modulus of the polyvinyl alcohol fiber.
  • a crosslinking agent to the spinning dope to acetalize and reduce the reducing agent, and then add the crosslinking agent for the purpose of PVA. It is cross-linked with graphene to realize the orderly arrangement of the polymer on the surface of the nanographene sheet, avoiding the entanglement of the polymer, and is beneficial to the high-expansion stretching of the post-spinning treatment, thereby improving the performance of the PVA fiber.
  • the graphene material itself is used as an inorganic filler, and the addition of a reducing agent can improve the hot water resistance of the PVA fiber.
  • the crosslinking agent added to the spinning dope belongs to the pre-crosslinking, and can also be crosslinked after the nascent fiber is prepared.
  • Cross-linking belongs to post-crosslinking.
  • High-performance PVA fiber can be obtained whether it is pre-crosslinking or post-crosslinking.
  • the reduction step can be carried out in the spinning dope or in the spinning dope.
  • the reduction after the preparation of the fiber, whether it is pre-crosslinking or post-crosslinking, pre-reduction or post-reduction, is within the scope of the patent protection of the present invention, and the cross-linking agent may include glyoxal, glutaraldehyde, formaldehyde, boric acid.
  • the concentration of the crosslinking agent in the spinning dope is controlled to be between 0.0075 and 0.45 wt%
  • the reducing agent may include one of sodium borohydride, ascorbic acid, hydrazine hydrate and hydroiodic acid. Or a mixture of several, the concentration of the reducing agent in the spinning dope is controlled between 0.1 and 3 wt%.
  • the spinning dope is filtered and defoamed at 85-120 ° C.
  • the reason of 85-120 ° C is to prevent the gelatin from affecting the performance of the fiber.
  • the spinning dope has a diameter of 0.08-0.30 from the orifice.
  • the spun yarn enters the 40-45 °C Glauber's salt coagulation bath to form the nascent fiber, and the nascent fiber is pickled, washed, dried, and then subjected to hot stretching and heat setting treatment.
  • a high performance graphene composite polyvinyl alcohol fiber is obtained.
  • the graphene-based polyvinyl alcohol fiber has a graphene-like substance content of 3 wt% or less, preferably 2 wt% or less, more preferably 0.05 to 1.5 wt%. between.
  • the defoaming mode is atmospheric pressure static defoaming or vacuum defoaming
  • the hot stretching temperature is controlled at 120-250 ° C
  • the hot stretching ratio is 10-37 times
  • the heat setting time is 1-15 min.
  • the graphene composite polyvinyl alcohol fiber prepared by the above preparation method further doubles the mechanical properties of the fiber, and at the same time imparts high toughness, hot water resistance and antistatic property to the fiber, and is widely used as a reinforcing material and a building material. It has a wide range of applications in the construction industry, transportation industry and many other industries.
  • the preparation method of the invention is simple and easy to operate, has mild operating conditions, can realize industrial production of graphene composite polyvinyl alcohol fiber, and has good economic benefits, and the prepared fiber composite material realizes traditional high-strength and high-modulus polyvinyl alcohol fiber spinning.
  • the mechanical properties of the fiber are further doubled, and the fiber material is imparted with higher toughness, hot water resistance and antistatic property;
  • the high-performance graphene-based polyvinyl alcohol fiber of the present invention has a qualitative improvement in tensile strength, tensile modulus, elongation at break, and the like, and additionally imparts high toughness to the fiber material.
  • the hot water resistance and antistatic property further expand the market application range of the fiber material, and increase the added value of the product, which is beneficial to further popularization and application.
  • a crosslinking agent to the spinning dope to acetalize and reduce the reducing agent, and then add the crosslinking agent for the purpose of PVA. It is cross-linked with graphene to realize the orderly arrangement of the polymer on the surface of the nanographene sheet, avoiding the entanglement of the polymer, and is beneficial to the high-expansion stretching of the post-spinning treatment, thereby improving the performance of the PVA fiber.
  • the graphene material itself is used as an inorganic filler, and the addition of a reducing agent can improve the hot water resistance of the PVA fiber.
  • the crosslinking agent added to the spinning dope belongs to the pre-crosslinking, and can also be crosslinked after the nascent fiber is prepared.
  • Cross-linking belongs to post-crosslinking.
  • High-performance PVA fiber can be obtained whether it is pre-crosslinking or post-crosslinking.
  • the reduction step can be carried out in the spinning dope or in the spinning dope.
  • the reduction after the preparation of the fiber, whether it is pre-crosslinking or post-crosslinking, pre-reduction or post-reduction, is within the scope of the patent protection of the present invention, and the cross-linking agent may include glyoxal, glutaraldehyde, formaldehyde, boric acid.
  • the concentration of the crosslinking agent in the spinning dope is controlled to be between 0.0075 and 0.45 wt%
  • the reducing agent may include one of sodium borohydride, ascorbic acid, hydrazine hydrate and hydroiodic acid. Or a mixture of several, the concentration of the reducing agent in the spinning dope is controlled between 0.1 and 3 wt%.
  • the concentration of boric acid may be controlled to be between 2 and 5 wt%, and may also be 3 wt%, 3.5 wt%, 4 wt% or the like.
  • the spinning dope is filtered and defoamed at 85-120 ° C.
  • the reason of 85-120 ° C is to prevent the gelatin from affecting the performance of the fiber.
  • the spinning dope has a diameter of 0.08-0.30 from the orifice.
  • the spun yarn enters the 40-45 °C Glauber's salt coagulation bath to form the nascent fiber, and the nascent fiber is pickled, washed, dried, and then subjected to hot stretching and heat setting treatment.
  • a high performance graphene composite polyvinyl alcohol fiber is obtained.
  • the defoaming mode is atmospheric pressure static defoaming or vacuum defoaming
  • the hot stretching temperature is controlled at 120-250 ° C
  • the hot stretching ratio is 10-37 times
  • the heat setting time is 1-15 min.
  • the graphene-based material contained in the high-performance graphene polyvinyl alcohol masterbatch provided by the present invention is relatively high, the graphene particles are still uniformly dispersed, the particle size is relatively uniform, and no agglomerated particles are generated. All performance is stable.
  • Graphene composite polyvinyl alcohol masterbatch with high performance is widely used in membrane products, water-absorbent resins, water-absorbent sponges, plastics and fiber materials, especially fiber composites prepared from the masterbatch.
  • the material On the basis of realizing the traditional high-strength and high-modulus polyvinyl alcohol fiber spinning process, the material further doubles the mechanical properties of the fiber, and at the same time imparts high toughness, hot water resistance and antistatic property to the fiber material.
  • the preparation method of the high-performance graphene composite polyvinyl alcohol fiber provided by the invention has the advantages of simple and quick connection between the front and the back steps, and the seamless connection with the existing production process equipment and the process, and the material can be completely retained.
  • the preparation method of the high-performance graphene composite polyvinyl alcohol fiber of the invention is simple and easy to operate, and the operation condition is mild, and the industrial production of the graphene composite polyvinyl alcohol fiber can be realized, and the economic benefit is good, and the prepared fiber composite material is prepared.
  • the mechanical properties of the fiber are further doubled, and the fiber material is imparted with high toughness, hot water resistance and antistatic property.
  • the graphene composite polyvinyl alcohol fiber of the present invention has a qualitative improvement in tensile strength, tensile modulus, elongation at break and the like, and additionally imparts high toughness and hot water resistance to the fiber material. And antistatic property, further expanding the market application range of fiber materials, increasing the added value of products, and facilitating further application.
  • Figure 1 is a polarizing microscope diagram of pure polyvinyl alcohol masterbatch
  • Example 2 is a polarizing microscope diagram of a graphene composite polyvinyl alcohol masterbatch prepared in Example 1 of the present invention
  • This embodiment provides a high performance graphene composite polyvinyl alcohol masterbatch, and the preparation method thereof is as follows:
  • the graphene oxide content is 1.5 wt%, and the graphene-based material has a D90 of 100 ⁇ m and a D10 of 20 ⁇ m.
  • the polarizing microscope of the master batch prepared in this example is shown in FIG. 2 .
  • a polarizing microscope image of a pure polyvinyl alcohol blank masterbatch without adding any other substance is shown in Fig. 1.
  • the present embodiment provides a high-performance graphene composite polyvinyl alcohol masterbatch, and the preparation method thereof is different from the first embodiment in that the bottom precipitate obtained by the first centrifugation at 3000 rpm is used in the step 1), and the water is ultrasonically obtained. 2wt% of the fractionated graphene oxide sol solution, the concentration of PVA in the obtained mixed solution is 16wt%, and the solvent is dried to obtain a functional masterbatch having a graphene oxide content of 1.5% by weight, and the D90 of the graphene-based substance is 70 ⁇ m. , D10 is 3.5 ⁇ m.
  • the present embodiment provides a high-performance graphene composite polyvinyl alcohol masterbatch, and the preparation method thereof is different from the embodiment 1 in that the step 1) is selected twice after the supernatant is centrifuged again at 7000 rpm.
  • the clear liquid was prepared to obtain a 3% by weight fractionated graphene oxide sol solution, and the obtained mixed solution was obtained, and the concentration of PVA was 15 wt%, and the solvent was dried to obtain a functional master batch having a graphene oxide content of 1.5 wt%, and graphite.
  • the olefinic substance had a D90 of 30 ⁇ m and a D10 of 5 ⁇ m.
  • the present embodiment provides a high performance graphene composite polyvinyl alcohol masterbatch, and the preparation method thereof is different from that of the first embodiment in that the final evaporation solvent is dried to obtain a functional masterbatch having a graphene oxide content of 1.5 wt% and graphite.
  • the olefinic substance had a D90 of 20 ⁇ m and a D10 of 3 ⁇ m.
  • the present embodiment provides a high performance graphene composite polyvinyl alcohol master batch, the preparation method thereof and the region of the first embodiment
  • the other point was that the final evaporation solvent was dried to obtain a functional masterbatch having a graphene oxide content of 1.5% by weight and the graphene-based material had a D90 of 10 ⁇ m and a D10 of 2 ⁇ m.
  • the present embodiment provides a high performance graphene composite polyvinyl alcohol masterbatch, and the preparation method thereof is different from that of the first embodiment in that the final evaporation solvent is dried to obtain a functional masterbatch having a graphene oxide content of 1.5 wt% and graphite.
  • the olefinic substance had a D90 of 5 ⁇ m and a D10 of 0.5 ⁇ m.
  • the present embodiment provides a high performance graphene composite polyvinyl alcohol masterbatch, and the preparation method thereof is different from that of the first embodiment in that the final evaporation solvent is dried to obtain a functional masterbatch having a graphene oxide content of 1.5 wt% and graphite.
  • the olefinic substance had a D90 of 5 ⁇ m and a D10 of 3 ⁇ m.
  • This embodiment provides a high-performance graphene composite polyvinyl alcohol masterbatch, and the preparation method thereof is different from that of the embodiment 1 in that the graphene oxide is replaced with graphene in the step 1), and the second bottom precipitate is added with water and ultrasonic. 1 wt% of the fractionated graphene sol solution was finally evaporated to obtain a functional master batch having a graphene oxide content of 1.5 wt% and the graphene-based material had a D90 of 10 ⁇ m and a D10 of 2 ⁇ m.
  • This embodiment provides a high performance graphene composite polyvinyl alcohol masterbatch, and the preparation method thereof is different from that of the embodiment 1 in that the graphene oxide is replaced with the biomass graphene in the step 1), and the second bottom precipitate is added with water.
  • Ultrasonicity gave 0.5 wt% of the fractionated graphene sol solution, and finally the solvent was evaporated to obtain a functional master batch having a graphene oxide content of 1.5 wt% and the graphene-based material had a D90 of 10 ⁇ m and a D10 of 2 ⁇ m.
  • the present embodiment provides a high performance graphene composite polyvinyl alcohol masterbatch, and the preparation method thereof is different from the embodiment 1 in that the concentration of the fractionated graphene oxide sol solution in step 1) is 0.05 wt%; step 2) Among them, the graphene oxide sol solution and the PVA aqueous solution having a mass fraction of 5 wt% (degree of polymerization: 2000, degree of alcoholysis of 88%) were premixed and stirred at 100 ° C for 2 h, and the mass fraction was 10 wt% of PVA aqueous solution (degree of polymerization was 2000, the degree of alcoholysis was 99%) premixed at 95 ° C for 2 h to obtain a premix, and the premix was mixed with a 25 wt% aqueous solution of PVA (degree of polymerization 2500, degree of alcoholysis was 88%), 95 ° C After stirring for 1.5 h, a mixed aqueous solution having a PVA concentration of 20
  • the present embodiment provides a high-performance graphene composite polyvinyl alcohol masterbatch, and the preparation method thereof is different from the embodiment 1 in that the concentration of the fractionated graphene oxide sol solution in step 1) is 3 wt%; in step 2) The pre-mixed material was obtained by premixing and stirring the graphene oxide sol solution with a PVA aqueous solution having a mass fraction of 2 wt% (degree of polymerization: 2000, degree of alcoholysis of 88%) at 90 ° C for 1 h.
  • a 10 wt% aqueous solution of PVA (degree of polymerization: 2000, degree of alcoholysis of 99%) was mixed at 95 ° C for 2 h to obtain a mixed solution having a PVA concentration of 10 wt%, and in step 3), a graphene compound polyg of 2 wt% of graphene oxide was finally obtained.
  • the vinyl alcohol functional masterbatch and the graphene-based material had a D90 of 10 ⁇ m and a D10 of 2 ⁇ m.
  • the present embodiment provides a high-performance graphene composite polyvinyl alcohol masterbatch, and the preparation method thereof is different from that of the first embodiment in the step 2), the secondary precipitate obtained by re-centrifugation at 7000 rpm is used to obtain 1 wt%.
  • the graphitized graphene oxide sol solution was finally obtained to obtain a graphene-polyvinyl alcohol functional masterbatch having a graphene oxide content of 3 wt%, and the graphene-based material had a D90 of 10 ⁇ m and a D10 of 2 ⁇ m.
  • the present embodiment provides a high-performance graphene composite polyvinyl alcohol masterbatch, and the preparation method thereof is different from that of the first embodiment in the step 2), the secondary precipitate obtained by re-centrifugation at 7000 rpm is used to obtain 2.5 wt%.
  • Graded graphene oxide sol solution finally obtaining graphene-polyvinyl alcohol functional masterbatch with a graphene oxide content of 6 wt% and stone
  • the mordane has a D90 of 10 ⁇ m and a D10 of 2 ⁇ m.
  • This embodiment provides a high performance graphene composite polyvinyl alcohol fiber, and the preparation method thereof is as follows:
  • the present embodiment provides a high-performance graphene composite polyvinyl alcohol fiber, and the preparation method thereof is different from the embodiment 14 in that the bottom precipitate obtained by the first centrifugation at 3000 rpm is used in the step 1), and the water is ultrasonically obtained to obtain 2 wt. % fractionated graphene oxide sol solution (sheet diameter distribution is D90: ⁇ 30 ⁇ m), the obtained spinning dope has a concentration of reducing agent of 3 wt%, a concentration of PVA of 16 wt%, and finally a graphene oxide content of 1.5 wt. % graphene composite polyvinyl alcohol fiber.
  • the present embodiment provides a high performance graphene composite polyvinyl alcohol fiber, and the preparation method thereof is different from the embodiment 14 in that the second supernatant after the supernatant is centrifuged again at 7000 rpm is selected in the step 1).
  • the liquid was prepared to obtain a 3% by weight fractionated graphene oxide sol solution (the particle diameter distribution was D90: ⁇ 5 ⁇ m), and the obtained spinning dope had a concentration of the reducing agent of 2 wt% and a concentration of PVA of 15 wt%, and finally obtained graphite oxide.
  • This embodiment provides a high performance graphene composite polyvinyl alcohol fiber, and the preparation method thereof is different from that of the embodiment 14 in that the graphene oxide is replaced with graphene in the step 1), and the second bottom precipitate is added with water to obtain 1 wt. % of the graded graphene sol solution (the sheet diameter distribution is D90: ⁇ 10 ⁇ m), and finally a graphene-composite polyvinyl alcohol fiber having a graphene oxide content of 1.5% by weight is obtained.
  • the present embodiment provides a high performance graphene composite polyvinyl alcohol fiber, and the preparation method thereof is different from that of the embodiment 14 in that the graphene oxide is replaced with the biomass graphene in the step 1), and the second bottom precipitate is added with water ultrasonic.
  • a 0.5 wt% fractionated graphene sol solution (sheet diameter distribution: D90: ⁇ 12 ⁇ m) was obtained, and finally a graphene-composite polyvinyl alcohol fiber having a graphene oxide content of 1.5 wt% was obtained.
  • the present embodiment provides a high-performance graphene composite polyvinyl alcohol fiber, and the preparation method thereof is different from the embodiment 14 in that the supernatant obtained by the first centrifugation at 2000 rpm is used in the step 1) to obtain 1.5 wt.
  • the fractionated graphene oxide sol solution (the sheet diameter distribution is D90: ⁇ 16 ⁇ m) finally obtains a graphene-composite polyvinyl alcohol fiber having a graphene oxide content of 1.5 wt%.
  • the present embodiment provides a high-performance graphene composite polyvinyl alcohol fiber, and the preparation method thereof is different from that of the embodiment 14 in that the concentration of the fractionated graphene oxide sol solution in the step 1) is 0.05 wt% (the diameter distribution) For D90: ⁇ 16 ⁇ m); in step 2), the graphene oxide sol solution and the PVA aqueous solution having a mass fraction of 5 wt% (degree of polymerization: 2000, degree of alcoholysis of 88%) were premixed and stirred at 100 ° C for 2 h, mass fraction.
  • Premixing was carried out by premixing 10 wt% of PVA aqueous solution (degree of polymerization 2000, degree of alcoholysis of 99%) at 95 ° C for 2 h, and the premix was mixed with 25 wt% of PVA aqueous solution and boric acid solution (degree of polymerization) 2500, the degree of alcoholysis is 88%), stirring at 95 ° C for 1.5 h, finally preparing an aqueous solution having a PVA concentration of 20 wt% and a boric acid concentration of 5 wt%, and the reducing agent in step 3) is selected as sodium borohydride, and a crosslinking agent is added.
  • the glyoxal was such that the concentration of the reducing agent in the spinning dope was 3 wt%, the concentration of the crosslinking agent was 0.45 wt%, and finally the graphene-complex polyvinyl alcohol fiber having a graphene oxide content of 0.05 wt% was obtained.
  • the present embodiment provides a high performance graphene composite polyvinyl alcohol fiber, and the preparation method thereof is different from the embodiment 14 in that the concentration of the fractionated graphene oxide sol solution in step 1) is 3 wt% (the patch diameter distribution is D90: ⁇ 16 ⁇ m);
  • step 2) the graphene oxide sol solution and the PVA aqueous solution having a mass fraction of 2 wt% (degree of polymerization: 2000, degree of alcoholysis of 88%) were premixed and stirred at 90 ° C for 1 h to obtain a premix.
  • the premix was mixed with a PVA aqueous solution having a mass fraction of 10% by weight (degree of polymerization: 2000, degree of alcoholysis of 99%) at 95 ° C for 2 hours, and then boric acid was added to obtain a spinning dope, and the PVA concentration in the spinning dope.
  • the present embodiment provides a high-performance graphene composite polyvinyl alcohol fiber, and the preparation method thereof is different from that of the embodiment 14 in that the second precipitation obtained by re-centrifugation at 7000 rpm is used in the step 1) to obtain a classification of 1 wt%.
  • the graphene oxide sol liquid (the sheet diameter distribution is D90: ⁇ 16 ⁇ m) finally obtains a graphene-composite polyvinyl alcohol fiber having a graphene oxide content of 1 wt%.
  • the present embodiment provides a high-performance graphene composite polyvinyl alcohol fiber, and the preparation method thereof is different from the embodiment 14 in that the second precipitation obtained by re-centrifugation at 7000 rpm is used in the step 1) to obtain 2.5 wt%.
  • the graphitized graphene oxide sol liquid (the sheet diameter distribution was D90: ⁇ 16 ⁇ m) finally obtained a graphene-composite polyvinyl alcohol fiber having a graphene oxide content of 2 wt%.
  • the present embodiment provides a high-performance graphene composite polyvinyl alcohol fiber, and the preparation method thereof is different from that of the embodiment 14 in that the precipitate obtained by re-centrifugation at 7000 rpm is used in the step 1) to obtain 2.5 wt% of the classified oxidation.
  • the graphene sol liquid (the sheet diameter distribution is D90: ⁇ 50 ⁇ m) finally obtains a graphene-composite polyvinyl alcohol fiber having a graphene oxide content of 1.5% by weight.
  • the present embodiment provides a high-performance graphene composite polyvinyl alcohol fiber, and the preparation method thereof is different from that of the embodiment 14 in that the precipitate obtained by re-centrifugation at 7000 rpm is used in the step 1) to obtain 2.5 wt% of the classified oxidation.
  • the graphene sol liquid (the sheet diameter distribution was D90: ⁇ 70 ⁇ m) finally obtained a graphene-composite polyvinyl alcohol fiber having a graphene oxide content of 1.5% by weight.
  • This comparative example provides a graphene composite polyvinyl alcohol master batch, which is prepared as follows:
  • the prepared graphene oxide was added into water, ultrasonically dispersed for 1 h, and the graphene oxide having a mass fraction of 1.5 wt% was directly introduced into the PVA solution (degree of polymerization: 2000, degree of alcoholysis was 99%), and the PVA concentration was 15 wt.
  • the aqueous solution of % was stirred at 95 ° C for 1 h, and the solvent was evaporated to obtain a graphene-polyvinyl alcohol masterbatch having a graphene oxide content of 1.5 wt% and a graphene-like substance having a D90 of 150 ⁇ m and a D10 of 6 ⁇ m.
  • the polarizing microscope of the masterbatch prepared in this comparative example is shown in Fig. 3.
  • the preparation method of the present invention (as shown in FIG. 2) is used.
  • the masterbatch graphene particles are relatively uniform in dispersion and the particle size is relatively uniform.
  • the masterbatch prepared by the method of Comparative Example 1 (as shown in FIG. 3) has many agglomerated particles, and the graphene particles are not uniformly dispersed, which is bound to affect. To the subsequent production of fiber, plastic and other products.
  • This comparative example provides a graphene composite polyvinyl alcohol fiber, which is prepared as follows:
  • the prepared graphene oxide (D90: ⁇ 25 ⁇ m) was added to water, ultrasonically dispersed for 1 h, and graphene oxide having a mass fraction of 1.5 wt% was directly introduced into the PVA solution (degree of polymerization: 2000, degree of alcoholysis was 99%) and In the boric acid solution, an aqueous solution having a PVA concentration of 15% by weight and a boric acid concentration of 2.5% by weight was obtained, and the mixture was stirred at 95 ° C for 1 hour, and 10 g of ascorbic acid was introduced, and stirring was continued for 2 hours to finally obtain a spinning dope.
  • the spinning dope is filtered at 90 ° C, and after static degassing at atmospheric pressure, it is extruded into a Glauber's coagulation bath through a 0.1 mm diameter orifice, and the spun filament becomes a nascent fiber, and the nascent fiber is used.
  • a fiber of graphene-complex polyvinyl alcohol having a graphene oxide content of 1.5% by weight was obtained.
  • the comparative example provides a graphene composite polyvinyl alcohol fiber, and the preparation method thereof is different from that of the comparative example 2 in that graphene oxide is added to water, ultrasonic dispersion is performed to obtain a stable dispersion liquid, and the suspension is centrifuged at 1000 rpm. The bottom precipitate was removed, the supernatant was centrifuged at 9000 rpm to obtain a second bottom precipitate, and the second bottom precipitate was ultrasonically added to obtain 1.5 wt% of the graded graphene oxide sol solution (the chip diameter distribution was D90: ⁇ 25 ⁇ m), followed by the addition of PVA.
  • the method of the solution was the same as in Comparative Example 2, and finally a graphene-composite polyvinyl alcohol fiber having a graphene oxide content of 1.5% by weight was obtained.
  • the comparative example provides a graphene composite polyvinyl alcohol fiber, and the preparation method thereof is prepared by the preparation method of the embodiment 1 in the patent CN104328533A.
  • This application example provides a graphene composite polyvinyl alcohol masterbatch for preparing graphene polyvinyl alcohol composite fiber, and the preparation method thereof is as follows:
  • the masterbatch prepared by using Examples 1-13 and Comparative Example 1 and/or the blank polyvinyl alcohol masterbatch were mixed and dissolved in water, 5 wt% of boric acid was added, and 10 g of ascorbic acid reducing agent was introduced, and the temperature was raised to 100 ° C, and stirring was continued. After reduction for 2h, the spinning dope was obtained (the concentration of the reducing agent in the spinning dope was 0.1wt%), the spinning dope was filtered at 90 ° C, and after constant pressure and defoaming, the spinning hole was passed through a diameter of 0.1 mm.
  • the application example provides a graphene composite polyvinyl alcohol masterbatch for preparing graphene composite polyvinyl alcohol plastic, and the preparation method thereof is as follows:
  • the masterbatch (10 wt%) of Example 1, the nylon-6 masterbatch (86 wt%), and an additive such as a flame retardant, a stabilizer, and the like are added to a stirred tank and heated to between 200 and 350 ° C to melt and mix the materials.
  • the polymer melt is formed, the melt is cooled, sent to an extruder, and extruded to obtain a finished plastic product.
  • the master batch of Example 3 and Comparative Example 1 can also be prepared by referring to the above method.
  • the graphene composite polyvinyl alcohol prepared in the examples of the present invention has superior performance in all aspects and is suitable for wide application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

一种高性能的石墨烯复合聚乙烯醇母粒、石墨烯复合聚乙烯醇纤维、及其制备方法。所述石墨烯复合聚乙烯醇母粒具有石墨烯颗粒分散均匀,颗粒大小均一,没有任何团聚颗粒的优点。该石墨烯复合聚乙烯醇母粒的制备方法具有方法简单易行,操作条件温和,可实现石墨烯复合聚乙烯醇母粒的工业化生产的优点,制得的石墨烯复合聚乙烯醇母粒物质含量较高,分散均匀,颗粒大小均一,无团聚。所述石墨烯复合聚乙烯醇纤维能够广泛应用于建筑行业、运输行业方面,其拉伸强度、拉伸模量、断裂伸长率等指标均有了质的提高,并且还额外赋予了纤维材料较高的韧性、耐热水性和抗静电性。

Description

石墨烯复合聚乙烯醇母粒以及石墨烯复合聚乙烯醇纤维及其制备方法与应用
相关申请的交叉引用
本申请要求于2016年07月11日提交中国专利局的优先权号为2016105397030、名称为“高性能的石墨烯复合聚乙烯醇纤维及其制备方法、应用”,以及于2016年08月02日提交中国专利局的优先权号为2016106242037、名称为“石墨烯复合聚乙烯醇母粒及其制备方法、应用、纤维材料”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及石墨烯材料领域,具体而言,涉及一种高性能的石墨烯复合聚乙烯醇母粒以及石墨烯复合聚乙烯醇纤维及其制备方法与应用。
背景技术
聚乙烯醇(PVA)是一种水溶性高分子聚合物,其分子式为[C2H4O]n。聚乙烯醇纤维由于有良好的亲水性、抗冲击性和成型加工中易于分散性好等特点,可以作为塑料、水泥以及陶瓷等的增强材料,也可替代有致癌物质的石棉。
石墨烯是一种由单层sp2杂化碳原子组成的蜂窝状结构的二维材料,具有许多优异的性能。自从2004年被发现起,石墨烯就成为了科学界的一大研究热点。在对石墨烯的物理化学性质进行研究的同时,与石墨烯相关的复合材料也层出不穷。在纳米科学方向上,石墨烯也被用来制备相关的纳米复合材料,尤其是石墨烯/金属或石墨烯/金属氧化物的纳米复合材料。由于石墨烯的优异性能,这些纳米复合材料在新型能源、生物传感、催化、光学材料等领域有着广阔的研究前景。
现有技术中,关于聚乙烯醇-石墨烯复合的相关产品比较多,鉴于其广泛的应用,一般会将聚乙烯醇-石墨烯先做成功能性母粒,这样既方便运输、储存,也方便后续的应用,然后再根据实际需求由功能性母粒作为原料制成相关产品,由此发现功能性母粒本身的性能优劣,会直接影响到后续产品的相关性能,可是一般制作出的功能性母粒中石墨烯含量会比较低,并且石墨烯颗粒分散不均匀,颗粒大小不均一,容易发生层间团聚,这样一来不同片径石墨烯类物质带来的应力集中点会发生容易断裂的问题,影响后续制备出的产品的性能。
同时,以现有技术中聚乙烯醇-石墨烯纳米复合纤维的制备方法制备的改性PVA,其强度和韧性一般,有待于进一步提高,并且其也不具备抗静电性能等其他优异性能,不能满足现代人对材料本身的多功能性的要求。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种具有高性能的石墨烯聚乙烯醇母粒,该母粒中石墨烯类物质含量虽然比较高,但是石墨烯颗粒依然分散比较均匀,颗粒大小也比较均一,团聚颗粒产生较少,各项性能稳定,对于后续应用制备成相关材料后,拉伸轻度、断裂伸长率等指标均有了质的提高,并且还额外赋予了材料较高的韧性、耐热水性和抗静电性,进一步扩大了材料的市场应用范围,提高了产品的附加值,有利于进一步推广应用。
本发明的第二目的在于提供上述具有高性能的石墨烯复合聚乙烯醇母粒的制备方法,制备方法前后步骤衔接紧密,方法简单快捷,与现有生产工艺设备和流程可实现无缝对接,具有能完整保留原料的有效成份的优点,而且具有方法简单易于操作,操作条件温和,可实现石墨烯复合聚乙烯醇母粒的工业化生产,经济效益非常良好。
本发明的第三目的在于提供上述具有高性能的石墨烯复合聚乙烯醇母粒的应用,该母粒产品应用非常广泛,广泛应用于膜制品、吸水性树脂、吸水性海绵、塑料以及纤维材料方面,尤其是由该母粒制备出的纤维复合材料在实现传统高强、高模聚乙烯醇纤维纺丝工艺基础上,进一步翻倍提升了纤维的力学性能,同时赋予了该纤维材料较高的韧性、耐热水性和抗静电性。
本发明的第四目的在于提供一种具有高性能的石墨烯复合聚乙烯醇纤维的制备方法,制备方法前后步骤衔接紧密,方法简单快捷,与现有生产工艺设备和流程可实现无缝对接,具有能完整保留原料的有效成份的优点,而且具有方法简单易于操作,操作条件温和,可实现石墨烯复合聚乙烯醇纤维的工业化生产、经济效益良好,制备出的纤维复合材料在实现传统高强、高模聚乙烯醇纤维纺丝工艺基础上,进一步翻倍提升纤维的力学性能,同时赋予了该纤维材料较高的韧性、耐热水性和抗静电性。
本发明的第五目的在于提供一种采用上述方法制得的高性能的石墨烯复合聚乙烯醇纤维,该复合型纤维拉伸轻度、断裂伸长率等指标均有了质的提高,并且还额外赋予了纤维材料较高的韧性、耐热水性和抗静电性,进一步扩大了纤维材料的市场应用范围,提高了产品的附加值,有利于进一步推广应用。
本发明的第六目的在于提供上述具有高性能的石墨烯复合聚乙烯醇纤维的应用,该复合纤维材料应用非常广泛,广泛应用于各个行业。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供了一种高性能的石墨烯复合聚乙烯醇母粒产品,其主要由石墨烯类物质与聚乙烯醇组成,且该母粒中,石墨烯类物质的含量在6wt%以下,优选为3wt%以下,更优选为0.05-1.5wt%之间,石墨烯类物质的D90指标控制在100μm以下,D10指标控制在20μm以下,且D90指标不超过D10指标的20倍,优选10倍以下,更优选5倍以下。
现有技术中,一般聚乙烯醇-石墨烯母粒中的石墨烯含量一般会比较低,因为石墨烯含量太高容易发生团聚,那么后续制备出相关下游产品会相应的影响产品的物理性能,为了解决现有技术中存在的诸多技术问题,本发明提供了一种石墨烯含量比较高、颗粒分散又比较均一、团聚较少的石墨烯复合聚乙烯醇母粒,该母粒中,石墨烯类物质的含量最高可以达到6wt%,石墨烯类物质的颗粒度则要求为D90在100μm以下,D90在100μm是指100μm以下粒径物质占整体的90%,即这90%里面最大粒径为100μm;这里所说的D90在100um以下,可以为95um,80um,60um,50um等等。这里指的粒度为粒径大小,可以为厚度很薄但面积很大。同理,D10指标控制在20μm以下为一样的道理,D10可以为18μm,10μm,8μm,5μm,3μm,1μm等等。D90指标不超过D10指标的20倍,优选10倍以内,更优选5倍以内,可以理解为当D90为50μm时,D10不低于2.5μm,D10优选为5μm以上,更优选10μm以上。这样的功能性母粒除了保证高含量的石墨烯以外,还保证了石墨烯颗粒的大小均一性,避免了颗粒团聚的现象发生,采用这样的功能性母粒制备出的产品性能显然优于市面上普通的石墨烯复合聚乙烯醇相关产品。
优选地,当石墨烯复合聚乙烯醇母粒用于制备塑料制品时,D90控制在30-100μm,D10控制在5-20μm;当石墨烯复合聚乙烯醇母粒用于制备纤维时,D90控制在5-30μm,D10控制在0.5-3μm。因为制备塑料制品和纤维时最终产品形态不同,导致石墨烯类物质存在大小不同,其目的是为了尽量保持石墨烯类物质的大片结构的同时,确保石墨烯类物质不会发生层间团聚,防止不同片径石墨烯类物质带来的应力集中点断裂的问题,如果粒度太大、或者太小可能都会不利于后续与PVA分子链形成更为均一的无机-有机搭接结构,越是保持在同一粒径的石墨烯类物质才更有利于后续与PVA复合后,得到的功能性母粒各方面性能俱佳,因此需要严格控制其粒径。
所采用的石墨烯类物质包括石墨烯、生物质石墨烯、氧化石墨烯、石墨烯衍生物的一种或几种混合,石墨烯衍生物为经过改性的石墨烯。
优选地,石墨烯衍生包括元素掺杂石墨烯或官能团化石墨烯物中的任意1种或至少2 种的组合。
优选地,元素掺杂石墨烯包括金属掺杂石墨烯或非金属元素掺杂石墨烯中的任意1种或至少2种的组合。
金属掺杂的金属元素典型但非限制性的包括钾、钠、金、银、铁、铜、镍、铬、钛、钒或钴。
非金属元素掺杂石墨烯典型但非限制性的包括氮、磷、硼或硅。
优选地,非金属元素掺杂石墨烯包括氮掺杂石墨烯、磷掺杂石墨烯或硫掺杂石墨烯中的任意1种或至少2种的组合。
优选地,官能团化石墨烯包括接枝有官能团的石墨烯。
优选地,官能团化石墨烯包括接枝有羟基化合物、羧基化合物或氨基化合物中的任意1种或至少2种的组合的石墨烯。
本发明实施例中的羟基化合物包括-R1-OH,其中,R1包括烷烃基,典型但非限制性的羟基可以是甲基羟基、乙基羟基、丙基羟基、丁基羟基、戊基羟基、己基羟基等。
本发明实施例中的羧基化合物包括-R2-COOH,其中,R2包括烷烃基,典型但非限制性的羟基可以是甲基羟基、乙基羟基、丙基羟基、丁基羟基、戊基羟基、己基羟基等。
本发明实施例中的氨基化合物包括-R3-NH3,其中,R3包括烷烃基,典型但非限制性的羟基可以是甲基羟基、乙基羟基、丙基羟基、丁基羟基、戊基羟基、己基羟基等。
本发明还提供了一种高性能的石墨烯复合聚乙烯醇母粒的制备方法,主要包括如下步骤:
(A)将石墨烯类物质水溶液进行预处理,得到石墨烯类物质粒径分级水溶液;
(B)将PVA水溶液与所述石墨烯类物质粒径分级水溶液混合搅拌得到混合溶液,干燥即得。
本发明提供的高性能的石墨烯复合聚乙烯醇母粒的制备方法,这种制备方法制备出的功能性母粒,后续制备出的材料不仅具备传统聚乙烯醇材料的所有优异性能,而且性能有所提升的同时还赋予了材料本身较高的韧性、耐热水性和抗静电性等附加性能,现有技术中制备石墨烯复合聚乙烯醇相关产品时,一般是直接将石墨烯和聚乙烯醇在混合溶剂中混合均匀进行制备,但是这种方法制备出的功能性母粒的性能一般,石墨烯颗粒不能均匀分散在母粒中,而且颗粒大小也不均一,本发明在将石墨烯类物质(石墨烯类物质包括石墨烯、生物质石墨烯、氧化石墨烯、石墨烯衍生物的一种或几种混合,其中石墨烯衍生物包括元素掺杂的石墨烯,最终是利用其中的石墨烯结构)与聚乙烯醇混合之前,特意先将石墨烯类物质的水溶液进行预处理,这种预处理的方法现有技术中没有任何记载,本发明尚属首创。
当然,实际操作时,具体采用的预处理方法包括:将石墨烯类物质水溶液超声分散、2000-3000rpm条件下离心操作后得到底部沉淀和上清液,上清液在5000-7000rpm条件下离心操作后分别得到二次底部沉淀与二次上清液,其中石墨烯类物质分级水溶液由包括底部沉淀、二次底部沉淀、二次上清液中的任意一种制备得到,优选为由二次底部沉淀制备的水溶液。
第一步由石墨烯类物质水溶液得到底部沉淀的离心操作速率比较低,后面由上清液进一步离心操作的速率则比较高,因为石墨烯类物质水溶液中的物质颗粒度一般比较大,如果速率过快不利于大颗粒的物质沉积,后续上清液中的物质颗粒度一般比较小,因此速率需要快一些,以使颗粒度小的物质上浮存在上清液中。这样颗粒度比较一致的石墨烯类物质经过归类后在底部沉淀、或在二次底部沉淀、或在二次上清液中,石墨烯类物质分级水溶液可以选择上述经过分级处理的任意一种物质,均能保证具有颗粒度比较一致的石墨烯类物质,并且粒度的大小也比较适宜,以充分保证了片径的均一性,有利于后续保证制备出的功能性母粒的性能。
其中,将石墨烯类物质水溶液超声分散的时间最好控制在1-3h,石墨烯类物质水溶 液在2000-3000rpm条件下离心操作的时间最好控制在20-40min之间,上清液在5000-7000rpm条件下离心操作的时间最好控制在10-30min之间,控制在较优的操作时间内更利于粒径分级处理的更为彻底,从而粒径分布的更加均匀。
另外,预处理后的石墨烯类物质水溶液的质量百分比浓度最好控制适宜,因为如果浓度太高,浓缩过程中容易发生片层间团聚,较低浓度的石墨烯溶胶液(石墨烯类物质水溶液)有利于PVA分子链以石墨烯为铺展平台进行有序化取向,以该溶胶为石墨烯添加原料与PVA进行复合,较优的石墨烯类物质水溶液浓度为3wt%以下,更优选为2wt%以下,再优选0.05-1.5wt%之间。
将石墨烯类物质水溶液预处理后,先采用较低浓度的PVA水溶液与石墨烯类物质水溶液预混合,然后再逐步提高浓度,最后得到PVA浓度为10-20wt%的混合溶液,优选的PVA浓度控制在15-16wt%之间,以通过设置浓度梯度的方式达到分散完全的目的,如果是将石墨烯类物质水溶液与PVA水溶液直接进行混合,这样的混合方式很容易发生团聚不利于混匀,从而影响产品的性能,本发明的设置梯度浓度复合的方式更加有利于最终产品的性能,具体操作时可以分成若干梯度,比如依次添加2-5wt%的PVA水溶液、6-8wt%的PVA水溶液、10-12wt%、25-40wt%等的PVA水溶液,梯度的数目没有具体限制,PVA水溶液的起始浓度控制在2-5wt%之间。实际操作时,可以根据工艺的实际需要进行具体调整,比如PVA水溶液的浓度设置梯度与PVA水溶液的添加次数等,总之通过采用本发明的这种梯度浓度复合的方式,解决了混合溶液中溶质分散不完全的问题,并大幅度提高了石墨烯复合聚乙烯醇功能性母粒的性能。
优选地,分多次添加PVA水溶液时每次添加后搅拌的时间控制在1-2h,温度控制在90-100℃之间,如果温度太低PVA水溶液无法与石墨烯类物质水溶液混合搅拌均匀,会出现团聚的颗粒,影响产品性能,因此温度最好控制在适宜的范围内。
还有,PVA水溶液中的PVA的聚合度最好控制在1700-2500之间,醇解度最好控制在88-99%之间,因为PVA的聚合度和醇解度会显著影响聚乙烯醇纤维的拉伸强度和拉伸模量,一般PVA的聚合度和醇解度越高,聚乙烯醇母粒制成后续材料的拉伸强度和拉伸模量越高。
采用上述制备方法制备得到的石墨烯复合聚乙烯醇母粒进一步提升了后续产品的力学性能,同时赋予了较高的韧性、耐热水性和抗静电性,应用非常广泛,可以用来制作膜制品、吸水性树脂、吸水性海绵、塑料,在这些方面均有很广阔的应用。
当采用本发明的石墨烯聚乙烯醇母粒制成纤维材料时,纤维材料的拉伸强度可达到2Gpa以上,杨氏模量在45Gpa以上,断裂伸长率可控制在3-13%之间。
本发明实施例还提供了一种高性能的石墨烯复合聚乙烯醇纤维的制备方法,主要包括如下步骤:
(A)将石墨烯类物质水溶液进行预处理,得到石墨烯类物质分级水溶液,石墨烯类物质的D90指标控制在70μm以下,优选为50μm以下,更优选为5-30μm;
(B)将PVA水溶液、硼酸溶液与所述石墨烯类物质分级水溶液混合搅拌,得到PVA浓度为10-20wt%的含硼酸的纺丝原液;
(C)将纺丝原液过滤、脱泡、纺丝以及干燥后,即得。
高强度聚乙烯醇(PVA)纤维本身具有良好的亲水性、粘结性、抗冲击性以及加工过程中易于分散等,所以作为增强材料在水泥、石棉板材、陶瓷建材及聚合物基复合材料等方面已有很多应用。用高强度PVA纤维增强混凝土和建筑材料可有效地改善材料的抗冲击、抗弹性疲劳及防龟裂等性能。用高强度PVA纤维制成的土工布抗拉强度高,抗蠕变性好,耐磨、耐化学腐蚀、耐微生物及导水性优良,在工程施工中可起到加筋、隔离、保护、排水及防漏作用,可用于各种水坝以及公路、铁路、桥梁、隧道、淤浆、沙地等工程的压沙隔水、加固、铺垫、稳固基础以及防水隔离等,能显著提高施工质量,降低工程成本。用环氧树脂将高强度PVA纤维粘合成杆状物代替混凝土中的钢筋,用作土木建筑工程材料,可 大大降低建筑构件的自重。由于高强度PVA纤维的断裂强度、抗冲击强度、耐气候性、耐海水腐蚀性等都比较好,适宜用作各种类型的渔网、渔具、渔线、绳缆等,在海洋捕鱼及运输工具等方面有很好的应用市场。尽管高强度PVA纤维的抗张强度和模量尚不如Kevlar、UHMW-PE纤维等,但其断裂比功大、粘接性好、价格低廉等,在防护复合材料方面有可能部分替代价格较高的Kevlar纤维等。虽然高强度聚乙烯醇纤维本身的性能比较优越,但是随着社会的不断进步,对材料性能的要求越来越高,现有的聚乙烯醇纤维已不能满足要求,开发一种新的复合材料迫在眉睫。
为了解决现有技术中存在的诸多技术问题,本发明提供了一种高性能的石墨烯复合聚乙烯醇纤维的制备方法,这种制备方法制备出的复合型纤维不仅具备传统聚乙烯醇纤维材料的所有优异性能,而且性能有所提升的同时还赋予了纤维材料本身较高的韧性、耐热水性和抗静电性等附加性能,现有技术中制备石墨烯复合聚乙烯醇纤维时,一般是直接将石墨烯和聚乙烯醇在混合溶剂中混合均匀,纺丝、拉伸制得聚乙烯醇-石墨烯纳米复合纤维,但是这种方法制备出的纤维材料的性能一般,本发明在将石墨烯类物质(石墨烯类物质包括石墨烯、生物质石墨烯、氧化石墨烯、石墨烯衍生物的一种或几种混合,其中石墨烯衍生物包括元素掺杂的石墨烯,最终是利用其中的石墨烯结构)与聚乙烯醇混合之前,特意先将石墨烯类物质的水溶液进行预处理,这种预处理的方法现有技术中没有任何记载,本发明尚属首创。通过预处理后以保证石墨烯类物质的D90指标控制在50μm以下,优选30μm以下,目的是为了尽量保持石墨烯类物质的大片结构,确保石墨烯类物质不会发生层间团聚,防止不同片径石墨烯类物质带来的应力集中点断裂的问题,如果粒度太大、或者太小可能都会不利于后续与PVA分子链形成更为均一的无机-有机搭接结构,因此为了保证片径的均一性,更优的D90(表示粒径分布中占90%所对应的粒径)指标控制在5~25μm之间,还可以为7μm、10μm、12μm、14μm、16μm、18μm、40μm、48μm等,越是保持在同一粒径的石墨烯类物质才更有利于后续与PVA复合后,得到的产品各方面性能俱佳,因此需要严格控制其粒径。
所采用的石墨烯类物质包括石墨烯、生物质石墨烯、氧化石墨烯、石墨烯衍生物的一种或几种混合,石墨烯衍生物为经过改性的石墨烯。
优选地,石墨烯衍生包括元素掺杂石墨烯或官能团化石墨烯物中的任意1种或至少2种的组合。
优选地,元素掺杂石墨烯包括金属掺杂石墨烯或非金属元素掺杂石墨烯中的任意1种或至少2种的组合。
金属掺杂的金属元素典型但非限制性的包括钾、钠、金、银、铁、铜、镍、铬、钛、钒或钴。
非金属元素掺杂石墨烯典型但非限制性的包括氮、磷、硼或硅。
优选地,非金属元素掺杂石墨烯包括氮掺杂石墨烯、磷掺杂石墨烯或硫掺杂石墨烯中的任意1种或至少2种的组合。
优选地,官能团化石墨烯包括接枝有官能团的石墨烯。
优选地,官能团化石墨烯包括接枝有羟基化合物、羧基化合物或氨基化合物中的任意1种或至少2种的组合的石墨烯。
本发明实施例中的羟基化合物包括-R1-OH,所述R1包括烷烃基,典型但非限制性的羟基可以是甲基羟基、乙基羟基、丙基羟基、丁基羟基、戊基羟基、己基羟基等。
本发明实施例中的羧基化合物包括-R2-COOH,所述R2包括烷烃基,典型但非限制性的羟基可以是甲基羟基、乙基羟基、丙基羟基、丁基羟基、戊基羟基、己基羟基等。
本发明实施例中的氨基化合物包括-R3-NH3,所述R3包括烷烃基,典型但非限制性的羟基可以是甲基羟基、乙基羟基、丙基羟基、丁基羟基、戊基羟基、己基羟基等。
当然,实际操作时,具体采用的预处理方法可参照前述一种高性能的石墨烯复合聚乙烯醇母粒的制备方法中的预处理方法,此处将不再赘述。
将石墨烯类物质水溶液预处理后,先采用较低浓度的PVA水溶液与石墨烯类物质水溶液预混合,然后再逐步提高浓度,最后得到PVA浓度为10-20wt%的含硼酸的纺丝原液,优选的PVA浓度控制在15-16wt%之间,以通过设置浓度梯度的方式达到分散完全的目的,如果是将石墨烯类物质水溶液与PVA水溶液或是含硼酸的PVA水溶液直接进行混合,这样的混合方式很容易发生团聚不利于混匀,从而影响产品的性能,本发明的设置梯度浓度复合的方式更加有利于最终产品的性能,具体操作时可以分成若干梯度,比如依次添加2-5wt%的PVA水溶液、6-8wt%的PVA水溶液、10-12wt%、25-40wt%等的PVA水溶液,梯度的数目没有具体限制,起始浓度控制在2-5wt%之间,如果为了操作方便也可以直接添加2-5wt%的PVA水溶液后,随后直接添加含硼酸的PVA水溶液(最后添加的含硼酸的PVA水溶液为梯度设置的浓度最大极限),如果是分多次添加PVA水溶液,那么在PVA水溶液与所述石墨烯类物质分级水溶液混合后,最后再添加硼酸,硼酸的浓度优选控制在2-5wt%之间。实际操作时,可以根据工艺的实际需要进行具体调整,比如PVA水溶液的浓度设置梯度与PVA水溶液的添加次数等,总之通过采用本发明的这种梯度浓度复合的方式,解决了纺丝原液中溶质分散不完全的问题,并大幅度提高了石墨烯复合聚乙烯醇纤维的性能。
优选地,分多次添加PVA水溶液时每次添加后搅拌的时间控制在1-2h,温度控制在90-100℃之间,如果温度太低PVA水溶液无法与石墨烯类物质水溶液混合搅拌均匀,会出现团聚的颗粒,影响产品性能,因此温度最好控制在适宜的范围内。
还有,PVA水溶液的聚合度最好控制在1700-2500之间,醇解度最好控制在88-99%之间,因为PVA的聚合度和醇解度会显著影响聚乙烯醇纤维的拉伸强度和拉伸模量,一般PVA的聚合度和醇解度越高,聚乙烯醇纤维的拉伸强度和拉伸模量越高。
在后续纺丝原液进行过滤、脱泡、纺丝以及干燥之前,最好先在纺丝原液中添加交联剂缩醛化处理、还原剂还原处理后,添加交联剂的目的是为了把PVA和石墨烯交联,从而实现高分子在纳米石墨烯片表面有序的排列,避免高分子的缠结,有利于纺丝后处理的高倍热拉伸,从而提高PVA纤维的性能。石墨烯类物质本身作为一种无机填料,添加还原剂可以提高PVA纤维的耐热水性,纺丝原液中加入交联剂属于前交联,也可在制备出初生纤维后再进行交联,这种交联属于后交联,无论是前交联还是后交联都可以得到高性能PVA纤维,如果纺丝原液中加入的是氧化石墨烯,还原步骤可以在纺丝原液中进行,也可以在制备好纤维之后再进行还原,无论是前交联还是后交联,前还原还是后还原,均在本发明的专利保护范围内,交联剂可包括乙二醛、戊二醛、甲醛、硼酸以及硼砂中的一种或几种混合物,纺丝原液中交联剂的浓度控制在0.0075-0.45wt%之间,还原剂可包括硼氢化钠、抗坏血酸、水合肼以及氢碘酸中的一种或几种混合物,纺丝原液中还原剂的浓度控制在0.1-3wt%之间。
最后,纺丝原液在85-120℃的条件下过滤、脱泡,85-120℃的原因是为了防止冻胶,以免对纤维的性能造成影响,纺丝原液由喷丝孔直径为0.08-0.30mm的喷丝板中挤出,纺出的丝进入40-45℃的芒硝凝固浴成形变成初生纤维,初生纤维经酸洗、水洗、干燥后,再经过热拉伸和热定型处理,即得到高性能的石墨烯复合聚乙烯醇纤维。通过控制PVA的量和石墨烯类物质的量,使得所述石墨烯复合聚乙烯醇纤维中,石墨烯类物质的含量在3wt%以下,优选2wt%以下,更优为0.05-1.5wt%之间。
优选地,脱泡方式为常压静止脱泡或真空脱泡,热拉伸温度控制在120-250℃,热拉伸倍数为10-37倍,热定型时间为1-15min。
采用上述制备方法制备得到的石墨烯复合聚乙烯醇纤维进一步翻倍提升纤维的力学性能,同时赋予该纤维较高的韧性、耐热水性和抗静电性,应用非常广泛,作为增强材料、建筑材料在建筑行业、运输行业等多个行业均有很广阔的应用。
与现有技术相比,本发明的有益效果为:
(1)高性能的石墨烯复合聚乙烯醇纤维的制备方法,前后步骤衔接紧密,方法简单快捷,与现有生产工艺设备和流程可实现无缝对接,具有能完整保留原料的有效成份的优点;
(2)本发明的制备方法简单易于操作,操作条件温和,可实现石墨烯复合聚乙烯醇纤维的工业化生产、经济效益良好,制备出的纤维复合材料在实现传统高强、高模聚乙烯醇纤维纺丝工艺基础上,进一步翻倍提升纤维的力学性能,同时赋予了该纤维材料较高的韧性、耐热水性和抗静电性;
(3)本发明的高性能的石墨烯复合聚乙烯醇纤维拉伸强度、拉伸模量、断裂伸长率等指标均有了质的提高,并且还额外赋予了纤维材料较高的韧性、耐热水性和抗静电性,进一步扩大了纤维材料的市场应用范围,提高了产品的附加值,有利于进一步推广应用。
在后续纺丝原液进行过滤、脱泡、纺丝以及干燥之前,最好先在纺丝原液中添加交联剂缩醛化处理、还原剂还原处理后,添加交联剂的目的是为了把PVA和石墨烯交联,从而实现高分子在纳米石墨烯片表面有序的排列,避免高分子的缠结,有利于纺丝后处理的高倍热拉伸,从而提高PVA纤维的性能。石墨烯类物质本身作为一种无机填料,添加还原剂可以提高PVA纤维的耐热水性,纺丝原液中加入交联剂属于前交联,也可在制备出初生纤维后再进行交联,这种交联属于后交联,无论是前交联还是后交联都可以得到高性能PVA纤维,如果纺丝原液中加入的是氧化石墨烯,还原步骤可以在纺丝原液中进行,也可以在制备好纤维之后再进行还原,无论是前交联还是后交联,前还原还是后还原,均在本发明的专利保护范围内,交联剂可包括乙二醛、戊二醛、甲醛、硼酸以及硼砂中的一种或几种混合物,纺丝原液中交联剂的浓度控制在0.0075-0.45wt%之间,还原剂可包括硼氢化钠、抗坏血酸、水合肼以及氢碘酸中的一种或几种混合物,纺丝原液中还原剂的浓度控制在0.1-3wt%之间。
还有在纺丝原液中,添加硼酸时,其硼酸的浓度可控制在2-5wt%之间,还可以为3wt%、3.5wt%、4wt%等。
最后,纺丝原液在85-120℃的条件下过滤、脱泡,85-120℃的原因是为了防止冻胶,以免对纤维的性能造成影响,纺丝原液由喷丝孔直径为0.08-0.30mm的喷丝板中挤出,纺出的丝进入40-45℃的芒硝凝固浴成形变成初生纤维,初生纤维经酸洗、水洗、干燥后,再经过热拉伸和热定型处理,即得到高性能的石墨烯复合聚乙烯醇纤维。
优选地,脱泡方式为常压静止脱泡或真空脱泡,热拉伸温度控制在120-250℃,热拉伸倍数为10-37倍,热定型时间为1-15min。
与现有技术相比,本发明的有益效果为:
(1)本发明提供的具有高性能的石墨烯聚乙烯醇母粒所含的石墨烯类物质虽然比较高,但是石墨烯颗粒依然分散比较均匀,颗粒大小也比较均一,没有任何团聚颗粒产生,各项性能稳定。
(2)本发明的高性能的石墨烯复合聚乙烯醇母粒的制备方法,制备方法前后步骤衔接紧密,方法简单快捷,与现有生产工艺设备和流程可实现无缝对接,具有能完整保留原料的有效成份的优点,而且具有方法简单易于操作,操作条件温和,可实现石墨烯复合聚乙烯醇母粒的工业化生产、经济效益良好。
(3)具有高性能的石墨烯复合聚乙烯醇母粒应用非常广泛,广泛应用于膜制品、吸水性树脂、吸水性海绵、塑料以及纤维材料方面,尤其是由该母粒制备出的纤维复合材料在实现传统高强、高模聚乙烯醇纤维纺丝工艺基础上,进一步翻倍提升纤维的力学性能,同时赋予了该纤维材料较高的韧性、耐热水性和抗静电性。
(4)本发明提供的高性能的石墨烯复合聚乙烯醇纤维的制备方法,前后步骤衔接紧密,方法简单快捷,与现有生产工艺设备和流程可实现无缝对接,具有能完整保留原料的有效成份的优点。
(5)本发明的高性能的石墨烯复合聚乙烯醇纤维的制备方法简单易于操作,操作条件温和,可实现石墨烯复合聚乙烯醇纤维的工业化生产、经济效益良好,制备出的纤维复合材料在实现传统高强、高模聚乙烯醇纤维纺丝工艺基础上,进一步翻倍提升纤维的力学性能,同时赋予了该纤维材料较高的韧性、耐热水性和抗静电性。
(6)本发明的石墨烯复合聚乙烯醇纤维拉伸强度、拉伸模量、断裂伸长率等指标均有了质的提高,并且还额外赋予了纤维材料较高的韧性、耐热水性和抗静电性,进一步扩大了纤维材料的市场应用范围,提高了产品的附加值,有利于进一步推广应用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,以下将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为纯聚乙烯醇母粒的偏光显微镜图;
图2为本发明实施例1制备得到的石墨烯复合聚乙烯醇母粒的偏光显微镜图;
图3为比较例1制备得到的石墨烯复合聚乙烯醇母粒的偏光显微镜图。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1
本实施例提供了一种高性能的石墨烯复合聚乙烯醇母粒,其制备方法如下:
1)在水中加入氧化石墨烯,超声分散得到稳定的分散液,将该悬浮液在2000rpm转速下进行第一次离心,离心时间20min得到底部沉淀和上清液,上清液在5000rpm转速下进行第二次离心,离心时间10min得到二次底部沉淀,将二次底部沉淀加水超声得到1.5wt%的分级氧化石墨烯溶胶液。
2)将浓度为1.5wt%的氧化石墨烯溶胶液与浓度为5wt%的PVA水溶液进行预混合(聚合度为1700,醇解度为99%)得到预混料,将该预混料与10wt%的PVA水溶液再次进行混合(聚合度为2500,醇解度为88%),90℃下搅拌1h,再加入25wt%PVA水溶液形成混合溶液,混合溶液中PVA浓度为15wt%,后续将混合溶液蒸发溶剂干燥得到功能性母粒。
该功能性母粒中,氧化石墨烯含量为1.5wt%,且石墨烯类物质的D90为100μm,D10为20μm,该实施例制备得到的母粒的偏光显微镜图如附图2所示,而没有添加任何其他的物质的纯聚乙烯醇空白母粒的偏光显微镜图如附图1所示。
实施例2
本实施例提供了一种高性能的石墨烯复合聚乙烯醇母粒,其制备方法与实施例1的区别点在于步骤1)中选用3000rpm转速下第一次离心得到的底部沉淀,加水超声得到2wt%的分级氧化石墨烯溶胶液,得到的混合溶液中,PVA的浓度为16wt%,蒸发溶剂干燥得到氧化石墨烯含量为1.5wt%的功能性母粒,且石墨烯类物质的D90为70μm,D10为3.5μm。
实施例3
本实施例提供了一种高性能的石墨烯复合聚乙烯醇母粒,其制备方法与实施例1的区别点在于步骤1)中选用将上清液在7000rpm转速下再次离心后的二次上清液,制备得到3wt%的分级氧化石墨烯溶胶液,得到的得到的混合溶液中,PVA的浓度为15wt%,蒸发溶剂干燥得到氧化石墨烯含量为1.5wt%的功能性母粒,且石墨烯类物质的D90为30μm,D10为5μm。
实施例4
本实施例提供了一种高性能的石墨烯复合聚乙烯醇母粒,其制备方法与实施例1的区别点在于最终蒸发溶剂干燥得到氧化石墨烯含量为1.5wt%的功能性母粒且石墨烯类物质的D90为20μm,D10为3μm。
实施例5
本实施例提供了一种高性能的石墨烯复合聚乙烯醇母粒,其制备方法与实施例1的区 别点在于最终蒸发溶剂干燥得到氧化石墨烯含量为1.5wt%的功能性母粒且石墨烯类物质的D90为10μm,D10为2μm。
实施例6
本实施例提供了一种高性能的石墨烯复合聚乙烯醇母粒,其制备方法与实施例1的区别点在于最终蒸发溶剂干燥得到氧化石墨烯含量为1.5wt%的功能性母粒且石墨烯类物质的D90为5μm,D10为0.5μm。
实施例7
本实施例提供了一种高性能的石墨烯复合聚乙烯醇母粒,其制备方法与实施例1的区别点在于最终蒸发溶剂干燥得到氧化石墨烯含量为1.5wt%的功能性母粒且石墨烯类物质的D90为5μm,D10为3μm。
实施例8
本实施例提供了一种高性能的石墨烯复合聚乙烯醇母粒,其制备方法与实施例1的区别点在于步骤1)中将氧化石墨烯替换为石墨烯,二次底部沉淀加水超声得到1wt%的分级石墨烯溶胶液,最终蒸发溶剂干燥得到氧化石墨烯含量为1.5wt%的功能性母粒且石墨烯类物质的D90为10μm,D10为2μm。
实施例9
本实施例提供了一种高性能的石墨烯复合聚乙烯醇母粒,其制备方法与实施例1的区别点在于步骤1)中将氧化石墨烯替换为生物质石墨烯,二次底部沉淀加水超声得到0.5wt%的分级石墨烯溶胶液,最终蒸发溶剂干燥得到氧化石墨烯含量为1.5wt%的功能性母粒且石墨烯类物质的D90为10μm,D10为2μm。
实施例10
本实施例提供了一种高性能的石墨烯复合聚乙烯醇母粒,其制备方法与实施例1的区别点在于步骤1)中分级氧化石墨烯溶胶液的浓度为0.05wt%;步骤2)中,将氧化石墨烯溶胶液与质量分数为5wt%的PVA水溶液(聚合度为2000,醇解度为88%)100℃进行预混合搅拌2h、质量分数为10wt%的PVA水溶液(聚合度为2000,醇解度为99%)95℃进行预混合2h后得到预混料,将该预混料与25wt%的PVA水溶液进行混合(聚合度为2500,醇解度为88%),95℃下搅拌1.5h,最终配制PVA浓度为20wt%的混合水溶液,步骤3)中最终得到氧化石墨烯含量0.05wt%的石墨烯复合聚乙烯醇功能性母粒且石墨烯类物质的D90为10μm,D10为2μm。
实施例11
本实施例提供了一种高性能的石墨烯复合聚乙烯醇母粒,其制备方法与实施例1的区别点在于步骤1)中分级氧化石墨烯溶胶液的浓度为3wt%;步骤2)中,将氧化石墨烯溶胶液与质量分数为2wt%的PVA水溶液(聚合度为2000,醇解度为88%)90℃进行预混合搅拌1h得到预混料,将该预混料与质量分数为10wt%的PVA水溶液(聚合度为2000,醇解度为99%)95℃进行混合2h后得到PVA浓度10wt%的混合溶液,步骤3)中最终得到氧化石墨烯含量2wt%的石墨烯复合聚乙烯醇功能性母粒且石墨烯类物质的D90为10μm,D10为2μm。
实施例12
本实施例提供了一种高性能的石墨烯复合聚乙烯醇母粒,其制备方法与实施例1的区别点在于步骤1)中选用7000rpm转速下再次离心得到的二次沉淀,得到1wt%的分级氧化石墨烯溶胶液,最终得到氧化石墨烯含量3wt%的石墨烯复合聚乙烯醇功能性母粒且石墨烯类物质的D90为10μm,D10为2μm。
实施例13
本实施例提供了一种高性能的石墨烯复合聚乙烯醇母粒,其制备方法与实施例1的区别点在于步骤1)中选用7000rpm转速下再次离心得到的二次沉淀,得到2.5wt%的分级氧化石墨烯溶胶液,最终得到氧化石墨烯含量6wt%的石墨烯复合聚乙烯醇功能性母粒且石 墨烯类物质的D90为10μm,D10为2μm。
实施例14
本实施例提供了一种高性能的石墨烯复合聚乙烯醇纤维,其制备方法如下:
1)在水中加入氧化石墨烯,超声分散得到稳定的分散液,将该悬浮液在2000rpm转速下进行第一次离心,离心时间20min得到底部沉淀和上清液,上清液在5000rpm转速下进行第二次离心,离心时间10min得到二次底部沉淀,将二次底部沉淀加水超声得到1.5wt%的分级氧化石墨烯溶胶液(片径分布为D90:~25μm);
2)将浓度为1.5wt%的氧化石墨烯溶胶液与浓度为5wt%的PVA水溶液进行预混合(聚合度为1700,醇解度为99%)得到预混料,将该预混料与10wt%的PVA水溶液再次进行混合(聚合度为2500,醇解度为88%),90℃下搅拌1h,再加入25wt%PVA水溶液和硼酸溶液,最终配成PVA浓度15wt%、硼酸浓度2wt%的水溶液;
3)然后引入抗坏血酸还原剂10g,提高温度至100℃,继续搅拌并还原2h,得到纺丝原液(纺丝原液中,还原剂的浓度为0.1wt%,PVA的浓度为15wt%),将纺丝原液于90℃下经过过滤,常压静止脱泡后,经直径为0.1mm的喷丝孔挤出到芒硝凝固浴中,纺出的丝变成初生纤维,对所述的初生纤维进行酸洗、水洗、缩醛化处理(戊二醛1%,2min,80℃)、干燥、热拉伸和热定型处理,热拉伸温度为140℃,热拉伸倍数为20倍,热定型时间为5min,最终得到具有超高强度、超高模量性能的石墨烯复合聚乙烯醇纤维,纤维中氧化石墨烯含量为1.5wt%。
实施例15
本实施例提供了一种高性能的石墨烯复合聚乙烯醇纤维,其制备方法与实施例14的区别点在于步骤1)中选用3000rpm转速下第一次离心得到的底部沉淀,加水超声得到2wt%的分级氧化石墨烯溶胶液(片径分布为D90:~30μm),得到的纺丝原液中,还原剂的浓度为3wt%,PVA的浓度为16wt%,最终得到氧化石墨烯含量为1.5wt%的石墨烯复合聚乙烯醇纤维。
实施例16
本实施例提供了一种高性能的石墨烯复合聚乙烯醇纤维,其制备方法与实施例14的区别点在于步骤1)中选用将上清液在7000rpm转速下再次离心后的二次上清液,制备得到3wt%的分级氧化石墨烯溶胶液(片径分布为D90:~5μm),得到的纺丝原液中,还原剂的浓度为2wt%,PVA的浓度为15wt%,最终得到氧化石墨烯含量为1.5wt%的石墨烯复合聚乙烯醇纤维。
实施例17
本实施例提供了一种高性能的石墨烯复合聚乙烯醇纤维,其制备方法与实施例14的区别点在于步骤1)中将氧化石墨烯替换为石墨烯,二次底部沉淀加水超声得到1wt%的分级石墨烯溶胶液(片径分布为D90:~10μm),最终得到氧化石墨烯含量为1.5wt%的石墨烯复合聚乙烯醇纤维。
实施例18
本实施例提供了一种高性能的石墨烯复合聚乙烯醇纤维,其制备方法与实施例14的区别点在于步骤1)中将氧化石墨烯替换为生物质石墨烯,二次底部沉淀加水超声得到0.5wt%的分级石墨烯溶胶液(片径分布为D90:~12μm),最终得到氧化石墨烯含量为1.5wt%的石墨烯复合聚乙烯醇纤维。
实施例19
本实施例提供了一种高性能的石墨烯复合聚乙烯醇纤维,其制备方法与实施例14的区别点在于步骤1)中选用2000rpm转速下第一次离心得到的上清液,得到1.5wt%的分级氧化石墨烯溶胶液(片径分布为D90:~16μm),最终得到氧化石墨烯含量1.5wt%的石墨烯复合聚乙烯醇纤维。
实施例20
本实施例提供了一种高性能的石墨烯复合聚乙烯醇纤维,其制备方法与实施例14的区别点在于步骤1)中分级氧化石墨烯溶胶液的浓度为0.05wt%的(片径分布为D90:~16μm);步骤2)中,将氧化石墨烯溶胶液与质量分数为5wt%的PVA水溶液(聚合度为2000,醇解度为88%)100℃进行预混合搅拌2h、质量分数为10wt%的PVA水溶液(聚合度为2000,醇解度为99%)95℃进行预混合2h后得到预混料,将该预混料与25wt%的PVA水溶液和硼酸溶液进行混合(聚合度为2500,醇解度为88%),95℃下搅拌1.5h,最终配制PVA浓度为20wt%、硼酸浓度5wt%的水溶液,步骤3)中还原剂选择为硼氢化钠,同时添加交联剂乙二醛,使得纺丝原液中还原剂的浓度为3wt%,交联剂的浓度为0.45wt%,最终得到氧化石墨烯含量0.05wt%的石墨烯复合聚乙烯醇纤维。
实施例21
本实施例提供了一种高性能的石墨烯复合聚乙烯醇纤维,其制备方法与实施例14的区别点在于步骤1)中分级氧化石墨烯溶胶液的浓度为3wt%的(片径分布为D90:~16μm);步骤2)中,将氧化石墨烯溶胶液与质量分数为2wt%的PVA水溶液(聚合度为2000,醇解度为88%)90℃进行预混合搅拌1h得到预混料,将该预混料与质量分数为10wt%的PVA水溶液(聚合度为2000,醇解度为99%)95℃进行混合2h后,再添加硼酸得到纺丝原液,纺丝原液中,PVA浓度10wt%、硼酸浓度4wt%,步骤3)中还原剂选择为氢碘酸与抗坏血酸,同时添加交联剂乙二醛与甲醛,使得纺丝原液中还原剂的浓度为2wt%,交联剂的浓度为0.0075wt%,最终得到氧化石墨烯含量3wt%的石墨烯复合聚乙烯醇纤维。
实施例22
本实施例提供了一种高性能的石墨烯复合聚乙烯醇纤维,其制备方法与实施例14的区别点在于步骤1)中选用7000rpm转速下再次离心得到的二次沉淀,得到1wt%的分级氧化石墨烯溶胶液(片径分布为D90:~16μm),最终得到氧化石墨烯含量1wt%的石墨烯复合聚乙烯醇纤维。
实施例23
本实施例提供了一种高性能的石墨烯复合聚乙烯醇纤维,其制备方法与实施例14的区别点在于步骤1)中选用7000rpm转速下再次离心得到的二次沉淀,得到2.5wt%的分级氧化石墨烯溶胶液(片径分布为D90:~16μm),最终得到氧化石墨烯含量2wt%的石墨烯复合聚乙烯醇纤维。
实施例24
本实施例提供了一种高性能的石墨烯复合聚乙烯醇纤维,其制备方法与实施例14的区别点在于步骤1)中选用7000rpm转速下再次离心得的沉淀,得到2.5wt%的分级氧化石墨烯溶胶液(片径分布为D90:~50μm),最终得到氧化石墨烯含量1.5wt%的石墨烯复合聚乙烯醇纤维。
实施例25
本实施例提供了一种高性能的石墨烯复合聚乙烯醇纤维,其制备方法与实施例14的区别点在于步骤1)中选用7000rpm转速下再次离心得的沉淀,得到2.5wt%的分级氧化石墨烯溶胶液(片径分布为D90:~70μm),最终得到氧化石墨烯含量1.5wt%的石墨烯复合聚乙烯醇纤维。
比较例1
本比较例提供了一种石墨烯复合聚乙烯醇母粒,其制备方法如下:
在水中加入制备得到的氧化石墨烯,超声分散1h,将质量分数为1.5wt%的氧化石墨烯直接引入到PVA溶液(聚合度为2000,醇解度为99%)中,得到PVA浓度为15wt%的水溶液,95℃下搅拌1h,蒸发溶剂干燥得到氧化石墨烯含量为1.5wt%的石墨烯复合聚乙烯醇母粒且石墨烯类物质的D90为150μm,D10为6μm。该比较例制备得到的母粒的偏光显微镜图如附图3所示。
另外,从本发明的附图中可以看出,采用本发明的制备方法(如附图2)制备得到的 母粒石墨烯颗粒分散比较均匀,颗粒大小也比较均一,但是采用比较例1的方法(如附图3)制备得到的母粒有很多团聚颗粒产生,石墨烯颗粒分散也不均一,势必会影响到后续制备纤维、塑料等产品的性能。
比较例2
本比较例提供了一种石墨烯复合聚乙烯醇纤维,其制备方法如下:
在水中加入制备得到的氧化石墨烯(D90:~25μm),超声分散1h,将质量分数为1.5wt%的氧化石墨烯直接引入到PVA溶液(聚合度为2000,醇解度为99%)和硼酸溶液中,得到PVA浓度为15wt%,硼酸浓度2.5wt%的水溶液,95℃下搅拌1h,引入10g抗坏血酸,继续搅拌2h,最终得到纺丝原液。将纺丝原液于90℃下经过过滤,常压静止脱泡后,经直径为0.1mm的喷丝孔挤出到芒硝凝固浴中,纺出的丝变成初生纤维,对所述的初生纤维进行酸洗、水洗、缩醛化处理(戊二醛1%,2min,80℃)、干燥、热拉伸和热定型处理,热拉伸温度为200℃,热拉伸倍数为10倍,热定型时间为12min。最终得到氧化石墨烯含量为1.5wt%的石墨烯复合聚乙烯醇的纤维。
比较例3
本比较例提供了一种石墨烯复合聚乙烯醇纤维,其制备方法与比较例2的区别在于,在水中加入氧化石墨烯,超声分散得到稳定的分散液,将该悬浮液在1000rpm转速下离心除去底部沉淀,上清液在9000rpm转速下离心得到二次底部沉淀,将二次底部沉淀加水超声得到1.5wt%的分级氧化石墨烯溶胶液(片径分布为D90:~25μm),后续添加PVA溶液的方法与比较例2一致,最终得到氧化石墨烯含量1.5wt%的石墨烯复合聚乙烯醇纤维。
比较例4
本比较例提供了一种石墨烯复合聚乙烯醇纤维,其制备方法采用专利CN104328533A中实施例1的制备方法制备。
应用例1
本应用例提供了一种石墨烯复合聚乙烯醇母粒在制备石墨烯聚乙烯醇复合纤维上的应用,其制备方法如下:
采用实施例1-13和比较例1制得的母粒和/或空白聚乙烯醇母粒混合溶于水中,添加硼酸5wt%,并引入抗坏血酸还原剂10g,提高温度至100℃,继续搅拌并还原2h,得到纺丝原液(纺丝原液中,还原剂的浓度为0.1wt%),将纺丝原液于90℃下经过过滤,常压静止脱泡后,经直径为0.1mm的喷丝孔挤出到芒硝凝固浴中,纺出的丝变成初生纤维,对所述的初生纤维进行酸洗、水洗、缩醛化处理(戊二醛1%,2min,80℃)、干燥、热拉伸和热定型处理,热拉伸温度为140℃,热拉伸倍数为20倍,热定型时间为5min。最终得到,利用实施例1-6、8-13和比较例1的母粒得到石墨烯类物质含量0.5wt%的石墨烯复合聚乙烯醇纤维;实施例7的母粒得到石墨烯类物质含量0.05wt%的石墨烯复合聚乙烯醇纤维。
应用例2
本应用例提供了一种石墨烯复合聚乙烯醇母粒在制备石墨烯复合聚乙烯醇塑料上的应用,其制备方法如下:
将实施例1的母粒(10wt%)、尼龙-6母粒(86wt%)、以及阻燃剂、稳定剂等添加剂加入搅拌釜中加热至200-350℃之间,使各物料熔融和混合,形成聚合物熔体,将熔体降温后送入挤塑机,挤出成型,即得塑料成品。实施例3、比较例1的母粒也可参照上述方法制备塑料。
实验例1
将应用例1中制备得到的石墨烯复合聚乙烯醇纤维材料的性能进行对比,检测标准:拉伸强度、杨氏模量和断裂伸长率均采用GB/T19975-2005标准。具体结果如下表1所示:
表1性能参数对比
Figure PCTCN2017091701-appb-000001
Figure PCTCN2017091701-appb-000002
从上表1中可以看出,本发明实施例制备得到的石墨烯复合聚乙烯醇纤维的各方面性能均较优,适于广泛推广应用。
实验例2
将应用例2中制备得到的石墨烯复合聚乙烯醇塑料样条的性能进行对比,检测标准:拉伸强度、杨氏模量和断裂伸长率均采用GB/T19975-2005标准。具体结果如下表1所示:
表2性能参数对比
Figure PCTCN2017091701-appb-000003
从上表2中可以看出,本发明实施例制备得到的石墨烯复合聚乙烯醇塑料的各方面性能均较优,适于广泛推广应用。
实验例3
将本发明实施例14-25与比较例2-4制备得到的石墨烯复合聚乙烯醇纤维材料的性能进行对比,检测标准:拉伸强度、杨氏模量和断裂伸长率均采用GB/T19975-2005标准。具体结果如下表3所示:
表3性能参数对比
Figure PCTCN2017091701-appb-000004
Figure PCTCN2017091701-appb-000005
从上表3中可以看出,本发明实施例制备得到的石墨烯复合聚乙烯醇的各方面性能均较优,适于广泛推广应用。
尽管已用具体实施例来说明和描述了本发明,然而应意识到,在不背离本发明的精神和范围的情况下可以作出许多其它的更改和修改。因此,这意味着在所附权利要求中包括属于本发明范围内的所有这些变化和修改。

Claims (20)

  1. 一种高性能的石墨烯复合聚乙烯醇母粒,其特征在于,主要由石墨烯类物质与聚乙烯醇组成;
    所述石墨烯复合聚乙烯醇母粒中,石墨烯类物质的含量在6wt%以下,优选为3wt%以下,更优选为0.05-1.5wt%之间;
    石墨烯类物质的D90指标控制在100μm以下,D10指标控制在20μm以下,D90指标控制在D10指标的20倍以下,优选为10倍以下,更优选为5倍以下;
    优选的,石墨烯类物质包括石墨烯、生物质石墨烯、氧化石墨烯、石墨烯衍生物的一种或几种的混合,其中石墨烯衍生物包括元素掺杂的石墨烯。
  2. 根据权利要求1所述的石墨烯复合聚乙烯醇母粒,其特征在于,
    当母粒用于制备塑料制品时,D90控制在30-100μm,D10控制在5-20μm之间;
    当母粒用于制备纤维时,D90控制在5-30μm,D10控制在0.5-3μm。
  3. 一种如权利要求1~2任一项所述的高性能的石墨烯复合聚乙烯醇母粒的制备方法,其特征在于,主要包括如下步骤:
    (A)将石墨烯类物质水溶液进行预处理,得到石墨烯类物质粒径分级水溶液;
    (B)将PVA水溶液与所述石墨烯类物质粒径分级水溶液混合搅拌得到混合溶液,干燥即得。
  4. 根据权利要求3所述的高性能的石墨烯复合聚乙烯醇母粒的制备方法,其特征在于,所述步骤(A)中,对所述石墨烯类物质水溶液进行预处理的方法包括:将所述石墨烯类物质水溶液超声分散、2000-3000rpm条件下离心操作后分别得到底部沉淀和上清液,所述上清液在5000-7000rpm条件下离心操作后分别得到二次底部沉淀与二次上清液;
    其中,所述石墨烯类物质分级水溶液由包括所述底部沉淀、所述二次底部沉淀、所述二次上清液中的任意一种制备得到,优选为由所述二次底部沉淀制备得到;
    优选地,所述石墨烯类物质分级水溶液中,石墨烯类物质的浓度控制在3wt%以下,更优选为2wt%以下。
  5. 根据权利要求4所述的高性能的石墨烯复合聚乙烯醇母粒的制备方法,其特征在于,将所述石墨烯类物质水溶液超声分散的时间控制在1-3h;
    优选地,所述石墨烯类物质水溶液在2000-3000rpm条件下离心操作的时间控制在20-40min;
    优选地,所述上清液在5000-7000rpm条件下离心操作的时间控制在10-30min。
  6. 根据权利要求3所述的高性能的石墨烯复合聚乙烯醇母粒的制备方法,其特征在于,所述步骤(B)中,所述PVA水溶液分多次并逐渐提高浓度的方式进行添加,所述PVA水溶液的起始浓度控制在2-5wt%之间;
    优选地,所述混合溶液中,PVA的浓度控制在10-20wt%之间。
  7. 根据权利要求6所述的高性能的石墨烯复合聚乙烯醇母粒的制备方法,其特征在于,所述步骤(B)中,分多次添加所述PVA水溶液时每次添加后搅拌的时间控制在1-2h,温度控制在90-100℃之间。
  8. 根据权利要求3所述的高性能的石墨烯复合聚乙烯醇母粒的制备方法,其特征在于,所述步骤(B)中,所述PVA水溶液中的PVA的聚合度控制在1700-2500之间,醇解度控制在88-99%之间。
  9. 一种如权利要求1或2所述的高性能的石墨烯复合聚乙烯醇母粒在膜制品、吸水性树脂、吸水性海绵、塑料方面的应用。
  10. 一种采用权利要求1或2所述的高性能的石墨烯复合聚乙烯醇母粒的纤维材料;
    优选的,所述纤维材料的拉伸强度控制在2Gpa以上,杨氏模量控制在45Gpa以 上,断裂伸长率控制在3-13%之间;
    优选地,所述纤维材料主要通过以下方法制成:将所述石墨烯复合聚乙烯醇母粒加水溶解,或将所述石墨烯复合聚乙烯醇母粒与空白聚乙烯醇母粒混合溶于水中,得到纺丝原液,过滤、脱泡、纺丝以及干燥后,即得;
    更优选地,所述纺丝原液中,添加硼酸溶液,所述硼酸溶液的浓度控制在2-5wt%之间。
  11. 一种高性能的石墨烯复合聚乙烯醇纤维的制备方法,其特征在于,主要包括如下步骤:
    (A)将石墨烯类物质水溶液进行预处理,得到石墨烯类物质分级水溶液,石墨烯类物质的D90指标控制在70μm以下,优选为50μm以下,更优选为5-30μm;
    (B)将PVA水溶液、硼酸溶液与所述石墨烯类物质分级水溶液混合搅拌,得到PVA浓度为10-20wt%的含硼酸的纺丝原液;
    (C)将所述纺丝原液过滤、脱泡、纺丝以及干燥后,即得。
  12. 根据权利要求11所述的高性能的石墨烯复合聚乙烯醇纤维的制备方法,其特征在于,所述步骤(A)中,将所述石墨烯类物质水溶液进行预处理的方法包括:将所述石墨烯类物质水溶液超声分散、2000-3000rpm条件下离心操作后得到底部沉淀和上清液,所述上清液在5000-7000rpm条件下离心操作后分别得到二次底部沉淀与二次上清液;
    其中,所述石墨烯类物质分级水溶液由包括所述底部沉淀、所述二次底部沉淀、所述二次上清液中的任意一种制备得到,优选为由所述二次底部沉淀制备得到;
    优选地,所述石墨烯类物质分级水溶液中,石墨烯类物质的浓度控制在3wt%以下,更优选为2wt%以下。
  13. 根据权利要求12所述的高性能的石墨烯复合聚乙烯醇纤维的制备方法,其特征在于,将所述石墨烯类物质水溶液超声分散的时间控制在1-3h;
    优选地,所述石墨烯类物质水溶液在2000-3000rpm条件下离心操作的时间控制在20-40min;
    优选地,所述上清液在5000-7000rpm条件下离心操作的时间控制在10-30min。
  14. 根据权利要求11~13任一项所述的高性能的石墨烯复合聚乙烯醇纤维的制备方法,其特征在于,石墨烯类物质的D90指标控制在50μm以下,优选30μm以下,更优选为5-25μm之间;
    优选的,石墨烯类物质包括石墨烯、生物质石墨烯、氧化石墨烯、石墨烯衍生物的一种或几种的混合,其中石墨烯衍生物包括元素掺杂的石墨烯。
  15. 根据权利要求11所述的高性能的石墨烯复合聚乙烯醇纤维的制备方法,其特征在于,所述步骤(B)中,所述PVA水溶液分多次并逐渐提高浓度的方式进行添加,所述PVA水溶液的起始浓度控制在2-5wt%之间;
    优选地,所述PVA水溶液与所述石墨烯类物质分级水溶液混合后,再添加所述硼酸溶液;
    优选地,所述纺丝原液中,PVA的浓度控制在15-16wt%之间;
    优选地,所述纺丝原液中,硼酸的浓度控制在2-5wt%之间。
  16. 根据权利要求15所述的高性能的石墨烯复合聚乙烯醇纤维的制备方法,其特征在于,所述步骤(B)中,所述纺丝原液中,分多次添加所述PVA水溶液时每次添加后搅拌的时间控制在1-2h,温度控制在90-100℃之间。
  17. 根据权利要求11所述的高性能的石墨烯复合聚乙烯醇纤维的制备方法,其特征在于,所述步骤(B)中,所述PVA水溶液中的PVA的聚合度控制在1700-2500之间,醇解度控制在88-99%之间。
  18. 根据权利要求1所述的高性能的石墨烯复合聚乙烯醇纤维的制备方法,其特 征在于,所述步骤(C)中,先向所述纺丝原液中添加交联剂进行缩醛化处理、还原剂进行还原处理后再进行过滤;
    优选地,所述交联剂包括乙二醛、戊二醛、甲醛、硼酸以及硼砂中的一种或几种混合物,所述纺丝原液中所述交联剂的浓度控制在0.0075-0.45wt%之间;
    优选地,所述还原剂包括硼氢化钠、抗坏血酸、水合肼以及氢碘酸中的一种或几种混合物,所述纺丝原液中所述还原剂的浓度控制在0.1-3wt%之间。
  19. 采用权利要求11~18任一项所述的高性能的石墨烯复合聚乙烯醇纤维的制备方法制备得到的石墨烯复合聚乙烯醇纤维;
    优选地,所述石墨烯复合聚乙烯醇纤维中,石墨烯类物质的含量在3wt%以下,优选2wt%以下,更优为0.05-1.5wt%之间。
  20. 一种如权利要求19所述的石墨烯复合聚乙烯醇纤维作为增强材料、建筑材料在建筑行业、运输行业方面的应用。
PCT/CN2017/091701 2016-07-11 2017-07-04 石墨烯复合聚乙烯醇母粒以及石墨烯复合聚乙烯醇纤维及其制备方法与应用 WO2018010575A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610539703 2016-07-11
CN201610539703.0 2016-07-11
CN201610624203.7 2016-08-02
CN201610624203.7A CN106832399B (zh) 2016-08-02 2016-08-02 石墨烯复合聚乙烯醇母粒及其制备方法、应用、纤维材料

Publications (1)

Publication Number Publication Date
WO2018010575A1 true WO2018010575A1 (zh) 2018-01-18

Family

ID=60952248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091701 WO2018010575A1 (zh) 2016-07-11 2017-07-04 石墨烯复合聚乙烯醇母粒以及石墨烯复合聚乙烯醇纤维及其制备方法与应用

Country Status (1)

Country Link
WO (1) WO2018010575A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110483928A (zh) * 2019-09-05 2019-11-22 安徽省聚科石墨烯科技股份公司 一种石墨烯抗静电塑料制备方法
CN113073395A (zh) * 2021-04-01 2021-07-06 许玉华 一种石墨烯改性高吸水纤维及其制备方法
CN114133599A (zh) * 2021-12-09 2022-03-04 南通强生新材料科技股份有限公司 一种环保的功能性手套及其制备方法
CN116272941A (zh) * 2023-03-23 2023-06-23 东南大学 一种石墨烯基水凝胶球催化材料及其制备方法和应用
CN116333647A (zh) * 2023-03-17 2023-06-27 河南宏兴炉料有限公司 一种耐磨材料用粘合剂的制作方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102926020A (zh) * 2012-11-14 2013-02-13 浙江大学 一种导电的高强度的聚合物接枝石墨烯层状纤维的制备方法
EP2687624A2 (en) * 2011-03-15 2014-01-22 IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) Graphene conjugate fiber and method for manufacturing same
CN104328533A (zh) * 2014-11-10 2015-02-04 沙嫣 高强高模量聚乙烯醇-石墨烯纳米复合纤维的制备方法
EP2871268A1 (en) * 2013-08-01 2015-05-13 Huawei Technologies Co., Ltd. Method for preparing conductive graphene composite fiber
CN104817071A (zh) * 2015-03-17 2015-08-05 清华大学 一种石墨烯材料的尺寸分级方法
CN105647247A (zh) * 2016-02-25 2016-06-08 中国科学院福建物质结构研究所 海洋装备用石墨烯基涂层的制备方法及其应用
CN106835326A (zh) * 2016-07-11 2017-06-13 济南圣泉集团股份有限公司 高性能的石墨烯复合聚乙烯醇纤维及其制备方法、应用
CN106835345A (zh) * 2016-09-30 2017-06-13 济南圣泉集团股份有限公司 一种纳米纤维素复合pva材料及其制备方法、应用
CN106832399A (zh) * 2016-08-02 2017-06-13 济南圣泉集团股份有限公司 石墨烯复合聚乙烯醇母粒及其制备方法、应用、纤维材料

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2687624A2 (en) * 2011-03-15 2014-01-22 IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) Graphene conjugate fiber and method for manufacturing same
CN102926020A (zh) * 2012-11-14 2013-02-13 浙江大学 一种导电的高强度的聚合物接枝石墨烯层状纤维的制备方法
EP2871268A1 (en) * 2013-08-01 2015-05-13 Huawei Technologies Co., Ltd. Method for preparing conductive graphene composite fiber
CN104328533A (zh) * 2014-11-10 2015-02-04 沙嫣 高强高模量聚乙烯醇-石墨烯纳米复合纤维的制备方法
CN104817071A (zh) * 2015-03-17 2015-08-05 清华大学 一种石墨烯材料的尺寸分级方法
CN105647247A (zh) * 2016-02-25 2016-06-08 中国科学院福建物质结构研究所 海洋装备用石墨烯基涂层的制备方法及其应用
CN106835326A (zh) * 2016-07-11 2017-06-13 济南圣泉集团股份有限公司 高性能的石墨烯复合聚乙烯醇纤维及其制备方法、应用
CN106832399A (zh) * 2016-08-02 2017-06-13 济南圣泉集团股份有限公司 石墨烯复合聚乙烯醇母粒及其制备方法、应用、纤维材料
CN106835345A (zh) * 2016-09-30 2017-06-13 济南圣泉集团股份有限公司 一种纳米纤维素复合pva材料及其制备方法、应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110483928A (zh) * 2019-09-05 2019-11-22 安徽省聚科石墨烯科技股份公司 一种石墨烯抗静电塑料制备方法
CN113073395A (zh) * 2021-04-01 2021-07-06 许玉华 一种石墨烯改性高吸水纤维及其制备方法
CN114133599A (zh) * 2021-12-09 2022-03-04 南通强生新材料科技股份有限公司 一种环保的功能性手套及其制备方法
CN116333647A (zh) * 2023-03-17 2023-06-27 河南宏兴炉料有限公司 一种耐磨材料用粘合剂的制作方法
CN116272941A (zh) * 2023-03-23 2023-06-23 东南大学 一种石墨烯基水凝胶球催化材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
WO2018010575A1 (zh) 石墨烯复合聚乙烯醇母粒以及石墨烯复合聚乙烯醇纤维及其制备方法与应用
CN109868518B (zh) 一种抑菌型超高分子量聚乙烯纤维的生产方法
US20150104642A1 (en) Production method of electrically conductive graphene composite fiber
EP3626758A1 (en) Graphene composite material and preparation method therefor
US4616059A (en) Graft-modified ultrahigh-molecular-weight polyethylene and process for producing same
CN106835345B (zh) 一种纳米纤维素复合pva材料及其制备方法、应用
WO2018166477A1 (zh) 一种改性纤维制品、制备方法及其用途
WO2016074392A1 (zh) 高强高模量聚乙烯醇-石墨烯纳米复合纤维的制备方法
WO2013060174A1 (zh) 一种抗蠕变的超高分子量聚乙烯纤维及其制备方法和应用
CN106835326B (zh) 高性能的石墨烯复合聚乙烯醇纤维及其制备方法、应用
CN105778373A (zh) 可熔融加工的改性聚乙烯醇-石墨烯复合材料的制备方法
CN109233230B (zh) 一种有机/无机杂化改性聚乳酸膜材料及其制备方法
Yumitori et al. Increasing the interfacial strength in carbon fiber/polypropylene composites by growing CNTs on the fibers
CN106832399B (zh) 石墨烯复合聚乙烯醇母粒及其制备方法、应用、纤维材料
CN107698754B (zh) 一种氧化石墨烯改性聚酰胺-6的制备方法
CN110746638B (zh) 一种悬浮聚合制备纳米碳纤维增强聚甲基丙烯酰亚胺泡沫的方法
KR20060077982A (ko) 탄소 나노튜브 섬유의 제조방법 및 그 방법에 의해 제조된섬유
CN113980391B (zh) 一种纳米纤维素塑料添加剂、增强型聚丙烯材料及制备方法
Zhang et al. 3D printing of cellulose nanofiber/polylactic acid composites via an efficient dispersion method
US20240157619A1 (en) In-situ microfibrillated reinforced polymer composite heat-insulating foam material as well as preparation method and application thereof
JP2011162767A (ja) 炭素繊維強化ポリフェニレンスルフィド樹脂組成物、ならびにそれを用いた成形材料および成形品
CN108059720B (zh) 一种氧化石墨烯、绢云母、聚酰胺6复合材料及其制备方法
TW201016911A (en) Pitch-derived graphitized short fiber and molded object obtained using same
JP7085383B2 (ja) 炭素繊維強化樹脂組成物及びその成形物
WO2019107276A1 (ja) 炭素繊維束、プリプレグ、繊維強化複合材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17826912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17826912

Country of ref document: EP

Kind code of ref document: A1