WO2015012054A1 - ホウ素含有水の処理方法及び装置 - Google Patents
ホウ素含有水の処理方法及び装置 Download PDFInfo
- Publication number
- WO2015012054A1 WO2015012054A1 PCT/JP2014/066864 JP2014066864W WO2015012054A1 WO 2015012054 A1 WO2015012054 A1 WO 2015012054A1 JP 2014066864 W JP2014066864 W JP 2014066864W WO 2015012054 A1 WO2015012054 A1 WO 2015012054A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exchange resin
- ion exchange
- boron
- containing water
- regenerative
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 104
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 title claims abstract description 79
- 229910052796 boron Inorganic materials 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000005342 ion exchange Methods 0.000 claims abstract description 67
- 239000012528 membrane Substances 0.000 claims abstract description 51
- 238000001223 reverse osmosis Methods 0.000 claims abstract description 24
- 230000002378 acidificating effect Effects 0.000 claims abstract description 21
- 230000001172 regenerating effect Effects 0.000 claims description 56
- 239000003957 anion exchange resin Substances 0.000 claims description 46
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 39
- 239000003729 cation exchange resin Substances 0.000 claims description 27
- 238000001914 filtration Methods 0.000 claims description 12
- 239000003456 ion exchange resin Substances 0.000 claims description 12
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 12
- 238000005345 coagulation Methods 0.000 claims description 6
- 230000015271 coagulation Effects 0.000 claims description 6
- 238000002242 deionisation method Methods 0.000 claims description 6
- 238000003672 processing method Methods 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims 1
- 230000007935 neutral effect Effects 0.000 abstract description 4
- 230000006866 deterioration Effects 0.000 abstract description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 16
- 239000011347 resin Substances 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 9
- 229910021642 ultra pure water Inorganic materials 0.000 description 9
- 239000012498 ultrapure water Substances 0.000 description 9
- 238000011084 recovery Methods 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 239000003513 alkali Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000011069 regeneration method Methods 0.000 description 5
- 230000008929 regeneration Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000011033 desalting Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000004931 aggregating effect Effects 0.000 description 2
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 2
- 239000003830 anthracite Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- 239000008235 industrial water Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 239000003011 anion exchange membrane Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000006298 dechlorination reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000009296 electrodeionization Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000009287 sand filtration Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000002349 well water Substances 0.000 description 1
- 235000020681 well water Nutrition 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/025—Reverse osmosis; Hyperfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/44—Ion-selective electrodialysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/58—Multistep processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/444—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
- C02F1/32—Treatment of water, waste water, or sewage by irradiation with ultraviolet light
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
- C02F2001/422—Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
- C02F2001/425—Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/108—Boron compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/02—Non-contaminated water, e.g. for industrial water supply
- C02F2103/04—Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
Definitions
- the present invention relates to a method and apparatus for treating boron-containing water, and in particular, boron-containing water suitable for a primary pure water system and a recovery system of an ultrapure water production apparatus may be referred to as a reverse osmosis membrane apparatus (hereinafter referred to as an RO apparatus). .) And a method and apparatus for processing by an ion exchange apparatus.
- a reverse osmosis membrane apparatus hereinafter referred to as an RO apparatus.
- the ultrapure water production system is generally composed of a pretreatment system, a primary pure water system, a subsystem, and a recovery system as necessary.
- the pretreatment system is composed of a turbidity treatment device such as coagulation filtration, MF membrane (microfiltration membrane), UF membrane (ultrafiltration membrane), etc., and a dechlorination treatment device such as activated carbon.
- the primary pure water system is composed of an RO membrane (reverse osmosis membrane) device, a degassing membrane device, an ion exchange tower, and the like, and most of ionic components and TOC components are removed.
- RO membrane reverse osmosis membrane
- the recovery system is a system that treats discharged water (used ultra-pure water) from a point of use such as a semiconductor cleaning process, biological treatment equipment, coagulation, flotation or precipitation, filtration, RO membrane (reverse osmosis membrane) equipment And an ion exchange tower.
- discharged water used ultra-pure water
- a point of use such as a semiconductor cleaning process, biological treatment equipment, coagulation, flotation or precipitation, filtration, RO membrane (reverse osmosis membrane) equipment And an ion exchange tower.
- the subsystem consists of UV equipment (ultraviolet oxidation equipment), non-regenerative ion exchange equipment, UF equipment (ultrafiltration equipment), etc., and removes trace ions, especially low-molecular trace organic substances, and fine particles. Is called.
- UV equipment ultraviolet oxidation equipment
- non-regenerative ion exchange equipment non-regenerative ion exchange equipment
- UF equipment ultrafiltration equipment
- trace ions are removed by a non-regenerative ion exchange resin tower packed with ion exchange resin, and the ion exchange resin is exchanged about once or twice a year.
- the boron adsorption amount of the anion exchange resin is as low as about 1/1000 of general ions, so the life of the ion exchange resin is reduced ( For example, about 2 weeks). For this reason, it is necessary to remove boron by a primary pure water system or a recovery system.
- RO reverse osmosis membrane separation method
- anion exchange resin or chelate resin examples include a reverse osmosis membrane separation method (RO method) and an ion exchange method (anion exchange resin or chelate resin).
- RO can efficiently remove impurities contained in water, such as desalting and organic matter removal, but since the dissociation of boron in water is small, the boron removal rate by RO is low and is about 60 to 70% in the neutral region. .
- the boron adsorption amount of the anion exchange resin is about 1/1000 that of general ions, and therefore the regeneration frequency is very frequent.
- the chelate resin has about 10 times as much boron adsorption as the anion exchange resin, both the acid and alkali chemicals must be used as the regeneration method, and the regeneration is complicated.
- the present invention provides a method and apparatus for treating boron-containing water, which can efficiently remove boron using an RO apparatus and an ion exchange apparatus at an acidic to neutral pH at which RO membrane deterioration resistance is strong.
- the purpose is to do.
- the gist of the present invention is as follows. [1] A method for treating boron-containing water, wherein the boron-containing water is passed through a high-pressure reverse osmosis membrane device and then treated with an ion exchange device.
- [2] A method for treating boron-containing water according to [1], wherein the ion exchange device has any one of the following regenerative ion exchange devices a) to e).
- a) A single-bed single-column regenerative ion exchange apparatus packed with a strongly basic anion exchange resin.
- b) A two-bed, two-column regenerative ion exchange apparatus in which a cation exchange resin tower filled with a strongly acidic cation exchange resin and an anion exchange resin filled with a strongly basic anion exchange resin are connected in series.
- a two-bed / one-column type regenerative ion exchange apparatus in which a strongly acidic cation exchange resin and a strongly basic anion exchange resin are arranged in one ion exchange resin tower so as to be in different layers.
- a mixed bed type regenerative ion exchange apparatus in which a strongly acidic cation exchange resin and a strongly basic anion exchange resin are uniformly mixed and packed in the same column.
- a regenerative ion exchange apparatus in which one or more electric regenerative deionization apparatuses are connected in series.
- a boron-containing water treatment apparatus comprising: a high-pressure reverse osmosis membrane device to which boron-containing water is supplied; and an ion exchange device through which permeated water of the high-pressure reverse osmosis membrane device is passed.
- a two-bed / one-column type regenerative ion exchange apparatus in which a strongly acidic cation exchange resin and a strongly basic anion exchange resin are arranged in one ion exchange resin tower so as to be in different layers.
- a mixed bed type regenerative ion exchange apparatus in which a strongly acidic cation exchange resin and a strongly basic anion exchange resin are uniformly mixed and packed in the same column.
- a regenerative ion exchange apparatus in which one or more electric regenerative deionization apparatuses are connected in series.
- a high-pressure RO device is used as the RO device for treating boron-containing water.
- This high-pressure RO device has a dense membrane surface and a high boron removal rate even in a neutral pH range. Since the boron concentration in the effluent of this high-pressure RO device is extremely low, treated water with a sufficiently low boron concentration can be obtained after the high-pressure RO device by installing a regenerative ion exchanger in a single stage. Obtainable.
- the boron-containing water to be treated in the present invention may be natural raw water such as river water, well water, lake water, etc., or may be recovered water from the semiconductor manufacturing process or its treated water.
- the present invention is suitable as a method and apparatus for removing boron from raw water for producing ultrapure water.
- a boron concentration of 10 to 100 ⁇ g / L, particularly about 20 to 50 ⁇ g / L is preferable. It is.
- boron-containing water is pretreated as necessary and then subjected to high pressure RO treatment.
- a method and apparatus for filtering after adding a flocculant is suitable.
- the flocculant inorganic flocculants such as polyaluminum chloride, aluminum sulfate, ferric chloride, and ferric sulfate are suitable.
- the filtration treatment after the agglomeration treatment various filters such as sand filtration and two-layer filtration using sand and anthracite can be used.
- a filtration membrane such as an MF membrane may be used.
- this raw water or pretreated water obtained by pretreating it is treated with a high-pressure RO device.
- the water supplied to the high-pressure RO device preferably has a pH of 5 to 8 and a TDS (total soluble substance concentration) of 1500 mg / L or less.
- TDS total soluble substance concentration
- the pH of the water supplied to the high-pressure RO membrane device can be made alkaline at 9-11.
- the high-pressure RO device is a reverse osmosis membrane separation device conventionally used for seawater desalination, compared with the low-pressure or ultra-low pressure reverse osmosis membrane used in the primary pure water system of conventional ultrapure water production equipment.
- the skin layer on the membrane surface is dense. Therefore, the high pressure type reverse osmosis membrane has a higher boron removal rate although the amount of permeated water per unit operating pressure is lower than that of the low pressure type or ultra low pressure type reverse osmosis membrane.
- this high-pressure RO membrane device has a low amount of membrane permeate per unit operating pressure, an effective pressure of 2.0 MPa, and a pure water permeation flux at a temperature of 25 ° C. of 0.6 to 1.3 m 3 / At m 2 / day, the NaCl removal rate has a characteristic of 99.5% or more.
- the effective pressure is an effective pressure acting on the membrane obtained by subtracting the osmotic pressure difference and the secondary pressure from the average operating pressure.
- the NaCl removal rate is the removal rate at 25 ° C. and an effective pressure of 2.7 MPa for an NaCl aqueous solution having a NaCl concentration of 32000 mg / L.
- the permeated water of this high-pressure RO device is further subjected to ion exchange treatment.
- This ion exchange process uses a non-regenerative ion exchange device and / or a regenerative ion exchange device.
- most of boron (for example, 95% or more) is removed by the high-pressure RO apparatus, and the boron concentration of water used for this ion exchange treatment is about 0.5 to 8 ⁇ g / L. Only one of the regenerative ion exchanger and the regenerative ion exchanger need be provided in a single stage.
- a regenerative ion exchange device or a non-regenerative ion exchange device is installed, and a non-regenerative ion exchange device is installed after that. It is preferable to do.
- a strongly basic anion exchange resin or a boron selective resin for example, a boron chelate resin
- It must be a tower or an electric regenerative deionization exchanger.
- the ion exchange tower packed with the strong base anion exchange resin is a single-bed single tower using an anion exchange resin tower filled only with a strong base anion exchange resin alone for the purpose of removing only boron.
- An anion exchange resin tower filled only with a strong base anion exchange resin alone for the purpose of removing only boron.
- It is possible to remove the cationic substance it is usually necessary to adopt the following two-bed two-column type, two-bed one-column type, or mixed bed type. preferable.
- Two-bed, two-column system A system in which a cation exchange resin tower filled with a strongly acidic cation exchange resin and an anion exchange resin filled with a strongly basic anion exchange resin are connected in series.
- Two-bed / one-column system A system in which a strongly acidic cation exchange resin and a strongly basic anion exchange resin are disposed in a single ion exchange resin tower so as to be in different layers.
- Mixed bed type A method in which a strongly acidic cation exchange resin and a strongly basic anion exchange resin are uniformly mixed and packed in the same column for treatment.
- the electric regenerative deionization apparatus is configured such that a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between an anode and a cathode to alternately form a concentration chamber and a desalting chamber, and an anion exchange resin in the desalting chamber. It may be a mixed ion exchange resin of cation exchange resin and an ionization device filled with an ion exchanger such as an ion exchange fiber, and further an electrodeionization device filled with an ion exchanger in the concentration chamber. May be.
- the non-regenerative ion exchange apparatus used in the present invention is preferably used in an ultrapure water production facility.
- the non-regenerative ion exchange device is preferably at least filled with a strongly basic anion exchange resin or a boron-selective resin (for example, a boron chelate resin).
- a tower type or a mixture of a strongly acidic cation exchange resin and a strongly basic anion exchange resin or a mixture of each resin so as to form separate layers is preferable.
- the non-regenerative ion exchange apparatus does not have a regeneration facility in the apparatus. Therefore, when the processing capacity of the non-regenerative ion exchange apparatus decreases, the non-regenerative ion exchange apparatus is used by exchanging it with another ion exchange resin regenerated in advance elsewhere without performing regeneration of the filled ion exchange resin.
- a strongly acidic cation exchange resin and a strongly basic anion exchange resin are disposed in the subsequent stage. It is preferable to provide a non-regenerative ion exchange tower packed with or so that each resin forms a separate layer.
- an ultraviolet ray oxidizer is installed before that. By providing it, it is possible to remove organic substances.
- the permeated water of the RO device When the water supplied to the RO device has a pH of about 5 to 8, the permeated water of the RO device has a weakly acidic pH due to the removal of alkali components by the RO device. For this reason, the permeated water of the high-pressure RO apparatus may be deaerated by a membrane deaerator or a vacuum deaerator to be decarboxylated and then processed by the ion exchange apparatus. In the present invention, the high-pressure RO treatment may be performed after adding an acid to the pretreated water and deaeration.
- Another RO device may be a high-pressure RO device or a low-pressure or ultra-low pressure reverse osmosis membrane device used in a conventional primary pure water system.
- the concentrated water of the high-pressure RO device (hereinafter also referred to as the first high-pressure RO device) is processed by a second high-pressure RO device separately installed, and the second high-pressure RO device.
- the water recovery rate may be increased by returning the permeated water to the water supply of the first high-pressure RO device.
- the method and apparatus for treating boron-containing water of the present invention is preferably applied to a primary pure water system and a recovery system of an ultrapure water production system. Therefore, the boron-containing water treated by the method and apparatus for treating boron-containing water according to the present invention is constituted by a UV device (ultraviolet oxidation device), a non-regenerative ion exchange device, a UF device (ultrafiltration device), and the like. Preferably it is processed in a subsystem.
- Example 1 Industrial water having a boron concentration of 100 ⁇ g / L, TDS 500 mg / L, pH 6.5, and conductivity of 32 mS / m was treated according to the flow of FIG. First, this industrial water was subjected to flocculation treatment and filtration treatment in the pretreatment apparatus 1 to form a membrane treatment. As an aggregating agent for the aggregating treatment, 10 mg / L of polyaluminum chloride was added. For filtration, a sand / anthracite two-layer filter was used. The pH of the pretreated water was 6.
- the pretreated water is treated with a high-pressure RO device 2 (SWC4Max manufactured by Nitto Denko Corporation, effective pressure 2.0 MPa, pure water permeation flux at a temperature of 25 ° C. 0.78 m 3 / m 2 / day; effective pressure 2.0 MPa, It was treated at a recovery rate of 75% at a NaCl removal rate of 99.8% at a temperature of 25 ° C. and a NaCl concentration of 32000 mg / L. Further, this high-pressure RO apparatus permeate is passed through the regenerated anion exchange resin tower 3 filled with an anion exchange resin (Monosphere 550A (H) manufactured by Dow Chemical Co., Ltd.) with SV30. Water was passed through with SV50. Table 1 shows the measurement results of the boron concentration in water in each step when 24 hours passed from the start of water flow. In Table 1, the treated water of the non-regenerative deionizer 4 is abbreviated as “non-regenerative treated water”.
- Example 1 The same treatment as in Example 1 was performed except that an ultra-low pressure RO device equipped with an ultra-low pressure RO membrane (ES-20 manufactured by Nitto Denko Corporation) was used instead of the high-pressure RO device.
- Table 1 shows the measurement results of the boron concentration in water in each step.
- Example 2 The same raw water as in Example 1 was pretreated under the same conditions, and then passed through the first cation exchange resin tower at SV30.
- This first cation exchange resin tower effluent (pH 2) is decarboxylated with a membrane deaerator, then passed through the first anion exchange resin tower at SV30, and then passed through the second cation exchange resin tower at SV100.
- Water was then passed through the second anion exchange resin tower at SV100, and then through the non-regenerative anion exchange resin tower at SV50.
- Table 1 shows the measurement results of the boron concentration in water in each step.
- Example 1 using a high-pressure RO apparatus, the boron concentration of RO permeated water is as low as 5 ⁇ g / L, and the boron concentration of regenerated anion exchange resin tower treated water is sufficiently low at 1 ng / L. It is low.
- An ultra-low pressure RO device (Nitto Denko Corporation ES-20, effective pressure 2.0 MPa, pure water permeation flux 1 m 3 / m 2 / day at a temperature of 25 ° C .; effective pressure 0.75 MPa, instead of the high-pressure RO device
- the boron concentration of the RO apparatus permeate is as high as 60 ⁇ g / L
- the boron concentration of the regenerated anion exchange resin tower treatment water Has a high value of 3 ⁇ g / L.
Landscapes
- Chemical & Material Sciences (AREA)
- Water Supply & Treatment (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Nanotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Urology & Nephrology (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Toxicology (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
[1] ホウ素含有水を高圧型逆浸透膜装置に通水した後、イオン交換装置にて処理することを特徴とするホウ素含有水の処理方法。
a)強塩基性アニオン交換樹脂を充填した単床単塔式の再生型イオン交換装置。
b)強酸性カチオン交換樹脂が充填されたカチオン交換樹脂塔と、強塩基性アニオン交換樹脂が充填されたアニオン交換樹脂とを直列に接続した2床2塔式の再生型イオン交換装置。
c)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを、一つのイオン交換樹脂塔内に、それぞれが別々の異なる層となるように配置した2床1塔式の再生型イオン交換装置。
d)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを均一に混合して同一塔内に充填した混床型の再生型イオン交換装置。
e)電気再生式脱イオン装置を1段または複数段直列に接続した再生型イオン交換装置。
a)強塩基性アニオン交換樹脂を充填した単床単塔式の再生型イオン交換装置。
b)強酸性カチオン交換樹脂が充填されたカチオン交換樹脂塔と、強塩基性アニオン交換樹脂が充填されたアニオン交換樹脂とを直列に接続した2床2塔式の再生型イオン交換装置。
c)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを、一つのイオン交換樹脂塔内に、それぞれが別々の異なる層となるように配置した2床1塔式の再生型イオン交換装置。
d)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを均一に混合して同一塔内に充填した混床型の再生型イオン交換装置。
e)電気再生式脱イオン装置を1段または複数段直列に接続した再生型イオン交換装置。
2床2塔式:強酸性カチオン交換樹脂が充填されたカチオン交換樹脂塔と、強塩基性アニオン交換樹脂が充填されたアニオン交換樹脂とを直列に接続して処理する方式。
2床1塔式:強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを、一つのイオン交換樹脂塔内に、それぞれが別々の異なる層となるように配置して処理する方式。
混床式:強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを均一に混合して同一塔内に充填して処理する方式。
ホウ素濃度100μg/L、TDS500mg/L、pH6.5、導電率32mS/mの工業用水を図1のフローに従って処理を行った。まず、この工業用水を前処理装置1にて凝集処理及び濾過処理して膜処理した。凝集処理の凝集剤としてはポリ塩化アルミニウムを10mg/L添加した。濾過には砂・アンスラサイト2層濾過器を用いた。前処理水のpHは6であった。
高圧型RO装置の代りに、超低圧RO膜(日東電工株式会社製ES-20)を備えた超低圧型RO装置を用いたこと以外は実施例1と同様の処理を行った。各工程における水中のホウ素濃度の測定結果を表1に示す。
実施例1と同一の原水を同一条件にて前処理した後、第1カチオン交換樹脂塔にSV30にて通水した。この第1カチオン交換樹脂塔流出水(pH2)を膜脱気装置で脱炭酸処理し、次いで第1アニオン交換樹脂塔にSV30にて通水し、次いで第2カチオン交換樹脂塔にSV100にて通水し、次いで第2アニオン交換樹脂塔にSV100にて通水し、その後、非再生型アニオン交換樹脂塔にSV50にて通水した。各工程における水中のホウ素濃度の測定結果を表1に示す。
本出願は、2013年7月22日付で出願された日本特許出願2013-151701に基づいており、その全体が引用により援用される。
Claims (7)
- ホウ素含有水を高圧型逆浸透膜装置に通水する工程と、
その後、イオン交換装置にて処理する工程
を有するホウ素含有水の処理方法。 - 請求項1において、前記イオン交換装置が以下のa)~e)いずれかの再生型イオン交換装置を有することを特徴とするホウ素含有水の処理方法。
a)強塩基性アニオン交換樹脂を充填した単床単塔式の再生型イオン交換装置。
b)強酸性カチオン交換樹脂が充填されたカチオン交換樹脂塔と、強塩基性アニオン交換樹脂が充填されたアニオン交換樹脂とを直列に接続した2床2塔式の再生型イオン交換装置。
c)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを、一つのイオン交換樹脂塔内に、それぞれが別々の異なる層となるように配置した2床1塔式の再生型イオン交換装置。
d)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを均一に混合して同一塔内に充填した混床型の再生型イオン交換装置。
e)電気再生式脱イオン装置を1段または複数段直列に接続した再生型イオン交換装置。 - 請求項1において、ホウ素含有水を凝集処理及び濾過処理した後、前記高圧型逆浸透膜装置に通水することを特徴とするホウ素含有水の処理方法。
- 請求項1ないし3のいずれか1項において、前記高圧型逆浸透膜装置への給水のpHが5~8であることを特徴とするホウ素含有水の処理方法。
- ホウ素含有水が供給される高圧型逆浸透膜装置と、
該高圧型逆浸透膜装置の透過水が通水されるイオン交換装置と
を有するホウ素含有水の処理装置。 - 請求項5において、前記イオン交換装置が以下のa)~e)のいずれかの再生型イオン交換装置を有することを特徴とするホウ素含有水の処理装置。
a)強塩基性アニオン交換樹脂を充填した単床単塔式の再生型イオン交換装置。
b)強酸性カチオン交換樹脂が充填されたカチオン交換樹脂塔と、強塩基性アニオン交換樹脂が充填されたアニオン交換樹脂とを直列に接続した2床2塔式の再生型イオン交換装置。
c)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを、一つのイオン交換樹脂塔内に、それぞれが別々の異なる層となるように配置した2床1塔式の再生型イオン交換装置。
d)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを均一に混合して同一塔内に充填した混床型の再生型イオン交換装置。
e)電気再生式脱イオン装置を1段または複数段直列に接続した再生型イオン交換装置。 - 請求項5又は6において、前記高圧型逆浸透膜装置の前段に、凝集処理装置及び濾過装置を設置したことを特徴とするホウ素含有水の処理装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480034464.2A CN105392552B (zh) | 2013-07-22 | 2014-06-25 | 含硼水的处理方法和装置 |
SG11201600449XA SG11201600449XA (en) | 2013-07-22 | 2014-06-25 | Method and apparatus for treating water containing boron |
KR1020167001684A KR102047155B1 (ko) | 2013-07-22 | 2014-06-25 | 붕소 함유수의 처리 방법 및 장치 |
US14/906,419 US20160159671A1 (en) | 2013-07-22 | 2014-06-25 | Method and apparatus for treating water containing boron |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-151701 | 2013-07-22 | ||
JP2013151701A JP5733351B2 (ja) | 2013-07-22 | 2013-07-22 | ホウ素含有水の処理方法及び装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015012054A1 true WO2015012054A1 (ja) | 2015-01-29 |
Family
ID=52393106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/066864 WO2015012054A1 (ja) | 2013-07-22 | 2014-06-25 | ホウ素含有水の処理方法及び装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20160159671A1 (ja) |
JP (1) | JP5733351B2 (ja) |
KR (1) | KR102047155B1 (ja) |
CN (1) | CN105392552B (ja) |
SG (1) | SG11201600449XA (ja) |
TW (1) | TWI616404B (ja) |
WO (1) | WO2015012054A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110277183A (zh) * | 2019-07-09 | 2019-09-24 | 上海核工程研究设计院有限公司 | 一种可回收富集硼酸的核电站工艺系统 |
WO2020184044A1 (ja) * | 2019-03-13 | 2020-09-17 | オルガノ株式会社 | 純水製造装置および純水の製造方法 |
US10981144B2 (en) | 2015-12-17 | 2021-04-20 | Singapore University Of Technology And Design | Method of removing borate ions from an aqueous solution |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6228531B2 (ja) * | 2014-12-19 | 2017-11-08 | 栗田工業株式会社 | 超純水製造装置及び超純水製造方法 |
JP6728835B2 (ja) * | 2016-03-23 | 2020-07-22 | 栗田工業株式会社 | 純水製造装置の運転方法 |
JP6365624B2 (ja) | 2016-10-20 | 2018-08-01 | 栗田工業株式会社 | 過酸化水素水溶液の精製方法および精製装置 |
JP6807219B2 (ja) * | 2016-11-18 | 2021-01-06 | オルガノ株式会社 | 逆浸透膜処理システムおよび逆浸透膜処理方法 |
JP7192519B2 (ja) * | 2019-01-22 | 2022-12-20 | 栗田工業株式会社 | ホウ素超高純度除去型超純水製造装置及びホウ素超高純度除去超純水の製造方法 |
JP7289206B2 (ja) | 2019-03-13 | 2023-06-09 | オルガノ株式会社 | ホウ素除去装置及びホウ素除去方法、並びに、純水製造装置及び純水の製造方法 |
JP7261711B2 (ja) * | 2019-09-17 | 2023-04-20 | 野村マイクロ・サイエンス株式会社 | 超純水製造システム及び超純水製造方法 |
JP7368310B2 (ja) * | 2020-05-20 | 2023-10-24 | オルガノ株式会社 | ホウ素除去装置及びホウ素除去方法、並びに、純水製造装置及び純水の製造方法 |
JP2022053969A (ja) * | 2020-09-25 | 2022-04-06 | オルガノ株式会社 | 純水製造装置及び純水製造方法 |
CN112759031A (zh) * | 2020-12-17 | 2021-05-07 | 苏州业华环境科技有限公司 | 一种超纯水的处理工艺及系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1015356A (ja) * | 1996-07-09 | 1998-01-20 | Kubota Corp | 水処理方法 |
JPH11267645A (ja) * | 1998-03-25 | 1999-10-05 | Kurita Water Ind Ltd | 純水の製造方法 |
JP2001219161A (ja) * | 2000-02-08 | 2001-08-14 | Nomura Micro Sci Co Ltd | 純水製造装置 |
JP2006026484A (ja) * | 2004-07-13 | 2006-02-02 | Nitto Denko Corp | 高塩阻止率複合逆浸透膜の製造方法 |
JP2009028695A (ja) * | 2007-07-30 | 2009-02-12 | Kurita Water Ind Ltd | 純水製造装置及び純水製造方法 |
JP2012205989A (ja) * | 2011-03-29 | 2012-10-25 | Kurita Water Ind Ltd | 純水製造装置 |
JP2012245439A (ja) * | 2011-05-25 | 2012-12-13 | Kurita Water Ind Ltd | 超純水製造装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3426072B2 (ja) * | 1996-01-17 | 2003-07-14 | オルガノ株式会社 | 超純水製造装置 |
JP3885840B2 (ja) | 1997-10-31 | 2007-02-28 | 栗田工業株式会社 | 純水製造装置 |
JP3885319B2 (ja) | 1997-10-31 | 2007-02-21 | 栗田工業株式会社 | 純水製造装置 |
JP3575260B2 (ja) | 1997-12-26 | 2004-10-13 | 栗田工業株式会社 | 純水製造装置 |
US6398965B1 (en) | 1998-03-31 | 2002-06-04 | United States Filter Corporation | Water treatment system and process |
JP4172394B2 (ja) * | 2002-01-22 | 2008-10-29 | 東レ株式会社 | 造水方法および造水装置 |
JP2003266097A (ja) | 2002-03-13 | 2003-09-24 | Kurita Water Ind Ltd | 超純水製造装置 |
JP3864934B2 (ja) * | 2003-06-12 | 2007-01-10 | 栗田工業株式会社 | 純水製造装置 |
US7279097B2 (en) * | 2003-06-18 | 2007-10-09 | Toray Industries, Inc. | Composite semipermeable membrane, and production process thereof |
NL1030346C2 (nl) * | 2004-11-15 | 2006-09-20 | Toray Industries | Semipermeabel composietmembraan, productiewerkwijze daarvan, en element, fluïdumscheidingsinstallatie en werkwijze voor behandeling van water onder toepassing van hetzelfde. |
-
2013
- 2013-07-22 JP JP2013151701A patent/JP5733351B2/ja active Active
-
2014
- 2014-06-25 US US14/906,419 patent/US20160159671A1/en not_active Abandoned
- 2014-06-25 KR KR1020167001684A patent/KR102047155B1/ko active IP Right Grant
- 2014-06-25 SG SG11201600449XA patent/SG11201600449XA/en unknown
- 2014-06-25 WO PCT/JP2014/066864 patent/WO2015012054A1/ja active Application Filing
- 2014-06-25 CN CN201480034464.2A patent/CN105392552B/zh active Active
- 2014-07-02 TW TW103122838A patent/TWI616404B/zh active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1015356A (ja) * | 1996-07-09 | 1998-01-20 | Kubota Corp | 水処理方法 |
JPH11267645A (ja) * | 1998-03-25 | 1999-10-05 | Kurita Water Ind Ltd | 純水の製造方法 |
JP2001219161A (ja) * | 2000-02-08 | 2001-08-14 | Nomura Micro Sci Co Ltd | 純水製造装置 |
JP2006026484A (ja) * | 2004-07-13 | 2006-02-02 | Nitto Denko Corp | 高塩阻止率複合逆浸透膜の製造方法 |
JP2009028695A (ja) * | 2007-07-30 | 2009-02-12 | Kurita Water Ind Ltd | 純水製造装置及び純水製造方法 |
JP2012205989A (ja) * | 2011-03-29 | 2012-10-25 | Kurita Water Ind Ltd | 純水製造装置 |
JP2012245439A (ja) * | 2011-05-25 | 2012-12-13 | Kurita Water Ind Ltd | 超純水製造装置 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10981144B2 (en) | 2015-12-17 | 2021-04-20 | Singapore University Of Technology And Design | Method of removing borate ions from an aqueous solution |
US11224855B2 (en) | 2015-12-17 | 2022-01-18 | Singapore University Of Technology And Design | Method of removing boric acid from an aqueous solution |
WO2020184044A1 (ja) * | 2019-03-13 | 2020-09-17 | オルガノ株式会社 | 純水製造装置および純水の製造方法 |
JP2020146618A (ja) * | 2019-03-13 | 2020-09-17 | オルガノ株式会社 | 純水製造装置および純水の製造方法 |
JP7200014B2 (ja) | 2019-03-13 | 2023-01-06 | オルガノ株式会社 | 純水製造装置および純水の製造方法 |
CN110277183A (zh) * | 2019-07-09 | 2019-09-24 | 上海核工程研究设计院有限公司 | 一种可回收富集硼酸的核电站工艺系统 |
Also Published As
Publication number | Publication date |
---|---|
TWI616404B (zh) | 2018-03-01 |
KR20160033119A (ko) | 2016-03-25 |
SG11201600449XA (en) | 2016-02-26 |
JP5733351B2 (ja) | 2015-06-10 |
TW201505973A (zh) | 2015-02-16 |
US20160159671A1 (en) | 2016-06-09 |
CN105392552A (zh) | 2016-03-09 |
JP2015020131A (ja) | 2015-02-02 |
KR102047155B1 (ko) | 2019-11-20 |
CN105392552B (zh) | 2017-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5733351B2 (ja) | ホウ素含有水の処理方法及び装置 | |
TWI648093B (zh) | 超純水製造裝置以及超純水製造方法 | |
JP2009028695A (ja) | 純水製造装置及び純水製造方法 | |
JP5834492B2 (ja) | 超純水製造装置 | |
CN111252971A (zh) | 一种超纯水制造系统及使用该系统的超纯水制造方法 | |
JP2020078772A (ja) | 電気脱イオン装置及びこれを用いた脱イオン水の製造方法 | |
JP6228471B2 (ja) | 被処理水の処理装置、純水の製造装置および被処理水の処理方法 | |
JP2004000919A (ja) | 脱塩水製造装置 | |
JP2014000575A (ja) | 純水製造装置及び純水製造方法 | |
JP2005000828A (ja) | 純水製造装置 | |
JP3137831B2 (ja) | 膜処理装置 | |
JP2018030065A (ja) | 超純水製造システム及び超純水製造方法 | |
WO2020184044A1 (ja) | 純水製造装置および純水の製造方法 | |
JP2017127875A (ja) | 超純水製造装置及び超純水製造方法 | |
WO2021215099A1 (ja) | 排水処理方法、超純水製造方法及び排水処理装置 | |
JP2009160500A (ja) | 超純水製造方法及び装置 | |
JP6561448B2 (ja) | バナジウム含有水の電気脱イオン処理方法及び処理装置 | |
JP6285645B2 (ja) | 排水処理方法及び排水処理装置 | |
CN112424128A (zh) | 纯水制造系统及纯水制造方法 | |
JP7290911B2 (ja) | 逆浸透膜処理方法および逆浸透膜処理システム | |
WO2014010075A1 (ja) | 超純水製造装置 | |
JP2021045701A (ja) | 超純水製造システム及び超純水製造方法 | |
JP2017140548A (ja) | 電気脱イオン装置の運転方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480034464.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14828709 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167001684 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14906419 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14828709 Country of ref document: EP Kind code of ref document: A1 |