WO2015012054A1 - ホウ素含有水の処理方法及び装置 - Google Patents

ホウ素含有水の処理方法及び装置 Download PDF

Info

Publication number
WO2015012054A1
WO2015012054A1 PCT/JP2014/066864 JP2014066864W WO2015012054A1 WO 2015012054 A1 WO2015012054 A1 WO 2015012054A1 JP 2014066864 W JP2014066864 W JP 2014066864W WO 2015012054 A1 WO2015012054 A1 WO 2015012054A1
Authority
WO
WIPO (PCT)
Prior art keywords
exchange resin
ion exchange
boron
containing water
regenerative
Prior art date
Application number
PCT/JP2014/066864
Other languages
English (en)
French (fr)
Inventor
育野 望
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN201480034464.2A priority Critical patent/CN105392552B/zh
Priority to SG11201600449XA priority patent/SG11201600449XA/en
Priority to KR1020167001684A priority patent/KR102047155B1/ko
Priority to US14/906,419 priority patent/US20160159671A1/en
Publication of WO2015012054A1 publication Critical patent/WO2015012054A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/108Boron compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water

Definitions

  • the present invention relates to a method and apparatus for treating boron-containing water, and in particular, boron-containing water suitable for a primary pure water system and a recovery system of an ultrapure water production apparatus may be referred to as a reverse osmosis membrane apparatus (hereinafter referred to as an RO apparatus). .) And a method and apparatus for processing by an ion exchange apparatus.
  • a reverse osmosis membrane apparatus hereinafter referred to as an RO apparatus.
  • the ultrapure water production system is generally composed of a pretreatment system, a primary pure water system, a subsystem, and a recovery system as necessary.
  • the pretreatment system is composed of a turbidity treatment device such as coagulation filtration, MF membrane (microfiltration membrane), UF membrane (ultrafiltration membrane), etc., and a dechlorination treatment device such as activated carbon.
  • the primary pure water system is composed of an RO membrane (reverse osmosis membrane) device, a degassing membrane device, an ion exchange tower, and the like, and most of ionic components and TOC components are removed.
  • RO membrane reverse osmosis membrane
  • the recovery system is a system that treats discharged water (used ultra-pure water) from a point of use such as a semiconductor cleaning process, biological treatment equipment, coagulation, flotation or precipitation, filtration, RO membrane (reverse osmosis membrane) equipment And an ion exchange tower.
  • discharged water used ultra-pure water
  • a point of use such as a semiconductor cleaning process, biological treatment equipment, coagulation, flotation or precipitation, filtration, RO membrane (reverse osmosis membrane) equipment And an ion exchange tower.
  • the subsystem consists of UV equipment (ultraviolet oxidation equipment), non-regenerative ion exchange equipment, UF equipment (ultrafiltration equipment), etc., and removes trace ions, especially low-molecular trace organic substances, and fine particles. Is called.
  • UV equipment ultraviolet oxidation equipment
  • non-regenerative ion exchange equipment non-regenerative ion exchange equipment
  • UF equipment ultrafiltration equipment
  • trace ions are removed by a non-regenerative ion exchange resin tower packed with ion exchange resin, and the ion exchange resin is exchanged about once or twice a year.
  • the boron adsorption amount of the anion exchange resin is as low as about 1/1000 of general ions, so the life of the ion exchange resin is reduced ( For example, about 2 weeks). For this reason, it is necessary to remove boron by a primary pure water system or a recovery system.
  • RO reverse osmosis membrane separation method
  • anion exchange resin or chelate resin examples include a reverse osmosis membrane separation method (RO method) and an ion exchange method (anion exchange resin or chelate resin).
  • RO can efficiently remove impurities contained in water, such as desalting and organic matter removal, but since the dissociation of boron in water is small, the boron removal rate by RO is low and is about 60 to 70% in the neutral region. .
  • the boron adsorption amount of the anion exchange resin is about 1/1000 that of general ions, and therefore the regeneration frequency is very frequent.
  • the chelate resin has about 10 times as much boron adsorption as the anion exchange resin, both the acid and alkali chemicals must be used as the regeneration method, and the regeneration is complicated.
  • the present invention provides a method and apparatus for treating boron-containing water, which can efficiently remove boron using an RO apparatus and an ion exchange apparatus at an acidic to neutral pH at which RO membrane deterioration resistance is strong.
  • the purpose is to do.
  • the gist of the present invention is as follows. [1] A method for treating boron-containing water, wherein the boron-containing water is passed through a high-pressure reverse osmosis membrane device and then treated with an ion exchange device.
  • [2] A method for treating boron-containing water according to [1], wherein the ion exchange device has any one of the following regenerative ion exchange devices a) to e).
  • a) A single-bed single-column regenerative ion exchange apparatus packed with a strongly basic anion exchange resin.
  • b) A two-bed, two-column regenerative ion exchange apparatus in which a cation exchange resin tower filled with a strongly acidic cation exchange resin and an anion exchange resin filled with a strongly basic anion exchange resin are connected in series.
  • a two-bed / one-column type regenerative ion exchange apparatus in which a strongly acidic cation exchange resin and a strongly basic anion exchange resin are arranged in one ion exchange resin tower so as to be in different layers.
  • a mixed bed type regenerative ion exchange apparatus in which a strongly acidic cation exchange resin and a strongly basic anion exchange resin are uniformly mixed and packed in the same column.
  • a regenerative ion exchange apparatus in which one or more electric regenerative deionization apparatuses are connected in series.
  • a boron-containing water treatment apparatus comprising: a high-pressure reverse osmosis membrane device to which boron-containing water is supplied; and an ion exchange device through which permeated water of the high-pressure reverse osmosis membrane device is passed.
  • a two-bed / one-column type regenerative ion exchange apparatus in which a strongly acidic cation exchange resin and a strongly basic anion exchange resin are arranged in one ion exchange resin tower so as to be in different layers.
  • a mixed bed type regenerative ion exchange apparatus in which a strongly acidic cation exchange resin and a strongly basic anion exchange resin are uniformly mixed and packed in the same column.
  • a regenerative ion exchange apparatus in which one or more electric regenerative deionization apparatuses are connected in series.
  • a high-pressure RO device is used as the RO device for treating boron-containing water.
  • This high-pressure RO device has a dense membrane surface and a high boron removal rate even in a neutral pH range. Since the boron concentration in the effluent of this high-pressure RO device is extremely low, treated water with a sufficiently low boron concentration can be obtained after the high-pressure RO device by installing a regenerative ion exchanger in a single stage. Obtainable.
  • the boron-containing water to be treated in the present invention may be natural raw water such as river water, well water, lake water, etc., or may be recovered water from the semiconductor manufacturing process or its treated water.
  • the present invention is suitable as a method and apparatus for removing boron from raw water for producing ultrapure water.
  • a boron concentration of 10 to 100 ⁇ g / L, particularly about 20 to 50 ⁇ g / L is preferable. It is.
  • boron-containing water is pretreated as necessary and then subjected to high pressure RO treatment.
  • a method and apparatus for filtering after adding a flocculant is suitable.
  • the flocculant inorganic flocculants such as polyaluminum chloride, aluminum sulfate, ferric chloride, and ferric sulfate are suitable.
  • the filtration treatment after the agglomeration treatment various filters such as sand filtration and two-layer filtration using sand and anthracite can be used.
  • a filtration membrane such as an MF membrane may be used.
  • this raw water or pretreated water obtained by pretreating it is treated with a high-pressure RO device.
  • the water supplied to the high-pressure RO device preferably has a pH of 5 to 8 and a TDS (total soluble substance concentration) of 1500 mg / L or less.
  • TDS total soluble substance concentration
  • the pH of the water supplied to the high-pressure RO membrane device can be made alkaline at 9-11.
  • the high-pressure RO device is a reverse osmosis membrane separation device conventionally used for seawater desalination, compared with the low-pressure or ultra-low pressure reverse osmosis membrane used in the primary pure water system of conventional ultrapure water production equipment.
  • the skin layer on the membrane surface is dense. Therefore, the high pressure type reverse osmosis membrane has a higher boron removal rate although the amount of permeated water per unit operating pressure is lower than that of the low pressure type or ultra low pressure type reverse osmosis membrane.
  • this high-pressure RO membrane device has a low amount of membrane permeate per unit operating pressure, an effective pressure of 2.0 MPa, and a pure water permeation flux at a temperature of 25 ° C. of 0.6 to 1.3 m 3 / At m 2 / day, the NaCl removal rate has a characteristic of 99.5% or more.
  • the effective pressure is an effective pressure acting on the membrane obtained by subtracting the osmotic pressure difference and the secondary pressure from the average operating pressure.
  • the NaCl removal rate is the removal rate at 25 ° C. and an effective pressure of 2.7 MPa for an NaCl aqueous solution having a NaCl concentration of 32000 mg / L.
  • the permeated water of this high-pressure RO device is further subjected to ion exchange treatment.
  • This ion exchange process uses a non-regenerative ion exchange device and / or a regenerative ion exchange device.
  • most of boron (for example, 95% or more) is removed by the high-pressure RO apparatus, and the boron concentration of water used for this ion exchange treatment is about 0.5 to 8 ⁇ g / L. Only one of the regenerative ion exchanger and the regenerative ion exchanger need be provided in a single stage.
  • a regenerative ion exchange device or a non-regenerative ion exchange device is installed, and a non-regenerative ion exchange device is installed after that. It is preferable to do.
  • a strongly basic anion exchange resin or a boron selective resin for example, a boron chelate resin
  • It must be a tower or an electric regenerative deionization exchanger.
  • the ion exchange tower packed with the strong base anion exchange resin is a single-bed single tower using an anion exchange resin tower filled only with a strong base anion exchange resin alone for the purpose of removing only boron.
  • An anion exchange resin tower filled only with a strong base anion exchange resin alone for the purpose of removing only boron.
  • It is possible to remove the cationic substance it is usually necessary to adopt the following two-bed two-column type, two-bed one-column type, or mixed bed type. preferable.
  • Two-bed, two-column system A system in which a cation exchange resin tower filled with a strongly acidic cation exchange resin and an anion exchange resin filled with a strongly basic anion exchange resin are connected in series.
  • Two-bed / one-column system A system in which a strongly acidic cation exchange resin and a strongly basic anion exchange resin are disposed in a single ion exchange resin tower so as to be in different layers.
  • Mixed bed type A method in which a strongly acidic cation exchange resin and a strongly basic anion exchange resin are uniformly mixed and packed in the same column for treatment.
  • the electric regenerative deionization apparatus is configured such that a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between an anode and a cathode to alternately form a concentration chamber and a desalting chamber, and an anion exchange resin in the desalting chamber. It may be a mixed ion exchange resin of cation exchange resin and an ionization device filled with an ion exchanger such as an ion exchange fiber, and further an electrodeionization device filled with an ion exchanger in the concentration chamber. May be.
  • the non-regenerative ion exchange apparatus used in the present invention is preferably used in an ultrapure water production facility.
  • the non-regenerative ion exchange device is preferably at least filled with a strongly basic anion exchange resin or a boron-selective resin (for example, a boron chelate resin).
  • a tower type or a mixture of a strongly acidic cation exchange resin and a strongly basic anion exchange resin or a mixture of each resin so as to form separate layers is preferable.
  • the non-regenerative ion exchange apparatus does not have a regeneration facility in the apparatus. Therefore, when the processing capacity of the non-regenerative ion exchange apparatus decreases, the non-regenerative ion exchange apparatus is used by exchanging it with another ion exchange resin regenerated in advance elsewhere without performing regeneration of the filled ion exchange resin.
  • a strongly acidic cation exchange resin and a strongly basic anion exchange resin are disposed in the subsequent stage. It is preferable to provide a non-regenerative ion exchange tower packed with or so that each resin forms a separate layer.
  • an ultraviolet ray oxidizer is installed before that. By providing it, it is possible to remove organic substances.
  • the permeated water of the RO device When the water supplied to the RO device has a pH of about 5 to 8, the permeated water of the RO device has a weakly acidic pH due to the removal of alkali components by the RO device. For this reason, the permeated water of the high-pressure RO apparatus may be deaerated by a membrane deaerator or a vacuum deaerator to be decarboxylated and then processed by the ion exchange apparatus. In the present invention, the high-pressure RO treatment may be performed after adding an acid to the pretreated water and deaeration.
  • Another RO device may be a high-pressure RO device or a low-pressure or ultra-low pressure reverse osmosis membrane device used in a conventional primary pure water system.
  • the concentrated water of the high-pressure RO device (hereinafter also referred to as the first high-pressure RO device) is processed by a second high-pressure RO device separately installed, and the second high-pressure RO device.
  • the water recovery rate may be increased by returning the permeated water to the water supply of the first high-pressure RO device.
  • the method and apparatus for treating boron-containing water of the present invention is preferably applied to a primary pure water system and a recovery system of an ultrapure water production system. Therefore, the boron-containing water treated by the method and apparatus for treating boron-containing water according to the present invention is constituted by a UV device (ultraviolet oxidation device), a non-regenerative ion exchange device, a UF device (ultrafiltration device), and the like. Preferably it is processed in a subsystem.
  • Example 1 Industrial water having a boron concentration of 100 ⁇ g / L, TDS 500 mg / L, pH 6.5, and conductivity of 32 mS / m was treated according to the flow of FIG. First, this industrial water was subjected to flocculation treatment and filtration treatment in the pretreatment apparatus 1 to form a membrane treatment. As an aggregating agent for the aggregating treatment, 10 mg / L of polyaluminum chloride was added. For filtration, a sand / anthracite two-layer filter was used. The pH of the pretreated water was 6.
  • the pretreated water is treated with a high-pressure RO device 2 (SWC4Max manufactured by Nitto Denko Corporation, effective pressure 2.0 MPa, pure water permeation flux at a temperature of 25 ° C. 0.78 m 3 / m 2 / day; effective pressure 2.0 MPa, It was treated at a recovery rate of 75% at a NaCl removal rate of 99.8% at a temperature of 25 ° C. and a NaCl concentration of 32000 mg / L. Further, this high-pressure RO apparatus permeate is passed through the regenerated anion exchange resin tower 3 filled with an anion exchange resin (Monosphere 550A (H) manufactured by Dow Chemical Co., Ltd.) with SV30. Water was passed through with SV50. Table 1 shows the measurement results of the boron concentration in water in each step when 24 hours passed from the start of water flow. In Table 1, the treated water of the non-regenerative deionizer 4 is abbreviated as “non-regenerative treated water”.
  • Example 1 The same treatment as in Example 1 was performed except that an ultra-low pressure RO device equipped with an ultra-low pressure RO membrane (ES-20 manufactured by Nitto Denko Corporation) was used instead of the high-pressure RO device.
  • Table 1 shows the measurement results of the boron concentration in water in each step.
  • Example 2 The same raw water as in Example 1 was pretreated under the same conditions, and then passed through the first cation exchange resin tower at SV30.
  • This first cation exchange resin tower effluent (pH 2) is decarboxylated with a membrane deaerator, then passed through the first anion exchange resin tower at SV30, and then passed through the second cation exchange resin tower at SV100.
  • Water was then passed through the second anion exchange resin tower at SV100, and then through the non-regenerative anion exchange resin tower at SV50.
  • Table 1 shows the measurement results of the boron concentration in water in each step.
  • Example 1 using a high-pressure RO apparatus, the boron concentration of RO permeated water is as low as 5 ⁇ g / L, and the boron concentration of regenerated anion exchange resin tower treated water is sufficiently low at 1 ng / L. It is low.
  • An ultra-low pressure RO device (Nitto Denko Corporation ES-20, effective pressure 2.0 MPa, pure water permeation flux 1 m 3 / m 2 / day at a temperature of 25 ° C .; effective pressure 0.75 MPa, instead of the high-pressure RO device
  • the boron concentration of the RO apparatus permeate is as high as 60 ⁇ g / L
  • the boron concentration of the regenerated anion exchange resin tower treatment water Has a high value of 3 ⁇ g / L.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Toxicology (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

 ホウ素含有水を、ROの膜劣化耐性が強い酸性から中性のpHにおいて、RO装置及びイオン交換装置によって効率よくホウ素除去処理することができるホウ素含有水の処理方法及び装置を提供する。ホウ素含有水を高圧型逆浸透膜装置に通水した後、イオン交換装置にて処理することを特徴とするホウ素含有水の処理方法。ホウ素含有水が供給される高圧型逆浸透膜装置と、該高圧型逆浸透膜装置の透過水が通水されるイオン交換装置とを備えてなるホウ素含有水の処理装置。

Description

ホウ素含有水の処理方法及び装置
 本発明はホウ素含有水の処理方法及び装置に係り、特に、超純水製造装置の一次純水システムや回収系に好適な、ホウ素含有水を逆浸透膜装置(以下、RO装置ということがある。)及びイオン交換装置によって処理する方法及び装置に関する。
 超純水製造システムは、一般的に前処理システム、一次純水システム、サブシステム、必要によって回収システムより構成される。前処理システムは、凝集濾過やMF膜(精密濾過膜)、UF膜(限外濾過膜)等による除濁処理装置、活性炭等による脱塩素処理装置により構成される。
 一次純水システムは、RO膜(逆浸透膜)装置、脱気膜装置、イオン交換塔等により構成され、ほとんどのイオン成分やTOC成分が除去される。
 回収システムは、半導体洗浄工程などのユースポイントからの排出水(使用済みの超純水)を処理するシステムであり、生物処理装置、凝集、浮上又は沈殿、濾過、RO膜(逆浸透膜)装置やイオン交換塔により構成される。
 サブシステムは、UV装置(紫外線酸化装置)、非再生型イオン交換装置、UF装置(限外濾過装置)等により構成され、微量イオンの除去、特に低分子の微量有機物除去、微粒子の除去が行われる。サブシステムで作られた超純水は、ユースポイントに送水され、余剰の超純水はサブシステムの前段のタンクに返送されるのが一般的である。
 このサブシステムにおいては、微量イオンの除去は、イオン交換樹脂が充填された非再生型のイオン交換樹脂塔で行い、年に1~2回程度の頻度でイオン交換樹脂を交換している。しかし、サブシステムにて処理される純水中にホウ素が含まれていると、アニオン交換樹脂のホウ素吸着量は一般のイオンの1/1000程度と低いため、イオン交換樹脂の寿命は小さくなる(例えば2週間程度)。このため、一次純水システムや回収システムでホウ素の除去を行う必要がある。 
 水中のホウ素を除去する手法として逆浸透膜分離法(RO法)、イオン交換法(アニオン交換樹脂又はキレート樹脂)が挙げられる。ROは脱塩、有機物除去等水中に含有する不純物を効率良く除去できるが、水中におけるホウ素の解離は僅かであるため、ROによるホウ素除去率は低く、中性域では60~70%程度である。アニオン交換樹脂を用いたイオン交換法の場合、アニオン交換樹脂のホウ素吸着量は一般のイオンの1/1000程度であるため、再生頻度が非常に頻繁になる。そのため、従来、一次純水システムあるいは回収システムでは、アニオン交換樹脂を単床あるいは混床とした再生型のイオン交換塔を複数段設置(例えば、4床5塔+RO式、2床3塔+RO+混床式)し、処理を行っていた。
 キレート樹脂は、アニオン交換樹脂に比べホウ素吸着量が約10倍程度多いものの、再生方法として、酸、アルカリの両薬剤を使用しなければならず、再生が煩雑である。
 ホウ素含有水のpHをアルカリ性にすると、ROでのホウ素除去率が向上するところから、特許文献1~3には、ホウ素含有水にアルカリを添加した後、耐アルカリ性RO装置でRO処理し、次いでイオン交換処理するホウ素含有水の処理方法が記載されている。
 しかしながら、ホウ素含有水のpHをアルカリ性にすると、RO膜面に硬度スケールが析出し易くなると共に、耐アルカリ性RO膜であっても、アルカリによって徐々に劣化するので、RO膜の交換頻度が高くなる。
特開平11-128921 特開平11-128923 特開平11-188359
 本発明は、ホウ素含有水を、ROの膜劣化耐性が強い酸性から中性のpHにおいて、RO装置及びイオン交換装置によって効率よくホウ素除去処理することができるホウ素含有水の処理方法及び装置を提供することを目的とする。
 本発明の要旨は、次の通りである。
[1] ホウ素含有水を高圧型逆浸透膜装置に通水した後、イオン交換装置にて処理することを特徴とするホウ素含有水の処理方法。
[2] [1]において、前記イオン交換装置が以下のa)~e)いずれかの再生型イオン交換装置を有することを特徴とするホウ素含有水の処理方法。
 a)強塩基性アニオン交換樹脂を充填した単床単塔式の再生型イオン交換装置。
 b)強酸性カチオン交換樹脂が充填されたカチオン交換樹脂塔と、強塩基性アニオン交換樹脂が充填されたアニオン交換樹脂とを直列に接続した2床2塔式の再生型イオン交換装置。
 c)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを、一つのイオン交換樹脂塔内に、それぞれが別々の異なる層となるように配置した2床1塔式の再生型イオン交換装置。
 d)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを均一に混合して同一塔内に充填した混床型の再生型イオン交換装置。
 e)電気再生式脱イオン装置を1段または複数段直列に接続した再生型イオン交換装置。
[3] [1]又は[2]において、ホウ素含有水を凝集処理及び濾過処理した後、前記高圧型逆浸透膜装置に通水することを特徴とするホウ素含有水の処理方法。
[4] [1]ないし[3]のいずれかにおいて、前記高圧型逆浸透膜装置への給水のpHが5~8であることを特徴とするホウ素含有水の処理方法。
[5] ホウ素含有水が供給される高圧型逆浸透膜装置と、該高圧型逆浸透膜装置の透過水が通水されるイオン交換装置とを備えてなるホウ素含有水の処理装置。
[6] [5]において、前記イオン交換装置が以下のa)~e)のいずれかの再生型イオン交換装置を有することを特徴とするホウ素含有水の処理装置。
 a)強塩基性アニオン交換樹脂を充填した単床単塔式の再生型イオン交換装置。
 b)強酸性カチオン交換樹脂が充填されたカチオン交換樹脂塔と、強塩基性アニオン交換樹脂が充填されたアニオン交換樹脂とを直列に接続した2床2塔式の再生型イオン交換装置。
 c)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを、一つのイオン交換樹脂塔内に、それぞれが別々の異なる層となるように配置した2床1塔式の再生型イオン交換装置。
 d)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを均一に混合して同一塔内に充填した混床型の再生型イオン交換装置。
 e)電気再生式脱イオン装置を1段または複数段直列に接続した再生型イオン交換装置。
[7] [5]又は[6]において、前記高圧型逆浸透膜装置の前段に、凝集処理装置及び濾過装置を設置したことを特徴とするホウ素含有水の処理装置。
 本発明のホウ素含有水の処理方法及び装置では、ホウ素含有水を処理するためのRO装置として高圧型RO装置を用いる。この高圧型RO装置は、膜面が緻密であり、中性pH域においてもホウ素除去率が高い。この高圧型RO装置流出水中のホウ素濃度が著しく低いレベルとなるため、高圧型RO装置の後段には、再生型イオン交換装置を単段に設置するだけでホウ素濃度が十分に低下した処理水を得ることができる。
実施例に係るホウ素含有水の処理方法及び装置のフロー図である。
 本発明において処理対象となるホウ素含有水は、河川水、井水、湖沼水等の天然原水であってもよく、半導体製造工程からの回収水やその処理水であってもよい。本発明は、超純水を製造するための原水からホウ素を除去するための方法及び装置として好適であり、この原水としてはホウ素濃度10~100μg/L特に20~50μg/L程度のものが好適である。
 本発明では、ホウ素含有水を必要に応じて前処理してから高圧型RO処理する。前処理方法及び装置としては、凝集剤を添加してから濾過する方法及び装置が好適である。凝集剤としてはポリ塩化アルミニウム、硫酸アルミニウム、塩化第二鉄、硫酸第二鉄等の無機凝集剤が好適である。凝集処理後の濾過処理としては、砂濾過、砂とアンスラサイトによる二層濾過など各種濾過器を用いることができる。MF膜などの濾過膜を用いてもよい。
 本発明では、この原水又はそれを前処理した前処理水を高圧型RO装置にて処理する。この高圧型RO装置への給水は、pHが5~8であり、TDS(全溶解性物質濃度)が1500mg/L以下であることが好ましい。しかし、より高度にホウ素を除去する場合に高圧型RO膜装置への給水のpHを9~11とアルカリ性にすることもできる。
 高圧型RO装置は、従来、海水淡水化に用いられている逆浸透膜分離装置であり、従来の超純水製造装置の一次純水システムに用いられている低圧又は超低圧逆浸透膜に比べて膜表面のスキン層が緻密となっている。そのため、高圧型逆浸透膜は低圧型又は超低圧型逆浸透膜に比べて単位操作圧力当たりの膜透過水量は低いもののホウ素除去率が高い。
 この高圧型RO膜装置は、上述の通り、単位操作圧力当たりの膜透過水量は低く、有効圧力が2.0MPa、温度25℃における純水の透過流束が0.6~1.3m/m/dayで、NaCl除去率は99.5%以上の特性を有する。有効圧力とは、平均操作圧力から浸透圧差と二次側圧力とを差し引いた膜に働く有効な圧力である。NaCl除去率は、NaCl濃度32000mg/LのNaCl水溶液に対する25℃、有効圧力2.7MPaでの除去率である。
 本発明では、この高圧型RO装置の透過水をさらにイオン交換処理する。このイオン交換処理には、非再生型イオン交換装置及び/又は再生型イオン交換装置を用いる。本発明では、高圧型RO装置でホウ素の大部分(例えば95%以上)が除去され、このイオン交換処理に供される水のホウ素濃度は、0.5~8μg/L程度であるので、非再生型イオン交換装置と再生型イオン交換装置とのいずれか一方のみを単段で設ければ足りる。ただし、ホウ素及び/又は他のイオン性物質を十分に且つ安定に除去するためには、再生型イオン交換装置又は非再生型イオン交換装置を設置し、その後段に非再生型イオン交換装置を設置することが好ましい。効率的にホウ素及び他のイオン性物質を除去するためには、再生型イオン交換装置を設置し、その後段に非再生型イオン交換装置を設置することがより好ましい。
 再生型イオン交換装置としては、高圧型RO膜装置からの処理水中に残留するホウ素を除去するため、少なくとも強塩基性アニオン交換樹脂又はホウ素選択性樹脂(例えばホウ素キレート樹脂)が充填されたイオン交換塔か、或いは電気再生式脱イオン交換装置とする必要がある。
 前記強塩基性アニオン交換樹脂が充填されたイオン交換塔は、ホウ素のみを除去目的とする場合には強塩基性アニオン交換樹脂のみが充填されたアニオン交換樹脂塔を単独で用いた単床単塔式とすることも可能であるが、通常は、カチオン性物質も除去する必要があるため、以下のような、2床2塔式、2床1塔式、又は混床式を採用することが好ましい。
 2床2塔式:強酸性カチオン交換樹脂が充填されたカチオン交換樹脂塔と、強塩基性アニオン交換樹脂が充填されたアニオン交換樹脂とを直列に接続して処理する方式。
 2床1塔式:強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを、一つのイオン交換樹脂塔内に、それぞれが別々の異なる層となるように配置して処理する方式。
 混床式:強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを均一に混合して同一塔内に充填して処理する方式。
 前記電気再生式脱イオン装置は、陽極,陰極の間に複数のアニオン交換膜及びカチオン交換膜を交互に配列して濃縮室と脱塩室とを交互に形成し、脱塩室にアニオン交換樹脂とカチオン交換樹脂との混合イオン交換樹脂や、イオン交換繊維等のイオン交換体を充填した電気脱イオン装置であってもよく、更に濃縮室にもイオン交換体を充填した電気脱イオン装置であってもよい。
 本発明で使用する非再生型イオン交換装置は、超純水製造設備で用いられるものが好ましい。非再生型イオン交換装置は、少なくとも強塩基性アニオン交換樹脂またはホウ素選択性樹脂(例えばホウ素キレート樹脂)が充填されたものが好ましく、特に、ホウ素選択性樹脂を一つの塔に充填した単床単塔式、或いは強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とが混合あるいはそれぞれの樹脂が別々の層を形成するよう充填したものが好ましい。非再生型イオン交換装置は、装置内には再生設備を有していない。したがって、当該非再生型イオン交換装置は、その処理能力が低下した場合、充填されているイオン交換樹脂の再生を行わずに、予め他所で再生された他のイオン交換樹脂と交換して使用される。
 ホウ素選択性樹脂の単床単塔式の非再生型イオン交換装置を用いた場合には、他のイオン性物質を除去するために、その後段に強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とが混合あるいはそれぞれの樹脂が別々の層を形成するよう充填した非再生式イオン交換塔を設けることが好ましい。
 強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とが混合あるいはそれぞれの樹脂が別々の層を形成するよう充填した非再生式イオン交換塔で処理する場合には、その前段に、紫外線酸化装置を設けることで有機物質も除去することが可能となる。
 RO装置の透過水は、RO装置への給水がpH5~8程度である場合には、RO装置でアルカリ成分が除去されることにより弱酸性pHとなる。そのため、高圧型RO装置透過水を膜脱気装置や真空脱気装置などにより脱気して脱炭酸処理を行ってからイオン交換装置で処理してもよい。本発明では、前処理後の水に酸を添加して脱気してから高圧型RO処理してもよい。
 本発明では、上記高圧型RO装置の透過水を別のRO装置で処理してから、或いは、別のRO膜装置の透過水を上記高圧型RO装置で処理してから、前記イオン交換装置で処理するようにしても良い。別のRO装置としては、高圧型RO装置であってもよく、従来の一次純水システムに用いられてきた低圧又は超低圧型逆浸透膜装置であってもよい。
 本発明では、上記高圧型RO装置(以下、第1高圧型RO装置ということがある。)の濃縮水を別途設置された第2の高圧型RO装置によって処理し、この第2高圧型RO装置透過水を前記第1高圧型RO装置の給水に戻すことにより、水回収率を高くしてもよい。
 本発明のホウ素含有水の処理方法および装置は、超純水製造システムの一次純水システムや回収システムに適用すること好ましい。したがって、本発明のホウ素含有水の処理方法および装置で処理されたホウ素含有水は、UV装置(紫外線酸化装置)、非再生型イオン交換装置、UF装置(限外濾過装置)等により構成されたサブシステムで処理されることが好ましい。
[実施例1]
 ホウ素濃度100μg/L、TDS500mg/L、pH6.5、導電率32mS/mの工業用水を図1のフローに従って処理を行った。まず、この工業用水を前処理装置1にて凝集処理及び濾過処理して膜処理した。凝集処理の凝集剤としてはポリ塩化アルミニウムを10mg/L添加した。濾過には砂・アンスラサイト2層濾過器を用いた。前処理水のpHは6であった。
 この前処理水を高圧型RO装置2(日東電工(株)製SWC4Max、有効圧2.0MPa、温度25℃における純水透過流束0.78m/m/day;有効圧2.0MPa、温度25℃、NaCl濃度32000mg/LにおけるNaCl除去率99.8%)にて回収率75%にて処理した。さらに、この高圧型RO装置透過水をアニオン交換樹脂(ダウケミカル社製Monosphere550A(H))を充填した再生型アニオン交換樹脂塔3にSV30で通水し、さらにその後非再生型脱イオン装置4にSV50で通水した。通水開始から24Hr経過した時点での各工程における水中のホウ素濃度の測定結果を表1に示す。表1では、非再生型脱イオン装置4の処理水を「非再生型処理水」と略記してある。
[比較例1]
 高圧型RO装置の代りに、超低圧RO膜(日東電工株式会社製ES-20)を備えた超低圧型RO装置を用いたこと以外は実施例1と同様の処理を行った。各工程における水中のホウ素濃度の測定結果を表1に示す。
[比較例2]
 実施例1と同一の原水を同一条件にて前処理した後、第1カチオン交換樹脂塔にSV30にて通水した。この第1カチオン交換樹脂塔流出水(pH2)を膜脱気装置で脱炭酸処理し、次いで第1アニオン交換樹脂塔にSV30にて通水し、次いで第2カチオン交換樹脂塔にSV100にて通水し、次いで第2アニオン交換樹脂塔にSV100にて通水し、その後、非再生型アニオン交換樹脂塔にSV50にて通水した。各工程における水中のホウ素濃度の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の通り、高圧型RO装置を用いた実施例1ではRO透過水のホウ素濃度は5μg/Lと低くなっており、再生型アニオン交換樹脂塔処理水のホウ素濃度が1ng/L以下と十分に低くなっている。高圧型RO装置の代りに超低圧RO装置(日東電工(株)ES-20、有効圧2.0MPa、温度25℃における純水透過流束1m/m/day;有効圧0.75MPa、温度25℃、NaCl濃度500mg/LにおけるNaCl除去率99.7%)を用いた比較例1ではRO装置透過水のホウ素濃度が60μg/Lと高く、再生型アニオン交換樹脂塔処理水のホウ素濃度は3μg/Lと高い値となっている。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2013年7月22日付で出願された日本特許出願2013-151701に基づいており、その全体が引用により援用される。

Claims (7)

  1.  ホウ素含有水を高圧型逆浸透膜装置に通水する工程と、
     その後、イオン交換装置にて処理する工程
    を有するホウ素含有水の処理方法。
  2.  請求項1において、前記イオン交換装置が以下のa)~e)いずれかの再生型イオン交換装置を有することを特徴とするホウ素含有水の処理方法。
     a)強塩基性アニオン交換樹脂を充填した単床単塔式の再生型イオン交換装置。
     b)強酸性カチオン交換樹脂が充填されたカチオン交換樹脂塔と、強塩基性アニオン交換樹脂が充填されたアニオン交換樹脂とを直列に接続した2床2塔式の再生型イオン交換装置。
     c)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを、一つのイオン交換樹脂塔内に、それぞれが別々の異なる層となるように配置した2床1塔式の再生型イオン交換装置。
     d)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを均一に混合して同一塔内に充填した混床型の再生型イオン交換装置。
     e)電気再生式脱イオン装置を1段または複数段直列に接続した再生型イオン交換装置。
  3.  請求項1において、ホウ素含有水を凝集処理及び濾過処理した後、前記高圧型逆浸透膜装置に通水することを特徴とするホウ素含有水の処理方法。
  4.  請求項1ないし3のいずれか1項において、前記高圧型逆浸透膜装置への給水のpHが5~8であることを特徴とするホウ素含有水の処理方法。
  5.  ホウ素含有水が供給される高圧型逆浸透膜装置と、
     該高圧型逆浸透膜装置の透過水が通水されるイオン交換装置と
    を有するホウ素含有水の処理装置。
  6.  請求項5において、前記イオン交換装置が以下のa)~e)のいずれかの再生型イオン交換装置を有することを特徴とするホウ素含有水の処理装置。
     a)強塩基性アニオン交換樹脂を充填した単床単塔式の再生型イオン交換装置。
     b)強酸性カチオン交換樹脂が充填されたカチオン交換樹脂塔と、強塩基性アニオン交換樹脂が充填されたアニオン交換樹脂とを直列に接続した2床2塔式の再生型イオン交換装置。
     c)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを、一つのイオン交換樹脂塔内に、それぞれが別々の異なる層となるように配置した2床1塔式の再生型イオン交換装置。
     d)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを均一に混合して同一塔内に充填した混床型の再生型イオン交換装置。
     e)電気再生式脱イオン装置を1段または複数段直列に接続した再生型イオン交換装置。
  7.  請求項5又は6において、前記高圧型逆浸透膜装置の前段に、凝集処理装置及び濾過装置を設置したことを特徴とするホウ素含有水の処理装置。
PCT/JP2014/066864 2013-07-22 2014-06-25 ホウ素含有水の処理方法及び装置 WO2015012054A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480034464.2A CN105392552B (zh) 2013-07-22 2014-06-25 含硼水的处理方法和装置
SG11201600449XA SG11201600449XA (en) 2013-07-22 2014-06-25 Method and apparatus for treating water containing boron
KR1020167001684A KR102047155B1 (ko) 2013-07-22 2014-06-25 붕소 함유수의 처리 방법 및 장치
US14/906,419 US20160159671A1 (en) 2013-07-22 2014-06-25 Method and apparatus for treating water containing boron

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-151701 2013-07-22
JP2013151701A JP5733351B2 (ja) 2013-07-22 2013-07-22 ホウ素含有水の処理方法及び装置

Publications (1)

Publication Number Publication Date
WO2015012054A1 true WO2015012054A1 (ja) 2015-01-29

Family

ID=52393106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066864 WO2015012054A1 (ja) 2013-07-22 2014-06-25 ホウ素含有水の処理方法及び装置

Country Status (7)

Country Link
US (1) US20160159671A1 (ja)
JP (1) JP5733351B2 (ja)
KR (1) KR102047155B1 (ja)
CN (1) CN105392552B (ja)
SG (1) SG11201600449XA (ja)
TW (1) TWI616404B (ja)
WO (1) WO2015012054A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110277183A (zh) * 2019-07-09 2019-09-24 上海核工程研究设计院有限公司 一种可回收富集硼酸的核电站工艺系统
WO2020184044A1 (ja) * 2019-03-13 2020-09-17 オルガノ株式会社 純水製造装置および純水の製造方法
US10981144B2 (en) 2015-12-17 2021-04-20 Singapore University Of Technology And Design Method of removing borate ions from an aqueous solution

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6228531B2 (ja) * 2014-12-19 2017-11-08 栗田工業株式会社 超純水製造装置及び超純水製造方法
JP6728835B2 (ja) * 2016-03-23 2020-07-22 栗田工業株式会社 純水製造装置の運転方法
JP6365624B2 (ja) 2016-10-20 2018-08-01 栗田工業株式会社 過酸化水素水溶液の精製方法および精製装置
JP6807219B2 (ja) * 2016-11-18 2021-01-06 オルガノ株式会社 逆浸透膜処理システムおよび逆浸透膜処理方法
JP7192519B2 (ja) * 2019-01-22 2022-12-20 栗田工業株式会社 ホウ素超高純度除去型超純水製造装置及びホウ素超高純度除去超純水の製造方法
JP7289206B2 (ja) 2019-03-13 2023-06-09 オルガノ株式会社 ホウ素除去装置及びホウ素除去方法、並びに、純水製造装置及び純水の製造方法
JP7261711B2 (ja) * 2019-09-17 2023-04-20 野村マイクロ・サイエンス株式会社 超純水製造システム及び超純水製造方法
JP7368310B2 (ja) * 2020-05-20 2023-10-24 オルガノ株式会社 ホウ素除去装置及びホウ素除去方法、並びに、純水製造装置及び純水の製造方法
JP2022053969A (ja) * 2020-09-25 2022-04-06 オルガノ株式会社 純水製造装置及び純水製造方法
CN112759031A (zh) * 2020-12-17 2021-05-07 苏州业华环境科技有限公司 一种超纯水的处理工艺及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1015356A (ja) * 1996-07-09 1998-01-20 Kubota Corp 水処理方法
JPH11267645A (ja) * 1998-03-25 1999-10-05 Kurita Water Ind Ltd 純水の製造方法
JP2001219161A (ja) * 2000-02-08 2001-08-14 Nomura Micro Sci Co Ltd 純水製造装置
JP2006026484A (ja) * 2004-07-13 2006-02-02 Nitto Denko Corp 高塩阻止率複合逆浸透膜の製造方法
JP2009028695A (ja) * 2007-07-30 2009-02-12 Kurita Water Ind Ltd 純水製造装置及び純水製造方法
JP2012205989A (ja) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd 純水製造装置
JP2012245439A (ja) * 2011-05-25 2012-12-13 Kurita Water Ind Ltd 超純水製造装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3426072B2 (ja) * 1996-01-17 2003-07-14 オルガノ株式会社 超純水製造装置
JP3885840B2 (ja) 1997-10-31 2007-02-28 栗田工業株式会社 純水製造装置
JP3885319B2 (ja) 1997-10-31 2007-02-21 栗田工業株式会社 純水製造装置
JP3575260B2 (ja) 1997-12-26 2004-10-13 栗田工業株式会社 純水製造装置
US6398965B1 (en) 1998-03-31 2002-06-04 United States Filter Corporation Water treatment system and process
JP4172394B2 (ja) * 2002-01-22 2008-10-29 東レ株式会社 造水方法および造水装置
JP2003266097A (ja) 2002-03-13 2003-09-24 Kurita Water Ind Ltd 超純水製造装置
JP3864934B2 (ja) * 2003-06-12 2007-01-10 栗田工業株式会社 純水製造装置
US7279097B2 (en) * 2003-06-18 2007-10-09 Toray Industries, Inc. Composite semipermeable membrane, and production process thereof
NL1030346C2 (nl) * 2004-11-15 2006-09-20 Toray Industries Semipermeabel composietmembraan, productiewerkwijze daarvan, en element, fluïdumscheidingsinstallatie en werkwijze voor behandeling van water onder toepassing van hetzelfde.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1015356A (ja) * 1996-07-09 1998-01-20 Kubota Corp 水処理方法
JPH11267645A (ja) * 1998-03-25 1999-10-05 Kurita Water Ind Ltd 純水の製造方法
JP2001219161A (ja) * 2000-02-08 2001-08-14 Nomura Micro Sci Co Ltd 純水製造装置
JP2006026484A (ja) * 2004-07-13 2006-02-02 Nitto Denko Corp 高塩阻止率複合逆浸透膜の製造方法
JP2009028695A (ja) * 2007-07-30 2009-02-12 Kurita Water Ind Ltd 純水製造装置及び純水製造方法
JP2012205989A (ja) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd 純水製造装置
JP2012245439A (ja) * 2011-05-25 2012-12-13 Kurita Water Ind Ltd 超純水製造装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10981144B2 (en) 2015-12-17 2021-04-20 Singapore University Of Technology And Design Method of removing borate ions from an aqueous solution
US11224855B2 (en) 2015-12-17 2022-01-18 Singapore University Of Technology And Design Method of removing boric acid from an aqueous solution
WO2020184044A1 (ja) * 2019-03-13 2020-09-17 オルガノ株式会社 純水製造装置および純水の製造方法
JP2020146618A (ja) * 2019-03-13 2020-09-17 オルガノ株式会社 純水製造装置および純水の製造方法
JP7200014B2 (ja) 2019-03-13 2023-01-06 オルガノ株式会社 純水製造装置および純水の製造方法
CN110277183A (zh) * 2019-07-09 2019-09-24 上海核工程研究设计院有限公司 一种可回收富集硼酸的核电站工艺系统

Also Published As

Publication number Publication date
TWI616404B (zh) 2018-03-01
KR20160033119A (ko) 2016-03-25
SG11201600449XA (en) 2016-02-26
JP5733351B2 (ja) 2015-06-10
TW201505973A (zh) 2015-02-16
US20160159671A1 (en) 2016-06-09
CN105392552A (zh) 2016-03-09
JP2015020131A (ja) 2015-02-02
KR102047155B1 (ko) 2019-11-20
CN105392552B (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
JP5733351B2 (ja) ホウ素含有水の処理方法及び装置
TWI648093B (zh) 超純水製造裝置以及超純水製造方法
JP2009028695A (ja) 純水製造装置及び純水製造方法
JP5834492B2 (ja) 超純水製造装置
CN111252971A (zh) 一种超纯水制造系统及使用该系统的超纯水制造方法
JP2020078772A (ja) 電気脱イオン装置及びこれを用いた脱イオン水の製造方法
JP6228471B2 (ja) 被処理水の処理装置、純水の製造装置および被処理水の処理方法
JP2004000919A (ja) 脱塩水製造装置
JP2014000575A (ja) 純水製造装置及び純水製造方法
JP2005000828A (ja) 純水製造装置
JP3137831B2 (ja) 膜処理装置
JP2018030065A (ja) 超純水製造システム及び超純水製造方法
WO2020184044A1 (ja) 純水製造装置および純水の製造方法
JP2017127875A (ja) 超純水製造装置及び超純水製造方法
WO2021215099A1 (ja) 排水処理方法、超純水製造方法及び排水処理装置
JP2009160500A (ja) 超純水製造方法及び装置
JP6561448B2 (ja) バナジウム含有水の電気脱イオン処理方法及び処理装置
JP6285645B2 (ja) 排水処理方法及び排水処理装置
CN112424128A (zh) 纯水制造系统及纯水制造方法
JP7290911B2 (ja) 逆浸透膜処理方法および逆浸透膜処理システム
WO2014010075A1 (ja) 超純水製造装置
JP2021045701A (ja) 超純水製造システム及び超純水製造方法
JP2017140548A (ja) 電気脱イオン装置の運転方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480034464.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14828709

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167001684

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14906419

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14828709

Country of ref document: EP

Kind code of ref document: A1