WO2015008710A1 - 電子写真用感光体、その製造方法および電子写真装置 - Google Patents

電子写真用感光体、その製造方法および電子写真装置 Download PDF

Info

Publication number
WO2015008710A1
WO2015008710A1 PCT/JP2014/068630 JP2014068630W WO2015008710A1 WO 2015008710 A1 WO2015008710 A1 WO 2015008710A1 JP 2014068630 W JP2014068630 W JP 2014068630W WO 2015008710 A1 WO2015008710 A1 WO 2015008710A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
transport material
group
charge generation
binder resin
Prior art date
Application number
PCT/JP2014/068630
Other languages
English (en)
French (fr)
Inventor
清三 北川
鈴木 信二郎
弘 江森
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN201480007681.2A priority Critical patent/CN104969130B/zh
Priority to KR1020157021355A priority patent/KR20160030472A/ko
Priority to JP2015527283A priority patent/JP6052414B2/ja
Publication of WO2015008710A1 publication Critical patent/WO2015008710A1/ja
Priority to US14/822,772 priority patent/US9671705B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06147Amines arylamine alkenylarylamine
    • G03G5/061473Amines arylamine alkenylarylamine plural alkenyl groups linked directly to the same aryl group
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/10Bases for charge-receiving or other layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0503Inert supplements
    • G03G5/051Organic non-macromolecular compounds
    • G03G5/0517Organic non-macromolecular compounds comprising one or more cyclic groups consisting of carbon-atoms only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0503Inert supplements
    • G03G5/051Organic non-macromolecular compounds
    • G03G5/0521Organic non-macromolecular compounds comprising one or more heterocyclic groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0564Polycarbonates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0592Macromolecular compounds characterised by their structure or by their chemical properties, e.g. block polymers, reticulated polymers, molecular weight, acidity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0609Acyclic or carbocyclic compounds containing oxygen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06147Amines arylamine alkenylarylamine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0618Acyclic or carbocyclic compounds containing oxygen and nitrogen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • G03G5/14713Macromolecular material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • G03G5/14713Macromolecular material
    • G03G5/14717Macromolecular material obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/14721Polyolefins; Polystyrenes; Waxes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • G03G5/14713Macromolecular material
    • G03G5/14791Macromolecular compounds characterised by their structure, e.g. block polymers, reticulated polymers, or by their chemical properties, e.g. by molecular weight or acidity

Definitions

  • the present invention relates to an electrophotographic photosensitive member (hereinafter also simply referred to as “photosensitive member”), a method for producing the same, and an electrophotographic apparatus, and more particularly to an electrophotographic photosensitive member used in electrophotographic printers, copiers, facsimiles, and the like.
  • the present invention relates to a body, a manufacturing method thereof, and an electrophotographic apparatus.
  • an image forming apparatus using an electrophotographic method such as a printer, a copying machine, a facsimile, or the like has a photosensitive member as an image carrier, a charging device that uniformly charges the surface of the photosensitive member, and an image on the surface of the photosensitive member.
  • a fixing device for fusing the toner on the transfer paper to the transfer paper is also provided.
  • the photoconductor used differs depending on the apparatus concept, but at present, excluding inorganic photoconductors such as Se and a-Si in large machines and high speed machines, its excellent stability, From the viewpoint of cost and ease of use, organic photoconductors (OPCs) in which organic pigments are dispersed in a resin are widely used.
  • OPCs organic photoconductors
  • the organic photoreceptor is generally negatively charged, as opposed to the positively charged inorganic photoreceptor. The reason for this is that while negatively charged organic photoreceptors have been developed for a long time with hole transport materials having a good hole transport function, positively charged organic photoreceptors have good electron transport capability. It is in the point that the electron transport material with has not been developed.
  • the positively charged organic photoreceptor In order to solve these problems, it is effective to apply a positively charged organic photoreceptor, and a high-performance positively charged organic photoreceptor is required.
  • the positively charged organic photoreceptor In addition to the merits inherent in the positive charging system as described above, the positively charged organic photoreceptor generally has a carrier generation position near the surface of the photosensitive layer, so that the carrier is more lateral than the negatively charged organic photoreceptor. It has the advantage of less directional diffusion and excellent dot reproducibility (resolution and gradation). For this reason, positively charged organic photoreceptors are being studied in various fields where resolution is increasing.
  • the positively charged organic photoreceptors are roughly classified into the following four types of layer structures, and various types have been proposed in the past.
  • the first is a function separation type photoreceptor having a two-layer structure in which a charge transport layer and a charge generation layer are sequentially laminated on a conductive support (see, for example, Patent Document 1 and Patent Document 2).
  • the second is a function separation type photoreceptor having a three-layer structure in which a surface protective layer is laminated on the two-layer structure (see, for example, Patent Document 3, Patent Document 4, and Patent Document 5).
  • the third type is a function-separated type photoconductor having a two-layer structure in which a charge generation layer and a charge (electron) transport layer are sequentially stacked, contrary to the first one (for example, Patent Document 6 and Patent Document). 7).
  • the fourth is a single-layer type photoreceptor in which a charge generation material, a hole transport material, and an electron transport material are dispersed in the same layer (see, for example, Patent Document 6 and Patent Document 8). In the above four types of classification, the presence or absence of the undercoat layer is not considered.
  • the final fourth single-layer type photoconductor has been studied in detail, and is in widespread use in general.
  • the main reason for this is thought to be that the hole transport material complements the electron transport function of the electron transport material that is inferior in transport ability compared to the hole transport function of the hole transport material.
  • this single-layer type photoreceptor is a dispersion type, carrier generation occurs inside the film, but the closer to the surface of the photosensitive layer, the larger the carrier generation amount, and the electron transport compared to the hole transport distance. Since the distance is small, it is considered that the electron transport ability does not need to be as high as the hole transport ability. This achieves practically sufficient environmental stability and fatigue characteristics as compared to the other three types.
  • a single-layer type photoreceptor since a single film has both functions of carrier generation and carrier transport, it is possible to simplify the coating process and easily obtain a high yield rate and process capability.
  • the content of the binder resin is reduced by containing a large amount of both the hole transport material and the electron transport material in a single layer in order to increase the sensitivity and speed, and the durability is lowered. There was a problem to do. Therefore, there has been a limit to achieving both high sensitivity and high speed and high durability in a single layer type photoreceptor.
  • the layer structure of this laminated positively charged photoreceptor is similar to the first layer structure described above, but the charge generation material contained in the charge generation layer is reduced and the electron transport material is contained, so that The film can be made thicker than the charge transport layer, and the amount of hole transport material in the charge generation layer can be reduced, so the resin ratio in the charge generation layer can be set higher than the conventional single layer type, resulting in higher sensitivity. And high durability.
  • the layered positively charged organic photoreceptor and the single layer photoreceptor are basically not sufficiently durable against sebum contamination, and human nose and scalp sebum adheres to the surface of the photoreceptor. When left for a long time, the surface may be cracked and image defects such as white spots and black spots may occur.
  • the prior art relating to the improvement of the photoreceptor has a functional layer composed of a functional functional group having a charge generation function on the outer periphery, and is capable of being adsorbed by electrostatic interaction inside.
  • a technique using polymer fine particles that are core-shell type microspheres having an adsorbing layer having a charge see Patent Document 14
  • Patent Document 15 A technique using a cured product of an oligomer and a radical polymerizable compound having a charge transporting structure portion is known.
  • Patent Document 16 a technology in which a binder resin and a linear vinyl polymer having a long-chain alkyl group in the side chain are contained in the surface layer of the photoreceptor, or a protective layer of the photoreceptor,
  • a technology for improving the lubricity of the surface by improving the crosslinkability of the protective layer by comprising a cured resin obtained by polymerizing a radical polymerizable monomer in the presence of a modified silicone oil (See Patent Document 17).
  • both the single layer type positively charged organic photoconductor and the laminated type positively charged organic photoconductor disclosed in Patent Documents 12 and 13 have high sensitivity, high speed, high durability,
  • resistance to contamination by fats and oils such as grease can be achieved, it has not been possible to completely prevent contamination against sebum adhesion derived from the human body, that is, generation of image defects due to the occurrence of cracks.
  • an object of the present invention is to solve the above-mentioned problems and to be applied to a high-resolution and high-speed positively charged electrophotographic apparatus, which has excellent operational stability and is contaminated by an image memory, a contact member, oil or fat or sebum.
  • the present invention provides an electrophotographic photoreceptor, a method for producing the same, and an electrophotographic apparatus that are free from image defects caused by cracks and that can stably obtain high image quality and have high sensitivity, high speed response, and high durability. It is in.
  • the present inventors dissolved a highly branched polymer having a specific structure in the coating solution of the outermost layer and applied the outermost layer in a state of being dispersed in the coating solution. By doing so, it has been found that a hyperbranched polymer can be contained in the outermost layer, whereby oil that exudes from sebum derived from the human body can be diffused in the horizontal direction and cracks caused by sebum can be prevented.
  • the hole transport material dissolved by the oil permeated from the sebum or a decomposition product thereof easily moves in the direction of the sebum on the film surface. Thereafter, the movement of the electron transport material causes the voids in the film to become larger, and stress is concentrated in the enlarged voids, so that it is considered that cracks are generated.
  • the first is to suppress the permeation of oil from sebum into the membrane
  • the second is to use a charge transport material that is not easily eluted or decomposed by the oil
  • the third is It is conceivable to add these charge transporting materials or materials that inhibit the movement of decomposition products
  • the fourth method is to form a film with as little residual stress as possible.
  • the present inventors have further studied, and as a result, a film made from sebum, which is the first countermeasure within the range that does not impair the electrical characteristics and appearance quality as much as possible, taking advantage of the original characteristics of the photoreceptor.
  • a film made from sebum which is the first countermeasure within the range that does not impair the electrical characteristics and appearance quality as much as possible, taking advantage of the original characteristics of the photoreceptor.
  • the electrophotographic photoreceptor of the present invention is an electrophotographic photoreceptor comprising a photosensitive layer containing at least a charge generation material, a hole transport material, an electron transport material and a binder resin on a conductive support.
  • the outermost layer includes a charge generation material, a hole transport material, an electron transport material, a binder resin, a monomer having two or more radically polymerizable double bonds in the molecule, and a long chain alkyl group or a fat in the molecule. It contains a highly branched polymer obtained by polymerizing a cyclic group and a monomer having at least one radical polymerizable double bond in the presence of a polymerization initiator.
  • the above-mentioned oil is added to the outermost layer of the photoreceptor by adding a lipophilic hyperbranched polymer obtained by introducing a long-chain alkyl group or an alicyclic group to the hyperbranched polymer as a modifier and segregating. It is possible to inhibit the penetration of the material and the movement of the material. Since a highly branched polymer is positively introduced in a highly branched polymer, the highly branched polymer has less molecular entanglement than a linear polymer, exhibits fine particle behavior, and is highly dispersible in resins. Have.
  • the hyperbranched polymer includes a monomer (A) having two or more radically polymerizable double bonds in the molecule, an alkyl group having 6 to 30 carbon atoms in the molecule, or 3 to 3 carbon atoms. It can be obtained by polymerizing 30 alicyclic groups and a monomer (B) having at least one radical polymerizable double bond in the presence of an azo polymerization initiator (C).
  • A monomer having two or more radically polymerizable double bonds in the molecule, an alkyl group having 6 to 30 carbon atoms in the molecule, or 3 to 3 carbon atoms. It can be obtained by polymerizing 30 alicyclic groups and a monomer (B) having at least one radical polymerizable double bond in the presence of an azo polymerization initiator (C).
  • a hyperbranched polymer As an application example of a hyperbranched polymer to an electrophotographic photoreceptor, it is added to the technique described in Patent Document 14 proposed for the purpose of improving the charge generation function by adding it to the charge generation layer, or to the surface protective layer. There is a technique described in Patent Document 15 proposed for the purpose of improving the wear resistance, but these are different from the present invention in the structure and operational effects.
  • Patent Document 14 proposed for the purpose of improving the charge generation function by adding it to the charge generation layer, or to the surface protective layer.
  • Patent Document 15 proposed for the purpose of improving the wear resistance, but these are different from the present invention in the structure and operational effects.
  • oil derived from the human body is diffused in the horizontal direction to prevent entry into the photoreceptor.
  • the present invention because of the above configuration, it is applied to a high-resolution and high-speed positively-charged electrophotographic apparatus, has excellent operational stability, and is caused by contamination with an image memory, a contact member, oil or fat or sebum. It has become possible to realize a highly durable electrophotographic photosensitive member, a method for producing the same, and an electrophotographic apparatus that do not cause image defects due to cracks and can stably obtain high image quality.
  • FIG. 2 is a schematic cross-sectional view showing a configuration example of a single-layer positively charged photoconductor of the present invention.
  • FIG. 2 is a schematic cross-sectional view illustrating a configuration example of a laminated positively charged photoconductor of the present invention.
  • 1 is a schematic configuration diagram illustrating a configuration example of an electrophotographic apparatus of the present invention.
  • FIG. 1 and 2 are schematic cross-sectional views showing one structural example of the electrophotographic photoreceptor of the present invention.
  • FIG. 1 shows a configuration in which a single-layer type photosensitive layer 3 is laminated on a conductive support 1 with an undercoat layer 2 interposed therebetween.
  • FIG. 2 shows an undercoat layer 2 on the conductive support 1.
  • the charge transport layer 4 and the charge generation layer 5 are sequentially stacked.
  • the undercoat layer 2 is basically unnecessary, but may be provided as shown in the figure if necessary.
  • the outermost layer in addition to the charge generation material, hole transport material, electron transport material and binder resin, the outermost layer has two or more radical polymerizable double bonds in the molecule.
  • the coating solution for the photosensitive layer or charge generation layer which is the outermost layer of the photoreceptor
  • a highly branched polymer having a long chain alkyl group or alicyclic group having a specific molecular weight introduced therein is dissolved and contained.
  • the hyperbranched polymer used in the present invention is highly dispersible in the resin and has high lipophilicity because it has an alicyclic group.
  • this hyperbranched polymer segregates on the surface of the photoconductor, binds to the sebum derived from the human body attached to the surface, and diffuses the sebum in the surface direction.
  • movement of the charge transport material or the like to sebum can be inhibited. This makes it possible to prevent the occurrence of cracks due to the adhesion of sebum.
  • the hyperbranched polymer according to the present invention does not impair the original electrical characteristics and appearance quality of the photoreceptor.
  • the single-layered photosensitive layer which is the outermost layer of the positively charged photosensitive member, or the charge generating layer of the laminate may be any material that contains the above-mentioned highly branched polymer. Can be obtained.
  • other layers that is, the presence or absence of an undercoat layer, and the like can be appropriately determined as desired, and are not particularly limited.
  • the structure of the monomer (A), which is a constituent unit of the hyperbranched polymer include those represented by the following general formula (1), and specific examples of the structure of the monomer (B) include the following general formula (2).
  • R 1 and R 2 represent a hydrogen atom or a methyl group
  • a 1 represents the number of carbon atoms that may be substituted with an alicyclic group having 3 to 30 carbon atoms or a hydroxy group.
  • R 3 represents a hydrogen atom or a methyl group
  • R 4 represents an alkyl group having 6 to 30 carbon atoms or an alicyclic group having 3 to 30 carbon atoms
  • a 2 represents a carbon atom.
  • the alkylene group having 2 to 12 carbon atoms which may be substituted with the hydroxy group represented by A 1 includes an ethylene group, a trimethylene group, a 2-hydroxytrimethylene group, methylethylene Group, tetramethylene group, 1-methyltrimethylene group, pentamethylene group, 2,2-dimethyltrimethylene group, hexamethylene group, nonamethylene group, 2-methyloctamethylene group, decamethylene group, dodecamethylene group and the like.
  • isoprene butadiene, 3-methyl-1,2-butadiene, 2,3-dimethyl-1,3-butadiene, 1,2-polybutadiene, pentadiene, hexadiene, octadiene and the like.
  • the alicyclic group having 3 to 30 carbon atoms represented by A 1 is specifically cyclopentadiene, cyclohexadiene, cyclooctadiene, norbornadiene, 1,4-cyclohexanedimethanol.
  • the monomer (B) preferably has at least one of either a vinyl group or a (meth) acryl group.
  • examples of the alkyl group having 6 to 30 carbon atoms represented by R 4 include hexyl group, ethylhexyl group, 3,5,5-trimethylhexyl group, heptyl group, octyl group, 2- Octyl, isooctyl, nonyl, decyl, isodecyl, undecyl, lauryl, tridecyl, myristyl, palmityl, stearyl, isostearyl, aralkyl, behenyl, lignoceryl, serotoyl, montanyl Group, melysyl group and the like.
  • the alkyl group preferably has 10 to 30 carbon atoms, more preferably 12 to 24 carbon atoms. Further, the alkyl group represented by R 4 may be either linear or branched. In order to give better stain resistance, R 4 is preferably a linear alkyl group.
  • examples of the alicyclic group having 3 to 30 carbon atoms represented by R 4 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 4-tert-butylcyclohexyl group, Examples thereof include an isobornyl group, a norbornenyl group, a mensyl group, an adamantyl group, and a tricyclo [5.2.1.0 2,6 ] decanyl group.
  • the alkylene group having 2 to 6 carbon atoms represented by A 2 includes an ethylene group, a trimethylene group, a methylethylene group, a tetramethylene group, a 1-methyltrimethylene group, and a pentamethylene group. 2,2-dimethyltrimethylene group, hexamethylene group and the like.
  • n is preferably 0 from the viewpoint of contamination resistance.
  • Examples of such a monomer (B) include hexyl (meth) acrylate, ethylhexyl (meth) acrylate, 3,5,5-trimethylhexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2 -Octyl (meth) acrylate, isooctyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, undecyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, palmityl (Meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, behenyl (meth) acrylate, cyclopropyl (meth) acrylate, cycl
  • Examples of the azo polymerization initiator (C) in the present invention include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis ( 2,4-dimethylvaleronitrile), 1,1′-azobis (1-cyclohexanecarbonitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2- (carbamoylazo) iso Examples include butyronitrile and dimethyl 1,1′-azobis (1-cyclohexanecarboxylate).
  • 2,2′-azobis (2,4-dimethylvaleronitrile) and dimethyl 1,1′-azobis (1-cyclohexanecarboxylate) are preferable because of the surface modification effect on the constituent materials and good electrical characteristics. preferable.
  • the hyperbranched polymer used in the present invention is obtained by polymerizing the monomer (A) and the monomer (B) with respect to the monomer (A) in the presence of a predetermined amount of an azo polymerization initiator (C).
  • the ratio when the monomer (A) and the monomer (B) are copolymerized is preferably 5 to 300 mol%, more preferably the monomer (B) with respect to the number of moles of the monomer (A). Is from 10 to 150 mol%.
  • the azo polymerization initiator (C) is preferably used in an amount of 5 to 200 mol%, more preferably 50 to 100%, relative to the number of moles of the monomer (A).
  • polymerization method examples include known methods such as solution polymerization, dispersion polymerization, precipitation polymerization, bulk polymerization, and the like. Among these, solution polymerization or precipitation polymerization is preferable.
  • the reaction is preferably carried out by solution polymerization in an organic solvent from the viewpoint of controlling the molecular weight.
  • Solvents used at this time include aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, tetralin and orthodichlorobenzene, aliphatic or alicyclic hydrocarbons such as n-hexane and cyclohexane, methyl chloride, Halides such as methyl bromide, chloroform, esters or ester ethers such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethers such as tetrahydrofuran, 1,4-dioxane, methyl cellosolve, Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, alcohols such as methanol, ethanol, n-propanol, isopropanol, N, N-dimethylformamide, N, N-
  • the temperature during the polymerization is 50 to 200 ° C., more preferably 20 ° C. or more higher than the 10-hour half-life temperature of the azo polymerization initiator (C).
  • the hyperbranched polymer obtained after the polymerization can be recovered by any method such as reprecipitation and precipitation in a poor solvent.
  • hyperbranched polymer used in the present invention examples include hyperbranched polymers 1 to 16 and 18 to 36 described in International Publication No. 2012/128214 pamphlet.
  • polystyrene-equivalent molecular weight of the hyperbranched polymer used in the present invention by gel permeation chromatography is preferably 1000 to 200000, more preferably 2000 to 100000, and further preferably 5000 to 60000.
  • the hyperbranched polymer used in the present invention is called a hyperbranched polymer and has a highly branched dendritic structure like a dendrimer, but not all the branching sites are polymerized like a dendrimer, and a tree with incomplete branching. It has the characteristic of being like a structure.
  • the degree of branching of a highly branched polymer can be estimated from the amounts of terminal sites, branched sites, and unbranched sites, or the rotation radius of a resin can be determined by combining gel permeation chromatography (GPC) and light scattering measurement. Can be estimated.
  • the conductive support 1 serves as one electrode of the photoconductor, and at the same time serves as a support for each layer constituting the photoconductor.
  • the conductive support 1 may have any shape such as a cylindrical shape, a plate shape, or a film shape. In terms of material, a conductive treatment is applied to the surface of glass, resin, or the like in addition to metals such as aluminum, stainless steel, and nickel. It may be given.
  • the undercoat layer 2 is basically unnecessary in the present invention, but can be provided as necessary.
  • the undercoat layer 2 is composed of a resin-based layer or a metal oxide film such as alumite, and has the purpose of improving the adhesion between the conductive support and the photosensitive layer, and the charge injection property to the photosensitive layer. Provided for control purposes.
  • the resin material used for the undercoat layer include insulating polymers such as casein, polyvinyl alcohol, polyamide, melamine, and cellulose, and conductive polymers such as polythiophene, polypyrrole, and polyaniline. Alternatively, they can be used in combination as appropriate. These resins can also contain metal oxides such as titanium dioxide and zinc oxide.
  • the photosensitive layer 3 is mainly composed of a charge generation material, a hole transport material, an electron transport material, and a binder resin.
  • charge generation material As the charge generation material, X-type metal-free phthalocyanine is used alone, or ⁇ -type titanyl phthalocyanine, ⁇ -type titanyl phthalocyanine, Y-type titanyl phthalocyanine, ⁇ -type titanyl phthalocyanine, and amorphous-type titanyl phthalocyanine are used alone or in combination as appropriate.
  • a suitable substance can be selected according to the light wavelength region of the exposure light source used for image formation. From the viewpoint of increasing sensitivity, titanyl phthalocyanine having high quantum efficiency is optimal.
  • hole transport material As the hole transport material, various hydrazone compounds, styryl compounds, diamine compounds, butadiene compounds, indole compounds, etc. can be used alone or in appropriate combination, but styryl compounds containing a triphenylamine skeleton are cost and performance. In terms of surface. In addition, it is also possible to use a low molecular weight triphenylamine as a plasticizer for preventing cracks, if necessary.
  • the electron transport material is preferably a material having a high mobility, and quinone materials such as benzoquinone, stilbenequinone, naphthoquinone, diphenoquinone, phenanthrenequinone, and azoquinone are preferable. These can be used alone or in combination with a binder resin to increase the content of the electron transporting material while suppressing precipitation, because of its injectability into the charge transporting layer and compatibility with the binder resin. preferable.
  • Binder resin As the binder resin, polycarbonate resins such as bisphenol A type, bisphenol Z type, bisphenol A type-biphenyl copolymer, polyarylate resin, polyester resin, polystyrene resin, polyphenylene resin, etc. are used alone. Or they can be used in appropriate combinations. Among these, the resin is determined by the dispersibility of the pigment, the compatibility with the transport material and the hyperbranched polymer, and the degree of segregation. In addition, it is effective to select a resin that hardly retains residual stress. For polycarbonate, a resin in which the polymerization ratio between the bisphenol A type or Z type and the biphenyl copolymer is optimized by an electrophotographic process is preferable.
  • the hyperbranched polymer used in the present invention is a particle-shaped resin having a branched structure, it is possible to attach a functional group exhibiting desired properties to the terminal portion present on the spherical particle surface in a large amount. There is a feature that can control the property for.
  • the hyperbranched polymer with an alkyl group at the end in order to exert the lipophilic effect of the present invention has a property of segregating on the surface and diffuses the oil in the horizontal direction, so that the effect is large even when added in a small amount.
  • the hyperbranched polymer is 0.3 parts by mass to 6 parts by mass with respect to 100 parts by mass of the binder resin in the layer. In particular, it is preferable to add in the range of 0.5 to 4 parts by mass.
  • the photosensitive layer can contain an anti-degradation agent such as an antioxidant or a light stabilizer for the purpose of improving environmental resistance and stability against harmful light.
  • an anti-degradation agent such as an antioxidant or a light stabilizer for the purpose of improving environmental resistance and stability against harmful light.
  • Compounds used for this purpose include chromanol derivatives such as tocopherol and esterified compounds, polyarylalkane compounds, hydroquinone derivatives, etherified compounds, dietherified compounds, benzophenone derivatives, benzotriazole derivatives, thioether compounds, phenylenediamine derivatives. Phosphonic acid ester, phosphorous acid ester, phenol compound, hindered phenol compound, linear amine compound, cyclic amine compound, hindered amine compound and the like.
  • a leveling agent such as silicone oil or fluorine oil can be contained.
  • metal oxides such as silicon oxide (silica), titanium oxide, zinc oxide, calcium oxide, aluminum oxide (alumina), zirconium oxide, etc. for the purpose of adjusting film hardness, reducing friction coefficient, and imparting lubricity
  • metal sulfates such as barium sulfate and calcium sulfate, and metal nitride fine particles such as silicon nitride and aluminum nitride may be contained.
  • other known additives can be contained as long as the electrophotographic characteristics are not significantly impaired.
  • composition The mass ratio of the sum of the functional materials (charge generation material, electron transport material and hole transport material) in the photosensitive layer and the binder resin is set in the range of 35:65 to 65:35 in order to obtain desired characteristics. Is done. If the mass ratio of the functional material is more than 65% by mass in the photosensitive layer, that is, if the amount of the binder resin is less than 35% by mass, the amount of film loss increases and the durability decreases, and the glass transition point. The creep strength is insufficient due to the decrease in toner, filming of toner filming, external additives, and paper powder is likely to occur. Sebum contamination tends to deteriorate.
  • the mass ratio of the functional material is less than 35% by mass in the photosensitive layer, that is, if the amount of the binder resin is more than 65% by mass, it is difficult to obtain desired sensitivity characteristics, which is not suitable for practical use. There is a fear. In general, from the viewpoint of suppressing member contamination, oil contamination and sebum contamination while ensuring durability, it is desirable to increase the binder resin ratio.
  • the content ratio of the charge generating material is preferably 0.5 to 3% by mass of the whole film, and more preferably 0.8 to 1.8% by mass. If the amount of the charge generating material is too small, the sensitivity characteristics are insufficient, and the possibility of generation of interference fringes increases. If the amount is too large, the charging characteristics and fatigue characteristics (repetitive use stability) tend to be insufficient.
  • the mass ratio of the electron transport material to the hole transport material can be changed in a range of 1: 1 to 1: 4. However, generally, the mass ratio of 1: 1 to 1: 3 is determined based on the transport balance of holes and electrons. It is more preferable in terms of sensitivity characteristics, charging characteristics and fatigue characteristics.
  • Solvents for the photosensitive layer include halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride and chlorobenzene; ethers such as dimethyl ether, diethyl ether, tetrahydrofuran, dioxane, dioxolane, ethylene glycol dimethyl ether and diethylene glycol dimethyl ether; acetone, methyl ethyl ketone And ketones such as cyclohexanone and the like, and can be appropriately selected from the viewpoints of solubility, liquid stability, and coatability of various materials.
  • halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride and chlorobenzene
  • ethers such as dimethyl ether, diethyl ether, tetrahydrofuran, dioxane, dioxolane, ethylene glycol dimethyl ether and diethylene glyco
  • the film thickness of the photosensitive layer is preferably in the range of 12 to 40 ⁇ m, preferably 15 to 35 ⁇ m, more preferably 20 to 30 ⁇ m, from the viewpoint of ensuring practically effective performance.
  • the conductive support 1 is the same as in the case of a single layer type photoreceptor.
  • the undercoat layer 2 is the same as in the case of the single-layer type photoreceptor, and is basically unnecessary in the present invention, but can be provided as necessary.
  • the charge transport layer 4 is mainly composed of a hole transport material and a binder resin.
  • the hole transport material used for the charge transport layer 4 is the same as in the case of the single layer type photoreceptor, but since it becomes an inner layer, the low molecular weight triphenyl is different from the single layer type organic photoreceptor. More amine can be used as a plasticizer for crack prevention.
  • the binder resin of the charge transport layer 4 is the same as in the case of a single layer type photoreceptor, but since it is an inner layer, mechanical strength is not so required, while elution when the charge generation layer 5 is applied. Incompetence is required. From this viewpoint, a resin that is difficult to elute in the solvent of the liquid of the charge generation layer is suitable, and a resin having a high molecular weight is preferably used.
  • the charge transport layer 4 can contain a deterioration inhibitor such as an antioxidant or a light stabilizer for the purpose of improving the stability of environmental resistance, if desired.
  • a deterioration inhibitor such as an antioxidant or a light stabilizer for the purpose of improving the stability of environmental resistance, if desired.
  • Compounds used for this purpose include chromanol derivatives such as tocopherol and esterified compounds, polyarylalkane compounds, hydroquinone derivatives, etherified compounds, dietherified compounds, benzophenone derivatives, benzotriazole derivatives, thioether compounds, phenylenediamine derivatives. Phosphonic acid ester, phosphorous acid ester, phenol compound, hindered phenol compound, linear amine compound, cyclic amine compound, hindered amine compound and the like.
  • a leveling agent such as silicone oil or fluorine oil can be contained.
  • metal oxides such as silicon oxide (silica), titanium oxide, zinc oxide, calcium oxide, aluminum oxide (alumina), zirconium oxide, etc. for the purpose of adjusting film hardness, reducing friction coefficient, and imparting lubricity
  • metal sulfates such as barium sulfate and calcium sulfate, and metal nitride fine particles such as silicon nitride and aluminum nitride may be contained.
  • other known additives can be contained as long as the electrophotographic characteristics are not significantly impaired.
  • the mass ratio of the hole transport material and the binder resin in the charge transport layer 4 can be in the range of 1: 3 to 3: 1 (25:75 to 75:25), preferably 1: 1. The range is from 5 to 1.5: 1 (40:60 to 60:40). If the content of the hole transport material is less than 25% by mass in the charge transport layer 4, generally the transport function is insufficient, the residual potential becomes high, and the environmental dependency of the exposed portion potential in the apparatus becomes large, Since the environmental stability of image quality deteriorates, it may not be suitable for use. On the other hand, when the content of the hole transport material is more than 75% by mass in the charge transport layer 4, that is, when the binder resin is less than 25% by mass in the charge transport layer 4, the charge generation layer 5 is applied. There is a risk of adverse effects of elution.
  • solvent for the charge transport layer 4 examples include halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride, and chlorobenzene; ethers such as dimethyl ether, diethyl ether, tetrahydrofuran, dioxane, dioxolane, ethylene glycol dimethyl ether, and diethylene glycol dimethyl ether; acetone And ketones such as methyl ethyl ketone and cyclohexanone, which can be appropriately selected from the viewpoints of solubility, liquid stability and coating properties of various materials.
  • halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride, and chlorobenzene
  • ethers such as dimethyl ether, diethyl ether, tetrahydrofuran, dioxane, dioxolane, ethylene glycol dimethyl ether, and diethylene glyco
  • the film thickness of the charge transport layer 4 is determined in view of the balance with the charge generation layer 5 described later, but from the viewpoint of ensuring practically effective performance, the range of 3 to 40 ⁇ m is preferable, and more preferably 5 to The thickness is 30 ⁇ m, more preferably 10 to 20 ⁇ m.
  • the charge generation layer 5 is formed by a method of applying a coating liquid in which particles of a charge generation material are dispersed in a binder resin in which a hole transport material and an electron transport material are dissolved.
  • the charge generation layer 5 has a function of receiving light and generating carriers, and also has a function of transporting generated electrons to the surface of the photoreceptor and transporting holes to the charge transport layer 4.
  • the charge generation layer 5 has high carrier generation efficiency, and at the same time, the injection property of the generated holes into the charge transport layer 4 is important.
  • the charge generation layer 5 is less dependent on the electric field and preferably has a good injection even at a low electric field.
  • the charge generation material is the same as in the case of the single-layer type photoreceptor, and a suitable substance can be selected according to the light wavelength region of the exposure light source used for image formation. From the viewpoint of increasing sensitivity, titanyl phthalocyanine having high quantum efficiency is optimal.
  • the hole transport material preferably has a small difference in ionization potential from the charge transport material of the charge transport layer because it is necessary to inject holes into the charge transport layer. Specifically, it is preferably within 0.5 eV.
  • the hole transport material contained in the charge transport layer 4 is also contained in the charge generation layer 5, and more preferably, the charge transport layer 4 and the charge generation layer 5. The same material is used as the hole transport material used in the above.
  • the electron transport material is the same as in the case of the single-layer type photoreceptor, and is preferably a material having a high mobility, but from the viewpoint of injectability into the charge transport layer and compatibility with the binder resin, it is used alone, It is also preferable to use two or more materials to increase the content of the electron transport material while suppressing precipitation.
  • binder resin examples include polycarbonate resins such as bisphenol A type, bisphenol Z type, and bisphenol A type-biphenyl copolymer, polyarylate resins, polyester resins, polystyrene resins, polyphenylene resins, etc. Can be used alone or in appropriate combination. Among these, polycarbonate resins are preferable from the viewpoint of dispersion stability of the charge generation material, compatibility with the hole transport material and the electron transport material, mechanical stability, chemical stability, and thermal stability.
  • the binder resin contained in the transport layer 4 is also contained in the charge generation layer 5, and more preferably, the same resin is used as the binder resin used in the charge transport layer 4 and the charge generation layer 5.
  • the hyperbranched polymer applied in the present invention is as described above, and is the same as in the case of a single layer type photoreceptor.
  • the addition amount of the hyperbranched polymer can be the same as that in the case of the single layer type photoreceptor.
  • the charge transport layer 4 can contain a deterioration inhibitor such as an antioxidant or a light stabilizer for the purpose of improving the stability of environmental resistance, if desired.
  • a deterioration inhibitor such as an antioxidant or a light stabilizer for the purpose of improving the stability of environmental resistance, if desired.
  • Compounds used for this purpose include chromanol derivatives such as tocopherol and esterified compounds, polyarylalkane compounds, hydroquinone derivatives, etherified compounds, dietherified compounds, benzophenone derivatives, benzotriazole derivatives, thioether compounds, phenylenediamine derivatives. Phosphonic acid ester, phosphorous acid ester, phenol compound, hindered phenol compound, linear amine compound, cyclic amine compound, hindered amine compound and the like.
  • a leveling agent such as silicone oil or fluorine oil can be contained.
  • metal oxides such as silicon oxide (silica), titanium oxide, zinc oxide, calcium oxide, aluminum oxide (alumina), zirconium oxide, etc. for the purpose of adjusting film hardness, reducing friction coefficient, and imparting lubricity
  • metal sulfates such as barium sulfate and calcium sulfate, and metal nitride fine particles such as silicon nitride and aluminum nitride may be contained.
  • other known additives can be contained as long as the electrophotographic characteristics are not significantly impaired.
  • the distribution amount of each functional material (charge generation material, electron transport material, and hole transport material) in the charge generation layer 5 is set as follows.
  • the content of the charge generation material in the charge generation layer 5 is preferably 1 to 4% by mass, particularly 1.5 to 3.0% by mass in the charge generation layer 5.
  • the mass ratio of the sum of the functional materials (charge generation material, electron transport material and hole transport material) and the binder resin in the charge generation layer 5 is 35:65 to 65:35 in order to obtain desired characteristics.
  • it is set in a range it is preferable to increase the amount of the binder resin by setting the mass ratio to 50 or less: 50 or more from the viewpoint of suppressing member contamination, oil contamination and sebum contamination while ensuring durability. .
  • the mass ratio of the functional material is greater than 65 mass% in the charge generation layer 5, that is, when the amount of the binder resin is less than 35 mass%, the amount of film loss increases and durability decreases. Decrease in the glass transition point leads to insufficient creep strength, which tends to cause toner filming, external additives, and filming of paper powder, and more likely to cause contact member contamination (creep deformation). Contamination and sebum contamination are also worsened. Further, if the mass ratio of the functional material is less than 35 mass% in the charge generation layer 5, that is, if the amount of the binder resin is greater than 65 mass%, it is difficult to obtain desired sensitivity characteristics. May not be suitable.
  • the mass ratio of the electron transport material and the hole transport material can be changed in the range of 1: 5 to 5: 1.
  • the charge transport having a hole transport function is provided below the charge generation layer 5. Since layer 4 is present, 5: 1 to 4: as opposed to a 1: 5 to 2: 4 hole-transporting material rich composition, which is a typical mass ratio range for single layer organic photoreceptors.
  • the range of 2 is suitable, and in particular, the range of 4: 1 to 3: 2 is more preferred in terms of overall characteristics.
  • a large amount of the hole transport material can be blended in the charge transport layer 4 which is the lower layer.
  • the charge generation layer 5 which is the upper layer.
  • the content of the hole transporting material which is one factor of occurrence of cracks due to sebum adhesion, can be kept low.
  • Solvents for the charge generation layer 5 include halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride and chlorobenzene; ethers such as dimethyl ether, diethyl ether, tetrahydrofuran, dioxane, dioxolane, ethylene glycol dimethyl ether and diethylene glycol dimethyl ether; acetone And ketones such as methyl ethyl ketone and cyclohexanone. Of these, those having a high boiling point are generally preferred. Specifically, those having a boiling point of 60 ° C. or higher, particularly those having a boiling point of 80 ° C. or higher are preferably used.
  • titanyl phthalocyanine having a high quantum efficiency when used as a charge generation material for high sensitivity, dichloroethane having a heavy specific gravity and a boiling point of 80 ° C. or higher is used as a solvent for forming the charge generation layer. It is preferable to use it in terms of dispersion stability and difficulty in elution of the charge transport layer.
  • the film thickness of the charge generation layer 5 is determined in view of the balance with the charge transport layer 4, but from the viewpoint of ensuring practically effective performance, a range of 3 ⁇ m to 40 ⁇ m is preferable, preferably 5 ⁇ m to 30 ⁇ m. More preferably, it is 10 ⁇ m to 20 ⁇ m.
  • the photoreceptor of the present invention when producing an electrophotographic photoreceptor comprising a photosensitive layer containing at least a charge generating material, a hole transport material, an electron transport material and a binder resin, it is characterized in that a material containing the hyperbranched polymer according to the present invention is used.
  • a material containing the hyperbranched polymer according to the present invention is used.
  • the details of the process and the solvent used for preparing the coating liquid are not particularly limited, and can be appropriately carried out according to a conventional method.
  • the coating solution in the production method of the present invention can be applied to various coating methods such as a dip coating method and a spray coating method, and is not limited to any coating method.
  • the electrophotographic photosensitive member of the present invention is a device on which the photosensitive member of the present invention is mounted, and the desired effect can be obtained by applying it to various machine processes.
  • a charging process such as a contact charging method using a charging member such as a roller or a brush, a non-contact charging method using a charging member such as a corotron or scorotron, and a nonmagnetic one component, a magnetic one component, two Sufficient effects can also be obtained in development processes such as contact development and non-contact development using a development system (developer) such as a component.
  • FIG. 3 shows a schematic configuration diagram showing a configuration example of the electrophotographic apparatus of the present invention.
  • the electrophotographic apparatus 60 of the present invention shown in the figure mounts the electrophotographic photoreceptor 7 of the present invention including the conductive support 1, the undercoat layer 2 and the photosensitive layer 300 coated on the outer peripheral surface thereof.
  • the electrophotographic apparatus 60 includes at least a charging process and a developing process.
  • the electrophotographic apparatus 60 includes a roller charging member 21, a high-voltage power supply 22 that supplies an applied voltage to the roller charging member 21, an image exposure member 23, and a developing roller 241 that are disposed on the outer peripheral edge of the photoreceptor 7.
  • the electrophotographic apparatus 60 of the present invention can be a color printer.
  • the conductive support has two shapes of ⁇ 30 mm ⁇ length 244.5 mm and ⁇ 30 mm ⁇ length 252.6 mm, and is made of aluminum having a surface roughness (Rmax) of 0.2 ⁇ m. A 75 mm thick tube was used.
  • styryl compounds As the hole transport material, styryl compounds (HT-1, HT-2, HT-3) represented by the following structural formulas 3 to 5 were used. Structural formula 3 (HT-1) Structural formula 4 (HT-2) Structural formula 5 (HT-3)
  • Binder resin As the binder resin, polycarbonate resins (NR-1, NR-2, NR-3) composed of structural units represented by the following structural formulas 9 to 11 were used. Structural formula 9 (NR-1) Structural formula 10 (NR-2) Structural formula 11 (NR-3)
  • a hyperbranched polymer was synthesized according to the following method described in International Publication No. 2012/128214 pamphlet. That is, first, 53 g of toluene was placed in a 200 ml flask under nitrogen flow, stirred for 5 minutes or more, and the liquid temperature was raised to 110 ° C. and refluxed.
  • the hyperbranched polymers BR2 to 9 in each example are as follows.
  • antioxidant As the antioxidant, 0.49% by mass of dibutylhydroxytoluene (BHT), a hindered phenol antioxidant manufactured by Kirin Kyowa Foods Co., Ltd., was added to the outermost layer. As a lubricant, 0.01% by mass of dimethyl silicone oil KF-56 manufactured by Shin-Etsu Chemical Co., Ltd. was added to the outermost layer.
  • BHT dibutylhydroxytoluene
  • KF-56 a hindered phenol antioxidant manufactured by Kirin Kyowa Foods Co., Ltd.
  • solvent 1,2-dichloroethane was used.
  • ⁇ Coating liquid for laminated photoconductor> (Coating liquid for charge transport layer) As shown in the following table, a charge transport layer coating solution was prepared using a dichloroethane solvent so as to have three kinds of material compositions.
  • the charge transport coating solution was dip coated on the conductive support and then dried with hot air at 110 ° C. for 30 minutes to obtain a charge transport layer having a thickness of 15 ⁇ 1 ⁇ m.
  • the charge generation layer coating solution was dip-coated and then dried with hot air at 110 ° C. for 30 minutes to obtain a laminated photoreceptor having a total film thickness of 30 ⁇ 2 ⁇ m.
  • An image having a printing area ratio of 4% was printed up to 5,000 sheets intermittently for 10 seconds, and the amount of change in potential at the developing portion of the black toner photoconductor was measured.
  • the amount of change in the charging potential was judged as ⁇ for 30 V or less, ⁇ for 30 to 70 V, and x for 70 V or more.
  • the present invention As a result of the above, according to the present invention, it is applied to a high-resolution and high-speed positively chargeable electrophotographic apparatus and has excellent operational stability and is free from image defects caused by cracks caused by sebum and stable. As a result, it is possible to obtain a high-sensitivity, high-speed response and highly durable electrophotographic photosensitive member that can provide high image quality, a manufacturing method thereof, and an electrophotographic apparatus using the same.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

 高解像度かつ高速の正帯電方式の電子写真装置に適用され、動作安定性に優れるとともに、画像メモリーや、接触部材または油脂若しくは皮脂による汚染で生ずるクラックに起因する画像欠陥の発生がなく、安定して高画像品質が得られる、高感度・高速応答でかつ高耐久な電子写真用感光体、および、それを用いた電子写真装置を提供することを目的とする。 導電性支持体上に、少なくとも電荷発生材料、正孔輸送材料、電子輸送材料および結着樹脂を含有する感光層を備える電子写真用感光体において、最外層が、電荷発生材料、正孔輸送材料、電子輸送材料、結着樹脂、および、分子内に2個以上のラジカル重合性二重結合を有するモノマーと、分子内に長鎖アルキル基または脂環基および少なくとも1個のラジカル重合性二重結合を有するモノマーとを、重合開始剤の存在下で重合させてなる高分岐ポリマーを含有する。

Description

電子写真用感光体、その製造方法および電子写真装置
 本発明は電子写真用感光体(以下、単に「感光体」とも称する)、その製造方法および電子写真装置に関し、詳しくは、電子写真方式のプリンタや複写機、ファクシミリなどに用いられる電子写真用感光体、その製造方法および電子写真装置に関する。
 一般に、プリンタや複写機、ファクシミリ等の電子写真方式を利用した画像形成装置は、像担持体としての感光体と、感光体の表面を均一に帯電させる帯電装置と、感光体の表面に画像に応じた電気的な像(静電潜像)を書き込む露光装置と、この静電潜像をトナーで現像してトナー像を形成する現像装置と、このトナー像を転写紙に転写する転写装置とを備える。また、この転写紙上のトナーを転写紙に融着させるための定着装置も備えている。
 このような画像形成装置では、その装置コンセプトにより使用される感光体が異なるが、現在では、大型機や高速機におけるSeやa-Si等の無機系感光体を除き、その優れた安定性、コストおよび使いやすさから、有機顔料を樹脂中に分散させてなる有機感光体(OPC:Organic Photo Conductor)が広く用いられている。この有機感光体は、無機系感光体が正帯電型であることと対照的に、負帯電型であることが一般的である。その理由は、負帯電型有機感光体においては、良好な正孔輸送機能をもつ正孔輸送材料が古くから開発されてきたのに対し、正帯電型有機感光体においては、良好な電子輸送能をもつ電子輸送材料がなかなか開発されてこなかった点にある。
 一方で、この負帯電型有機感光体用の負帯電プロセスでは、負極性のコロナ放電によるオゾン発生量が、正極性に対し約10倍と圧倒的に多く、感光体への悪影響や、使用環境への悪影響が問題となっている。そのため、この負帯電プロセスでは、ローラ帯電やブラシ帯電のような接触帯電方式を採用することで、オゾン発生量を抑制している。しかし、この接触帯電方式は、正極性の非接触帯電方式に比べてコストが不利であること以外にも、帯電部材の汚染が避けられず、信頼性の面で不十分であることや、感光体の表面電位を均一化しにくいなど、高画質化の点でも不利な面をもっている。
 これらの問題を解決するためには、正帯電型有機感光体を適用することが有効であり、高性能な正帯電型有機感光体が求められている。正帯電型有機感光体は、上述のような正帯電方式特有のメリットの他にも、一般にキャリア発生位置が感光層の表面近傍であることから、負帯電型有機感光体に比べてキャリアの横方向拡散が少なく、ドット再現性(解像性および階調性)に優れているという利点を有している。そのため、正帯電型有機感光体は、高解像度化の進む各分野で検討されるようになってきている。
 正帯電型有機感光体には、以下のように、大きく分けて4種類の層構成のものがあり、従来より種々提案されてきている。一つ目は、導電性支持体上に、電荷輸送層および電荷発生層を順次積層した2層構成の機能分離型感光体である(例えば、特許文献1および特許文献2参照)。二つ目は、上記2層構成の上に表面保護層を積層した3層構成の機能分離型感光体である(例えば、特許文献3、特許文献4および特許文献5参照)。三つ目は、一つ目とは逆に、電荷発生層および電荷(電子)輸送層を順次積層した逆積層の2層構成の機能分離型感光体である(例えば、特許文献6および特許文献7参照)。四つ目は、電荷発生材料、正孔輸送材料および電子輸送材料を同一層中に分散した単層型感光体である(例えば、特許文献6および特許文献8参照)。なお、上記4種類の分類においては、下引き層の有無は考慮しない。
 このうち、最後の四つ目の単層型感光体については、詳細な検討がなされ、一般的に広く実用化が進められている。その大きな理由は、正孔輸送材料の正孔輸送機能と比較して、輸送能において劣る電子輸送材料の電子輸送機能を、正孔輸送材料が補完する構成をとっていることにあると考えられる。この単層型感光体においては、分散型であるが故に、膜中内部でもキャリア発生は起きるが、感光層の表面近傍に近づくほどキャリア発生量が大きく、正孔輸送距離と比較して電子輸送距離は小さくてすむので、電子輸送能は正孔輸送能ほど高い必要はないものと考えられる。これにより、他の三つのタイプと比較して、実用上十分な環境安定性および疲労特性を実現している。
 しかし、単層型感光体においては、単一膜にキャリア発生およびキャリア輸送の両機能を持たせていることから、塗布工程の簡素化が可能であって高い良品率および工程能力を得やすいという長所を持つ反面、高感度化・高速化を図るために正孔輸送材料および電子輸送材料の両者を単一層内に多く含有させることで結着樹脂の含有量が低下して、耐久性が低下するという問題があった。よって、単層型感光体において、高感度・高速化と高耐久との両立を図ることには限界があった。
 また、単層型感光体において結着樹脂の比率が低くなると、ガラス転移点が低くなって、接触部材に対する耐汚染性が悪化するという難点もあった。さらに、特許文献9、特許文献10および特許文献11に開示されているように、油脂・皮脂汚染対策として、単層型の感光層中に可塑剤としてフェニレン化合物を添加すると、ガラス転移点の低下がより助長されてしまう。そのため、有機感光体に接触するローラ等の当接圧が高い装置では、クリープ変形が顕著になり、印字欠陥になって顕在化するという問題もあった。
 そのため、近年の装置の小型化や高速化、高解像度化、カラー化に対応する感度、耐久性および耐汚染性を両立するためには、従来の単層型正帯電有機感光体では対応が困難であり、新たに、電荷輸送層と電荷発生層とを順次積層した積層型正帯電感光体についても提案されている(例えば、特許文献12および特許文献13参照)。この積層型正帯電感光体の層構成は、上述の一つ目の層構成に類似するものであるが、電荷発生層に含まれる電荷発生材料を少なくするとともに電子輸送材料を含有させ、下層の電荷輸送層に近い厚膜化ができる他、電荷発生層内の正孔輸送材料の添加量を少なくできるため、電荷発生層内の樹脂比率を従来の単層型より多く設定でき、高感度化と高耐久化との両立が図りやすい構成となっている。
 しかしながら、この積層型正帯電有機感光体も単層型感光体も根本的には、皮脂汚染に対する耐久性は必ずしも十分でなく、人間の鼻の脂や頭皮の皮脂が感光体表面に付着した状態で長時間放置された場合、表面に割れが生じ、白点や黒点等の画像不良が発生する場合があった。
 感光体の改良に係る従来技術としては、上記の他、外周部に電荷発生機能を有する機能性官能基からなる機能性層を有し、内部に静電的相互作用により吸着が可能な程度の電荷を有する吸着層を有する、コア-シェル型ミクロスフェアである高分子微粒子を用いる技術や(特許文献14参照)、少なくともアクリロイルオキシ基又はメタクリロイルオキシ基を末端に有するハイパーブランチ構造若しくはデンドリマー構造を有するオリゴマーと、電荷輸送性構造部分を有するラジカル重合性化合物との硬化物を用いる技術(特許文献15参照)が知られている。また、感光体の表面層に、バインダー樹脂と、側鎖に長鎖アルキル基を有する直鎖状のビニル重合体とを含有させる技術(特許文献16参照)や、感光体の保護層を、メルカプト変性シリコーンオイルの存在下においてラジカル重合性モノマーを重合させることによって得られた硬化樹脂よりなるものとすることで、保護層の架橋性を向上させて、表面の潤滑性を向上しようとする技術(特許文献17参照)も存在する。
特公平05-30262号公報 特開平04-242259号公報 特公平05-47822号公報 特公平05-12702号公報 特開平04-241359号公報 特開平05-45915号公報 特開平07-160017号公報 特開平03-256050号公報 特開平2007-163523号公報 特開2007-256768号公報 特開2007-121733号公報 特開2009-288569号公報 国際公開第2009/104571号パンフレット 特開2003-228184号公報 特開2010-276699号公報 特開2003-255580号公報 特開2012-93403号公報
 上述のように、単層型の正帯電有機感光体においても、上記特許文献12,13に開示されているような積層型正帯電有機感光体においても、高感度・高速化、高耐久化、および、グリス等の油脂による汚染に対する耐性については両立できるものの、人体由来の皮脂付着に対する汚染、すなわち、クラック発生による画像欠陥発生を完全には防止できるものではなかった。
 そこで、本発明の目的は、上記問題を解消して、高解像度かつ高速の正帯電方式の電子写真装置に適用され、動作安定性に優れるとともに、画像メモリーや、接触部材または油脂若しくは皮脂による汚染で生ずるクラックに起因する画像欠陥の発生がなく、安定して高画像品質が得られる、高感度・高速応答でかつ高耐久な電子写真用感光体、その製造方法および電子写真装置を提供することにある。
 本発明者らは、皮脂によるクラック発生防止策について鋭意検討した結果、特定構造の高分岐ポリマーを、最外層の塗布液中に溶解させ、塗布液中に分散させた状態で、最外層を塗布することにより、最外層に高分岐ポリマーを含有させることができ、これにより、人体由来の皮脂から染み出す油を水平方向へ拡散させて、皮脂によるクラックの発生を防止できることを見出した。
 感光体の表面上に皮脂を10日間付着させた後、クラックが発生した部分の皮脂は変色している場合が多く、皮脂からの油で溶け出した電荷輸送材料が表面の皮脂の方向に移動しやすくなっているものと考えられ、具体的には、以下のメカニズムがあるものと推測される。
 すなわち、感光層の膜中に残留溶媒が存在すると、皮脂から浸透した油によって溶け出した正孔輸送材料あるいはその分解物が膜表面の皮脂の方向に移動しやすくなる。その後、電子輸送材料が移動することで、膜中の空隙がより大きくなり、この大きくなった空隙に応力が集中することで、クラックが発生するものと考えられる。
 したがって、その対策としては、一つ目には皮脂から膜中への油の浸透を抑制すること、二つ目には油によって溶出あるいは分解しにくい電荷輸送材料を用いること、三つ目にはこれら電荷輸送材料あるいは分解物の移動を阻害するものを添加すること、四つ目にはできるだけ残留応力の小さい膜に製膜すること等が考えられる。
 かかる観点から、本発明者らはさらに検討した結果、できる限り感光体本来の特性を生かした対策、つまり、電気特性および外観品質を損なわない範囲で、一つ目の対策である皮脂からの膜中への油の浸透を抑制するとともに、三つ目の電荷輸送材料等の皮脂への移動を阻害するような材料を最外層表面に偏析させることが有効であるとの考えから、本発明に至った。
 すなわち、本発明の電子写真用感光体は、導電性支持体上に、少なくとも電荷発生材料、正孔輸送材料、電子輸送材料および結着樹脂を含有する感光層を備える電子写真用感光体において、最外層が、電荷発生材料、正孔輸送材料、電子輸送材料、結着樹脂、および、分子内に2個以上のラジカル重合性二重結合を有するモノマーと、分子内に長鎖アルキル基または脂環基および少なくとも1個のラジカル重合性二重結合を有するモノマーとを、重合開始剤の存在下で重合させてなる高分岐ポリマーを含有することを特徴とするものである。
 本発明においては、感光体の最外層に、高分岐ポリマーに長鎖アルキル基や脂環基を導入して得られる親油性高分岐ポリマーを改質剤として添加し、偏析させることで、上記油の浸入と材料の移動とを阻害することができる。高分岐ポリマーにおいては積極的に枝分かれ構造が導入されているので、高分岐ポリマーは線状ポリマーと比較して分子の絡み合いが少なく、微粒子的挙動を示し、樹脂に対する分散性が高い点に特徴を有する。具体的には、かかる高分岐ポリマーは、分子内に2個以上のラジカル重合性二重結合を有するモノマー(A)と、分子内に炭素原子数6~30のアルキル基または炭素原子数3~30の脂環基、および、少なくとも1個のラジカル重合性二重結合を有するモノマー(B)とを、アゾ系重合開始剤(C)の存在下で重合させることにより得ることができる。
 なお、高分岐ポリマーの電子写真用感光体への適用例として、電荷発生層に添加することで電荷発生機能を向上する目的で提案された特許文献14記載の技術や、表面保護層に添加することで耐磨耗性を向上する目的で提案された特許文献15に記載の技術があるが、これらは、その構造および作用効果において本発明とは異なるものであり、本発明では、最表面の層に特定構造の高分岐ポリマーを偏析させることで、人体由来の油を水平方向に拡散させて、その感光体内部への浸入を阻止するものである。
 本発明によれば、上記構成としたことにより、高解像度かつ高速の正帯電方式の電子写真装置に適用され、動作安定性に優れるとともに、画像メモリーや、接触部材または油脂若しくは皮脂による汚染で生ずるクラックに起因する画像欠陥の発生がなく、安定して高画像品質が得られる、高耐久な電子写真用感光体、その製造方法および電子写真装置を実現することが可能となった。
本発明の単層型正帯電感光体の一構成例を示す模式的断面図である。 本発明の積層型正帯電感光体の一構成例を示す模式的断面図である。 本発明の電子写真装置の一構成例を示す概略構成図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。本発明は、以下の説明により何ら限定されるものではない。
 図1および2に、本発明の電子写真用感光体の一構成例を示す模式的断面図を示す。図1は、導電性支持体1上に、下引き層2を介して単層型の感光層3を積層した構成であり、図2は、導電性支持体1上に、下引き層2を介して電荷輸送層4および電荷発生層5を順次積層した構成である。本発明において、下引き層2は基本的に不要であるが、必要に応じ、図のように設けてもよい。
 図示する本発明の電子写真用感光体は、最外層に、電荷発生材料、正孔輸送材料、電子輸送材料および結着樹脂に加えて、分子内に2個以上のラジカル重合性二重結合を有するモノマーと、分子内に長鎖アルキル基または脂環基および少なくとも1個のラジカル重合性二重結合を有するモノマーとを、重合開始剤の存在下で重合させて得られた高分岐ポリマーを含有させた、正帯電の電子写真用感光体である。本発明においては、感光体の最外層である感光層または電荷発生層の塗布液中に、特定の分子量を持つ長鎖アルキル基や脂環基が導入された高分岐ポリマーを溶解、含有させ、感光層を形成することで、皮脂によるクラックの発生を防止するものである。前述したように、本発明において用いる高分岐ポリマーは樹脂に対する分散性が高く、かつ、脂環基を有するために親油性が高い。そのため、感光体の最外層にこの高分岐ポリマーを含有させることで、これが感光体表面に偏析して、表面に付着した人体由来の皮脂と結合し、皮脂を表面方向に拡散させることにより、感光体内部への局所的な皮脂の浸入を阻止することによって、電荷輸送材料等の皮脂への移動を阻害することができる。これにより、皮脂の付着に起因するクラックの発生を防止することが可能となるものである。また、本発明に係る高分岐ポリマーは、感光体本来の電気特性や外観品質を損なうこともない。
 本発明においては、正帯電感光体の最外層である単層の感光層または積層の電荷発生層に、上記高分岐ポリマーを含有させるものであればよく、これにより、本発明の所期の効果を得ることができるものである。本発明において、それ以外の層、すなわち、下引き層の有無等については、所望に応じ適宜決定することができ、特に制限されるものではない。
 上記高分岐ポリマーの構成単位であるモノマー(A)の構造の具体例としては、下記一般式(1)で表されるもの、モノマー(B)の構造の具体例としては、下記一般式(2)で表されるものが、それぞれ挙げられる。但し、本発明に係る高分岐ポリマーは、これら例示構造のものに限定されるものではない。
Figure JPOXMLDOC01-appb-I000003
(一般式(1)中、RおよびRは水素原子またはメチル基を表し、Aは炭素原子数3~30の脂環基、または、ヒドロキシ基で置換されていてもよい炭素原子数2~12のアルキレン基を表し、mは1~30の整数を表す)
Figure JPOXMLDOC01-appb-I000004
(一般式(2)中、Rは水素原子またはメチル基を表し、Rは炭素原子数6~30のアルキル基または炭素原子数3~30の脂環基を表し、Aは炭素原子数2~6のアルキレン基を表し、nは0~30の整数を表す)
 上記一般式(1)中、Aで表されるヒドロキシ基で置換されていてもよい炭素原子数2~12のアルキレン基としては、エチレン基、トリメチレン基、2-ヒドロキシトリメチレン基、メチルエチレン基、テトラメチレン基、1-メチルトリメチレン基、ペンタメチレン基、2,2-ジメチルトリメチレン基、ヘキサメチレン基、ノナメチレン基、2-メチルオクタメチレン基、デカメチレン基、ドデカメチレン基等が挙げられる。具体的には、イソプレン、ブタジエン、3-メチル-1,2-ブタジエン、2,3-ジメチル-1,3-ブタジエン、1,2-ポリブタジエン、ペンタジエン、ヘキサジエン、オクタジエン等が挙げられる。
 上記一般式(1)中、Aで表される炭素原子数3~30の脂環基としては、具体的にはシクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、ノルボルナジエン、1,4-シクロヘキサンジメタノールジ(メタ)アクリレート、(2-(1-((メタ)アクリロイルオキシ)-2-メチルプロパン-2-イル)-5-エチル-1,3-ジオキサン-5-イル)メチル(メタ)アクリレート、1,3-アダマンタンジオールジ(メタ)アクリレート、1,3-アダマンタンジメタノールジ(メタ)アクリレート、トリシクロ[5.2.1.02,6]デカンジメタノールジ(メタ)アクリレート、1,4-シクロヘキサンジメタノールジ(メタ)アクリレート、(2-(1-((メタ)アクリロイルオキシ)-2-メチルプロパン-2-イル)-5-エチル-1,3-ジオキサン-5-イル)メチル(メタ)アクリレート、1,3-アダマンタンジオールジ(メタ)アクリレート、1,3-アダマンタンジメタノールジ(メタ)アクリレート、トリシクロ[5.2.1.02,6]デカンジメタノールジ(メタ)アクリレート等が挙げられる。
 上記モノマー(B)は、ビニル基または(メタ)アクリル基のいずれか一方を少なくとも1つ有することが好ましい。
 上記一般式(2)中、Rで表される炭素原子数6~30のアルキル基としては、ヘキシル基、エチルヘキシル基、3,5,5-トリメチルヘキシル基、ヘプチル基、オクチル基、2-オクチル基、イソオクチル基、ノニル基、デシル基、イソデシル基、ウンデシル基、ラウリル基、トリデシル基、ミリスチル基、パルミチル基、ステアリル基、イソステアリル基、アラキル基、ベヘニル基、リグノセリル基、セロトイル基、モンタニル基、メリッシル基等が挙げられる。中でも、アルキル基の炭素原子数は、好ましくは10~30であり、より好ましくは12~24である。また、Rで表されるアルキル基は、直鎖状または分岐状のいずれであってもよい。より優れた耐汚染性を付与するために、Rは直鎖状アルキル基であることが好ましい。
 上記一般式(2)中、Rで表される炭素原子数3~30の脂環基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、4-tert-ブチルシクロヘキシル基、イソボルニル基、ノルボルネニル基、メンシル基、アダマンチル基、トリシクロ[5.2.1.02,6]デカニル基等が挙げられる。
 上記一般式(2)中、Aで表される炭素原子数2~6のアルキレン基としては、エチレン基、トリメチレン基、メチルエチレン基、テトラメチレン基、1-メチルトリメチレン基、ペンタメチレン基、2,2-ジメチルトリメチレン基、ヘキサメチレン基等が挙げられる。
 なお、上記一般式(1),(2)中、nは、耐汚染性の観点から、0であることが好ましい。 
 このようなモノマー(B)としては、例えば、ヘキシル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、3,5,5-トリメチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、パルミチル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、シクロプロピル(メタ)アクリレート、シクロブチル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、4-tert-ブチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ノルボルネン(メタ)アクリレート、メンシル(メタ)アクリレート、アダマンタン(メタ)アクリレート、トリシクロ[5.2.1.02,6]デカン(メタ)アクリレート、2-ヘキシルオキシエチル(メタ)アクリレート、2-ラウリルオキシエチル(メタ)アクリレート、2-ステアリルオキシエチル(メタ)アクリレート、2-シクロヘキシルオキシエチル(メタ)アクリレート、トリメチレングリコール-モノラウリルエーテル-(メタ)アクリレート、テトラメチレングリコール-モノラウリルエーテル-(メタ)アクリレート、ヘキサメチレングリコール-モノラウリルエーテル-(メタ)アクリレート、ジエチレングリコール-モノステアリルエーテル-(メタ)アクリレート、トリエチレングリコール-モノステアリルエーテル-(メタ)アクリレート、テトラエチレングリコール-モノラウリルエーテル-(メタ)アクリレート、テトラエチレングリコール-モノステアリルエーテル-(メタ)アクリレート、ヘキサエチレングリコール-モノステアリルエーテル-(メタ)アクリレート等が挙げられる。これらモノマー(B)は、単独で使用してもよいし、2種類以上を併用しても構わない。
 本発明におけるアゾ系重合開始剤(C)としては、例えば、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、1,1’-アゾビス(1-シクロヘキサンカルボニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2-(カルバモイルアゾ)イソブチロニトリル、ジメチル1,1’-アゾビス(1-シクロヘキサンカルボキシレート)等を挙げることができる。中でも、構成材料に対する表面改質効果と電気特性が良好である点から、2,2’-アゾビス(2,4-ジメチルバレロニトリル)およびジメチル1,1’-アゾビス(1-シクロヘキサンカルボキシレート)が好ましい。
 本発明に用いる高分岐ポリマーは、具体的に、上記モノマー(A)とモノマー(B)とを、モノマー(A)に対し所定量のアゾ系重合開始剤(C)の存在下で重合させることにより得ることができる。本発明において、モノマー(A)とモノマー(B)とを共重合させる際の比率は、モノマー(A)のモル数に対し、モノマー(B)が好適には5~300モル%、より好適には10~150モル%となるものとする。また、アゾ系重合開始剤(C)は、モノマー(A)のモル数に対し、好適には5~200モル%、より好適には50~100%となる量で使用する。
 重合方法としては、公知の方法、例えば、溶液重合、分散重合、沈殿重合、塊状重合等が挙げられ、中でも、溶液重合または沈殿重合が好ましい。特に、分子量の制御の点から、有機溶媒中での溶液重合により、反応を実施することが好ましい。
 この際に用いられる溶媒としては、ベンゼン、トルエン、キシレン、エチルベンゼン、テトラリン、オルトジクロロベンゼン等の芳香族炭化水素類、n-ヘキサン、シクロヘキサン等の脂肪族または脂環式炭化水素類、塩化メチル、臭化メチル、クロロホルム等のハロゲン化物、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル等のエステル類もしくはエステルエーテル類、テトラヒドロフラン、1,4-ジオキサン、メチルセロソルブ等のエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、メタノール、エタノール、n-プロパノール、イソプロパノール等のアルコール類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、並びに、これら2種以上からなる混合溶媒が挙げられる。有機溶媒の量は、モノマー(A)1質量部に対し、1~100質量部とすることができる。
 また、重合の際の温度は50~200℃であり、より好ましくは、アゾ系重合開始剤(C)の10時間半減期温度よりも20℃以上高い温度で実施する。重合後に得られる高分岐ポリマーは、貧溶媒中で再沈殿、析出させる等の任意の方法で回収することができる。
 本発明に用いる高分岐ポリマーとしては、具体的には、国際公開第2012/128214号パンフレットに記載の高分岐ポリマー1~16、18~36が挙げられる。また、本発明に用いる高分岐ポリマーのゲルパーミエーションクロマトグラフィによるポリスチレン換算分子量は、好適には1000~200000であり、より好適には2000~100000であり、さらに好適には5000~60000である。
 本発明に用いる高分岐ポリマーはハイパーブランチポリマーと呼ばれ、デンドリマーのように高分岐した樹状構造を持つが、デンドリマーのように全ての分岐部位が重合するのではなく、分岐が不完全な樹状構造であるという特徴を持つ。高分岐ポリマーの分岐度は、一般に、末端部位と分岐部位および未分岐部位の各量から推定したり、ゲルパーミエーションクロマトグラフィ(GPC)と光散乱計測とを組合せて、樹脂の回転半径を求めることにより、推測することができる。一般的に、高分岐ポリマーと、同原料を用いて合成した同分子量の直鎖状や櫛状のポリマーとを、溶媒に溶解させた際の溶液の粘度やGPCでの分子量で比較すると、高分岐ポリマーは球状構造を取ることから分子絡み合いが低く低粘度を示し、回転半径が小さいことからGPC溶出時間が遅く、GPC上の分子量が低く計測されるという特徴を持つ。
<単層型感光体>
[導電性支持体]
 導電性支持体1は、感光体の一電極としての役目を担うのと同時に、感光体を構成する各層の支持体ともなっている。導電性支持体1は、円筒状や板状、フィルム状などのいずれの形状でもよく、材質的には、アルミニウムやステンレス鋼、ニッケルなどの金属類の他、ガラスや樹脂などの表面に導電処理を施したものでもよい。
[下引き層]
 下引き層2は、本発明において基本的には不要であるが、必要に応じて設けることが可能である。下引き層2は、樹脂を主成分とする層や、アルマイトなどの金属酸化皮膜からなり、導電性支持体と感光層との密着性を向上する目的や、感光層への電荷の注入性を制御する目的で、設けられる。下引き層に用いられる樹脂材料としては、カゼインやポリビニルアルコール、ポリアミド、メラミン、セルロースなどの絶縁性高分子、および、ポリチオフェンやポリピロール、ポリアニリンなどの導電性高分子が挙げられ、これらの樹脂は単独、あるいは適宜組み合わせて混合して用いることができる。また、これらの樹脂に、二酸化チタンや酸化亜鉛などの金属酸化物を含有させることもできる。
[感光層]
 感光層3は、主として、電荷発生材料、正孔輸送材料、電子輸送材料および結着樹脂よりなる。
(電荷発生材料)
 電荷発生材料としては、X型無金属フタロシアニンを単独、若しくは、α型チタニルフタロシアニン、β型チタニルフタロシアニン、Y型チタニルフタロシアニン、γ型チタニルフタロシアニン、アモルファス型チタニルフタロシアニンを単独、または、これらを適宜組合せて用いることができ、画像形成に使用される露光光源の光波長領域に応じて好適な物質を選ぶことができる。高感度化の観点からは、量子効率の高いチタニルフタロシアニンが最適である。
(正孔輸送材料)
 正孔輸送材料としては、各種ヒドラゾン化合物やスチリル化合物、ジアミン化合物、ブタジエン化合物、インドール化合物等を単独、あるいは適宜組合せて用いることができるが、トリフェニルアミン骨格を含むスチリル系化合物が、コストおよび性能面で好適である。なお、低分子量のトリフェニルアミンを、クラック対策の可塑剤として、必要に応じ使用することも可能である。
(電子輸送材料)
 電子輸送材料としては、高移動度の材料であるほど好ましく、ベンゾキノンやスチルベンキノン、ナフトキノン、ジフェノキノン、フェナントレンキノン、アゾキノン等のキノン系材料が好ましい。これらは、電荷輸送層への注入性や結着樹脂との相溶性から、単独で用いる他、2種以上の材料を用いて、析出を抑えつつ、電子輸送材料の含有量を増加させることも好ましい。
(結着樹脂)
 結着樹脂としては、ビスフェノールA型、ビスフェノールZ型、ビスフェノールA型-ビフェニル共重合体などのポリカーボネート系樹脂、ポリアリレート系樹脂、ポリエステル系樹脂、ポリスチレン系樹脂、ポリフェニレン系樹脂などを、それぞれ単独で、あるいは適宜組み合わせて用いることができる。この中でも、顔料の分散性、輸送材料および高分岐ポリマーとの相溶性および偏析具合によって樹脂が決定される。また、残留応力が残りにくい樹脂を選定することが有効であり、ポリカーボネートでは、ビスフェノールA型あるいはZ型とビフェニル共重合体との重合比を、電子写真プロセスにより最適化した樹脂が好適である。
(高分岐ポリマー)
 本発明において使用する高分岐ポリマーは、分岐構造をした粒子形状の樹脂であることから、所望の性質を示す官能基を、球状粒子表面に多く存在する末端部分に付けることが可能であり、油に対する性質を制御できる特徴がある。本発明の親油性効果を出すため末端にアルキル基をつけた高分岐ポリマーは、表面に偏析する性質があり、水平方向に油を拡散させるため、少量の添加で効果が大きい。感光体の基本特性としての電気特性や外観特性、疲労特性を良好に確保する観点からは、高分岐ポリマーは、層中の結着樹脂100質量部に対し、0.3質量部~6質量部、特には、0.5質量部~4質量部の範囲で添加することが好ましい。
(その他の添加剤)
 感光層中には、所望に応じ、耐環境性や有害な光に対する安定性を向上させる目的で、酸化防止剤や光安定剤などの劣化防止剤を含有させることができる。このような目的に用いられる化合物としては、トコフェロールなどのクロマノール誘導体およびエステル化化合物、ポリアリールアルカン化合物、ハイドロキノン誘導体、エーテル化化合物、ジエーテル化化合物、ベンゾフェノン誘導体、ベンゾトリアゾール誘導体、チオエーテル化合物、フェニレンジアミン誘導体、ホスホン酸エステル、亜リン酸エステル、フェノール化合物、ヒンダードフェノール化合物、直鎖アミン化合物、環状アミン化合物、ヒンダードアミン化合物等が挙げられる。
 また、形成した膜のレベリング性の向上や潤滑性の付与を目的として、シリコーンオイルやフッ素系オイル等のレベリング剤を含有させることもできる。さらに、膜硬度の調整や、摩擦係数の低減、潤滑性の付与等を目的として、酸化ケイ素(シリカ)、酸化チタン、酸化亜鉛、酸化カルシウム、酸化アルミニウム(アルミナ)、酸化ジルコニウム等の金属酸化物、硫酸バリウム、硫酸カルシウム等の金属硫酸塩、窒化ケイ素、窒化アルミニウム等の金属窒化物の微粒子を含有させてもよい。さらにまた、必要に応じて、電子写真特性を著しく損なわない範囲で、その他公知の添加剤を含有させることもできる。
(組成)
 感光層内の機能材料(電荷発生材料、電子輸送材料および正孔輸送材料)の和と結着樹脂との質量比率は、所望の特性を得るために35:65~65:35の範囲で設定される。機能材料の質量比率が、感光層中の65質量%より多く、すなわち、結着樹脂の量が35質量%より少ないと、膜減り量が大きくなって、耐久性が低下する他、ガラス転移点の低下によりクリープ強度が不足して、トナーフィルミングや外部添加材、紙粉のフィルミングが起きやすくなり、さらに、接触部材汚染(クリープ変形)が生じ易くなり、グリス等の油脂による汚染性、皮脂汚染性も悪化する傾向となる。また、上記機能材料の質量比率が、感光層中の35質量%より少なく、すなわち、結着樹脂の量が65質量%より多いと、所望の感度特性を得ることが困難となり、実用に適さなくなるおそれがある。一般に、耐久性を確保しつつ、部材汚染、油脂汚染および皮脂汚染を抑制する観点からは、結着樹脂比率を高くすることが望ましい。
 電荷発生材料の含有比率は、膜全体の0.5~3質量%が好適であり、0.8~1.8質量%であることがより好適である。電荷発生材料が少なすぎると感度特性が不足する他、干渉縞の発生の可能性が高まり、多すぎると帯電特性や疲労特性(繰り返し使用安定性)が不十分になりやすい。
 電子輸送材料と正孔輸送材料との質量比率は、1:1~1:4の範囲で変えることができるが、一般に、正孔と電子との輸送バランスより、1:1~1:3の範囲で使われることが、感度特性、帯電特性および疲労特性面でより好ましい。
(溶剤)
 感光層の溶剤としては、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素、クロロベンゼン等のハロゲン化炭化水素;ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジオキソラン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類等を挙げることができ、各種材料の溶解性、液安定性および塗工性の観点より、適宜選択することができる。
(膜厚)
 感光層の膜厚は、実用上有効な性能を確保する観点より、12~40μmの範囲が好適であり、好ましくは15~35μmであり、より好ましくは20~30μmである。
<積層型感光体>
[導電性支持体]
 導電性支持体1は、単層型感光体の場合と同様である。
 [下引き層]
 下引き層2は、単層型感光体の場合と同様であり、本発明において基本的には不要であるが、必要に応じて設けることが可能である。
[電荷輸送層]
 電荷輸送層4は、主として正孔輸送材料と結着樹脂とにより構成される。
(正孔輸送材料)
 電荷輸送層4に使用される正孔輸送材料は、単層型感光体の場合と同様であるが、内側の層になることから、単層型有機感光体に対して、低分子量のトリフェニルアミンを、クラック対策の可塑剤として、より多く使用することが可能である。
(結着樹脂)
 電荷輸送層4の結着樹脂は、単層型感光体の場合と同様であるが、内側の層であることから、機械強度があまり要求されなくなる一方、電荷発生層5を塗布した際の溶出しにくさが要求される。この観点から、電荷発生層の液の溶剤に溶出しにくい樹脂が好適であり、分子量が高い樹脂を用いることが好ましい。
(その他の添加剤)
 電荷輸送層4中には、所望に応じ、耐環境性の安定性を向上させる目的で、酸化防止剤や光安定剤などの劣化防止剤を含有させることができる。このような目的に用いられる化合物としては、トコフェロールなどのクロマノール誘導体およびエステル化化合物、ポリアリールアルカン化合物、ハイドロキノン誘導体、エーテル化化合物、ジエーテル化化合物、ベンゾフェノン誘導体、ベンゾトリアゾール誘導体、チオエーテル化合物、フェニレンジアミン誘導体、ホスホン酸エステル、亜リン酸エステル、フェノール化合物、ヒンダードフェノール化合物、直鎖アミン化合物、環状アミン化合物、ヒンダードアミン化合物等が挙げられる。
 また、形成した膜のレベリング性の向上や潤滑性の付与を目的として、シリコーンオイルやフッ素系オイル等のレベリング剤を含有させることもできる。さらに、膜硬度の調整や、摩擦係数の低減、潤滑性の付与等を目的として、酸化ケイ素(シリカ)、酸化チタン、酸化亜鉛、酸化カルシウム、酸化アルミニウム(アルミナ)、酸化ジルコニウム等の金属酸化物、硫酸バリウム、硫酸カルシウム等の金属硫酸塩、窒化ケイ素、窒化アルミニウム等の金属窒化物の微粒子を含有させてもよい。さらにまた、必要に応じて、電子写真特性を著しく損なわない範囲で、その他公知の添加剤を含有させることもできる。
(組成)
 電荷輸送層4における正孔輸送材料と結着樹脂との質量比率は、1:3~3:1(25:75~75:25)の範囲とすることができ、好適には、1:1.5~1.5:1(40:60~60:40)の範囲である。正孔輸送材料の含有量が、電荷輸送層4中の25質量%より少ないと、一般に輸送機能が不足し、残留電位が高くなる他、装置内の露光部電位の環境依存性が大きくなり、画像品質の環境安定性が悪化してしまうので、使用に適さなくなるおそれがある。一方、正孔輸送材料の含有量が、電荷輸送層4中の75質量%より多くなり、すなわち、結着樹脂が電荷輸送層4中の25質量%より少なくなると、電荷発生層5を塗布した際の溶出の弊害が発生するおそれがある。
(溶剤)
 電荷輸送層4の溶剤としては、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素、クロロベンゼン等のハロゲン化炭化水素;ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジオキソラン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類等を挙げることができ、各種材料の溶解性、液安定性および塗工性の観点より、適宜選択することができる。
(膜厚)
 電荷輸送層4の膜厚は、後述する電荷発生層5との兼ね合いで決められるが、実用上有効な性能を確保する観点より、3~40μmの範囲が好適であり、より好適には5~30μm、さらに好適には10~20μmである。
[電荷発生層]
 電荷発生層5は、電荷発生材料の粒子を、正孔輸送材料および電子輸送材料が溶解した結着樹脂中に分散させた塗布液を塗布するなどの方法により形成される。電荷発生層5は、光を受容してキャリアを発生する機能をもつとともに、発生した電子を感光体表面に運び、正孔を上記電荷輸送層4に運ぶ機能を有する。電荷発生層5は、キャリアの発生効率が高いことと同時に、発生した正孔の電荷輸送層4への注入性が重要であり、電場依存性が少なく、低電場でも注入の良いことが望ましい。
(電荷発生材料)
 電荷発生材料は、単層型感光体の場合と同様であり、画像形成に使用される露光光源の光波長領域に応じて好適な物質を選ぶことができる。高感度化の観点からは、量子効率の高いチタニルフタロシアニンが最適である。
(正孔輸送材料)
 正孔輸送材料としては、電荷輸送層に正孔を注入する必要上、電荷輸送層の電荷輸送材料とのイオン化ポテンシャルの差異が小さいことが好ましく、具体的には、0.5eV以内が好ましい。特に、本発明において、電荷発生層5は電荷輸送層4上に塗布形成されるので、電荷発生層5の塗布時に、電荷輸送層4の塗布液への溶出の影響を抑えて、電荷発生層5の液状態を安定化させるために、電荷輸送層4に含まれる正孔輸送材料が電荷発生層5にも含まれていることが好ましく、より好ましくは、電荷輸送層4および電荷発生層5で用いる正孔輸送材料として、同じものを使用する。
(電子輸送材料)
 電子輸送材料は、単層型感光体の場合と同様であり、高移動度の材料であるほど好ましいが、電荷輸送層への注入性や結着樹脂との相溶性から、単独で用いる他、2種以上の材料を用いて、析出を抑えつつ、電子輸送材料の含有量を増加させることも好ましい。
(結着樹脂)
 電荷発生層用の結着樹脂としては、ビスフェノールA型やビスフェノールZ型、ビスフェノールA型-ビフェニル共重合体などのポリカーボネート系樹脂、ポリアリレート系樹脂、ポリエステル系樹脂、ポリスチレン系樹脂、ポリフェニレン系樹脂などをそれぞれ単独、あるいは適宜組み合わせで混合して用いることができる。中でも、電荷発生材料の分散安定性、正孔輸送材料および電子輸送材料との相溶性、機械的安定性、化学的安定性、熱的安定性の点から、ポリカーボネート系樹脂が好適である。特には、上記正孔輸送材料と同様に、電荷発生層5の塗布時に電荷輸送層4の塗布液への溶出の影響を抑えて、電荷発生層5の液状態を安定化するために、電荷輸送層4に含まれる結着樹脂が電荷発生層5にも含まれていることが好ましく、より好ましくは、電荷輸送層4および電荷発生層5で用いる結着樹脂として、同じものを使用する。
(高分岐ポリマー)
 本発明において適用する高分岐ポリマーは、上述した通りであり、単層型感光体の場合と同様である。高分岐ポリマーの添加量についても、単層型感光体の場合と同様とすることができる。
(その他の添加剤)
 電荷輸送層4中には、所望に応じ、耐環境性の安定性を向上させる目的で、酸化防止剤や光安定剤などの劣化防止剤を含有させることができる。このような目的に用いられる化合物としては、トコフェロールなどのクロマノール誘導体およびエステル化化合物、ポリアリールアルカン化合物、ハイドロキノン誘導体、エーテル化化合物、ジエーテル化化合物、ベンゾフェノン誘導体、ベンゾトリアゾール誘導体、チオエーテル化合物、フェニレンジアミン誘導体、ホスホン酸エステル、亜リン酸エステル、フェノール化合物、ヒンダードフェノール化合物、直鎖アミン化合物、環状アミン化合物、ヒンダードアミン化合物等が挙げられる。
 また、形成した膜のレベリング性の向上や潤滑性の付与を目的として、シリコーンオイルやフッ素系オイル等のレベリング剤を含有させることもできる。さらに、膜硬度の調整や、摩擦係数の低減、潤滑性の付与等を目的として、酸化ケイ素(シリカ)、酸化チタン、酸化亜鉛、酸化カルシウム、酸化アルミニウム(アルミナ)、酸化ジルコニウム等の金属酸化物、硫酸バリウム、硫酸カルシウム等の金属硫酸塩、窒化ケイ素、窒化アルミニウム等の金属窒化物の微粒子を含有してもよい。さらにまた、必要に応じて、電子写真特性を著しく損なわない範囲で、その他公知の添加剤を含有させることもできる。
(組成)
 電荷発生層5における各々の機能材料(電荷発生材料、電子輸送材料および正孔輸送材料)の配分量については、以下のように設定される。まず、本発明においては、電荷発生層5中の電荷発生材料の含有率が、電荷発生層5中の1~4質量%、特には1.5~3.0質量%であることが好ましい。また、電荷発生層5における機能材料(電荷発生材料、電子輸送材料および正孔輸送材料)の和と結着樹脂との質量比率は、所望の特性を得るために35:65~65:35の範囲で設定されるが、耐久性を確保しつつ、部材汚染、油脂汚染および皮脂汚染を抑制する観点から、上記質量比率を50以下:50以上として、結着樹脂の量を多くすることが好ましい。
 上記機能材料の質量比率が、電荷発生層5中の65質量%より多く、すなわち、結着樹脂の量が35質量%より少ないと、膜減り量が大きくなって、耐久性が低下する他、ガラス転移点の低下によりクリープ強度が不足して、トナーフィルミングや外部添加材、紙粉のフィルミングが起きやすくなり、さらに、接触部材汚染(クリープ変形)が生じ易くなり、グリス等の油脂による汚染性および皮脂汚染性も悪化する。また、上記機能材料の質量比率が、電荷発生層5中の35質量%より少なく、すなわち、結着樹脂の量が65質量%より多いと、所望の感度特性を得ることが困難となり、実用に適さなくなるおそれがある。
 電子輸送材料と正孔輸送材料との質量比率は、1:5~5:1の範囲で変えることができるが、本発明においては、電荷発生層5の下層に正孔輸送機能をもつ電荷輸送層4が存在するので、単層型有機感光体における一般的な上記質量比率の範囲である1:5~2:4の正孔輸送材料リッチの組成とは逆に、5:1~4:2の範囲が好適となり、特には、4:1~3:2の範囲が、総合的な特性面でより好ましい。このように、本発明に係る積層型感光体では、下層である電荷輸送層4中に正孔輸送材料を多量に配合できるので、単層型感光体とは異なり、上層である電荷発生層5において、皮脂付着によるクラック発生の一要因である正孔輸送材料の含有量を低く抑えることができる特徴がある。 
(溶剤)
 電荷発生層5の溶剤としては、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素、クロロベンゼン等のハロゲン化炭化水素;ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジオキソラン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類等を挙げることができる。このうち、一般的に、沸点が高いものが好ましく、具体的には沸点が60℃以上のもの、特には沸点が80℃以上のものを用いることが好適である。中でも、高感度化のために高量子効率のチタニルフタロシアニンを電荷発生材料に用いた場合には、比重が重くかつ沸点が80℃以上であるジクロロエタンを、電荷発生層を形成する際に用いる溶媒として用いることが、分散安定性および電荷輸送層の溶出しにくさの点で好適である。
(膜厚)
 電荷発生層5の膜厚は、電荷輸送層4との兼ね合いで決められるが、実用上有効な性能を確保する観点より、3μm~40μmの範囲が好適であり、好ましくは5μm~30μmであり、より好ましくは10μm~20μmである。 
 本発明の感光体の製造方法は、少なくとも電荷発生材料、正孔輸送材料、電子輸送材料および結着樹脂を含有する感光層を備える電子写真用感光体を製造するに際し、最外層の塗布液として、電荷発生材料、正孔輸送材料、電子輸送材料および結着樹脂に加えて、上記本発明に係る高分岐ポリマーを含有するものを用いる点に特徴を有する。これにより、表面の耐汚染性に優れ、繰返し使用時においても安定した電気特性を有し、転写耐性や耐ガス性にも優れた感光体を得ることができるものであり、それ以外の、製造工程の詳細や塗布液の作製に使用する溶剤等については特に制限されるものではなく、常法に従い、適宜実施することが可能である。例えば、本発明の製造方法における上記塗布液は、浸漬塗布法や噴霧塗布法等の種々の塗布方法に適用することが可能であり、いずれかの塗布方法に限定されるものではない。
(電子写真装置)
 本発明の電子写真用感光体は、上記本発明の感光体を搭載してなるものであり、各種マシンプロセスに適用することにより所期の効果が得られるものである。具体的には、ローラやブラシなどの帯電部材を用いた接触帯電方式、コロトロン、スコロトロンなどの帯電部材を用いた非接触帯電方式等の帯電プロセス、および、非磁性一成分、磁性一成分、二成分などの現像方式(現像剤)を用いた接触現像および非接触現像方式などの現像プロセスにおいても十分な効果を得ることができる。
 一例として、図3に、本発明の電子写真装置の一構成例を示す概略構成図を示す。図示する本発明の電子写真装置60は、導電性支持体1と、その外周面上に被覆された下引き層2および感光層300とを含む、本発明の電子写真用感光体7を搭載する。さらに、この電子写真装置60は少なくとも帯電プロセスと現像プロセスを備える。電子写真装置60は、感光体7の外周縁部に配置された、ローラ帯電部材21と、このローラ帯電部材21に印加電圧を供給する高圧電源22と、像露光部材23と、現像ローラ241を備えた現像器24と、給紙ローラ251および給紙ガイド252を備えた給紙部材25と、転写帯電器(直接帯電型)26と、クリーニングブレード271を備えたクリーニング装置27と、除電部材28と、から構成される。また、本発明の電子写真装置60は、カラープリンタとすることができる。
 以下、本発明の具体的態様を、実施例を用いてさらに詳細に説明する。本発明はその要旨を超えない限り、以下の実施例によって限定されるものではない。
<電子写真用感光体の作製実施例>
 導電性支持体としては、φ30mm×長さ244.5mm、および、φ30mm×長さ252.6mmの2種類の形状で、表面粗さ(Rmax)0.2μmに切削加工されたアルミニウム製の0.75mm肉厚管を用いた。
〔実験に用いた材料〕
(電荷発生材料)
 電荷発生材料には、下記構造式1および2で示される無金属フタロシアニン(CG-1)およびY型チタニルフタロシアニン(CG-2)を用いた。
 構造式1(CG-1) 
Figure JPOXMLDOC01-appb-I000005
 構造式2(CG-2)
Figure JPOXMLDOC01-appb-I000006
(正孔輸送材料)
 正孔輸送材料には、下記構造式3~5で示されるスチリル化合物(HT-1、HT-2、HT-3)を用いた。
 構造式3(HT-1)
Figure JPOXMLDOC01-appb-I000007
 構造式4(HT-2)             
Figure JPOXMLDOC01-appb-I000008
 構造式5(HT-3)
Figure JPOXMLDOC01-appb-I000009
(電子輸送材料)
 電子輸送材料には、下記構造式6~8で示されるキノン系化合物(ET-1、ET-2、ET-3)を用いた。
 構造式6(ET-1)
Figure JPOXMLDOC01-appb-I000010
 構造式7(ET-2)
Figure JPOXMLDOC01-appb-I000011
 構造式8(ET-3)
Figure JPOXMLDOC01-appb-I000012
(結着樹脂)
 結着樹脂には、下記構造式9~11で示される構造単位からなるポリカーボネート系樹脂(NR-1、NR-2、NR-3)を用いた。
 構造式9(NR-1)
Figure JPOXMLDOC01-appb-I000013
 構造式10(NR-2)
Figure JPOXMLDOC01-appb-I000014
 構造式11(NR-3)
Figure JPOXMLDOC01-appb-I000015
(高分岐ポリマー)
 国際公開第2012/128214号パンフレットに記載の下記方法に従い、高分岐ポリマーを合成した。
 すなわち、まず、窒素流入下の200mlフラスコ中にトルエン53gを入れ、5分以上攪拌し、110℃に液温を上げ、還流させた。窒素流入下、別の100mlフラスコにモノマー(A)としてのトリシクロ[5.2.1.02,6]デカンジメタノールジ(メタ)アクリレート6.6g(20mmol)、モノマー(B)としてのラウリルアクリレート2.4g(10mmol)、開始剤(C)としての2,2’-アゾビス(2,4-ジメチルバレロニトリル)3.0g(12mmol)およびトルエン53gを入れ、攪拌し、氷冷して0℃とした。
 200mlフラスコ中のトルエンに、100mlフラスコの溶液を30分間かけて滴下し、滴下終了後、1時間攪拌した。この反応溶液を減圧下80gのトルエンを揮発溜去させたのち、ヘキサン/エタノール(質量比1:2)330gに添加、沈殿させた。この液を減圧濾過、真空乾燥し、白色粉末のポリマーを6.4g得た(国際公開第2012/128214号パンフレットに記載の高分岐ポリマー1,BR1)。このポリマーを、国際公開第2012/128214号パンフレットに記載のGPC測定方法に従い測定した際のポリスチレン換算分子量は、Mw=7800であった。
 また、各実施例中の高分岐ポリマーBR2~9は以下の通りである。
BR2:上記パンフレット記載の高分岐ポリマー2(Mw=13,000)
BR3:上記パンフレット記載の高分岐ポリマー3(Mw=10,000)
BR4:上記パンフレット記載の高分岐ポリマー4(Mw=8,200)
BR5:上記パンフレット記載の高分岐ポリマー8(Mw=10,000)
BR6:上記パンフレット記載の高分岐ポリマー9(Mw=6,600)
BR7:上記パンフレット記載の高分岐ポリマー10(Mw=13,000)
BR8:上記パンフレット記載の高分岐ポリマー26(Mw=9,500)
BR9:上記パンフレット記載の高分岐ポリマー27(Mw=8,800)
(添加剤)
 酸化防止剤としては、キリン協和フーズ(株)製のヒンダードフェノール系酸化防止剤であるジブチルヒドロキシトルエン(BHT)を最外層に対し、0.49質量%添加した。また、潤滑剤としては、信越化学(株)製ジメチルシリコンオイルKF-56を最外層に対し、0.01質量%添加した。
(溶剤)
 溶剤としては、1,2-ジクロロエタンを用いた。
(塗布液の作製)
<単層型感光体用塗布液>
 上記正孔輸送材料、電子輸送材料、結着樹脂、高分岐ポリマーおよび添加剤を所望の重量比になるよう計量し、所定の溶剤を入れた容器に加え、溶解させた。次に、所定の重量比になるよう秤量した上記電荷発生材料を加え、ダイノーミル(シンマルエンタープライズ社のMULTILAB)で分散して、単層型感光体用塗布液を作製した。材料組成比を、下記の表2,3に示す。
<積層型感光体用塗布液>
(電荷輸送層用塗布液)
 下記表中に示すように、3種類の材料組成になるよう、ジクロロエタン溶剤を用いて、電荷輸送層用塗布液を作製した。
Figure JPOXMLDOC01-appb-T000016
(電荷発生層用塗布液)
 上記正孔輸送材料、電子輸送材料、結着樹脂、高分岐ポリマーおよび添加剤を所望の重量比になるよう計量し、所定の溶剤を入れた容器に加えて溶解させた。次に、所定の重量比になるよう秤量した上記電荷発生材料を加え、ダイノーミル(シンマルエンタープライズ社のMULTILAB)で分散して、電荷発生層用塗布液を作製した。材料組成比を、下記の表4,5に示す。
(感光体の作製)
<単層型感光体>
 上記単層型感光体塗布液を、上記導電性支持体上に浸漬塗工した後、110℃にて60分間熱風乾燥し、下記の表2,3の材料組成にて、30±2μmの膜厚の感光体を得た。
<積層型感光体>
 上記電荷輸送用塗布液を、上記導電性支持体上に浸漬塗工した後、110℃にて30分熱風乾燥し、15±1μmの膜厚の電荷輸送層を得た。次に、上記電荷発生層用塗布液を浸漬塗工した後、110℃にて30分熱風乾燥して、全膜厚30±2μmの積層型感光体を得た。
(感光体の評価)
(1)疲労特性(電気特性)
 CG-1を用いたφ30mm×長さ244.5mm形状の感光体については、ブラザー工業(株)製の市販の24枚機のモノクロレーザープリンタ(HL-2450)で、10℃20%RH環境下にて、10秒間欠で印字面積率4%の画像を5,000枚まで印刷し、現像部での電位変化量を測定した。
 CG-2を用いたφ30mm×長さ252.6mm形状の感光体については、ブラザー工業(株)製の市販の16枚機のカラーLEDプリンタ(HL-3040)で、10℃20%RH環境下にて、10秒間欠で印字面積率4%の画像を5,000枚まで印刷し、黒色トナーの感光体の現像部での電位変化量を測定した。
 いずれの装置も、帯電電位の変化量は30V以内を○、30~70Vを△、70V以上を×として判定した。
(2)耐汚染性(人体頭皮による油汚染耐性)
 頭皮を感光体表面に接触させ、10日間放置後に、上記モノクロレーザープリンタにて、1on2offパターンの中間調画像を印字し、クラックによる白点欠陥および黒点結果の有無を調べた。30箇所中、画像欠陥0箇所のものを○、1~3箇所のものを△、4箇所以上を×とした。
(3)外観特性(平滑性)
 表面状態を200倍の光学顕微鏡で観察し、平滑性を官能評価した。高分岐ポリマー未添加品とまったく同じものを○、若干変化がみられるものを△、外観上の平滑性が損なわれているものを×とした。
 得られた結果を下記の表6~9に示す。なお、表中の数値はすべて質量%を示す。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 上記表中の結果から、最外層に、特定構造を有する高分岐ポリマーを含有させることで、皮脂の付着によるクラックに起因する画像欠陥の発生を効果的に抑制できることが確かめられた。また、高分岐ポリマーの含有量を、層中の結着樹脂に対し所定量の範囲とすることで、他の電気特性および外観品質についても良好なレベルを実現できることが確認された。
 以上の結果、本発明によれば、高解像度かつ高速の正帯電方式の電子写真装置に適用され、動作安定性に優れるとともに、皮脂による汚染で生ずるクラックに起因する画像欠陥の発生がなく、安定して高画像品質が得られる、高感度・高速応答でかつ高耐久な電子写真用感光体、その製造方法およびそれを用いた電子写真装置を得ることができる。
1 導電性支持体
2 下引き層
3 単層型感光層
4 電荷輸送層
5 電荷発生層
7 電子写真用感光体
21 ローラ帯電部材
22 高圧電源
241 現像ローラ
24 現像器
251 給紙ローラ
252 給紙ガイド
25 給紙部材
26 転写帯電器(直接帯電型)
271 クリーニングブレード
27 クリーニング装置
28 除電部材
60 電子写真装置
300 感光層

Claims (11)

  1.  導電性支持体上に、少なくとも電荷発生材料、正孔輸送材料、電子輸送材料および結着樹脂を含有する感光層を備える電子写真用感光体において、
     最外層が、電荷発生材料、正孔輸送材料、電子輸送材料、結着樹脂、および、分子内に2個以上のラジカル重合性二重結合を有するモノマーと、分子内に長鎖アルキル基または脂環基および少なくとも1個のラジカル重合性二重結合を有するモノマーとを、重合開始剤の存在下で重合させてなる高分岐ポリマーを含有することを特徴とする電子写真用感光体。
  2.  前記高分岐ポリマーが、分子内に2個以上のラジカル重合性二重結合を有するモノマー(A)と、分子内に炭素原子数6~30のアルキル基または炭素原子数3~30の脂環基、および、少なくとも1個のラジカル重合性二重結合を有するモノマー(B)とを、アゾ系重合開始剤(C)の存在下で重合させることにより得られるものである請求項1記載の電子写真用感光体。
  3.  前記高分岐ポリマーのゲルパーミエーションクロマトグラフィによるポリスチレン換算分子量が、1000~200000である請求項1記載の電子写真用感光体。
  4.  前記モノマー(A)が下記一般式(1)で表される構造を有し、かつ、前記モノマー(B)が下記一般式(2)で表される構造を有する請求項2記載の電子写真用感光体。
    Figure JPOXMLDOC01-appb-I000001
    (一般式(1)中、RおよびRは水素原子またはメチル基を表し、Aは炭素原子数3~30の脂環基、または、ヒドロキシ基で置換されていてもよい炭素原子数2~12のアルキレン基を表し、mは1~30の整数を表す)
    Figure JPOXMLDOC01-appb-I000002
    (一般式(2)中、Rは水素原子またはメチル基を表し、Rは炭素原子数6~30のアルキル基または炭素原子数3~30の脂環基を表し、Aは炭素原子数2~6のアルキレン基を表し、nは0~30の整数を表す)
  5.  前記アゾ系重合開始剤(C)が、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、または、ジメチル1,1’-アゾビス(1-シクロヘキサンカルボキシレート)である請求項2記載の電子写真用感光体。
  6.  単層型正帯電感光体である請求項3~5のうちいずれか一項記載の電子写真用感光体。
  7.  電荷輸送層上に電荷発生層を積層してなる構成を少なくとも含む積層型正帯電感光体である請求項3~5のうちいずれか一項記載の電子写真用感光体。
  8.  前記最外層が、該最外層の結着樹脂100質量部に対し、前記高分岐ポリマーを0.3質量部~6質量部含有する請求項1記載の電子写真用感光体。
  9.  導電性支持体上に、少なくとも電荷発生材料、正孔輸送材料、電子輸送材料および結着樹脂を含有する感光層を備える電子写真用感光体の製造方法において、
     最外層用の塗布液として、電荷発生材料、正孔輸送材料、電子輸送材料、結着樹脂、および、長鎖アルキル基または脂環基を有する高分岐ポリマーを含有するものを用いることを特徴とする電子写真用感光体の製造方法。
  10.  請求項1記載の電子写真用感光体を搭載してなることを特徴とする電子写真装置。
  11.  さらに、帯電プロセスおよび現像プロセスを備える請求項10記載の電子写真装置。
PCT/JP2014/068630 2013-07-16 2014-07-11 電子写真用感光体、その製造方法および電子写真装置 WO2015008710A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480007681.2A CN104969130B (zh) 2013-07-16 2014-07-11 电子照相用感光体、其制造方法以及电子照相装置
KR1020157021355A KR20160030472A (ko) 2013-07-16 2014-07-11 전자사진용 감광체, 그 제조방법 및 전자사진장치
JP2015527283A JP6052414B2 (ja) 2013-07-16 2014-07-11 電子写真用感光体、その製造方法および電子写真装置
US14/822,772 US9671705B2 (en) 2013-07-16 2015-08-10 Electrophotographic photoconductor, production method thereof, and electrophotographic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/069253 WO2015008322A1 (ja) 2013-07-16 2013-07-16 電子写真用感光体、その製造方法および電子写真装置
JPPCT/JP2013/069253 2013-07-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/822,772 Continuation US9671705B2 (en) 2013-07-16 2015-08-10 Electrophotographic photoconductor, production method thereof, and electrophotographic apparatus

Publications (1)

Publication Number Publication Date
WO2015008710A1 true WO2015008710A1 (ja) 2015-01-22

Family

ID=52345818

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/069253 WO2015008322A1 (ja) 2013-07-16 2013-07-16 電子写真用感光体、その製造方法および電子写真装置
PCT/JP2014/068630 WO2015008710A1 (ja) 2013-07-16 2014-07-11 電子写真用感光体、その製造方法および電子写真装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069253 WO2015008322A1 (ja) 2013-07-16 2013-07-16 電子写真用感光体、その製造方法および電子写真装置

Country Status (6)

Country Link
US (1) US9671705B2 (ja)
JP (1) JP6052414B2 (ja)
KR (1) KR20160030472A (ja)
CN (1) CN104969130B (ja)
TW (1) TWI620759B (ja)
WO (2) WO2015008322A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141677A1 (ja) * 2016-02-18 2017-08-24 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP2018120056A (ja) * 2017-01-24 2018-08-02 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ及び画像形成装置
US10747129B2 (en) 2018-02-16 2020-08-18 Fuji Electric Co., Ltd. Electrophotographic photoconductor, method of manufacturing the same, and electrophotographic apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018154739A1 (ja) 2017-02-24 2019-03-07 富士電機株式会社 電子写真用感光体、その製造方法およびそれを用いた電子写真装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001353808A (ja) * 2000-06-13 2001-12-25 Matsushita Electric Ind Co Ltd 汚れ目立ち防止被膜及びその製造方法、並びにそれを用いたディスプレイ、タッチパネル、それらを用いた情報端末
JP2003255580A (ja) * 2002-02-27 2003-09-10 Konica Corp 電子写真感光体、電子写真感光体の製造方法、画像形成方法、画像形成装置及びプロセスカートリッジ
JP2006106772A (ja) * 2001-10-31 2006-04-20 Ricoh Co Ltd 電子写真感光体、それを用いた画像形成装置及び画像形成装置用プロセスカートリッジ
JP2010024330A (ja) * 2008-07-17 2010-02-04 Univ Of Tokushima 高分岐ポリマーを用いた光パターニング組成物
JP2011064734A (ja) * 2009-09-15 2011-03-31 Ricoh Co Ltd 電子写真感光体、並びにそれを用いた画像形成装置及びプロセスカートリッジ
JP2012093403A (ja) * 2010-10-25 2012-05-17 Konica Minolta Business Technologies Inc 有機感光体
WO2012128214A1 (ja) * 2011-03-18 2012-09-27 日産化学工業株式会社 親油性高分岐ポリマー及びそれを含む光重合性組成物

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221355A (ja) 1986-03-18 1988-09-14 Canon Inc 電子写真感光体
GB2190509B (en) 1986-03-18 1989-11-22 Canon Kk Electrophotographic photosensitive member
JPS6352146A (ja) 1986-08-22 1988-03-05 Konica Corp 正帯電用電子写真感光体
JPS6432264A (en) 1987-07-29 1989-02-02 Mita Industrial Co Ltd Positively chargeable organic laminated photosensitive body
JP2584292B2 (ja) * 1988-10-04 1997-02-26 富士写真フイルム株式会社 電子写真感光体
JP2732697B2 (ja) 1990-03-07 1998-03-30 三田工業株式会社 両帯電可能な電子写真用有機感光体
JP2507190B2 (ja) 1991-01-14 1996-06-12 松下電器産業株式会社 電子写真感光体
JP2961561B2 (ja) 1991-01-17 1999-10-12 コニカ株式会社 電子写真感光体
JP2662115B2 (ja) 1991-08-19 1997-10-08 三田工業株式会社 電子写真感光体
DE69217566T2 (de) 1991-03-26 1997-06-12 Mita Industrial Co Ltd Elektrophotographisches organisches lichtempfindliches Material
JPH07160017A (ja) 1993-12-02 1995-06-23 Ricoh Co Ltd 電子写真感光体
JP3869734B2 (ja) 2002-02-04 2007-01-17 大日本印刷株式会社 電荷発生層ならびに電荷注入・輸送層、およびこれを用いた有機感光体
JP4069845B2 (ja) * 2003-10-30 2008-04-02 コニカミノルタビジネステクノロジーズ株式会社 電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法
JP4228932B2 (ja) * 2004-02-18 2009-02-25 富士ゼロックス株式会社 電子写真感光体、プロセスカートリッジ及び電子写真装置
JP2006047344A (ja) * 2004-07-30 2006-02-16 Kyocera Mita Corp 電子写真感光体および画像形成装置
JP2007121733A (ja) 2005-10-28 2007-05-17 Kyocera Mita Corp 電子写真感光体
JP2007163523A (ja) 2005-12-09 2007-06-28 Kyocera Mita Corp 電子写真感光体及び画像形成装置
JP2007256768A (ja) 2006-03-24 2007-10-04 Kyocera Mita Corp 電子写真感光体及び画像形成装置
JP4719085B2 (ja) * 2006-05-31 2011-07-06 株式会社リコー 電子写真感光体、画像形成装置、プロセスカートリッジ
US20120003574A1 (en) 2008-02-22 2012-01-05 Fuji Electric Systems Co., Ltd. Electrophotography photoreceptor, method of manufacturing the same, and electrophotography device using the same
JP5233419B2 (ja) 2008-05-29 2013-07-10 富士電機株式会社 電子写真用感光体およびその製造方法
JP5564831B2 (ja) 2009-05-26 2014-08-06 株式会社リコー 電子写真感光体、並びにそれを用いた画像形成装置及びプロセスカートリッジ
JP2011203495A (ja) * 2010-03-25 2011-10-13 Fuji Xerox Co Ltd 電子写真感光体、電子写真感光体の製造方法、プロセスカートリッジ、および画像形成装置
JP5652641B2 (ja) * 2010-07-07 2015-01-14 株式会社リコー 電子写真感光体及び画像形成装置、画像形成装置用プロセスカートリッジ
CN103210351B (zh) * 2010-12-09 2015-08-05 富士电机株式会社 电子照相光电导体及其制备方法
JP5645779B2 (ja) * 2011-08-30 2014-12-24 京セラドキュメントソリューションズ株式会社 正帯電単層型電子写真感光体、及び画像形成装置
JP2013057904A (ja) * 2011-09-09 2013-03-28 Fuji Xerox Co Ltd 電子写真感光体、画像形成装置、及びプロセスカートリッジ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001353808A (ja) * 2000-06-13 2001-12-25 Matsushita Electric Ind Co Ltd 汚れ目立ち防止被膜及びその製造方法、並びにそれを用いたディスプレイ、タッチパネル、それらを用いた情報端末
JP2006106772A (ja) * 2001-10-31 2006-04-20 Ricoh Co Ltd 電子写真感光体、それを用いた画像形成装置及び画像形成装置用プロセスカートリッジ
JP2003255580A (ja) * 2002-02-27 2003-09-10 Konica Corp 電子写真感光体、電子写真感光体の製造方法、画像形成方法、画像形成装置及びプロセスカートリッジ
JP2010024330A (ja) * 2008-07-17 2010-02-04 Univ Of Tokushima 高分岐ポリマーを用いた光パターニング組成物
JP2011064734A (ja) * 2009-09-15 2011-03-31 Ricoh Co Ltd 電子写真感光体、並びにそれを用いた画像形成装置及びプロセスカートリッジ
JP2012093403A (ja) * 2010-10-25 2012-05-17 Konica Minolta Business Technologies Inc 有機感光体
WO2012128214A1 (ja) * 2011-03-18 2012-09-27 日産化学工業株式会社 親油性高分岐ポリマー及びそれを含む光重合性組成物

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141677A1 (ja) * 2016-02-18 2017-08-24 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JPWO2017141677A1 (ja) * 2016-02-18 2018-12-13 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP2018120056A (ja) * 2017-01-24 2018-08-02 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ及び画像形成装置
US10747129B2 (en) 2018-02-16 2020-08-18 Fuji Electric Co., Ltd. Electrophotographic photoconductor, method of manufacturing the same, and electrophotographic apparatus

Also Published As

Publication number Publication date
TW201512233A (zh) 2015-04-01
JP6052414B2 (ja) 2016-12-27
TWI620759B (zh) 2018-04-11
KR20160030472A (ko) 2016-03-18
US20150346619A1 (en) 2015-12-03
WO2015008322A1 (ja) 2015-01-22
CN104969130A (zh) 2015-10-07
CN104969130B (zh) 2020-03-17
JPWO2015008710A1 (ja) 2017-03-02
US9671705B2 (en) 2017-06-06

Similar Documents

Publication Publication Date Title
JP6896556B2 (ja) 電子写真感光体、電子写真感光体の製造方法、プロセスカートリッジおよび電子写真装置
US20180224760A1 (en) Electrophotographic photoreceptor, method for producing the same, and electrophotographic device including the same
JP6052414B2 (ja) 電子写真用感光体、その製造方法および電子写真装置
JP5782125B2 (ja) 電子写真用感光体、その製造方法およびそれを用いた電子写真装置
JP7180717B2 (ja) 電子写真用感光体、その製造方法および電子写真装置
US9436108B2 (en) Electrophotographic photoreceptor
US8735031B2 (en) Electrophotographic photoreceptor, process for producing the electrophotographic photoreceptor, and electrophotographic device
US20180329318A1 (en) Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus using the same
JP6052415B2 (ja) 電子写真用感光体、その製造方法および電子写真装置
TWI665233B (zh) 電子照相用感光體、其製造方法及使用其之電子照相裝置
US11073771B2 (en) Electrophotographic photoconductor, method of manufacturing the same, and electrophotographic device including the same
JP2746300B2 (ja) 電子写真感光体
JP2022154942A (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP2006234924A (ja) 有機感光体、画像形成方法及び画像形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14825716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015527283

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157021355

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14825716

Country of ref document: EP

Kind code of ref document: A1