WO2015008509A1 - 電源制御装置およびリレーの異常検出方法 - Google Patents

電源制御装置およびリレーの異常検出方法 Download PDF

Info

Publication number
WO2015008509A1
WO2015008509A1 PCT/JP2014/059299 JP2014059299W WO2015008509A1 WO 2015008509 A1 WO2015008509 A1 WO 2015008509A1 JP 2014059299 W JP2014059299 W JP 2014059299W WO 2015008509 A1 WO2015008509 A1 WO 2015008509A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
voltage
converter
power line
power
Prior art date
Application number
PCT/JP2014/059299
Other languages
English (en)
French (fr)
Inventor
横山 哲也
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Priority to CN201480040749.7A priority Critical patent/CN105379087A/zh
Priority to US14/906,107 priority patent/US20160156258A1/en
Publication of WO2015008509A1 publication Critical patent/WO2015008509A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/322Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a power supply control device capable of diagnosing the presence or absence of an abnormality of a control relay as a system relay of a power supply circuit, and an abnormality detection method for the relay.
  • Patent Document 1 As a conventional power supply control device and relay abnormality detection method, the one described in Patent Document 1 is known.
  • This conventional power supply control device is connected between a first relay connected between one pole of a DC power supply and a first power line, and between the other pole and a second power line.
  • a second relay ; a capacitive element (capacitor) connected between the two power lines; a bidirectional converter connected in parallel between the two power lines; and a voltage detection device for detecting a voltage across the capacitive element.
  • a control device that controls the bidirectional converter to charge the capacitive element using the bidirectional converter.
  • the relay abnormality detection method charging of the capacitive element is divided into two stages using the above-described control device, and in the first stage when the ignition switch is turned on, the capacitive element is charged to a predetermined voltage lower than the DC power supply (pre-charging). ) To control the bidirectional converter. Thereafter, the first relay is turned on, the second relay is turned off, and the presence or absence of welding of the second relay in the off state is determined based on the change in the voltage value at both ends of the capacitive element at that time. Yes. That is, if the relay is welded, the voltage rises when only the contact on the opposite side is closed. Therefore, welding is determined by detecting this voltage rise.
  • the first relay is turned off and the second relay is turned on to discharge the capacitive element.
  • the bi-directional DC / DC converter is controlled, and the presence or absence of welding of the first relay is determined based on the change in the voltage detection value detected at that time.
  • the above-described conventional power supply control device and relay abnormality detection method have problems as described below.
  • the above-described conventional power supply control device and relay abnormality detection method is not preferred when performing maintenance, etc., if a high-voltage charge remains in the capacitive element when not in use.
  • a DC converter is used to discharge the capacitor charge to the auxiliary power storage device. In this case, there is a problem that the discharge process cannot be performed when the bidirectional DC / DC converter fails.
  • the discharge process can be performed even when the bidirectional DC / DC converter fails, but the discharge by the discharge resistance is always performed. Therefore, even if the converter is charged, the voltage gradually decreases. In this case, it is necessary to perform relay welding diagnosis by switching the relay ON / OFF after charging the capacitive element with the converter. Therefore, since it is necessary to provide a diagnosis time, the voltage further decreases during that time. Therefore, the inrush current when the power is turned on in the main connection by turning on the relay is increased, and the burden on the relay and the capacitor is increased.
  • the present invention has been made paying attention to the above problems, and the purpose of the present invention is to enable discharge processing even when the bidirectional DC / DC converter breaks down, and in that case, a large current flows in the relay. It is an object of the present invention to provide a power supply control device and a relay abnormality detection method capable of solving the above-described problems such as abrupt flow of current and preventing an increase in the load on relay contacts and capacitors.
  • the power supply control device comprises: A first DC power source and a second DC power source; A first power line and a second power line; A first relay connecting between one pole of the first DC power source and the first power line; A second relay connecting the other pole of the first DC power source and the second power line; A capacitive element connecting between the first power line and the second power line; A converter connected between the first power line and the second power line and the second DC power source; A discharge slowing means for slowing the discharge rate of the discharge current from the capacitive element to the converter; A voltage sensor that detects the voltage across the capacitive element; Control for switching between the first relay and the second relay, controlling the operation of the converter, and controlling whether the voltage signal from the voltage sensor is input to determine whether the first relay and the second relay are abnormal An apparatus, After the control device controls the converter to charge the capacitive element to a predetermined voltage higher than the voltage of the first DC power supply, the control device reverses the ON / OFF states of the first relay and the second relay, and turns
  • the relay abnormality detection method of the present invention includes: A first DC power source and a second DC power source; A first power line and a second power line; A first relay connecting between one pole of the first DC power source and the first power line; A second relay connecting the other pole of the first DC power source and the second power line; A capacitive element connecting between the first power line and the second power line; A converter connected between the first power line and the second power line and the second DC power source; A discharge slowing means for slowing the discharge rate of the discharge current from the capacitive element to the converter; A voltage sensor that detects the voltage across the capacitive element; Control for switching between the first relay and the second relay, controlling the operation of the converter, and controlling whether the voltage signal from the voltage sensor is input to determine whether the first relay and the second relay are abnormal
  • An abnormality detection method for a relay of a power supply device comprising: After controlling the converter so as to charge the capacitive element to a predetermined voltage higher than the voltage of the first DC power supply, the first relay and the second relay are reversed
  • the power supply control device of the present invention enables discharge processing even when the bidirectional DC / DC converter fails, and in that case, when the relay is turned on in this connection after the abnormality diagnosis of the relay has been reliably performed. It is possible to prevent the inrush current from increasing and increasing the load on the relay contact and capacitor.
  • the relay abnormality detection method of the present invention prevents the inrush current when the relay is turned on in the main connection after the relay abnormality diagnosis has been reliably performed and the burden on the relay contact and the capacitor from increasing. be able to.
  • FIG. 1 It is a block diagram which shows the structure of the power supply control apparatus which concerns on the Example of this invention. It is the figure which showed the change of the voltage in the abnormality test
  • the power supply control device of the embodiment includes a main power storage device B1, a resistor 3, a first voltage sensor 4, a second voltage sensor 5, a bidirectional DC / DC converter 6, An electronic control unit (ECU) 7, a system main relay 8, an auxiliary power storage device B 2, a power supply line PL 1, and a ground line SL 1, and a motor / generator (M / G) 1 through an inverter 2 It is connected to the.
  • these devices are mounted on an electric vehicle or a hybrid vehicle.
  • the main power storage device B1 is a secondary battery such as a lithium ion battery having a package in which a large number of cells are connected in series.
  • the auxiliary power storage device B2 supplies power to, for example, auxiliary devices (not shown) or vice versa. It is a battery that can be charged with electric power.
  • Main power storage device B1 corresponds to the first DC power supply of the present invention
  • auxiliary power storage device B2 corresponds to the second DC power supply of the present invention.
  • the motor / generator 1 is composed of, for example, a three-phase AC motor. When electric power is supplied from the inverter 2, the motor / generator 1 drives the vehicle as a motor. The regenerative power is sent to the inverter 2 or used for charging the main power storage device B1.
  • the inverter 2 generates a three-phase current corresponding to the control signal sent from the electronic control unit 7 and supplies it to the three-phase windings of the motor / generator 1, or the motor / generator 1 3 at the time of energy regeneration.
  • the alternating current sent from the phase winding is converted into a direct current and sent to the main power storage device B1.
  • Capacitor C1 (capacitance element) and resistor 3 are arranged in parallel to each other and connected between power supply line PL1 and ground line SL1. Capacitor C1 smoothes voltage fluctuations between power supply line PL1 and ground line SL1.
  • the resistor 3 has a high resistance value, and is set so that when the capacitor C1 is discharged, the current flows slowly between the lines PL1 and SL1 with a small current, and the discharge rate of the discharge current from the capacitor C1 To slow down.
  • the resistor 3 corresponds to the discharge slowing means of the present invention.
  • the first voltage sensor 4 detects the voltage across the capacitor C1 and inputs the detected voltage signal VL to the electronic control unit 7.
  • the second voltage sensor 5 detects the terminal voltage of the main power storage device B 1 and inputs the detected voltage signal VB to the electronic control unit 7.
  • the first voltage sensor 4 corresponds to the voltage sensor of the present invention.
  • Bi-directional DC / DC converter 6 is connected between power supply line PL1 and ground line SL1 and auxiliary power storage device B2, and the voltage value of the direct current that flows from the former to the latter and vice versa, respectively. Convert to a voltage value suitable for That is, the pressure is increased from the former to the latter, and the pressure is decreased in the opposite direction.
  • the electronic control unit 7 is composed of, for example, a microcomputer, and the voltage signal VL of the voltage value of the capacitor C1 detected by the first voltage sensor 4 and the terminal voltage of the main power storage device B1 detected by the second voltage sensor 5 , A torque command value signal TR of the motor / generator 1 and its rotation speed signal MRN, and an ignition on / off signal IG from an ignition (not shown), respectively.
  • the electronic control unit 7 outputs a pulse width modulation signal PW1 to the inverter 2 so that the inverter 2 generates electric power to be supplied to the motor / generator 1 based on these signals, or the bidirectional DC / DC converter 6 For example, a control signal CTL for controlling this is output.
  • relay signals SE1 and SE2 are output to turn on and off the first relay SMR1 and the second relay SMR2.
  • the electronic control unit 7 corresponds to the control device of the present invention.
  • the system main relay 8 includes a first relay SMR1 and a second relay SMR2.
  • First relay SMR1 is provided between the positive electrode of main power storage device B1 and power supply line PL1
  • second relay SMR2 is provided between the negative electrode of main power storage device B1 and ground line SL1, respectively. Both are connected when on, and both are shut off when the system is off. However, when the relay abnormality detection method of the present invention is executed, control is performed so that one of the first relay SMR1 and the second relay SMR2 is turned on and the other is turned off.
  • the power supply line PL1 connects between the first relay SMR1 and the plus side terminal of the inverter 2, and the ground line SL1 connects between the second relay SMR2 and the minus side terminal of the inverter 2, respectively.
  • one of the power supply line PL1 and the ground line SL1 corresponds to the first power line of the present invention, and the other corresponds to the second power line of the present invention.
  • the electronic control unit 7 drives the bidirectional DC / DC converter 6,
  • the electric charge stored in the capacitor C1 is supplied to the bidirectional DC / DC converter 6 to change the voltage value and charge the auxiliary power storage device B2.
  • the resistor 3 is connected in parallel with the capacitor C1 and connected between the power supply line PL1 and the ground line SL1. Since the resistance value of the resistor 3 is set high, even when the bidirectional DC / DC converter 6 does not operate normally, it is possible to discharge from the capacitor C1 via the resistor 3 having a high resistance value. .
  • the precharge voltage value and the threshold value for performing abnormality determination are made different from those of the conventional relay abnormality detection method. Below, these are demonstrated concretely.
  • the capacitor is precharged from the bidirectional DC / DC converter during the first stage inspection performed when the ignition switch is turned on.
  • the voltage value at this precharging and the voltage at the main connection are Since there is a slight error with the value, the voltage value at the time of abnormality detection is more than a certain amount of difference from the charging voltage value at the time of this connection (terminal voltage VB of the main power storage device B1 in the embodiment) It is easier to check when measuring.
  • the precharge value and the charge voltage value at the time of main connection A smaller voltage difference is desirable.
  • the relay abnormality detection method in the prior art is such that the predetermined voltage value Vth1 precharged by the bidirectional DC / DC converter is set to a value that is somewhat lower than the voltage VB of the main power storage device B1.
  • the threshold value Vth2 for performing the abnormality determination compared with the voltage value VL detected by the voltage sensor is set to an intermediate value between them.
  • the above three voltage values VB, Vth1, and Vth2 (Vth1 ⁇ Vth2 ⁇ VB) must have a certain degree of difference for measurement in consideration of errors.
  • the relay abnormality detection method is performed. That is, as shown in FIG. 3 (the horizontal axis indicates time, and the vertical axis indicates voltage value), detection of the presence or absence of abnormality of the second relay is started when the ignition switch is turned on based on the relationship between the voltages. From time t1, with the first relay and the second relay turned off, precharge is started from the auxiliary power storage device to the capacitive element by driving the bidirectional DC / DC converter. As a result, the voltage value VL of the capacitive element gradually increases. When the voltage value VL reaches the preset voltage value Vth1 at time t2, the driving of the bidirectional DC / DC converter is turned off. Next, the first relay is turned on while the second relay is turned off.
  • the trend of the voltage value VL is observed and compared with the threshold voltage Vth2, thereby diagnosing the presence or absence of abnormality (welding) of the second relay that is turned off. judge. If the detected voltage value VL is higher than the threshold voltage Vth2, it is determined that the second relay is welded, and if it is lower, it is determined to be normal.
  • the second relay is also turned on, and the voltage VB is applied from the main power storage device to the capacitor or the like through the relay.
  • the discharging resistor is added to the main power storage device, the current is discharged through the resistor during the abnormality inspection by the voltage value comparison.
  • a voltage drop indicated by ⁇ V1 occurs and becomes lower than the voltage value Vth1 precharged by the bidirectional DC / DC converter.
  • the main connection is made at time t3
  • the inrush current flows into the capacitor and the relay with a large voltage difference indicated by ⁇ V2 in FIG. 3, and the durability of these becomes worse.
  • the abnormality detection method for the relay of the power supply control device has the bidirectional DC / DC converter 6 in the state where the first and second relays SMR1 and SMR2 are turned off at time t1.
  • the driving is started and the capacitor C1 starts to be precharged, but the voltage is raised to a value Vth3 set to a value higher than the terminal voltage VB of the main power storage device B1, unlike the case of the prior art.
  • the bidirectional DC / DC converter 6 is stopped at time t2 (however, the value is different from that of the above-mentioned conventional technology t2), and the first relay SMR1 is turned on while the second relay SMR2 is turned off.
  • the voltage value VL of the capacitor C1 measured by the first voltage sensor 4 and the threshold value Vth4 are compared. Note that these values have a relationship of VB ⁇ Vth4 ⁇ Vth3 and are large enough to be determined even if there is an error, and are set so as not to be as large as possible.
  • the second relay SMR2 is welded. Is determined). If an abnormality is determined, the countermeasure processing, for example, a warning is issued, or the on operation of the system main relay 8 is prohibited. On the other hand, in the case of normal determination, the process proceeds to the main connection, and when second relay SMR2 is turned on from the off state, main power storage device B1 is electrically connected to power supply line PL1 and ground line SL1, and inverter 2 The voltage value VB is applied to.
  • the voltage value VL drops by ⁇ V3 from the voltage value Vth3 at the time of pre-charging due to the discharge from the resistor 3, and the inrush current flows with a small difference of ⁇ V4 at that time. Therefore, damage to the system main relay 8 and the capacitor C1 can be suppressed.
  • the abnormality determination of the first relay SMR1 is performed in the same manner as in the prior art.
  • the resistance 3 having a high resistance value is provided so that the discharge rate becomes slow when the capacitor C1 is discharged. For this reason, even when the bidirectional DC / DC converter 6 does not operate normally, it is possible to discharge from the capacitor C1 via the resistor 3. In this case, adding the resistor 3 decreases the voltage value VL across the capacitor C1 during abnormality diagnosis.
  • the resistance value of the resistor 3 is increased to slow the discharge rate, and the predetermined voltage value Vth3 precharged to the capacitor C1 by the bidirectional DC / DC converter 6 is set to be higher than the voltage value VB of the main power storage device B1. Increased and compared with threshold Vth4.
  • the discharge slowing means is connected between the power supply line PL1 (first power line) and the ground line SL1 (second power line). Since the resistor 3 is connected in parallel to the capacitor C1 (capacitance element), a large current can be prevented from suddenly flowing into the converter easily and inexpensively.
  • the present invention has been described based on the above-described embodiments.
  • the present invention is not limited to the above-described embodiments, and is included in the present invention even when there is a design change or the like without departing from the gist of the present invention.
  • the resistor 3 is used as a means for slowing down the discharge, but any other means can be used as long as the discharge current from the capacitor C1 is alleviated from suddenly entering the bidirectional DC / DC converter 6 with a large current. But you can.
  • a boost converter may be interposed between the inverter 2 and the system main relay 8 as in the case of the prior art.
  • the power supply control device and the relay abnormality detection method of the present invention are not limited to electric vehicles and hybrid vehicles, and may be applied to other devices.
  • Motor / generator 1 Motor / generator 2 Inverter 3 Resistance (Discharge slowing means) 4 First voltage sensor (voltage sensor) 5 Second voltage sensor 6 Bidirectional DC / DC converter (converter) 7 Electronic control unit (control device) 8 System main relay B1 Main power storage device (first DC power supply) B2 Auxiliary power storage device (second DC power supply) PL1 power line (first power line) SL1 ground line (second power line) SMR1 first relay SMR2 second relay

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 電源制御装置は、容量素子C1からコンバータ6への放電電流の放電速度を緩慢化する放電緩慢化手段3を有し、コンバータ6を制御して第1の直流電源B1の電圧より高い所定電圧まで容量素子C1を充電した後に、第1、第2のリレーSMR1、SMR2のオンオフ状態を逆にした状態で電圧センサ4にて検出した電圧値の変化に基づいて両リレーのうちの少なくとも一方の異常を判定する。

Description

電源制御装置およびリレーの異常検出方法
 本発明は、電源回路のシステムリレーとしての制御リレーの異常の有無を診断可能な電源制御装置、およびそのリレーの異常検出方法に関する。
 従来の電源制御装置およびリレーの異常検出方法としては、特許文献1に記載のものが知られている。
 この従来の電源制御装置は、直流電源の一方の極と第1の電力ラインとの間に接続された第1のリレーと、その他方の極と第2の電力ラインとの間に接続される第2のリレーと、上記両電力ライン間に接続された容量素子(コンデンサ)と、これに並列に両電力ライン間に接続された双方向コンバータと、容量素子の両端電圧を検出する電圧検出装置と、双方向コンバータを用いて容量素子を充電するように双方向コンバータを制御する制御装置と、を備えている。
 そして、リレーの異常検出方法では、上記制御装置を用いて、容量素子の充電を2段階に分け、イグニッションスイッチオン時の第1段階では、直流電源より低い所定電圧まで容量素子を充電(プリ充電)するように双方向コンバータを制御する。その後、第1リレーをオン状態、第2リレーをオフ状態にしてそのときの容量素子の両端の電圧値の変化に基づいてオフ状態にある第2のリレーの溶着の有無を判定するようにしている。
 すなわち、リレーが溶着していれば、反対側の接点だけを閉じたときに、上記電圧が上昇していくので、この電圧上昇を検知することで溶着の判定を行う。
 次いで、イグニッションスイッチオフ時の第2段階では、容量素子が直流電源の電圧レベルまで充電された後、第1のリレーをオフ状態に、また第2のリレーをオン状態として容量素子を放電させるように双方向DC/DCコンバータを制御し、そのとき検出された電圧検出値の変化に基づいて第1のリレーの溶着の有無を判定するようにしている。
日本国特許第4788461号公報
 しかしながら、上記従来の電源制御装置およびリレーの異常検出方法には、以下に説明するような問題がある。
 上記従来の電源制御装置およびリレーの異常検出方法は、使わないときに容量素子に高電圧の電荷が残っていると、メインテナンス等をするときに好ましくないので、システム停止後は、双方向DC/DCコンバータを用いてコンデンサの電荷が補機用蓄電装置へ放電されるようにしている。
 この場合、双方向DC/DCコンバータが故障した時に放電処理が実施できないといった問題がある。
 一方、この種の電源制御装置では、容量素子間に接続された放電用経路として放電抵抗が設けられているものが、知られている。この場合、双方向DC/DCコンバータが故障した時にも放電処理が実施可能となるものの、以下の問題がある。
 すなわち、特許文献1に記載の従来の電源制御装置の制御では容量素子への突入電流を抑制する為、リレー投入前にコンバータ(双方向DC/DCコンバータなど)側が容量素子に電荷を注入し、電圧を直流電源の電圧まで高める必要がある。この制御をしないと、リレー投入時の突入電流によりリレーが溶着したり、コンデンサの寿命を短くしてしまう虞がある。この突入電流をなるべく低くするには、電圧を直流電源電圧近傍に設定するほうがよいが、以下の理由により近傍に設定することができない。
 したがって、特許文献1に記載の電源制御装置に上記放電抵抗をさらに追加すれば、双方向DC/DCコンバータが故障した時にも放電処理が実施できることとなるものの、この放電抵抗による放電は常時行われるので、コンバータを充電しても徐々にその電圧が低下してしまうことになる。
 この場合、コンバータで容量素子に充電した後、リレーのON/OFF切替えを行って、リレー溶着診断を行う必要がある。そのため、診断時間を設ける必要があることから、その間、更に電圧が低下してしまう。そのため、リレー投入による本接続での電源ON時における突入電流が大きくなってリレーやコンデンサの負担が大きくなる。
 本発明は、上記問題に着目してなされたもので、その目的とするところは、双方向DC/DCコンバータが故障した時にも放電処理が実施できるようにするとともに、その場合、リレーに大きな電流が急激に流れ込むといった上記不具合を解消し、リレーの接点やコンデンサにかかる負担が大きくなることを防ぐことができるようにした電源制御装置およびリレーの異常検出方法を提供することにある。
 この目的のため本発明による電源制御装置は、
 第1の直流電源および第2の直流電源と、
 第1の電力ラインおよび第2の電力ラインと、
 第1の直流電源の一方の極と第1の電力ラインとの間を接続する第1のリレーと、
 第1の直流電源の他方の極と第2の電力ラインとの間を接続する第2のリレーと、
 第1の電力ラインおよび第2の電力ラインの間を接続する容量素子と、
 第1の電力ラインおよび第2の電力ラインと第2の直流電源との間に接続されたコンバータと、
 容量素子からコンバータへの放電電流の放電速度を緩慢化する放電緩慢化手段と、
 容量素子の両端の電圧を検出する電圧センサと、
 第1のリレーおよび第2のリレーの切り替えを制御し、コンバータの動作を制御するとともに、電圧センサからの電圧信号が入力されて第1のリレーおよび第2のリレーの異常の有無を判定する制御装置と、を備え、
 制御装置が、第1の直流電源の電圧より高い所定電圧まで容量素子を充電するようにコンバータを制御した後に、第1のリレーおよび第2のリレーのオンオフ状態をそれぞれ逆にし、かつコンバータをオフにした状態で、電圧センサにて検出した電圧値の変化に基づいて第1のリレーおよび第2のリレーのうちオフにしたリレーの異常を判定するようにした、
 ことを特徴とする。
 また、本発明のリレーの異常検出方法は、
 第1の直流電源および第2の直流電源と、
 第1の電力ラインおよび第2の電力ラインと、
 第1の直流電源の一方の極と第1の電力ラインとの間を接続する第1のリレーと、
 第1の直流電源の他方の極と第2の電力ラインとの間を接続する第2のリレーと、
 第1の電力ラインおよび第2の電力ラインの間を接続する容量素子と、
 第1の電力ラインおよび第2の電力ラインと第2の直流電源との間に接続されたコンバータと、
 容量素子からコンバータへの放電電流の放電速度を緩慢化する放電緩慢化手段と、
 容量素子の両端の電圧を検出する電圧センサと、
 第1のリレーおよび第2のリレーの切り替えを制御し、コンバータの動作を制御するとともに、電圧センサからの電圧信号が入力されて第1のリレーおよび第2のリレーの異常の有無を判定する制御装置と、を備えた電源装置のリレーの異常検出方法であって、
 第1の直流電源の電圧より高い所定電圧まで容量素子を充電するようにコンバータを制御した後に、第1のリレーおよび第2のリレーのオンオフ状態をそれぞれ逆にし、かつコンバータをオフにした状態で、電圧センサにて検出した電圧値の変化に基づいて第1のリレーおよび第2のリレーのうちのオフにしたリレーの異常を判定するようにした、
 ことを特徴とする。
 本発明の電源制御装置は、双方向DC/DCコンバータが故障した時にも放電処理が実施できるようにするとともに、その場合、リレーの異常診断を確実に実施した後の本接続でのリレーオン時における突入電流が大きくなってリレーの接点やコンデンサにかかる負担が大きくなることを防ぐことができる。
 また、本発明のリレーの異常検出方法は、リレーの異常診断を確実に実施した後の本接続でのリレーオン時における突入電流が大きくなってリレーの接点やコンデンサにかかる負担が大きくなることを防ぐことができる。
本発明の実施例に係る電源制御装置の構成を示すブロック図である。 実施例の電源制御装置におけるリレーの異常検査における電圧の変化を示した図である。 従来技術におけるリレーの異常検査における電圧の変化を示した図である。
 以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
 まず、実施例の電源制御装置の全体構成を説明する。
 実施例の電源制御装置は、図1に示すように、主蓄電装置B1と、抵抗3と、第1の電圧センサ4と、第2の電圧センサ5と、双方向DC/DCコンバータ6と、電子コントロールユニット(ECU)7と、システムメインリレー8と、補機用蓄電装置B2と、電源ラインPL1と、接地ラインSL1と、を備え、インバータ2を介してモータ/ジェネレータ(M/G)1に接続されている。
 これらの装置は、本実施例では、電気自動車やハイブリッド自動車に搭載される。
 主蓄電装置B1は、たとえば多数のセルを直列接続したパッケージからなるリチウムイオン電池等の2次電池であり、補機用蓄電装置B2は、たとえば図示しない補機類へ電力を供給したり逆に電力を充電したりすることが可能な電池である。
 主蓄電装置B1は本発明の第1の直流電源に相当し、補機用蓄電装置B2は本発明の第2の直流電源に相当する。
 モータ/ジェネレータ1は、たとえば3相交流モータで構成され、インバータ2から電力が供給されるとモータとして車両を駆動し、制動時などにおいてはジェネレータとして機能して制動エネルギーを電気エネルギーに変えて回生し、この回生電力をインバータ2に送ったり、主蓄電装置B1の充電に利用したりする。
 インバータ2は、電子コントロールユニット7から送られてくる制御信号に応じた3相電流を作り出してモータ/ジェネレータ1の3相の巻線にそれぞれ供給したり、あるいはエネルギー回生時にモータ/ジェネレータ1の3相の巻線から送られてくる交流電流を直流電流に変換して主蓄電装置B1へ送ったりする。
 コンデンサC1(容量素子)および抵抗3は、互いに並列配置されて、電源ラインPL1と接地ラインSL1との間に接続される。
 コンデンサC1は電源ラインPL1と接地ラインSL1との間の電圧変動を平滑化する。
 一方、抵抗3は、高い抵抗値を持たせ、コンデンサC1の放電時、小さな電流でゆっくりと電流が両ラインPL1、SL1間を流れるように設定してあり、コンデンサC1からの放電電流の放電速度を緩慢化する。
 なお、抵抗3は、本発明の放電緩慢化手段に相当する。
 第1の電圧センサ4は、コンデンサC1の両端間の電圧を検出して、この検出された電圧信号VLを電子コントロールユニット7に入力する。
 一方、第2の電圧センサ5は、主蓄電装置B1の端子電圧を検出して、この検出された電圧信号VBを電子コントロールユニット7に入力する。
 なお、第1の電圧センサ4は、本発明の電圧センサに相当する。
 双方向DC/DCコンバータ6は、電源ラインPL1および接地ラインSL1と、補機用蓄電装置B2との間に接続されて、前者から後者へ、またこの逆向きへ流す直流電流の電圧値をそれぞれに合った電圧値に変換する。すなわち、前者から後者へは昇圧し、この逆向きには降圧する。
 電子コントロールユニット7は、たとえばマイクロコンピュータで構成されて、第1の電圧センサ4で検出したコンデンサC1の電圧値の電圧信号VLと、第2の電圧センサ5で検出した主蓄電装置B1の端子電圧の電圧信号VBと、また図示しない外部ECUからモータ/ジェネレータ1のトルク指令値信号TRおよびその回転数信号MRNと、図示しないイグニッションからイグニッションオンオフ信号IGとが、それぞれ入力される。
 そして、電子コントロールユニット7は、それらの信号を基にモータ/ジェネレータ1に供給する電力をインバータ2で生成するようにインバータ2へパルス幅変調信号PW1を出力したり、双方向DC/DCコンバータ6へこれを制御する制御信号CTLを出力したりする。
 さらにリレー信号SE1、SE2を出力して、第1のリレーSMR1、第2のリレーSMR2をオンオフさせる。
 なお、電子コントロールユニット7は、本発明の制御装置に相当する。
 システムメインリレー8は、第1のリレーSMR1と、第2のリレーSMR2と、を備えている。
 第1のリレーSMR1は、主蓄電装置B1の正極と電源ラインPL1との間に、また第2のリレーSMR2は、主蓄電装置B1の負極と接地ラインSL1との間にそれぞれ設けられて、システムオン時には両者が接続され、システムオフ時には両者とも遮断される。
 ただし、本発明のリレーの異常検出方法が実行される際は、第1のリレーSMR1および第2のリレーSMR2の一方がオン状態に、他方がオフ状態となるように制御される。
 電源ラインPL1は、第1のリレーSMR1とインバータ2のプラス側端子との間を、また接地ラインSL1は、第2のリレーSMR2とインバータ2のマイナス側端子との間をそれぞれ接続する。
 なお、電源ラインPL1および接地ラインSL1の一方は本発明の第1の電力ラインに相当し、他方は本発明の第2の電力ラインに相当する。
 後で説明するように、イグニッションスイッチオフとなった後に、コンデンサC1に電荷が残ったままになっているとメインテナンスに不都合を生じる。このため、上記のように構成された電源装置は、従来技術の場合と同様に、イグニッションスイッチからの信号IGがオフとなると、電子コントロールユニット7が双方向DC/DCコンバータ6を駆動して、コンデンサC1に蓄えられた電荷を双方向DC/DCコンバータ6へ流して電圧値を変え、補機用蓄電装置B2を充電するようにしている。
 実施例では、従来技術の構成に加えて、抵抗3をコンデンサC1と並列にして電源ラインPL1と接地ラインSL1との間に接続している。そして、抵抗3の抵抗値を高く設定しているので、双方向DC/DCコンバータ6が正常に作動しない場合でも、高抵抗値を有する抵抗3を介してコンデンサC1から放電することが可能となる。
 このように放電用の抵抗3を追加することで、双方向DC/DCコンバータ6が正常に作動しない場合でも、コンデンサC1からの放電が可能となるが、抵抗3の追加に起因して上記リレーの異常検出の検査時に下記に説明するような新たな問題が生じる。
 そこで、実施例のリレーの異常検出方法では、プリチャージの電圧値や、異常判定を行うための閾値の大きさを、従来のリレーの異常検出方法とは異なるようにする。
 以下に、これらについて具体的に説明する。
 まず、従来技術の装置に実施例のように抵抗3を追加し、従来技術と同じ異常検出方法を実行する場合について図3に基づいて説明する。ただし、説明を分かりやすくするため、昇圧コンバータはないものとする。
 すなわち、この場合、イグニッションスイッチオンで行なう第1段階での検査時においては、双方向DC/DCコンバータからコンデンサにプリ充電を行うが、このプリ充電時での電圧値と本接続時での電圧値とでは、若干誤差があるので、異常検出時の電圧値は、本接続のときの充電電圧値(実施例では主蓄電装置B1の端子電圧VB)からある程度の大きさ以上の差をつけた方が、測定するときに確認しやすい。
 一方、本充電をするためにリレーを繋ぐときには、リレーオン時の突入電流を小さくしてリレーの接点等にかかる負担が小さくなるようにしたいため、プリ充電値と本接続のときの充電電圧値との電圧差が小さい方が望ましい。
 このため、図3に示すように、従来技術でのリレーの異常検出方法は、双方向DC/DCコンバータでプリ充電する所定の電圧値Vth1は、主蓄電装置B1の電圧VBよりある程度低い値とし、かつ電圧センサで検出した電圧値VLと比較する異常判定を行うための閾値Vth2はそれらの中間の値に設定されている。
 そして、上述のように、誤差を考慮した測定のため、上記3つの電圧値VB、Vth1、 Vth2(Vth1<Vth2<VB)は、それぞれある程度の差を持たせなければならない。
 このような条件で上記リレーの異常検出方法は行なわれる。すなわち、図3(横軸は時間を、縦軸は電圧値)に示すように、各電圧の関係に基づいてイグニッションスイッチオンで第2のリレーの異常の有無の検出が開始される。
 時刻t1から第1のリレーおよび第2のリレーをオフにしたままで、双方向DC/DCコンバータの駆動により補機用蓄電装置から容量素子にプリ充電を始める。この結果、容量素子の電圧値VLは徐々に高まって行く。
 時刻t2で上記電圧値VLが予め設定した電圧値Vth1に達すると、双方向DC/DCコンバータの駆動をオフにする。次いで、第2のリレーをオフにしたまま第1のリレーをオンにする。
 そして、時刻t2から所定の時刻t3までの期間、電圧値VLの動向をみてこの電圧と閾値電圧Vth2と比較することで、オフにされている第2のリレーの異常(溶着)の有無を診断判定する。検出した電圧値VLが閾値電圧Vth2より上回っていれば第2のリレーが溶着していると判定し、下回っていれば正常であると判定する。
 正常と判定されたら、第2リレーもオンにして主蓄電装置からリレーを通じてコンデンサ等に電圧VBが印加されるようになる。
 ところが、主蓄電装置に上記放電用の抵抗が追加されていると、電圧値比較による異常検査中に、抵抗を介して電流が放電される結果、図3に示すように、時刻t2~t3の期間中にΔV1で示す電圧低下が発生し双方向DC/DCコンバータでプリチャージした電圧値Vth1より低くなってしまう。
 そうすると、時刻t3で本接続するとき、図3中にΔV2で示す大きな電圧差で突入電流がコンデンサやリレーに流れ込むことになり、これらの耐久性が悪化してしまうことになる。
 そこで、実施例の電源制御装置のリレーの異常検出方法は、図2に示すように、時刻t1に第1および第2のリレーSMR1、SMR2をオフにした状態で双方向DC/DCコンバータ6を駆動開始してコンデンサC1にプリチャージを始めるが、その電圧は従来技術の場合と異なり、主蓄電装置B1の端子電圧VBよりも高い値に設定された値Vth3まで昇圧していく。
 時刻t2(ただし、上記従来技術のt2とは値が異なる)で双方向DC/DCコンバータ6を停止するとともに、第2のリレーSMR2はオフにしたまま第1のリレーSMR1をオンにして、そのときの第1の電圧センサ4で測定したコンデンサC1の電圧値VLと閾値Vth4とを比較する。
 なお、これらの値は、VB<Vth4<Vth3となる関係で、かつ誤差があっても判定できる大きさであって、できるだけ大きな差にならないように設定してある。
 したがって、測定した電圧値VLが抵抗3からの放電により低下して行き、閾値Vth4以下になったら正常であると判定し、閾値Vth4より高いままであると異常判定(第2のリレーSMR2が溶着しているとの判定)がなされる。
 異常判定がなされれば、その対策処理、たとえば警告を発したり、システムメインリレー8のオン動作を禁止したりする。
 一方、正常判定の場合には、本接続へ進み、第2のリレーSMR2はオフ状態からオンの状態にすると、主蓄電装置B1が電源ラインPL1と接地ラインSL1と電気的に接続され、インバータ2にはその電圧値VBが印加される。
 この本接続では、電圧値VLは、抵抗3からの放電によりプリ充電時の電圧値Vth3からΔV3だけ降下するので、そのときの電圧差はΔV4といった小さな差で突入電流が流れ込む。したがって、システムメインリレー8やコンデンサC1等へのダメージを抑えることができる。
 一方、イグニッションスイッチオフを検知したときは、従来技術と同じようにして、第1のリレーSMR1の異常判定を行う。
 したがって、上記のように構成した実施例の電源制御装置とリレーの異常検出方法は、高抵抗値の抵抗3を設けてコンデンサC1の放電時に放電速度が遅くなるようにした。このため、双方向DC/DCコンバータ6が正常に作動しない場合でも、抵抗3を介してコンデンサC1から放電することが可能となる。
 また、この場合、抵抗3を追加することで異常診断中にコンデンサC1の両端の電圧値VLが低下する。実施例では、抵抗3の抵抗値を高くして放電速度を緩慢とするとともに、双方向DC/DCコンバータ6でコンデンサC1にプリチャージする所定電圧値Vth3を主蓄電装置B1の電圧値VBよりも高くして閾値Vth4と比較するようにした。これにより、本接続時での電圧値VLと主蓄電装置B1の電圧値VBとの間の電圧差ΔV3を小さく抑えることができる。この結果、検査時オフにしていた方のリレー(実施例では第2のリレーSMR2)をオンにした場合の突入電流を小さくできる。したがって、リレーやコンデンサへの悪影響(寿命など)を低減できる。
 また、上記実施例の電源制御装置およびリレーの異常検出方法では、放電緩慢化手段を、電源ラインPL1(第1の電力ライン)と接地ラインSL1(第2の電力ライン)との間に接続されてコンデンサC1(容量素子)に並列接続される抵抗3としたので、安価かつ簡単にコンバータへ大きな電流が急激に流れ込むのを防ぐことができる。
 以上、本発明を上記実施例に基づき説明してきたが、本発明は上記実施例に限られず、本発明の要旨を逸脱しない範囲で設計変更等があった場合でも、本発明に含まれる。
 たとえば、放電緩慢化手段には、抵抗3を用いたが、コンデンサC1からの放電電流が急激に大きな電流で双方向DC/DCコンバータ6へ入力されるのを緩和するものであれば他のものでもよい。
 また、インバータ2とシステムメインリレー8との間に、従来技術の場合と同様に、昇圧コンバータを介装してもよい。
 また、本発明の電源制御装置およびリレーの異常検出方法は、電気自動車やハイブリッド自動車に限られず、他のものに適用するようにしてもよい。
 なお、本出願は、2013年7月19日付で出願された日本特許出願(特願2013-150273号)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
 1   モータ/ジェネレータ
 2   インバータ
 3   抵抗(放電緩慢化手段)
 4   第1の電圧センサ(電圧センサ)
 5   第2の電圧センサ
 6   双方向DC/DCコンバータ(コンバータ)
 7   電子コントロールユニット(制御装置)
 8   システムメインリレー
 B1  主蓄電装置(第1の直流電源)
 B2  補機用蓄電装置(第2の直流電源)
 PL1  電源ライン(第1の電力ライン)
 SL1  接地ライン(第2の電力ライン)
 SMR1  第1のリレー
 SMR2  第2のリレー

Claims (4)

  1.  第1の直流電源および第2の直流電源と、
     第1の電力ラインおよび第2の電力ラインと、
     前記第1の直流電源の一方の極と前記第1の電力ラインとの間を接続する第1のリレーと、
     前記第1の直流電源の他方の極と前記第2の電力ラインとの間を接続する第2のリレーと、
     前記第1の電力ラインおよび前記第2の電力ラインの間を接続する容量素子と、
     前記第1の電力ラインおよび前記第2の電力ラインと前記第2の直流電源との間に接続されたコンバータと、
     前記容量素子から前記コンバータへの放電電流の放電速度を緩慢化する放電緩慢化手段と、
     前記容量素子の両端の電圧を検出する電圧センサと、
     前記第1のリレーおよび前記第2のリレーの切り替えを制御し、前記コンバータの動作を制御するとともに、前記電圧センサからの電圧信号が入力されて前記第1のリレーおよび第2のリレーの異常の有無を判定する制御装置と、を備え、
     前記制御装置が、前記第1の直流電源の電圧より高い所定電圧まで前記容量素子を充電するように前記コンバータを制御した後に、前記第1のリレーおよび前記第2のリレーのオンオフ状態をそれぞれ逆にし、かつコンバータをオフにした状態で、前記電圧センサにて検出した電圧値の変化に基づいて前記第1のリレーおよび前記第2のリレーのうちのオフにしたリレーの異常を判定するようにした、
     ことを特徴とする電源制御装置。
  2.  請求項1に記載の電源制御装置において、
     前記放電緩慢化手段は、第1の電力ラインと第2の電力ラインとの間に接続されて容量素子に並列接続される抵抗である、
     ことを特徴とする電源制御装置。
  3.  第1の直流電源および第2の直流電源と、
     第1の電力ラインおよび第2の電力ラインと、
     前記第1の直流電源の一方の極と前記第1の電力ラインとの間を接続する第1のリレーと、
     前記第1の直流電源の他方の極と前記第2の電力ラインとの間を接続する第2のリレーと、
     前記第1の電力ラインおよび前記第2の電力ラインの間を接続する容量素子と、
     前記第1の電力ラインおよび前記第2の電力ラインと第2の直流電源との間に接続されたコンバータと、
     前記容量素子から前記コンバータへの放電電流の放電速度を緩慢化する放電緩慢化手段と、
     前記容量素子の両端の電圧を検出する電圧センサと、
     前記第1のリレーおよび前記第2のリレーの切り替えを制御し、前記コンバータの動作を制御するとともに、前記電圧センサからの電圧信号が入力されて前記第1のリレーおよび前記第2のリレーの異常の有無を判定する制御装置と、を備えた電源装置のリレーの異常検出方法であって、
     前記第1の直流電源の電圧より高い所定電圧まで前記容量素子を充電するように前記コンバータを制御した後に、前記第1のリレーおよび前記第2のリレーのオンオフ状態をそれぞれ逆にし、かつコンバータをオフにした状態で、前記電圧センサにて検出した電圧値の変化に基づいて前記第1のリレーおよび前記第2のリレーのうちオフにしたリレーの異常を判定するようにした、
    ことを特徴とするリレーの異常検出方法。
  4.  請求項3に記載したリレーの異常検出方法において、
     前記放電緩慢化手段は、第1の電力ラインと第2の電力ラインとの間に接続されて容量素子に並列接続される抵抗である、
     ことを特徴とするリレーの異常検出方法。
PCT/JP2014/059299 2013-07-19 2014-03-28 電源制御装置およびリレーの異常検出方法 WO2015008509A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480040749.7A CN105379087A (zh) 2013-07-19 2014-03-28 电源控制装置和检测继电器异常的方法
US14/906,107 US20160156258A1 (en) 2013-07-19 2014-03-28 Power source control device and method for detecting relay abnormality

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013150273A JP6201160B2 (ja) 2013-07-19 2013-07-19 電源制御装置およびリレー異常検出方法
JP2013-150273 2013-07-19

Publications (1)

Publication Number Publication Date
WO2015008509A1 true WO2015008509A1 (ja) 2015-01-22

Family

ID=52345984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059299 WO2015008509A1 (ja) 2013-07-19 2014-03-28 電源制御装置およびリレーの異常検出方法

Country Status (4)

Country Link
US (1) US20160156258A1 (ja)
JP (1) JP6201160B2 (ja)
CN (1) CN105379087A (ja)
WO (1) WO2015008509A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105119474A (zh) * 2015-08-28 2015-12-02 洛阳中重自动化工程有限责任公司 一种矿井提升机用防爆变频器直流电容放电系统及方法
WO2016185579A1 (ja) * 2015-05-20 2016-11-24 日産自動車株式会社 電源制御装置及びその方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9947497B2 (en) 2014-09-30 2018-04-17 Johnson Controls Technology Company Integrated connector having sense and switching conductors for a relay used in a battery module
JP6201967B2 (ja) * 2014-11-26 2017-09-27 トヨタ自動車株式会社 電気自動車
WO2017037950A1 (ja) * 2015-09-04 2017-03-09 新電元工業株式会社 電力変換装置、および、電力変換装置の制御方法
CN106872891A (zh) * 2017-04-01 2017-06-20 珠海伊托科技有限公司 继电器群组控制超级电容放电的系统
JP6545230B2 (ja) * 2017-08-31 2019-07-17 本田技研工業株式会社 車両の電源システム
JP6919546B2 (ja) * 2017-12-13 2021-08-18 トヨタ自動車株式会社 車両用電源システム
JP6744342B2 (ja) * 2018-02-13 2020-08-19 ファナック株式会社 工作機械の制御装置
DE102019118804A1 (de) * 2018-07-12 2020-01-16 Denso Corporation Anomalitätsbestimmungssystem
EP3626490A1 (en) 2018-09-19 2020-03-25 Thermo King Corporation Methods and systems for power and load management of a transport climate control system
EP3626489A1 (en) * 2018-09-19 2020-03-25 Thermo King Corporation Methods and systems for energy management of a transport climate control system
JP7035970B2 (ja) * 2018-11-07 2022-03-15 トヨタ自動車株式会社 充電装置
JP7003896B2 (ja) * 2018-11-07 2022-02-04 トヨタ自動車株式会社 電動車両
WO2020110226A1 (ja) 2018-11-28 2020-06-04 三菱電機株式会社 室外機
KR102660351B1 (ko) * 2018-12-11 2024-04-24 현대자동차주식회사 차량용 급속충전 시스템의 고장진단 장치 및 방법
EP3906174B1 (en) 2018-12-31 2024-05-29 Thermo King LLC Methods and systems for providing feedback for a transport climate control system
US12017505B2 (en) 2018-12-31 2024-06-25 Thermo King Llc Methods and systems for providing predictive energy consumption feedback for powering a transport climate control system using external data
WO2023152590A1 (ja) * 2022-02-11 2023-08-17 ロベルト·ボッシュ·ゲゼルシャフト·ミト•ベシュレンクテル·ハフツング 車両用電源装置の動作診断方法及び車両用電源装置
CN115071430A (zh) * 2022-08-23 2022-09-20 江苏智能无人装备产业创新中心有限公司 一种基于双向电源的预充继电器冗余控制方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000134707A (ja) * 1998-10-26 2000-05-12 Toyota Motor Corp 電源制御装置
JP2003061209A (ja) * 2001-08-10 2003-02-28 Honda Motor Co Ltd 車両の電源装置
JP4788461B2 (ja) * 2006-04-24 2011-10-05 トヨタ自動車株式会社 電源制御装置およびリレーの異常検出方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014242A (ja) * 2002-06-05 2004-01-15 Toyota Motor Corp 電源制御システム
JP2004088866A (ja) * 2002-08-26 2004-03-18 Toyota Motor Corp 電圧変換装置、判定方法、電圧変換における異常原因の判定をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP4432463B2 (ja) * 2003-11-10 2010-03-17 トヨタ自動車株式会社 負荷駆動装置およびその動作をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP2007252134A (ja) * 2006-03-17 2007-09-27 Toyota Motor Corp 負荷駆動装置およびそれを搭載した自動車
JP5011940B2 (ja) * 2006-10-16 2012-08-29 トヨタ自動車株式会社 電源装置、および車両
JP4513812B2 (ja) * 2007-01-04 2010-07-28 トヨタ自動車株式会社 車両の電源装置および車両
CN102762406B (zh) * 2010-02-25 2015-03-11 三菱电机株式会社 功率转换装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000134707A (ja) * 1998-10-26 2000-05-12 Toyota Motor Corp 電源制御装置
JP2003061209A (ja) * 2001-08-10 2003-02-28 Honda Motor Co Ltd 車両の電源装置
JP4788461B2 (ja) * 2006-04-24 2011-10-05 トヨタ自動車株式会社 電源制御装置およびリレーの異常検出方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185579A1 (ja) * 2015-05-20 2016-11-24 日産自動車株式会社 電源制御装置及びその方法
JPWO2016185579A1 (ja) * 2015-05-20 2018-03-15 日産自動車株式会社 電源制御装置及びその方法
RU2690017C1 (ru) * 2015-05-20 2019-05-30 Ниссан Мотор Ко., Лтд. Устройство управления подачей питания и соответствующий способ
CN105119474A (zh) * 2015-08-28 2015-12-02 洛阳中重自动化工程有限责任公司 一种矿井提升机用防爆变频器直流电容放电系统及方法
CN105119474B (zh) * 2015-08-28 2019-03-15 洛阳中重自动化工程有限责任公司 一种矿井提升机用防爆变频器直流电容放电系统及方法

Also Published As

Publication number Publication date
US20160156258A1 (en) 2016-06-02
JP6201160B2 (ja) 2017-09-27
CN105379087A (zh) 2016-03-02
JP2015023687A (ja) 2015-02-02

Similar Documents

Publication Publication Date Title
WO2015008509A1 (ja) 電源制御装置およびリレーの異常検出方法
JP5450144B2 (ja) 車両用の電源装置及びこの電源装置を搭載する車両
JP5575506B2 (ja) 車両用電源装置及びこの電源装置を備える車両
US8513953B2 (en) Power supply device and method for making decision as to contactor weld of power supply device
JP4788461B2 (ja) 電源制御装置およびリレーの異常検出方法
JP5865013B2 (ja) 車両用の電源装置及びこの電源装置を備える車両
US20150054517A1 (en) Diagnosis apparatus and diagnosis method for relay circuit
US10259326B2 (en) Car control device
WO2017033411A1 (ja) 電源装置とこの電源装置を備える電動車両
US20150084404A1 (en) Bus Pre-Charge Control Using a Buck Converter
JP2012034515A (ja) 車両用の電源装置
US8933580B2 (en) On-board electrical system for a vehicle and also control apparatus for an on-board electrical system
JP2019056626A (ja) 地絡検出装置
JP2014038023A (ja) 地絡検出回路、電源装置
WO2012043590A1 (ja) 電源装置
JP2013038895A (ja) コンデンサの放電回路
JP2008301612A (ja) 車両用の電源装置とこの電源装置のコンタクター溶着検出方法
JP2013225996A (ja) 電源制御システムの異常診断装置
JP2012222955A (ja) 電源装置及びその制御方法
KR20140072522A (ko) 배터리 관리시스템, 배터리 관리방법 및 배터리 관리시스템이 구비된 차량
US9287704B2 (en) Device and method for detecting a polarity reversal on a low voltage side of a DC voltage transformer in a dual-voltage vehicle electrical system
JP6725440B2 (ja) 電池システム
JP6251136B2 (ja) 電池システム監視装置およびこれを備えた蓄電装置
JP2010041806A (ja) 電気車用電源装置
JP2013240238A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14906107

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14826075

Country of ref document: EP

Kind code of ref document: A1