WO2015008390A1 - 液冷式電動機 - Google Patents

液冷式電動機 Download PDF

Info

Publication number
WO2015008390A1
WO2015008390A1 PCT/JP2013/069686 JP2013069686W WO2015008390A1 WO 2015008390 A1 WO2015008390 A1 WO 2015008390A1 JP 2013069686 W JP2013069686 W JP 2013069686W WO 2015008390 A1 WO2015008390 A1 WO 2015008390A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
case
cooling
liquid
ventilation duct
Prior art date
Application number
PCT/JP2013/069686
Other languages
English (en)
French (fr)
Inventor
暁 伊藤
泰平 小山
野田 伸一
真琴 松下
寿郎 長谷部
芳宏 前田
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to EP13889588.3A priority Critical patent/EP3024125A1/en
Priority to PCT/JP2013/069686 priority patent/WO2015008390A1/ja
Priority to CN201380078287.3A priority patent/CN105379080A/zh
Priority to JP2015527134A priority patent/JPWO2015008390A1/ja
Publication of WO2015008390A1 publication Critical patent/WO2015008390A1/ja
Priority to US14/997,270 priority patent/US20160134177A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C3/00Electric locomotives or railcars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/10Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing
    • H02K9/12Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing wherein the cooling medium circulates freely within the casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the embodiment described here relates to a liquid-cooled electric motor and a railway vehicle including the same.
  • the motor is an induction motor
  • secondary rotor heat is generated at the rotor, but part of this heat is dissipated to the internal air, and the rest is transferred to the frame by heat conduction via the rotating shaft, etc. Heat is dissipated to the outside and external air.
  • the cooling performance may be insufficient, and the insulating material of the stator winding may exceed the service temperature.
  • members that do not generate heat (or generate a small amount of heat) such as frames, rotating shafts, and bearings also have high temperatures in portions that are susceptible to heat conduction from the heat generating member and heat transfer from the internal air. At this time, for example, the service temperature of the bearing lubricant may be exceeded.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a liquid-cooled electric motor capable of efficiently cooling the amount of heat generated with an increase in output.
  • the liquid-cooled electric motor includes a case, a rotating shaft that extends into the case and is rotatably supported by the bearing with respect to the case, and a rotor core fixed to the rotating shaft.
  • a cylindrical stator core disposed opposite to the outer periphery of the rotor core in the case with a gap between the rotor and a penetrating portion extending through the rotor core in the axial direction.
  • Ventilation duct and the rotating shaft are integrated with the rotating shaft.
  • a rotor fan which is rotatably mounted, and circulates internal air through the through-hole of the rotor core, the gap between the rotor core and the stator core, and the ventilation duct; and the ventilation duct A heat exchanger that cools internal air using liquid refrigerant, and a cooling system that supplies liquid refrigerant to the cooling unit and the heat exchanger.
  • FIG. 1 is a perspective view showing a liquid-cooled electric motor according to the first embodiment.
  • FIG. 2 is a longitudinal sectional view of the electric motor according to the first embodiment.
  • FIG. 3 is a perspective view showing a ventilation duct and a heat exchanger provided outside the case body of the electric motor.
  • FIG. 4 is a cross-sectional view of the ventilation duct and heat exchanger along line AA in FIG.
  • FIG. 5 is a diagram schematically showing the flow of liquid refrigerant in the electric motor.
  • FIG. 6 is a perspective view showing a liquid-cooled electric motor according to a modification.
  • FIG. 7 is a longitudinal sectional view showing a liquid-cooled electric motor according to the second embodiment.
  • FIG. 8 is a longitudinal sectional view showing a liquid-cooled electric motor according to a third embodiment.
  • FIG. 9 is a perspective view showing a liquid-cooled electric motor according to the fourth embodiment.
  • FIG. 10 is a longitudinal sectional view showing a liquid-cooled electric motor according to the fourth embodiment.
  • FIG. 11 is a diagram schematically showing the flow of liquid refrigerant in the electric motor.
  • FIG. 12 is a cross-sectional view of a railway vehicle having a liquid-cooled electric motor according to a fifth embodiment.
  • FIG. 13 is a cross-sectional view of a railway vehicle having a liquid-cooled electric motor according to the sixth embodiment.
  • FIG. 14 is a cross-sectional view of a railway vehicle having a liquid-cooled electric motor according to a seventh embodiment.
  • FIG. 15 is a cross-sectional view showing an installation configuration of an electric motor in the fifth to seventh embodiments.
  • FIG. 1 is a perspective view of a schematic shape of a liquid-cooled electric motor according to the first embodiment
  • FIG. 2 is a longitudinal sectional view of the liquid-cooled electric motor according to the first embodiment.
  • the liquid-cooled electric motor 10 includes a case (outer frame) 11 whose inside is sealed.
  • the case 11 includes, for example, a cylindrical case body (frame) 12, and a first end wall 14 and a second end wall 16 that close both ends of the case body 12.
  • a first bearing 13 is embedded in the center of the first end wall 14.
  • a second bearing 15 is embedded in the center of the second end wall 16.
  • a rotor 20, a stator 30, a cooling unit 40, a rotor fan (blower fan) 46, and the like are housed.
  • the case 11 has a rotating shaft 18 extending therethrough.
  • the rotor 20 includes a rotating shaft 18 and a cylindrical rotor core 21 that is coaxially attached to the central portion of the rotating shaft 18. Both ends of the rotary shaft 18 are rotatably supported by the first bearing 13 and the second bearing 15. Thereby, the rotating shaft 18 extends coaxially in the case 11.
  • a driving side end (output end) 18a of the rotating shaft 18 extends outside the machine and outputs a driving force via a driving gear device (not shown) or the like.
  • the rotor core 21 is formed by laminating a large number of annular metal plates made of a magnetic material, for example, a silicon steel plate.
  • the rotor core 21 is supported by a pair of core pressers 24a and 24b attached to the rotary shaft 18 so as to be sandwiched from both side surfaces in the axial direction.
  • the core holding plates 24a and 24b are formed in an annular shape.
  • the inner peripheral portion of the rotor core 21 and the iron core retainers 24a and 24b are formed with at least one, here, a plurality of ventilation holes (penetration portions) 26 penetrating the rotor core 21 in the axial direction.
  • the stator 30 has a cylindrical stator core 32.
  • the stator core 32 is disposed opposite to the outer periphery of the rotor core 21 with a gap, and is attached to the inner peripheral surface of the case body 12 via a cooling unit described later.
  • the stator core 32 and the rotor core 21 are disposed coaxially with the case body 12.
  • the stator core 32 is configured by laminating a plurality of annular metal plates made of a magnetic material, for example, a silicon steel plate.
  • a plurality of slots extending in the axial direction are formed in the inner peripheral portion of the stator core 32, and a stator coil (stator winding) 34 is embedded in these slots. Coil ends 34 b of the stator coil 34 protrude in the axial direction from both end surfaces of the stator core 32.
  • a stator 30 is configured by the stator core 32 and the stator coil 34.
  • an annular liquid cooling unit 40 is disposed so as to cover the outer periphery of the stator core 32.
  • the cooling unit 40 is configured by, for example, a flat cylindrical hollow pipe, and a coolant can flow through the inside.
  • the liquid cooling unit 40 is fitted to the outer peripheral surface of the stator core 32 and the inner peripheral surface of the case body 12.
  • one end 40 a in the circumferential direction of the liquid cooling / cooling unit 40 extends to the outside of the case body 12.
  • the other end 40b in the circumferential direction of the liquid cooling / cooling section 40 extends outside the case body 12 in the vicinity of the one end 40a and communicates with a heat exchanger 50 described later.
  • FIG. 3 is a perspective view showing a ventilation duct and a heat exchanger provided outside the case body
  • FIG. 4 is a cross-sectional view of the ventilation duct and the heat exchanger along line AA in FIG.
  • a heat exchanger 50 for exchanging heat between the internal air flow flowing in the ventilation duct 44 and the coolant flow is disposed in the ventilation duct 44.
  • the heat exchanger 50 uses a type suitable for heat exchange between gas and liquid, for example, a finned tube.
  • the heat exchanger 50 includes a plurality of plate-like fins 52 and cooling pipes 54 that extend through the ventilation ducts 44 and the fins 52 and allow the refrigerant to flow therethrough.
  • the fins 52 are erected on the outer peripheral surface of the case body 12 in the ventilation duct 44, and extend along the flow direction of the internal air, that is, the longitudinal direction of the ventilation duct 44.
  • the cooling pipe 54 extends along the width direction of the ventilation duct 44 and penetrates the fins 52 substantially orthogonally. In the present embodiment, the outflow side end of the cooling pipe 54 communicates with the other end 40 b of the liquid cooling unit 40. The other end 40b is connected to a coolant circulation system (pipe) 68 to be operated later.
  • pipe coolant circulation system
  • a first opening (inlet) 42 a and a second opening (outlet) 42 b are formed through the case body 12.
  • the first opening 42a and the second opening 42b are provided one on each side in the axial direction of the stator core with the stator core 3 interposed therebetween.
  • a ventilation duct 44 is disposed on the outer side of the case body 12, here on the outer peripheral surface. The ventilation duct 44 extends along the axial direction of the case body 12 and connects the first opening 42a and the second opening 42b.
  • a rotor fan 46 is attached to the rotary shaft 18 in the case 11 and can rotate integrally with the rotary shaft 18.
  • one radial type ventilation fan is disposed on the output end 18 a side of the rotating shaft 18 as the rotor fan 46. If a desired air blowing capacity is obtained, one or a plurality of rotor fans may be arranged at the end opposite to the output end 18a, or may be arranged on both sides.
  • the stator fan 46 may be a different type of fan such as an axial type or a combination thereof. The rotor fan 46 rotates to circulate the internal air of the case 11 through the ventilation hole 26 of the rotor core 21, the gap between the rotor core 21 and the stator core 32, and the ventilation duct 44.
  • the electric motor 10 includes a cooling system 60 for flowing a liquid refrigerant through the liquid cooling unit 40 and the cooling pipe 54 of the heat exchanger 50.
  • the cooling system 60 includes a pump 62 provided outside the case 11, a reservoir tank 64, a radiator 66, and a coolant circulation system 68 including piping.
  • one end of the coolant circulation system 68 is connected to the cooling pipe 54 of the heat exchanger 50, and the other end is connected to one end 40 a of the liquid cooling / cooling unit 40.
  • a liquid refrigerant for example, water is supplied to the heat exchanger 50 and the liquid cooling / cooling unit 40 through the cooling liquid circulation system 68 by the pump 62, and circulates to the pump 62 through the radiator 66.
  • the pipes of the heat exchanger 50 and the liquid cooling / cooling unit 40 may be connected in series or in parallel.
  • the reservoir tank 64 can be omitted.
  • the internal air flow may flow in the direction opposite to the arrow shown in FIG. 2, but the same cooling effect as described above can be obtained.
  • the liquid refrigerant that has passed through the heat exchanger 50 flows into the liquid cooling / cooling unit 40 from the other end 40 b, and around the stator core 32 along the liquid cooling / cooling unit 40. It circulates and takes heat through the stator core 32 and the case body 12. Then, the coolant flow is sent from one end 40 a of the liquid cooling unit 40 through the coolant circulation system 68 to the radiator 66. The heat taken by the coolant flow is radiated from the radiator 66 to the outside air. Thereafter, the liquid refrigerant is sent again to the heat exchanger 50 by the pump 62 and circulates in the heat exchanger 50 and the liquid cooling / cooling unit 40.
  • the internal air flow flowing through the ventilation duct 44 is cooled by the heat exchanger 50, and the cooled internal air flow is Each part can be sent into the case 11 to be cooled. Therefore, it becomes possible to obtain an electric motor having a high cooling effect as a whole.
  • the internal air flow is cooled to a low temperature, the temperature of the portion such as the case 11 and the first and second bearings 13 and 15 that does not generate heat by itself but receives heat conduction or heat transfer from the internal air flow. Can be suppressed.
  • the liquid refrigerant is supplied to the heat exchanger 50 and the liquid cooling / cooling unit 40 by the common cooling system 60.
  • the present invention is not limited to this.
  • a first cooling system that supplies the liquid refrigerant to the heat exchanger and a second cooling system that supplies the liquid refrigerant to the liquid cooling cooling unit 40 may be provided separately.
  • the cooling pipe of the heat exchanger and the liquid cooling unit are separately connected to the cooling system without communicating with each other.
  • the cooling pipe 54 in the heat exchanger 50 is not limited to a single flat cooling pipe, but may be a cooling pipe separated into a plurality of pipes. It is good also as an extending cooling pipe.
  • FIG. 7 is a longitudinal sectional view showing a liquid-cooled electric motor according to the second embodiment.
  • the ventilation duct 44 is disposed at a position away from the case 11, and the first opening 42a and the first opening of the case body 12 are connected via the connection ducts 70a and 70b. It is connected to the two openings 42b.
  • the ventilation duct 44 is disposed substantially parallel to the outer peripheral surface of the case body 12 and along the axial direction of the case body.
  • a heat exchanger 50 is disposed in the ventilation duct 44.
  • connection ducts 70a and 70b are, for example, a bellows-structured duct or a duct formed of a rubber material.
  • the connection ducts 70a and 70b are preferably flexible and capable of absorbing the relative displacement between the ventilation duct 44 and the case 11.
  • the connecting portion (not shown) of this piping is, for example, a relative displacement such as a bellows structure. It is desirable to be able to absorb water.
  • the other configuration of the electric motor 10 is the same as that of the first embodiment.
  • the action related to cooling is the same as that of the first embodiment.
  • the heat exchanger 50 and the ventilation duct 44 and the case 11 of the electric motor 10 are made to have a relative difference in vibration and motion, such as a bogie and a vehicle body of a railway vehicle. It becomes possible to install it in two places. Taking a railroad vehicle as an example, if the bogie is subject to significant vibration during traveling, the vibration applied to the electric motor 10 from the bogie is directly transmitted to the heat exchanger 50, and the heat exchanger 50 may be damaged due to insufficient strength. There is sex. As a countermeasure against this, it is conceivable to install the heat exchanger 50 and the ventilation duct 44 in a vehicle body or a vibration control device having a relatively small vibration. However, when the heat exchanger 50 and the ventilation duct 44 are separated from the installation location of the electric motor 10, the ventilation duct 44 may be damaged due to a relative difference in vibration and motion.
  • the relative differences in vibration and motion generated in the electric motor 10, the heat exchanger 50, and the ventilation duct 44 are absorbed by the connection ducts 70a and 70b, and are not transmitted to each other. Even underneath, the flow of the internal air flow and the coolant flow (not shown) of the motor is not hindered.
  • the same operational effects as those of the first embodiment can be obtained as other effects.
  • FIG. 8 is a longitudinal sectional view showing a liquid-cooled electric motor according to the third embodiment.
  • the basic configuration of the electric motor 10 is the same as that of the second embodiment described above.
  • the ventilation duct 44 is supported on the case 11 by the support portion 72 having a vibration isolation function. That is, the support portion 72 is provided between the ventilation duct 44 and the case 11 of the electric motor 10.
  • the support part 72 is, for example, one provided with a spring and a damper. Further, as in the present embodiment, it may be an independent part, or may be integrated with at least one of the connection ducts 70a and 70b.
  • the third embodiment it is possible to obtain the same effect as that of the second embodiment described above.
  • the third embodiment is suitable when the vibration applied to the electric motor 10 is large, but there is no separate portion with small vibration where the heat exchanger 50 and the ventilation duct 44 should be arranged.
  • the support portion 72 attenuates this vibration and transmits the vibration to the ventilation duct 44, the heat exchanger 50 does not vibrate enough to be damaged. Don't join. Therefore, an electric motor having excellent cooling performance and high reliability can be obtained.
  • FIG. 9 is a perspective view of a liquid-cooled electric motor according to the fourth embodiment
  • FIG. 10 is a longitudinal sectional view of the liquid-cooled electric motor according to the fourth embodiment.
  • the same reference numerals are assigned to the same elements as those in any of the first, second, and third embodiments, and detailed description thereof is omitted.
  • the case body 12 of the case 11 of the electric motor 10 is provided with a plurality of pairs of first openings 42a and second openings 42b instead of one pair.
  • the pair of first openings 42 a and second openings 42 b are connected linearly by a ventilation duct 44 with the stator core 32 interposed therebetween. That is, a plurality of, for example, four ventilation ducts 44 are provided on the outer peripheral side of the case main body 12 and are arranged at predetermined intervals in the circumferential direction.
  • Each ventilation duct 44 extends along the axial direction of the case body 12. Further, a heat exchanger 50 is disposed in each ventilation duct 44.
  • the coolant circulation system 68 including the piping of the cooling system 60 is sequentially connected to the cooling pipes 54 of the four heat exchangers 50 and then connected to the liquid cooling cooling unit 40. ing.
  • Liquid refrigerant for example, water is supplied to the four heat exchangers 50 and the liquid cooling / cooling unit 40 through the coolant circulation system 68 by the pump 62, and then circulates to the pump 62 through the radiator 66.
  • the pipes of the heat exchanger 50 and the liquid cooling / cooling unit 40 may be connected in series or in parallel.
  • FIG. 9 four ventilation ducts 44 are arranged at equal intervals as an example, but the number and arrangement method may be changed according to the actual design of the apparatus. Further, although the ventilation duct 44 is arranged along the axial direction on the case 11, one or a plurality of ventilation ducts or all the ventilation ducts are arranged according to the second or third embodiment. May be.
  • the internal air flow generated by the rotation of the rotor fan 46 is distributed to the plurality of first openings 42a provided on one side across the stator core 32, and It circulates through the ventilation duct 44 and returns to the inside of the case 11 from the other second opening 42b.
  • FIG. 10 for the sake of convenience, arrows are drawn so that the internal air flow circulates separately above and below the rotary shaft 18, but actually they are mixed with each other inside the case 11.
  • the operation of the electric motor 10 in the fourth embodiment is the same as that in the first embodiment.
  • the temperature difference between the coil end portions can be reduced.
  • the other effects are the same as those of the first, second, or third embodiment.
  • FIG. 12 is a cross-sectional view schematically showing a railway vehicle according to the fifth embodiment.
  • a railway vehicle 70 includes two carriages 74 (only one of which is shown) each provided with wheels 72, a vehicle body 78 supported on the carriage 74 via an air spring 76, It has.
  • a liquid-cooled electric motor 10 that functions as a main electric motor is placed in the vicinity of the wheel 72 on each carriage 74.
  • the electric motor 10 has the same configuration as the electric motor 10 according to any of the first to fourth embodiments described above.
  • the output end 18a of the rotating shaft 18 of the electric motor 10 is connected so that the rotational force can be transmitted to the wheel 72 via a coupling and a gear box (not shown).
  • the wheel 72 is placed on the rail 79.
  • the pantograph 80 is provided on the ceiling side of the vehicle body 78, and this panda graph is in contact with the overhead line 81.
  • the electric power supplied from the overhead line 58 to the pantograph 57 is supplied to a power converter and a control device (not shown).
  • the electric power is converted from direct current to alternating current by the power converter, and is supplied to each electric motor 10 through a wiring (not shown).
  • the electric motor 10 is operated by the supplied electric power, and rotates the wheel 72 through the coupling and the gear box. As a result, the railway vehicle 70 travels on the rail 79.
  • a pump 62 In the vehicle main body 78, there are provided a pump 62, a radiator (radiator) 66, and a cooling fan 82 for sending cooling air to the radiator.
  • the coolant circulation system 68 composed of piping is connected to the two electric motors 10 via the radiator 66 and the pump 62.
  • the liquid refrigerant is circulated such that the pump 62 supplies the heat exchanger 50 and the liquid cooling / cooling unit 40 of the electric motor 10 through the coolant circulation system 68 and returns to the pump 62 through the radiator 66.
  • the pipes of the heat exchanger 50 and the liquid cooling / cooling unit 40 may be connected in series or in parallel.
  • the cooling system 60 of the electric motor 10 is installed in the vehicle main body 78, and the liquid refrigerant can be efficiently supplied to the electric motor 10. Moreover, about the electric motor 10, the high cooling effect as a whole can be acquired similarly to embodiment mentioned above.
  • FIG. 13 is a cross-sectional view schematically showing a railway vehicle according to the sixth embodiment.
  • a power device 84 such as a power converter is installed on the floor in the vehicle main body 78.
  • the electric power device 84 is connected to the coolant circulation system 68 of the cooling system 60 between the pump 62 and the electric motor 10.
  • Other configurations of the railway vehicle 70 are the same as those of the railway vehicle according to the fifth embodiment described above.
  • the cooling system of the electric motor 10 and the cooling system of the power conversion device 84 can be shared.
  • FIG. 14 is a cross-sectional view schematically showing a railway vehicle according to the fifth embodiment.
  • a power device 84 such as a power converter is installed on the floor in the vehicle main body 78.
  • two radiators 85 a and 85 b for the power device 84 are installed. These radiators 66, 85 a and 85 b are arranged so as to receive cooling air from a common cooling fan 82.
  • the radiators 85a and 85b are connected to the power device 84 via the pumps 86a and 86b.
  • the cooling liquid refrigerant is supplied to the power device 84 to cool the power device.
  • the liquid refrigerant deprived of heat from the electric power device 84 is circulated to the radiators 85a and 85b, radiated and cooled.
  • Other configurations of the railway vehicle 70 are the same as those of the railway vehicle according to the fifth embodiment described above.
  • the radiator 66 in the cooling system of the electric motor 10 and the radiators 85 a and 85 b in the cooling system of the power converter 84 can be radiated using the common cooling fan 82. it can.
  • the seventh embodiment it is possible to obtain the same operational effects as those of the fifth embodiment described above.
  • the ventilation duct 44 is installed on the carriage 74 together with the electric motor case as shown in FIG.
  • the coolant circulation system (pipe) 68 of the cooling system passes through the floor of the vehicle main body 78 and is connected to the heat exchanger in the ventilation duct 44.
  • the ventilation duct 44 is installed under the floor of the vehicle main body 78 and connected as shown in FIG. It is connected to the case of the electric motor 10 through the ducts 70a and 70b.
  • the coolant circulation system (pipe) 68 of the cooling system passes through the floor of the vehicle main body 78 and is connected to the heat exchanger in the ventilation duct 44, and further connected to the liquid cooling unit 40 in the case from the heat exchanger. Is done.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.

Abstract

 実施形態によれば、液冷式の電動機は、ケース11と、ケース内に回転自在に設けられた回転子20と、ケース内で、前記回転子の回転子鉄心の外周に隙間を置いて対向配置された円筒状の固定子鉄心を備える固定子30と、固定子鉄心の外周を覆うように環状に配置され、液冷媒を流す冷却部40と、前記固定子鉄心を挟んで固定子鉄心の軸方向両側で、前記ケースにそれぞれ設けられた第1開口42aおよび第2開口42bと、ケースの外側に設けられ、第1開口と第2開口とを繋ぐ通風ダクト44と、回転子の回転軸に取付けられ、回転子鉄心の貫通部と、回転子鉄心と固定子鉄心との隙間と、通風ダクトとを通じて内部空気を循環させるための回転子ファン46と、通風ダクト中に内部空気を液冷媒により冷却する熱交換器50と、冷却部および熱交換器に液冷媒を供給する冷却システムと、を備えている。

Description

液冷式電動機
 ここで述べる実施形態は、液冷式の電動機およびこれを備えた鉄道車両に関する。
 従来、固定子外周に配置された液冷冷却部に冷却液を流通させて冷却を行う液冷式の電動機が提案されている。この電動機では、固定子の巻線への通電や鉄心内の渦電流で生じた熱を、主として固定子鉄心を経由した熱伝導によって固定子外周に配置された液冷冷却部に導き、冷却している。また、固定子からの熱の一部は電動機の内部空気へ一旦放熱され、フレーム内周などを通して液冷冷却部に伝わるか、あるいは、外部空気へ放熱される。電動機が誘導電動機であると、回転子で二次導体発熱が生じるが、この熱の一部は内部空気へ放熱され、残りは回転軸などを経由した熱伝導によってフレームへと伝わり、液冷冷却部や外部空気へ放熱される。
特開平8-237904
 しかしながら、電動機の大出力化によって発熱量が増大した場合には、冷却性能が不足して固定子巻線の絶縁材などが耐用温度を超えてしまう可能性がある。また、フレームや回転軸、軸受などの自ら発熱しない(または発熱量が小さい)部材も、発熱部材からの熱伝導や、内部空気からの伝熱を受けやすい部分が高温となる。このとき、例えば軸受潤滑剤などの耐用温度を超えてしまう可能性もある。
 本発明は、上記の課題を解決させるためになされたもので、その目的は、大出力化に伴う発熱量を効率よく冷却することができる液冷式の電動機を提供することにある。
 実施形態によれば、液冷式の電動機は、ケースと、前記ケース内に延在し軸受により前記ケースに対して回転自在に支持された回転軸と、前記回転軸に固定された回転子鉄心と、前記回転子鉄心を軸方向に貫通して延びる貫通部と、を備える回転子と、前記ケース内で、前記回転子鉄心の外周に隙間を置いて対向配置された円筒状の固定子鉄心と、前記固定子鉄心に取り付けられた固定子巻線と、を備える固定子と、前記固定子鉄心の外周を覆うように環状に配置され、液冷媒を流す冷却部と、前記ケースに、前記固定子鉄心を挟んで固定子鉄心の軸方向両側で、前記ケースにそれぞれ設けられた第1開口および第2開口と、前記ケースの外側に設けられ、前記第1開口と第2開口とを繋ぐ通風ダクトと、前記回転軸にこの回転軸と一体に回転自在に取付けられ、前記回転子鉄心の貫通部と、前記回転子鉄心と固定子鉄心との隙間と、前記通風ダクトとを通じて内部空気を循環させるための回転子ファンと、前記通風ダクト中に内部空気を液冷媒により冷却する熱交換器と、前記冷却部および熱交換器に液冷媒を供給する冷却システムと、を具備する。
図1は、第1実施形態に係る液冷式電動機を示す斜視図。 図2は、第1実施形態に係る電動機の縦断面図。 図3は、上記電動機のケース本体の外側に設けられた通風ダクトおよび熱交換器を示す斜視図。 図4は、図3の線A-Aに沿った通風ダクトおよび熱交換器の断面図。 図5は、上記電動機における液冷媒の流れを概略的に示す図。 図6は、変形例に係る液冷式電動機を示す斜視図。 図7は、第2の実施形態に係る液冷式の電動機を示す縦断面図。 図8は、第3の実施形態に係る液冷式の電動機を示す縦断面図。 図9は、第4の実施形態に係る液冷式の電動機を示す斜視図。 図10は、第4の実施形態に係る液冷式の電動機を示す縦断面図。 図11は、上記電動機における液冷媒の流れを概略的に示す図。 図12は、第5の実施形態に係る液冷式電動機を有する鉄道車両の断面図。 図13は、第6の実施形態に係る液冷式電動機を有する鉄道車両の断面図。 図14は、第7の実施形態に係る液冷式電動機を有する鉄道車両の断面図。 図15は、前記第5ないし第7の実施形態における、電動機の設置構成を示す断面図。
 以下、図面を参照しながら、種々の実施形態に係る液冷式の電動機について説明する。なお、実施形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施形態とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術を参酌して適宜、設計変更することができる。
(第1の実施形態)
 図1は、第1の実施形態に係る液冷式電動機の概略形状の斜視図、図2は、第1の実施形態に係る液冷式電動機の縦断面図である。 
 図1および図2に示すように、液冷式電動機10は、内部が密閉されたケース(外側フレーム)11を備えている。ケース11は、例えば、筒状のケース本体(フレーム)12と、ケース本体12の両端を閉塞した第1端壁14および第2端壁16と、を有している。第1端壁14の中央部に第1軸受13が埋め込まれている。第2端壁16の中央部に第2軸受15が埋め込まれている。
 ケース11内に、回転子20、固定子30、冷却部40、および回転子ファン(送風ファン)46等が収納されている。ケース11は、回転軸18が貫通している。回転子20は、回転軸18と、この回転軸18の中心部に同軸的に取り付けられた円筒形状の回転子鉄心21と、を有している。回転軸18の両端部は第1軸受13および第2軸受15によって回転自在に支持されている。これにより、回転軸18は、ケース11内に同軸的に延在している。回転軸18の駆動側端部(出力端)18aは機外に延出し、駆動歯車装置(図示しない)等を介して駆動力を出力する。
 回転子鉄心21は、磁性材、例えば、珪素鋼板からなる環状の金属板を多数枚積層して構成されている。回転子鉄心21は、回転軸18に取り付けられた一対の鉄心押え24a、24bにより、軸方向両側面から挟まれるように支持されている。鉄心押え板24a、24bは、環状に形成されている。回転子鉄心21の内周部および鉄心押さえ24a、24bには、それぞれ回転子鉄心21を軸方向に貫通した少なくとも1つ、ここでは、複数の通風孔(貫通部)26が形成されている。
 固定子30は、円筒形状の固定子鉄心32を有している。固定子鉄心32は、回転子鉄心21の外周に隙間を置いて対向配置され、後述する冷却部を介してケース本体12の内周面に取り付けられている。固定子鉄心32および回転子鉄心21は、ケース本体12と同軸的に配置されている。固定子鉄心32は、磁性材、例えば、珪素鋼板からなる環状の金属板を多数枚積層して構成されている。固定子鉄心32の内周部には、それぞれ軸方向に延びた複数のスロットが形成され、これらのスロットにステータコイル(固定子巻線)34が埋め込まれている。ステータコイル34のコイルエンド34bは固定子鉄心32の両端面から軸方向に張り出している。固定子鉄心32およびステータコイル34により固定子30が構成されている。
 図2に示すように、固定子鉄心32の外周を覆うように環状の液冷冷却部40が配置されている。冷却部40は、例えば、扁平な円筒形状の中空配管で構成され、この内部に冷媒を流すことが可能となっている。液冷冷却部40は、固定子鉄心32の外周面およびケース本体12の内周面に嵌合している。図4に示すように、液冷冷却部40の円周方向の一端40aは、ケース本体12の外部に延出している。液冷冷却部40の円周方向の他端40bは、一端40aの近傍で、ケース本体12の外部に延出し、後述する熱交換器50に連通している。
 図3は、ケース本体の外側に設けられた通風ダクトおよび熱交換器を示す斜視図、図4は図3の線A-Aに沿った通風ダクトおよび熱交換器の断面図である。
 図2ないし図4に示すように、通風ダクト44内には、この通風ダクト44内を流れる内部空気流と冷却液流との間で熱交換をするための熱交換器50が配置されている。熱交換器50は、気体、液体間の熱交換に適したタイプ、例えばフィン付きチューブなどを用いる。本実施形態において、熱交換器50は、複数の板状のフィン52と、通風ダクト44およびフィン52を貫通して延び、冷媒を流通可能な冷却管54と、を有している。フィン52は、通風ダクト44内で、ケース本体12の外周面上に立設されているとともに、それぞれ内部空気の流通方向、すなわち、通風ダクト44の長手方向に沿って延びている。冷却管54は、通風ダクト44の幅方向に沿って延び、各フィン52をほぼ直交して貫通している。本実施形態において、冷却管54の流出側端は、液冷冷却部40の他端40bに連通している。また他端40bは、後術する冷却液循環系(配管)68に接続される。
 図1ないし図3に示すように、ケース本体12に第1開口(流入口)42aおよび第2開口(流出口)42bが貫通形成されている。第1開口42aおよび第2開口42bは、固定子鉄心3を挟んで、固定子鉄心の軸方向両側に1つずつ設けられている。また、ケース本体12の外側、ここでは、外周面上に、通風ダクト44が配置されている。通風ダクト44は、ケース本体12の軸方向に沿って延び、第1開口42aと第2開口42bとをつないでいる。
 図2に示すように、ケース11内において、回転軸18に回転子ファン46が取付けられ、回転軸18と一体に回転可能となっている。本実施形態では、回転子ファン46として、回転軸18の出力端18a側にラジアルタイプの通風ファンを1つ配置している。所望の送風能力が得られるならば、1つないし複数の回転子ファンを出力端18aと反対側の端部に配置しても、あるいは、両側にそれぞれ配置してもよい。また、固定子ファン46は、例えばアキシャルタイプなど異なるタイプのファンやそれらの組み合わせを用いても良い。回転子ファン46は、回転することにより、回転子鉄心21の通風孔26と、回転子鉄心21と固定子鉄心32との隙間と、通風ダクト44とを通じてケース11の内部空気を循環させる。
 図1、図3、図4に示すように、電動機10は、液冷冷却部40および熱交換器50の冷却管54に液冷媒を流すための冷却システム60を備えている。冷却システム60は、ケース11の外部に設けられたポンプ62、リザーバタンク64、放熱器66、配管からなる冷却液循環系68を有している。本実施形態において、冷却液循環系68は、その一端が熱交換器50の冷却管54に接続され、他端が液冷冷却部40の一端40aに接続されている。ポンプ62により液冷媒、例えば、水が、冷却液循環系68を通して熱交換器50および液冷冷却部40に供給され、放熱器66を通して、ポンプ62へ循環する。なお、熱交換器50と液冷冷却部40の配管は、直列に接続してもよいし、並列に接続してもよい。リザーバタンク64は、省略可能である。
 上記のように構成された電動機10の作用について説明する。 
 図2に示すように、電動機10の運転時に、回転軸18が回転すると、これに固定された回転子ファン46も回転し、ケース11内に内部空気流が生じる。この内部空気流は、電動機10の各部、例えば、ステータコイル34など、から熱を奪って昇温する。昇温した内部空気流は、第1開口42aから通風ダクト44に流入し、熱交換器50に至る。図2ないし図5に示すように、熱交換器50には、フィン52の回りを流れる内部空気流と、冷却液循環系68から冷却管54に送り込まれる冷却液流がそれぞれ流通する。内部空気流が、冷却管54及びフィン52を通過する際に、内部空気流が含んでいる熱量を冷却管54及びフィン52が奪うことで熱交換され、内部空気流が冷却される。冷却された内部空気流は第2開口42bからケース11の内部に戻り、回転子20の通風孔26や回転子鉄心21と固定子鉄心33との隙間を通り、再び各部の熱を奪う。このように内部空気流は、ケース11内部を矢印に示したように循環する。
 なお、回転子ファン46の構成によっては、内部空気流が図2に示す矢印とは逆向きに流れることもあり得るが、上記と同様の冷却効果を得ることができる。
 また、図5に示すように、熱交換器50を通った液冷媒は、他端40bから液冷冷却部40内に流入し、この液冷冷却部40に沿って固定子鉄心32の周囲を流通して、固定子鉄心32やケース本体12を介して熱を奪っていく。そして、冷却液流は、液冷冷却部40の一端40aから冷却液循環系68を通り、放熱器66へ送られる。冷却液流が奪った熱は、放熱器66から外部空気などに放熱される。その後、液冷媒は、再び、ポンプ62により熱交換器50へ送られ、熱交換器50および液冷冷却部40内を循環する。
 以上のように構成された電動機10によれば、液冷冷却部40による冷却作用に加えて、通風ダクト44を流れる内部空気流を熱交換器50で冷却し、この冷却された内部空気流をケース11内へ送り、各部を冷却することができる。そのため、全体として高い冷却効果を有する電動機を得ることが可能となる。加えて、内部空気流が冷却されて低温になるため、ケース11や第1および第2軸受13、15など、自ら発熱せず専ら熱伝導や内部空気流からの伝熱を受ける部分の昇温を抑制することが可能となる。
 なお、上述した第1実施形態では、共通の冷却システム60により、液冷媒を熱交換器50および液冷冷却部40へ供給する構成としているが、これに限らず、例えば、図6に示すように、熱交換器に液冷媒を供給する第1冷却システムと、液冷冷却部40に液冷媒を供給する第2冷却システムと、を別々に設けるようにしてもよい。この場合、熱交換器の冷却管と、液冷冷却部とは、互いに連通することなく、別々に冷却システムに接続される。また、熱交換器50における冷却管54は、偏平な1本の冷却管に限らず、複数本に分離した冷却管としてもよく、あるいは、直線状に限らず、フィンを貫通して蛇腹状に延びる冷却管としてもよい。
 次に、他の実施形態に係る液冷式の回転電機について説明する。 
 なお、以下に述べる他の実施形態において、前述した第1の実施形態と同一の部分には同一の参照符号を付してその詳細な説明を省略し、異なる部分を中心に詳細に説明する。
(第2の実施形態) 
 図7は、第2の実施形態に係る液冷式の電動機を示す縦断面図である。この図に示すように、第2の実施形態によれば、通風ダクト44は、ケース11から離れた位置に配置され、接続ダクト70a、70bを介して、ケース本体12の第1開口42aおよび第2開口42bに接続されている。通風ダクト44は、ケース本体12の外周面とほぼ平行に、また、ケース本体の軸方向に沿って配置されている。また、通風ダクト44内には、熱交換器50が配置されている。
 接続ダクト70a、70bは、例えば、蛇腹構造のダクトやゴム素材で形成されたダクトなどである。接続ダクト70a、70bは、柔軟で通風ダクト44とケース11との間の相対変位を吸収できるものが望ましい。また、熱交換器50の冷却管54とケース11内の液冷冷却部40とを配管で接続する場合は、この配管の接続部(図示しない)を、例えば、蛇腹構造のものなど、相対変位を吸収できるものとするのが望ましい。 
 第2の実施形態において、電動機10の他の構成は第1の実施形態と同一である。
 第2の実施形態に係る電動機10において、冷却に係る作用については、第1の実施形態と同一である。
 上記のように構成された第2の実施形態によれば、熱交換器50および通風ダクト44と、電動機10のケース11とを、例えば鉄道車両の台車と車体など、振動や運動に相対差のある2つの箇所に分けて設置することが可能となる。鉄道車両を例にとれば、台車は車両走行中の振動が激しく、台車から電動機10に加えられた振動が直に熱交換器50に伝わった場合、熱交換器50が強度不足で破損する可能性がある。この対策として、熱交換器50および通風ダクト44を、振動が比較的小さい車体や制振装置などに設置することが考えられる。しかし、熱交換器50および通風ダクト44と、電動機10の設置箇所を分けた場合、振動や運動の相対差によって通風ダクト44が破損する可能性もある。
 第2の実施形態によれば、電動機10と熱交換器50および通風ダクト44とに生じる振動や運動の相対差は、接続ダクト70a、70bで吸収され、互いには伝わらず、かつそのような状況下においても電動機の内部空気流や冷却液流(図示しない)の流れを阻害することがない。 
 第2の実施形態において、その他の効果として、第1の実施形態と同一の作用効果を得ることができる。
(第3の実施形態) 
 図8は、第3の実施形態に係る液冷式の電動機を示す縦断面図である。この図に示すように、電動機10の基本的な構成は、上述した第2の実施形態と同一である。第3の実施形態によれば、通風ダクト44は、防振機能を備えた支持部72によりケース11上に支持されている。すなわち、通風ダクト44と電動機10のケース11との間に支持部72が設けられている。この支持部72は、例えば、バネ、ダンパーを備えたものなどである。また、本実施形態のように、独立した部品にしてもよいし、あるいは、接続ダクト70a、70bの少なくとも一方と一体化したものでもよい。
 第3の実施形態においても、前述した第2の実施形態と同様の作用効果を得ることができる。また、第3の実施形態は、電動機10に加わる振動は大きいが、熱交換器50および通風ダクト44を配置するべき振動の小さい別箇所がない場合に適している。
 第3の実施形態によれば、電動機に過大な振動が加わった場合でも、支持部72はこの振動を減衰させて通風ダクト44に伝えるため、熱交換器50には破損に至るほどの振動は加わらない。よって、冷却性能に優れ、信頼性の高い電動機が得られる。
(第4の実施形態) 
 図9は、第4の実施形態に係る液冷式電動機の斜視図、図10は第4の実施形態に係る液冷式電動機の縦断面図である。図中、第1、第2または第3の実施形態のいずれかと同一の要素には同一の参照符号を付して、その詳細な説明を省略する。
 第4の実施形態では、電動機10のケース11のケース本体12に第1開口42aおよび第2開口42bを、1対ではなく複数対設ける。1対の第1開口42aおよび第2開口42bは、それぞれ固定子鉄心32を挟んで、通風ダクト44で直線状に接続される。すなわち、ケース本体12の外周側に、複数、例えば、4本の通風ダクト44が設けられ、円周方向に所定の間隔をおいて配置されている。各通風ダクト44は、ケース本体12の軸方向に沿って延びている。また、各通風ダクト44内に、熱交換器50が配置されている。
 図9および図11に示すように、冷却システム60の配管からなる冷却液循環系68は、4つの熱交換器50の冷却管54に順次、接続された後、液冷冷却部40に接続されている。ポンプ62により液冷媒、例えば、水が、冷却液循環系68を通して4つの熱交換器50および液冷冷却部40に供給され、その後、放熱器66を通して、ポンプ62へ循環する。なお、熱交換器50と液冷冷却部40の配管は、直列に接続してもよいし、並列に接続してもよい。
 図9では、一例として4つの通風ダクト44を等間隔に配列しているが、数や配列方法は、実際の装置の設計に合わせて変更してよい。また、通風ダクト44はケース11上に軸方向に沿って配置しているが、1つ、あるいは複数の通風ダクト、又は、全ての通風ダクトを、第2または第3の実施形態に倣って配置してもよい。
 第4の実施形態において、電動機10の他の構成は第1、第2または第3の実施形態のいずれかと同一である。
 上記のように構成された電動機10によれば、回転子ファン46の回転によって生じる内部空気流は、固定子鉄心32を挟んで片方に設けられた複数の第1開口42aに分配され、それぞれの通風ダクト44を流通して他方の第2開口42bからケース11内部に戻り、循環する。図10では便宜上、内部空気流が回転軸18の上下に分かれて循環しているように矢印が描かれているが、実際にはケース11の内部で互いに混ざり合っている。その他、第4の実施形態における電動機10の作用は、第1の実施形態と同一である。
 第4の実施形態に特有な効果について説明する。 
 図1に示した第1の実施形態を例にとると、ステータコイル34のうち、熱交換器50を通過し冷却された内部空気流が直接当たる、第2開口42b付近のコイルエンド部分がよく冷却され、このコイルエンド部分と回転軸18を挟んで反対側に位置するコイルエンド部分と温度差が生じる。この温度差が大きい場合、ステータコイル34の第1開口42a側のコイルエンドの温度低減のために冷却設計をすれば、他端側のコイルエンドについては過剰性能となる。
 第4の実施形態によれば、内部空気流を複数の第2開口42bに分配しているため、コイルエンド部分間の温度差を緩和することができる。第4の実施形態において、他の効果は第1、第2または第3のいずれかの実施形態と同一である。
 次に、上述した電動機10を鉄道車両に適用した実施形態について説明する。 
(第5の実施形態) 
 図12は、第5の実施形態に係る鉄道車両を概略的に示す断面図である。この図に示すように、鉄道車両70は、それぞれ車輪72が設けられた2つの台車(一方のみを図示する)74と、台車74上に空気ばね76を介して支持された車両本体78と、を備えている。各台車74上で車輪72の近傍には主電動機として機能する液冷式の電動機10が載置されている。電動機10は、前述した第1ないし第4の実施形態のいずれかに係る電動機10と同様の構成を有している。電動機10の回転軸18の出力端18aは、図示しないカップリングおよびギアボックスを介して回転力を車輪72に伝達できるように接続されている。車輪72はレール79上に載置されている。
 車両本体78の天井側にはパンタグラフ80が設けられ、このパンダグラフは架線81と接触している。架線58からパンタグラフ57に供給された電力は、図示しない電力変換装置および制御装置に供給される。電力は、電力変換装置により直流から交流に変換され、図示しない配線を通して、各電動機10に供給される。電動機10は供給された電力により稼動し、カップリングおよびギアボックスを介して車輪72を回転させる。これにより、鉄道車両70はレール79上を走行する。
 車両本体78内には、ポンプ62、放熱器(ラジエター)66、放熱器に冷却風を送る冷却ファン82が設けられている。配管からなる冷却液循環系68は、放熱器66、ポンプ62を介して、2台の電動機10に接続されている。液冷媒は、ポンプ62により冷却液循環系68を通して電動機10の熱交換器50および液冷冷却部40に供給され、放熱器66を通して、ポンプ62へ戻る、といったように循環する。なお、熱交換器50と液冷冷却部40の配管は、直列に接続してもよいし、並列に接続してもよい。
 上記構成の鉄道車両70によれば、電動機10の冷却システム60が、車両本体78内に設置され、電動機10に効率良く液冷媒を供給することができる。また、電動機10については、前述した実施形態と同様に、全体として高い冷却効果を得ることができる。
(第6の実施形態) 
 図13は、第6の実施形態に係る鉄道車両を概略的に示す断面図である。図13に示すように、本実施形態によれば、車両本体78内の床上に、電力変換装置等の電力機器84が設置されている。この電力機器84は、ポンプ62と電動機10との間で、冷却システム60の冷却液循環系68に接続されている。鉄道車両70の他の構成は、前述した第5の実施形態に係る鉄道車両と同一である。
 本実施形態の鉄道車両70によれば、電動機10の冷却系と、電力変換装置84の冷却系とを共用することができる。その他、第6の実施形態においても、前述した第5の実施形態と同様の作用効果を得ることができる。
(第7の実施形態) 
 図14は、第5の実施形態に係る鉄道車両を概略的に示す断面図である。図14に示すように、本実施形態によれば、車両本体78内の床上に、電力変換装置等の電力機器84が設置されている。また、放熱器66と並んで、電力機器84用の2つの放熱器85a、85bが設置されている。これらの放熱器66、85a、85bは、共通の冷却ファン82から冷却風を受けるように配置されている。また、放熱器85a、85bは、ポンプ86a、86bを介して、電力機器84に接続されている。ポンプ86a、86bを作動することにより、冷却用の液冷媒が電力機器84に供給され電力機器を冷却する。電力機器84から熱を奪った液冷媒は、放熱器85a、85bへ循環され、放熱し冷却される。鉄道車両70の他の構成は、前述した第5の実施形態に係る鉄道車両と同一である。
 本実施形態の鉄道車両70によれば、電動機10の冷却系における放熱器66と、電力変換装置84の冷却系の放熱器85a、85bとを、共通の冷却ファン82を用いて放熱することができる。その他、第7の実施形態においても、前述した第5の実施形態と同様の作用効果を得ることができる。
 前述した第5ないし第7の実施形態において、電動機10として第1の実施形態で示した電動機を用いる場合、図15に示すように、通風ダクト44は、電動機のケースと共に台車74上に設置され、冷却システムの冷却液循環系(配管)68は、車両本体78の床を貫通して通風ダクト44内の熱交換器に接続される。また、第5ないし第7の実施形態において、電動機10として第2の実施形態で示した電動機を用いる場合、図15に示すように、通風ダクト44は、車両本体78の床下に設置され、接続ダクト70a、70bを介して電動機10のケースに接続される。冷却システムの冷却液循環系(配管)68は、車両本体78の床を貫通して通風ダクト44内の熱交換器に接続され、更に、熱交換器からケース内の液冷冷却部40に接続される。
 この発明は前述した実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化可能である。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。

Claims (11)

  1.  ケースと、
     前記ケース内を延び、軸受により前記ケースに対して回転自在に支持された回転軸と、前記回転軸に固定された回転子鉄心と、前記回転子鉄心を軸方向に貫通して延びる貫通部と、を備える回転子と、
     前記ケース内で、前記回転子鉄心の外周に隙間を置いて対向配置された円筒状の固定子鉄心と、前記固定子鉄心に取り付けられた固定子巻線と、を備える固定子と、
     前記固定子鉄心の外周を覆うように環状に配置され、液冷媒を流す冷却部と、
     前記ケースに、前記固定子鉄心を挟んで固定子鉄心の軸方向両側で、前記ケースにそれぞれ設けられた第1開口および第2開口と、前記ケースの外側に設けられ、前記第1開口と第2開口とを繋ぐ通風ダクトと、
     前記回転軸にこの回転軸と一体に回転自在に取付けられ、前記回転子鉄心の貫通部と、前記回転子鉄心と固定子鉄心との隙間と、前記通風ダクトとを通じて内部空気を循環させるための回転子ファンと、
     前記通風ダクト中に内部空気を液冷媒により冷却する熱交換器と、
     前記冷却部および熱交換器に液冷媒を供給する冷却システムと、
     を具備する液冷式の電動機。
  2.  前記通風ダクトは、前記ケースの外面上に設けられている請求項1に記載の液冷式の電動機。
  3.  前記通風ダクトは、前記ケースから離れて設けられ、前記ケースの第1および第2開口と前記通風ダクトが柔軟性を有する接続ダクトで接続されている請求項1に記載の液冷式の電動機。
  4.  前記通風ダクトを前記ケースに支持する防振支持部を備えている請求項3に記載の液冷式の電動機。
  5.  前記熱交換器は、前記通風ダクト内に配置された複数のフィンと、前記フィンを貫通して延び、前記冷却システムから供給される液冷媒を流す冷却管と、を備えている請求項1ないし4のいずれか1項に記載の液冷式の電動機。
  6.  前記ケースは、複数組の第1開口および第2開口を有し、各組の第1開口と第2開口とを繋ぐ複数の通風ダクトが設けられ、各通風ダクト内に、内部空気を液冷媒により冷却する熱交換器が設けられている請求項1ないし4のいずれか1項に記載の液冷式の電動機。
  7.  車両本体と、
     車輪が取付けられているとともに前記車両本体を支持する台車と、
     前記台車上に設置され前記車輪を駆動する請求項1ないし4のいずれか1項に記載の液冷式の電動機と、
     前記車両本体に設けられ、前記電動機の冷却部および熱交換器に液冷媒を供給する電動機用の冷却システムと、
     を備える鉄道車両。
  8.  前記車両本体に設けられ、前記冷却システムに接続された電力機器を備えている請求項7に記載の鉄道車両。
  9.  前記車両本体に設けられた電力機器と、前記車両本体に設けられ、前記電力機器を冷却する電力機器用の冷却システムと、を備え、前記電動機用の冷却システムおよび電力機器用の冷却システムは、それぞれ前記車両本体に設けられた放熱器を備え、更に、これらの放熱器に冷却風を送る共通の送風機を備えている請求項7に記載の鉄道車両。
  10.  前記電動機の通風ダクトは、前記車両本体に取付けられ、接続ダクトを介して電動機のケースに接続されている請求項7に記載の鉄道車両。
  11.  前記熱交換器は、前記通風ダクト内に配置された複数のフィンと、前記放熱フィンを貫通して延び、前記冷却システムから供給される液冷媒を流す冷却管と、を備えている請求項8ないし10のいずれか1項に記載の鉄道車両。
PCT/JP2013/069686 2013-07-19 2013-07-19 液冷式電動機 WO2015008390A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13889588.3A EP3024125A1 (en) 2013-07-19 2013-07-19 Liquid-cooled electric motor
PCT/JP2013/069686 WO2015008390A1 (ja) 2013-07-19 2013-07-19 液冷式電動機
CN201380078287.3A CN105379080A (zh) 2013-07-19 2013-07-19 液冷式电动机
JP2015527134A JPWO2015008390A1 (ja) 2013-07-19 2013-07-19 液冷式電動機
US14/997,270 US20160134177A1 (en) 2013-07-19 2016-01-15 Liquid cooled electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/069686 WO2015008390A1 (ja) 2013-07-19 2013-07-19 液冷式電動機

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/997,270 Continuation US20160134177A1 (en) 2013-07-19 2016-01-15 Liquid cooled electric motor

Publications (1)

Publication Number Publication Date
WO2015008390A1 true WO2015008390A1 (ja) 2015-01-22

Family

ID=52345881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069686 WO2015008390A1 (ja) 2013-07-19 2013-07-19 液冷式電動機

Country Status (5)

Country Link
US (1) US20160134177A1 (ja)
EP (1) EP3024125A1 (ja)
JP (1) JPWO2015008390A1 (ja)
CN (1) CN105379080A (ja)
WO (1) WO2015008390A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150222162A1 (en) * 2014-01-31 2015-08-06 Tesla Motors, Inc. Pressurized and gravity-fed liquid cooling of electric motor
EP3109977A1 (en) * 2015-06-25 2016-12-28 Hitachi, Ltd. Rotating electrical machine and cooling system of rotating electrical machine
CN106953452A (zh) * 2017-05-18 2017-07-14 电子科技大学中山学院 一种液冷电动机机壳
JP2017192163A (ja) * 2016-04-11 2017-10-19 東芝三菱電機産業システム株式会社 全閉形回転電機
JP2018090381A (ja) * 2016-12-02 2018-06-14 株式会社日立産機システム 外転型回転電機
WO2020031999A1 (ja) * 2018-08-07 2020-02-13 日本電産株式会社 モータ
CN111417825A (zh) * 2017-10-10 2020-07-14 江森自控科技公司 密封型马达冷却系统
CN111953135A (zh) * 2020-08-14 2020-11-17 曾小春 一种新能源汽车电机散热架

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2950424B1 (en) * 2014-05-26 2020-11-04 General Electric Technology GmbH Chamber for conductors of electric machines
DE102014108100A1 (de) * 2014-06-10 2015-12-17 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektrische Maschine für ein Kraftfahrzeug und Verfahren zum Kühlen einer elektrischen Maschine
US10124681B2 (en) * 2016-05-31 2018-11-13 Fuji Electric Co., Ltd. Railway vehicle power converter
EP3306050A1 (en) * 2016-10-04 2018-04-11 ABB Schweiz AG A sealing arrangement and a sealing method for an electrical machine
JP2018074894A (ja) * 2016-11-02 2018-05-10 日本電産株式会社 モータ
CN106655596B (zh) * 2016-11-21 2019-08-02 中车永济电机有限公司 一种内外双循环的全封闭电机自通风冷却结构
EP3389167A1 (en) * 2017-04-11 2018-10-17 Mahle International GmbH Electric motor
JP6988148B2 (ja) * 2017-04-24 2022-01-05 富士電機株式会社 鉄道車両用電力変換装置
JP6888468B2 (ja) * 2017-08-01 2021-06-16 富士電機株式会社 鉄道車両用電力変換装置
FR3070353B1 (fr) * 2017-08-30 2019-09-06 Speedinnov Motrice de train a grande vitesse
FR3070354B1 (fr) * 2017-08-30 2019-09-13 Speedinnov Motrice de train a grande vitesse avec surpression interne
CN107947474A (zh) * 2017-11-29 2018-04-20 浙江海洋大学 航模无刷电机涡轮泵水冷循环散热模块及其散热方法
CN110545012A (zh) * 2018-05-29 2019-12-06 中车株洲电力机车研究所有限公司 一种全封闭自然冷却牵引电机
CN108923584B (zh) * 2018-06-29 2020-04-03 安徽孟凌精密电子有限公司 一种散热性能好的汽车微电机
TWI678867B (zh) * 2018-07-09 2019-12-01 群光電能科技股份有限公司 變頻器整合馬達
CN110768464A (zh) * 2018-07-26 2020-02-07 西门子股份公司 电机冷却装置和电机冷却方法
DE102018125031A1 (de) * 2018-10-10 2020-04-16 HELLA GmbH & Co. KGaA Pumpe, insbesondere für einen Flüssigkeitskreislauf in einem Fahrzeug
DE102019100907A1 (de) * 2019-01-15 2020-07-16 Gkn Sinter Metals Engineering Gmbh Elektrischer Motor
WO2020189825A1 (ko) * 2019-03-20 2020-09-24 엘지전자 주식회사 지능형 동력생성모듈
CN110518738B (zh) * 2019-08-01 2021-01-19 西安交通大学 一种基于丁胞的电机通风冷却结构及风冷电机
CN110445309A (zh) * 2019-08-12 2019-11-12 安徽德科电气科技有限公司 一种高效的高压发电机风路
CN110718992B (zh) * 2019-09-24 2021-05-07 江西省鸿辉电机有限公司 一种电机铁芯
KR102238301B1 (ko) * 2019-11-06 2021-04-09 송과모터스 주식회사 구동모터의 회전자 냉각 구조
CN112994355A (zh) * 2019-12-12 2021-06-18 中车永济电机有限公司 一种带吊挂结构的空水冷大功率永磁牵引电机
US11581776B2 (en) * 2020-02-09 2023-02-14 Terry Wittmer Environmentally protected sealed electric motor
JP2022057359A (ja) * 2020-09-30 2022-04-11 東芝三菱電機産業システム株式会社 回転電機
CN113178989B (zh) * 2021-04-28 2022-10-21 哈尔滨工业大学 一种蒸发冷却电机
CN114769632B (zh) * 2022-06-17 2022-09-20 常州市昌隆电机股份有限公司 一种高速数控加工中心用电主轴

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06237555A (ja) * 1993-02-08 1994-08-23 Toshiba Toransupooto Eng Kk 水冷式誘導電動機
JPH08237904A (ja) 1995-02-23 1996-09-13 Nippondenso Co Ltd 液冷回転電機
JPH11252714A (ja) * 1998-02-27 1999-09-17 Toyo Electric Mfg Co Ltd 車両用液冷式モータの冷却方法
JP2007215311A (ja) * 2006-02-09 2007-08-23 Nissan Motor Co Ltd インホイールモータの冷却装置、冷却方法および冷却装置つき車両
JP2009081994A (ja) * 2002-11-25 2009-04-16 Toshiba Corp 全閉外扇冷却型電動機
JP2012533284A (ja) * 2009-07-13 2012-12-20 ジョンソン コントロールズ テクノロジー カンパニー モータ冷却応用例

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5981266U (ja) * 1982-11-20 1984-06-01 三菱電機株式会社 回転電機の空気冷却装置
JPS6089762U (ja) * 1983-11-25 1985-06-19 株式会社日立製作所 立形回転電機の通風ダクト支持装置
JPS6174259U (ja) * 1984-10-22 1986-05-20
JP3465661B2 (ja) * 1998-11-25 2003-11-10 株式会社日立製作所 回転電機
JP2007097325A (ja) * 2005-09-29 2007-04-12 East Japan Railway Co 全閉形電動機
JP4895118B2 (ja) * 2007-04-05 2012-03-14 東洋電機製造株式会社 モータ
JP5889512B2 (ja) * 2008-12-24 2016-03-22 株式会社東芝 車両駆動装置
JP2013034332A (ja) * 2011-08-03 2013-02-14 Hitachi Ltd 回転電機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06237555A (ja) * 1993-02-08 1994-08-23 Toshiba Toransupooto Eng Kk 水冷式誘導電動機
JPH08237904A (ja) 1995-02-23 1996-09-13 Nippondenso Co Ltd 液冷回転電機
JPH11252714A (ja) * 1998-02-27 1999-09-17 Toyo Electric Mfg Co Ltd 車両用液冷式モータの冷却方法
JP2009081994A (ja) * 2002-11-25 2009-04-16 Toshiba Corp 全閉外扇冷却型電動機
JP2007215311A (ja) * 2006-02-09 2007-08-23 Nissan Motor Co Ltd インホイールモータの冷却装置、冷却方法および冷却装置つき車両
JP2012533284A (ja) * 2009-07-13 2012-12-20 ジョンソン コントロールズ テクノロジー カンパニー モータ冷却応用例

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10439477B2 (en) * 2014-01-31 2019-10-08 Tesla, Inc. Pressurized and gravity-fed liquid cooling of electric motor
US20150222162A1 (en) * 2014-01-31 2015-08-06 Tesla Motors, Inc. Pressurized and gravity-fed liquid cooling of electric motor
EP3109977A1 (en) * 2015-06-25 2016-12-28 Hitachi, Ltd. Rotating electrical machine and cooling system of rotating electrical machine
JP2017192163A (ja) * 2016-04-11 2017-10-19 東芝三菱電機産業システム株式会社 全閉形回転電機
JP2018090381A (ja) * 2016-12-02 2018-06-14 株式会社日立産機システム 外転型回転電機
CN106953452B (zh) * 2017-05-18 2023-05-09 山西平遥华兴电机铸造有限公司 一种液冷电动机机壳
CN106953452A (zh) * 2017-05-18 2017-07-14 电子科技大学中山学院 一种液冷电动机机壳
CN111417825A (zh) * 2017-10-10 2020-07-14 江森自控科技公司 密封型马达冷却系统
US11942851B2 (en) 2017-10-10 2024-03-26 Tyco Fire & Security Gmbh Hermetic motor cooling system
WO2020031999A1 (ja) * 2018-08-07 2020-02-13 日本電産株式会社 モータ
JPWO2020031999A1 (ja) * 2018-08-07 2021-08-10 日本電産株式会社 モータ
JP7452423B2 (ja) 2018-08-07 2024-03-19 ニデック株式会社 モータ
CN111953135A (zh) * 2020-08-14 2020-11-17 曾小春 一种新能源汽车电机散热架

Also Published As

Publication number Publication date
US20160134177A1 (en) 2016-05-12
CN105379080A (zh) 2016-03-02
EP3024125A1 (en) 2016-05-25
JPWO2015008390A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
WO2015008390A1 (ja) 液冷式電動機
JP5143094B2 (ja) 全閉外扇冷却型電動機
JP6674453B2 (ja) 原動機付き車両のドライブトレーンのための駆動装置
US20100176670A1 (en) Machine cooling scheme
JP2007306741A (ja) 制御装置一体型電動機
JP5692985B2 (ja) 電気機械の冷却のための装置
JP5441607B2 (ja) 電気機械を冷却するための装置
JP2006067793A (ja) 液体冷却式スイッチドリラクタンス電気機械
TW201101653A (en) Totally enclosed main motor for vehicle
US11845477B2 (en) Bogie of a rail vehicle
JP2013074646A (ja) 制御装置一体電動機
JP4939905B2 (ja) 車両用駆動装置
US11309770B2 (en) In-wheel electric motor provided with a cooling system
JP2017011946A (ja) 回転電機、並びに回転電機の冷却システム
JPH07288949A (ja) 車両駆動用電動機
CN111864992A (zh) 冷却装置、电机及风力发电机组
JP2008125172A (ja) 車両用駆動装置
US3020427A (en) Ventilation of dynamoelectric machine drive units
JP2004194498A (ja) 全閉外扇冷却型電動機
JP4928986B2 (ja) 車両駆動用全閉型電動機
JP2010098791A (ja) 全閉型回転電動機
JP5038675B2 (ja) 全閉外扇形電動機
KR20120080213A (ko) 전기 기계를 위한 냉각 시스템
JP2016021815A (ja) 車両用回転電機の冷却構造
JP2007318919A (ja) 車両用全閉形電動機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015527134

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013889588

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013889588

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE