WO2015008346A1 - 水処理装置 - Google Patents

水処理装置 Download PDF

Info

Publication number
WO2015008346A1
WO2015008346A1 PCT/JP2013/069392 JP2013069392W WO2015008346A1 WO 2015008346 A1 WO2015008346 A1 WO 2015008346A1 JP 2013069392 W JP2013069392 W JP 2013069392W WO 2015008346 A1 WO2015008346 A1 WO 2015008346A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
gas
phase flow
water treatment
tank
Prior art date
Application number
PCT/JP2013/069392
Other languages
English (en)
French (fr)
Inventor
佐藤 淳
進 沖野
鵜飼 展行
英夫 鈴木
裕 中小路
茂 吉岡
櫻井 秀明
小川 尚樹
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP13889447.2A priority Critical patent/EP2998278B1/en
Priority to CN201380077414.8A priority patent/CN105339312B/zh
Priority to SG11201510233WA priority patent/SG11201510233WA/en
Priority to CA2915790A priority patent/CA2915790A1/en
Priority to US14/899,375 priority patent/US10138147B2/en
Priority to PCT/JP2013/069392 priority patent/WO2015008346A1/ja
Priority to JP2015527098A priority patent/JP6072254B2/ja
Priority to AU2013394505A priority patent/AU2013394505B2/en
Publication of WO2015008346A1 publication Critical patent/WO2015008346A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1278Provisions for mixing or aeration of the mixed liquor
    • C02F3/1294"Venturi" aeration means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • C02F3/208Membrane aeration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/22Activated sludge processes using circulation pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2661Addition of gas
    • B01D2311/2665Aeration other than for cleaning purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2688Biological processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a water treatment apparatus, and more particularly to a water treatment apparatus used when water treatment is performed by biological treatment.
  • the water treatment apparatus includes a biological treatment tank, an air diffuser, and a filtration membrane.
  • the biological treatment tank stores activated sludge containing microorganisms and inflowing waste water.
  • the aeration apparatus aerates the biological treatment tank by supplying a gas containing oxygen to the activated sludge.
  • the biological treatment tank is aerated, the microorganisms decompose the pollutants in the wastewater, and propagate and multiply.
  • the filtration membrane separates treated water from the activated sludge by filtering a suspension of the activated sludge and treated water in the biological treatment tank.
  • the activated sludge is aerated, the filtration membrane is washed by an upward flow generated by rising bubbles, thereby preventing clogging (see Patent Documents 1 to 3).
  • a two-phase high-load activated sludge system in which the microbial phase in activated sludge is separated into two phases, and water treatment is performed in the two phases.
  • the two-phase high-load activated sludge system includes a first aeration tank and a second aeration tank.
  • the first aeration tank treats the raw wastewater with only non-aggregating bacteria.
  • the wastewater treated in the first aeration tank is further treated with activated sludge in which protozoa and metazoans that prey on the non-aggregating bacteria predominate.
  • Such a two-phase high-load activated sludge system can treat the raw wastewater with high efficiency, thereby reducing the size of the tank and reducing excess sludge.
  • Such a water treatment apparatus is desired to appropriately treat the pollutant in the waste water, and to aerate the activated sludge in the biological treatment tank appropriately. It is desired that the filtration membrane for filtering the activated sludge in the biological treatment tank be washed appropriately. In order to properly clean the membrane surface of the filtration membrane, such a water treatment device may need to aerate more air than is necessary for the microorganism, increasing the power for aeration. You may need to Such a water treatment apparatus is desired to reduce aeration power necessary for appropriately treating wastewater. In the two-phase high-load activated sludge system, it is desired to appropriately treat the wastewater using non-aggregating bacteria.
  • the subject of this invention is providing the water treatment apparatus which aerates the stored liquid in a biological treatment tank appropriately.
  • the other subject of this invention is providing the water treatment apparatus which reduces the motive power which aerates a biological treatment tank.
  • the further another subject of this invention is providing the water treatment apparatus which wash
  • Still another object of the present invention is to provide a water treatment apparatus for appropriately treating waste water using non-aggregating bacteria.
  • a water treatment apparatus includes a biological treatment tank for storing a storage liquid containing organisms that decompose pollutants, and a circulation pump that generates a circulating liquid flow that draws the storage liquid out of the tank and circulates it back into the tank. And a gas-liquid two-phase flow generating device that generates a gas-liquid two-phase flow in which the gas is dispersed in the circulating liquid flow by sucking a gas containing oxygen using the circulating liquid flow; And a nozzle for injecting the gas-liquid two-phase flow in a region where the liquid is stored.
  • Such a gas-liquid two-phase flow is generated by such a gas-liquid two-phase flow generation device, so that dispersed bubbles become fine.
  • a water treatment device can improve the efficiency of dissolving oxygen in the stored liquid due to its fine bubbles, and can decompose pollutants even with a small amount of air compared to conventional air diffusers. Sufficient oxygen can be supplied.
  • Such a water treatment apparatus can circulate the stored liquid with high efficiency throughout the biological treatment tank by injecting a gas-liquid two-phase flow into the biological treatment tank.
  • Such a water treatment device can appropriately stir the stored liquid and circulate the stored liquid appropriately by circulating the stored liquid throughout the biological treatment tank. For this reason, such a water treatment apparatus can process a stored liquid appropriately.
  • the water treatment device further includes a circulating fluid pipe for supplying the circulating fluid to the pump by drawing the stored fluid from the bottom of the biological treatment tank.
  • the liquid stored in the bottom of the biological treatment tank has few bubbles.
  • Such a water treatment apparatus can reduce the bubbles mixed in the circulating liquid by generating the circulating liquid from the stored liquid with few bubbles.
  • the bubbles mixed in the circulating liquid are reduced, so that the circulating liquid flow can be appropriately generated by the pump, and the gas-liquid two-phase flow is generated by the gas-liquid two-phase flow generating device. It can be generated appropriately.
  • the water treatment apparatus further includes a separation membrane immersed in the stored liquid. At this time, the separation membrane generates treated water by filtering the stored liquid. The nozzle injects a gas-liquid two-phase flow toward the separation membrane.
  • the region where the stored liquid is stored includes an upflow portion where the separation membrane is arranged and a downflow portion arranged side by side in the horizontal direction with the upflow portion. That is, the separation membrane is arranged so that a line segment obtained by orthogonally projecting the downward flow portion onto the vertical line includes a line segment obtained by orthogonal projection of the separation membrane onto the vertical line.
  • the circulating fluid pipe draws the stored fluid from the downward flow portion.
  • Such a water treatment device can generate an upward flow in which the stored liquid rises in the upward flow portion, and can generate a downward flow in which the stored liquid descends in the downward flow portion.
  • Such a water treatment apparatus can appropriately circulate the stored liquid in the entire biological treatment tank by generating the upward flow and the downward flow, and can appropriately aerate the stored liquid.
  • the nozzle is formed of a plurality of nozzles that respectively inject a gas-liquid two-phase flow into a plurality of different regions of the separation membrane.
  • a water treatment device can inject a gas-liquid two-phase flow more uniformly over the entire separation membrane as compared to other water treatment devices that inject a gas-liquid two-phase flow with one nozzle. Even when the separation membrane is relatively large, the separation membrane can be washed more appropriately.
  • the nozzles preferably inject the gas-liquid two-phase flow upward.
  • Such a water treatment apparatus can generate an upward flow appropriately, and can wash
  • the gas-liquid two-phase flow generator is arranged above the membrane separation tank.
  • Such a water treatment device can arrange a gas-liquid two-phase flow generation device on the ground when the membrane separation tank is buried in the ground, and can easily maintain the gas-liquid two-phase flow generation device Can do.
  • the water treatment apparatus further includes a pipe for supplying the gas-liquid two-phase flow from the gas-liquid two-phase flow generation apparatus to the nozzle, and a gas-liquid stirring apparatus for stirring the fluid flowing through the pipe.
  • a water treatment device can generate an upward flow of the stored liquid and bubbles more appropriately by preventing the bubbles dispersed in the gas-liquid two-phase flow from becoming coarse, The separation membrane can be washed more appropriately.
  • the piping is arranged so as to pass the liquid level of the stored liquid.
  • Such a water treatment device can be more easily produced as compared with other water treatment devices in which the pipe passes through the hole formed in the side wall of the membrane separation tank.
  • the biological treatment tank includes a membrane separation tank that forms a region in which the separation membrane is disposed, and a biological oxidation tank that supplies a stored liquid to the membrane separation tank.
  • the water treatment apparatus according to the present invention further includes a gas-liquid two-phase flow generating device for a biological oxidation tank and a biological oxidation tank nozzle.
  • the gas-liquid two-phase flow generator for a bio-oxidation tank draws out the stored liquid from the membrane separation tank, and sucks oxygen-containing gas using a circulating liquid flow that circulates the stored liquid to the bio-oxidation tank. Then, a gas-liquid two-phase flow in which the oxygen-containing gas is dispersed in the stored liquid is generated.
  • the bio-oxidation tank nozzle supplies the bio-oxidation tank with the gas-liquid two-phase flow generated by the bio-oxidation tank gas-liquid two-phase flow generation device.
  • Such a water treatment apparatus is a membrane separation tank when the load of pollutants, specifically BOD (Biochemical Oxygen Demand, Biological Oxygen Demand), COD (Chemical Oxygen Demand, Chemical Oxygen Demand) is high. Since it is difficult to decompose pollutants with only aeration, it is possible to promote the decomposition of pollutants by installing a bio-oxidation tank in the previous stage. By generating bubbles, the oxygen dissolution efficiency in the bio-oxidation tank can be increased, and even with a small amount of air compared to conventional aeration devices, sufficient oxygen can be supplied to decompose pollutants. .
  • BOD Biochemical Oxygen Demand, Biological Oxygen Demand
  • COD Chemical Oxygen Demand
  • the biological treatment tank stores a dispersed bacteria treatment tank that stores a dispersed bacteria mixed liquid in which non-aggregating bacteria that decompose pollutants are dispersed, and an activated sludge mixed liquid in which activated sludge that decomposes the dispersed bacteria floats. And an activated sludge treatment tank.
  • the dispersed bacteria mixed solution is supplied to the activated sludge mixed solution.
  • the circulating liquid is generated by being drawn out from the dispersed bacterial mixture.
  • the nozzle injects the gas-liquid two-phase flow into a region where the dispersed bacteria mixture is stored.
  • Such a water treatment device can dissolve oxygen in the disperse bacteria mixture with high efficiency by making the bubbles dispersed in the disperse bacteria mixture finer, and the amount of air is smaller than that of the conventional air diffuser. However, sufficient oxygen can be supplied to non-aggregating bacteria.
  • Such a water treatment apparatus can further appropriately agitate the dispersed bacteria mixture by injecting a gas-liquid two-phase flow into the dispersed bacteria treatment tank, and can further support a carrier on which non-aggregating bacteria are supported. As a result, the waste water can be appropriately treated with water.
  • the water treatment apparatus further includes an activated sludge treatment tank nozzle that injects the gas-liquid two-phase flow into an area where the activated sludge mixed liquid is stored.
  • Such a water treatment apparatus can appropriately aerate the activated sludge mixed liquid by injecting the gas-liquid two-phase flow into the activated sludge mixed liquid, and as a result, the waste water can be appropriately treated with water. .
  • the water treatment apparatus can circulate the stored liquid with high efficiency in the tank by injecting a gas-liquid two-phase flow into the stored liquid, and can appropriately aerate the stored liquid, The liquid can be processed appropriately.
  • the water treatment apparatus 1 includes a membrane separation tank 2 and a separation membrane 3 as shown in FIG.
  • the membrane separation tank 2 is formed in a container and forms a storage space therein.
  • the membrane separation tank 2 stores a stored liquid 5 containing wastewater and activated sludge supplied from the outside in the storage space.
  • the activated sludge contains an aerobic microorganism group.
  • the aerobic microorganism group decomposes pollutants in the wastewater and propagates and proliferates when the storage liquid 5 is aerated with a gas containing oxygen.
  • the storage space includes an upflow part 61, a first downflow part 62, and a second downflow part 63.
  • the ascending flow portion 61 is disposed substantially at the center of the storage space.
  • the first descending flow part 62 is arranged side by side with the upflow part 61 in the horizontal direction, is arranged along a part of the side wall of the membrane separation tank 2, and is arranged between the upflow part 61 and the side wall.
  • the second downward flow portion 63 is arranged in parallel with the upward flow portion 61 so as to be along a part of the side wall of the membrane separation tank 2 opposite to a part along the first downward flow portion 62. That is, it is arranged between the upflow part 61 and its side wall so that the upflow part 61 is arranged between the first downflow part 62 and the second downflow part 63.
  • the separation membrane 3 is disposed in the upward flow portion 61 in the storage space of the membrane separation tank 2 so as to be immersed in the storage liquid 5.
  • the separation membrane 3 further includes a separation membrane projection line segment obtained by orthogonal projection of the separation membrane 3 on a vertical line so that the line segment obtained by orthogonal projection of the first downward flow portion 62 on the vertical line includes the separation membrane 3. It arrange
  • the separation membrane 3 is formed from a plurality of modules. Each module is formed by bundling a plurality of hollow fibers. The plurality of hollow fibers are each formed from a filtration membrane.
  • the separation membrane 3 produces treated water by filtering the stored liquid 5 using the filtration membrane.
  • the concentration of the pollutant contained in the treated water is smaller than the concentration of the pollutant contained in the waste water, and the concentration of the aerobic microorganism group in the treated water is the concentration of the aerobic microorganism group in the storage liquid 5. Less than the concentration contained.
  • the water treatment device 1 further includes a circulating fluid pipe 6, a circulating pump 7, and a gas-liquid two-phase flow generating device 8.
  • the circulating fluid pipe 6 forms a flow path having one end connected to the bottom of the second downward flow portion 63 in the storage space of the membrane separation tank 2 and the other end connected to the circulation pump 7.
  • the circulating fluid pipe 6 extracts the stored fluid 5 from the bottom of the second downward flow portion 63 of the membrane separation tank 2 and supplies the extracted circulating fluid to the circulation pump 7.
  • the circulation pump 7 is disposed outside the membrane separation tank 2.
  • the circulation pump 7 takes in the circulating liquid from the membrane separation tank 2 through the circulating liquid pipe 6 using electric power supplied from the outside, and generates a liquid flow of the circulating liquid.
  • the gas-liquid two-phase flow generator 8 is disposed outside the membrane separation tank 2.
  • the gas-liquid two-phase flow generating device 8 generates a gas-liquid two-phase flow using the liquid flow generated by the circulation pump 7. In the gas-liquid two-phase flow, air is dispersed in the circulating fluid.
  • the water treatment apparatus 1 further includes a gas-liquid two-phase flow pipe 11 and a nozzle 12.
  • the gas-liquid two-phase flow pipe 11 is disposed so as to penetrate a hole formed in a portion of the side wall of the membrane separation tank 2 in the vicinity of the bottom of the first downward flow portion 62, and one end of the gas-liquid two-phase flow pipe 11 The other end is connected to the generator 8 and is disposed at the bottom of the first downward flow portion 62 in the storage space of the membrane separation tank 2.
  • the gas-liquid two-phase flow pipe 11 forms a flow path through which the gas-liquid two-phase flow generated by the gas-liquid two-phase flow generation device 8 flows.
  • the nozzle 12 is disposed at the bottom of the first downward flow portion 62 in the storage space of the membrane separation tank 2, and the tip is disposed so as to face the bottom of the upward flow portion 61.
  • the nozzle 12 is connected to the end of the gas-liquid two-phase flow pipe 11 that is disposed in the storage space of the membrane separation tank 2.
  • the nozzle 12 is supplied with the gas-liquid two-phase flow from the gas-liquid two-phase flow pipe 11, and thereby the gas-liquid two-phase flow is directed toward the bottom of the upflow portion 61 in the storage space of the membrane separation tank 2. Spray.
  • FIG. 2 shows the gas-liquid two-phase flow generation device 8.
  • the gas-liquid two-phase flow generation device 8 includes a liquid flow intake pipe 15, an orifice 16, and an air suction pipe 17.
  • the liquid flow intake pipe 15 forms a flow path through which the circulating liquid flow generated by the circulation pump 7 flows.
  • the orifice 16 is formed in the middle of the liquid flow intake pipe 15 and forms a flow path through which the liquid flow generated by the circulation pump 7 flows.
  • the cross-sectional area of the flow path formed by the orifice 16 is smaller than the cross-sectional area of the flow path formed by the liquid flow intake pipe 15.
  • the air suction pipe 17 forms a flow path through which air flows, one end is disposed in the atmosphere, and the other end is connected to the downstream side of the orifice 16 in the liquid flow intake pipe 15.
  • the gas-liquid two-phase flow generating device 8 generates a negative pressure on the downstream side of the orifice 16 when the circulating liquid flows in the liquid flow intake pipe 15.
  • the gas-liquid two-phase flow generating device 8 sucks air from the atmosphere to the liquid flow intake pipe 15 via the air suction pipe 17 when a negative pressure is generated downstream of the orifice 16.
  • the gas-liquid two-phase flow generation device 8 sucks air into the liquid flow intake pipe 15 through the air suction pipe 17 to disperse the air in the circulating liquid, and the gas-liquid two-phase in which the air is dispersed in the circulating liquid. Generate a flow. Air bubbles dispersed in the gas-liquid two-phase flow are relatively fine.
  • Such a gas-liquid two-phase flow generation device 8 is well known, and is used in, for example, techniques disclosed in Japanese Patent Nos. 38544481 and 3486399.
  • the water treatment device 1 operates when wastewater is supplied from the outside to the membrane separation tank 2 and the stored liquid 5 is stored in the storage space of the membrane separation tank 2.
  • the circulation pump 7 draws the storage liquid 5 from the bottom of the second downward flow portion 63 of the membrane separation tank 2 through the circulation liquid pipe 6.
  • the gas-liquid two-phase flow generation device 8 uses the liquid flow generated by the circulation pump 7 to suck air from the atmosphere and generates a gas-liquid two-phase flow in which bubbles of the air are dispersed in the circulation liquid. .
  • the gas-liquid two-phase flow is supplied to the nozzle 12 via the gas-liquid two-phase flow pipe 11.
  • the nozzle 12 injects the gas-liquid two-phase flow toward the bottom of the upflow portion 61 of the membrane separation tank 2 by supplying the gas-liquid two-phase flow from the gas-liquid two-phase flow pipe 11.
  • the air bubbles dispersed in the gas-liquid two-phase flow raise the stored liquid 5 by buoyancy.
  • the upward flow of the stored liquid 5 is generated in the upward flow portion 61 of the storage space of the membrane separation tank 2.
  • the upward flow generates a downward flow in which the stored liquid 5 flows downward in the first downward flow portion 62 and the second downward flow portion 63 of the storage space of the membrane separation tank 2.
  • the upward flow and the downward flow aerate the stored liquid 5 by the air dispersed in the gas-liquid two-phase flow.
  • the water treatment apparatus 1 further injects a gas-liquid two-phase flow into the membrane separation tank 2 to accelerate the flow velocity of the upward flow and the downward flow, and the stored liquid 5 flows through the entire membrane separation tank 2.
  • a flow can be appropriately formed, and the stored liquid 5 can be appropriately stirred.
  • the water treatment apparatus 1 can prolong the time during which the air bubbles are dispersed in the stored liquid 5 by appropriately stirring the stored liquid 5, and can appropriately aerate the stored liquid 5. .
  • the aerobic microorganism group contained in the stored liquid 5 decomposes the pollutant contained in the waste water, and the aerobic microorganism group propagates and proliferates.
  • the bubbles dispersed in the gas-liquid two-phase flow are relatively small because the gas-liquid two-phase flow is generated by the gas-liquid two-phase flow generator 8. Since the gas-liquid two-phase flow bubbles are small, the water treatment device 1 can increase the contact area between the stored liquid 5 and air, and can dissolve oxygen in the stored liquid 5 more efficiently. .
  • the aerobic microorganism group can be propagated and proliferated with high efficiency when oxygen is dissolved in the reservoir 5 at a high concentration.
  • the water treatment apparatus 1 can appropriately treat the wastewater by the aerobic microorganism group breeding and multiplying with high efficiency.
  • the nozzle 12 further injects the gas-liquid two-phase flow toward the bottom of the upflow portion 61 of the membrane separation tank 2, thereby using a diffuser pipe or the like to the bottom of the upflow portion 61.
  • the upward flow can flow through the upward flow portion 61 at a higher speed.
  • the upward flow flows in the vicinity of the separation membrane 3 by flowing through the upward flow portion 61.
  • the upward flow flows in the vicinity of the separation membrane 3 together with the bubbles, thereby cleaning the surface of the separation membrane 3 that contacts the stored liquid 5.
  • the water treatment device 1 can clean the separation membrane 3 more appropriately because the upward flow flowing in the vicinity of the separation membrane 3 is high speed. By properly washing the separation membrane 3, clogging is prevented, and the stored liquid 5 can be appropriately filtered. For this reason, the water treatment apparatus 1 can appropriately water-treat the stored liquid 5.
  • a part of the bubbles mixed in the upward flow is released from the liquid surface of the stored liquid 5 to the environment.
  • a downward flow of the stored liquid 5 is generated in the first downward flow portion 62 and the second downward flow portion 63 of the storage space of the membrane separation tank 2 from the upward flow in which bubbles are reduced.
  • the stored liquid disposed on the bottom of the first downward flow portion 62 and the bottom of the second downward flow portion 63 of the stored liquid 5 Bubbles contained can be reduced.
  • the circulating fluid pipe 6 can reduce the amount of bubbles mixed in the circulating fluid supplied to the circulating pump 7 by drawing the stored fluid 5 from the bottom of the second downward flow portion 63.
  • the circulation pump 7 can appropriately generate a liquid flow of the circulating liquid by reducing the number of bubbles mixed in the circulating liquid supplied via the circulating liquid pipe 6. Furthermore, the gas-liquid two-phase flow generator 8 can appropriately disperse the air in the circulating liquid by reducing the number of bubbles mixed in the circulating liquid generated by the circulation pump 7, It can be generated appropriately.
  • the water treatment apparatus 1 when the downward flow is generated in the first downward flow portion 62 and the second downward flow portion 63, the stored liquid 5 is further directed downward in the gaps of the plurality of modules forming the separation membrane 3. It is not necessary to provide a space for the flowing downward flow, a plurality of modules can be arranged more densely, and the separation membrane 3 can be formed in a compact manner.
  • the separation membrane 3 needs to be taken out of the storage space of the membrane separation tank 2 and maintained every predetermined period.
  • the water treatment apparatus 1 can handle the separation membrane 3 in a narrower space, and can maintain the separation membrane 3 more easily.
  • the water treatment apparatus 1 may be able to form the storage space of the membrane separation tank 2 smaller by forming the separation membrane 3 in a compact manner.
  • FIG. 3 shows another embodiment of the water treatment apparatus.
  • the water treatment device 1 in the above-described embodiment further includes another gas-liquid two-phase flow generation device 22, another gas-liquid two-phase flow pipe 23, and another nozzle 24.
  • the gas-liquid two-phase flow generator 22 is formed in the same manner as the gas-liquid two-phase flow generator 8. That is, the gas-liquid two-phase flow generating device 22 generates a gas-liquid two-phase flow using the liquid flow generated by the circulation pump 7.
  • the gas-liquid two-phase flow pipe 23 is disposed so as to penetrate another hole formed in a portion of the side wall of the membrane separation tank 2 in the vicinity of the bottom of the second downward flow portion 63.
  • the hole is formed in a region opposite to the region where the hole through which the gas-liquid two-phase flow pipe 11 passes is formed.
  • One end of the gas-liquid two-phase flow pipe 23 is connected to the gas-liquid two-phase flow generating device 22, and the other end is disposed in the storage space of the membrane separation tank 2.
  • the gas-liquid two-phase flow pipe 23 forms a flow path through which the gas-liquid two-phase flow generated by the gas-liquid two-phase flow generation device 22 flows.
  • the nozzle 24 is disposed in the second downward flow portion 63 of the storage space of the membrane separation tank 2, and the tip is directed to the bottom of the upward flow portion 61 of the storage space of the membrane separation tank 2, that is, the tip is directed to the separation membrane 3. Is directed.
  • the region of the separation membrane 3 to which the tip of the nozzle 24 is directed is different from the region of the separation membrane 3 to which the tip of the nozzle 12 is directed.
  • the nozzle 24 injects the gas-liquid two-phase flow toward the bottom of the upflow portion 61 of the storage space of the membrane separation tank 2 by supplying the gas-liquid two-phase flow from the gas-liquid two-phase flow pipe 23. .
  • the water treatment device 21 injects the gas-liquid two-phase flow from the nozzle 24 in parallel with the injection of the gas-liquid two-phase flow from the nozzle 12.
  • the gas-liquid two-phase flow ejected from the nozzle 12 and the gas-liquid two-phase flow ejected from the nozzle 24 aerate the stored liquid 5 by air bubbles dispersed in the gas-liquid two-phase flow.
  • the air bubbles dispersed in the gas-liquid two-phase flow further lift the stored liquid 5 by buoyancy.
  • an upward flow of the stored liquid 5 is generated in the upward flow portion 61 of the storage space of the membrane separation tank 2.
  • Such an upward flow flows in the vicinity of the separation membrane 3 to wash the separation membrane 3.
  • Such an upflow flows over a wider range than the upflow generated by the gas-liquid two-phase flow injected by one nozzle 12.
  • the water treatment device 21 injects gas-liquid two-phase flow from a plurality of nozzles, so that the water treatment in the above-described embodiment can be performed even when the separation membrane 3 is sufficiently large relative to one nozzle 12.
  • the upward flow can be applied more uniformly to the surface of the separation membrane 3, the surface of the separation membrane 3 can be washed more uniformly, and the clogging of the separation membrane 3 can be more appropriately performed. Can be prevented.
  • FIG. 4 shows still another embodiment of the water treatment apparatus.
  • the nozzles 12 of the water treatment device 1 in the above-described embodiment are replaced with a plurality of nozzles 33.
  • the plurality of nozzles 33 are respectively disposed at the bottom of the upflow portion 61 in the storage space of the membrane separation tank 2.
  • Each of the plurality of nozzles 33 is disposed such that the tip thereof faces upward, and the tip is disposed so as to be directed to a plurality of different regions of the separation membrane 3.
  • Each of the plurality of nozzles 33 is supplied with the gas-liquid two-phase flow from the gas-liquid two-phase flow pipe 32, and thereby injects the gas-liquid two-phase flow upward, that is, toward the separation membrane 3. .
  • the gas-liquid two-phase flow ejected from the plurality of nozzles 33 is stored by the circulating fluid ejected upward from the plurality of nozzles 33 in addition to the buoyancy of air bubbles dispersed in the gas-liquid two-phase flow.
  • an upward flow of the stored liquid 5 is generated in the upward flow portion 61 of the membrane separation tank 2.
  • the upward flow generates a downward flow in which the stored liquid 5 flows downward in the first downward flow portion 62 and the second downward flow portion 63 of the storage space of the membrane separation tank 2.
  • the upward flow and the downward flow aerate the stored liquid 5 by the air dispersed in the gas-liquid two-phase flow.
  • Such an upward flow flows in the vicinity of the separation membrane 3 to wash the separation membrane 3.
  • Such an upward flow is further compared with the upward flow generated by the gas-liquid two-phase flow injected by one nozzle 12 by jetting the gas-liquid two-phase flow from the plurality of nozzles 33, Flow over a wider area.
  • the water treatment device 31 has an upward flow on the surface of the separation membrane 3 as compared with the water treatment device 1 in the embodiment described above.
  • the surface of the separation membrane 3 can be washed more uniformly, and the separation membrane 3 can be washed more appropriately.
  • Such an upward flow is generated when a gas-liquid two-phase flow is jetted upward from a plurality of nozzles 33 and a gas-liquid two-phase flow is jetted in another direction not parallel to the upward direction. Compared to, it flows upwards faster. For this reason, the water treatment apparatus 31 can wash
  • the water treatment device 31 can appropriately wash even the separation membrane 3 in which a plurality of modules are arranged more densely by flowing a higher-speed upward flow.
  • the separation membrane 3 is compactly formed by arranging a plurality of modules closely, and is easy to handle. For this reason, the water treatment apparatus 31 can maintain the separation membrane 3 more easily. Furthermore, the water treatment apparatus 31 may be able to form the storage space of the membrane separation tank 2 smaller by forming the separation membrane 3 in a compact manner.
  • FIG. 5 shows still another embodiment of the water treatment apparatus.
  • the gas-liquid two-phase flow pipe 11 of the water treatment apparatus 51 in the above-described embodiment is replaced with another gas-liquid two-phase flow pipe 32.
  • the gas-liquid two-phase flow pipe 32 is disposed so as to pass through the liquid level 34 of the stored liquid 5, one end is connected to the gas-liquid two-phase flow generating device 8, and the other end is connected to the plurality of nozzles 33. .
  • the gas-liquid two-phase flow pipe 32 forms a flow path through which the gas-liquid two-phase flow generated by the gas-liquid two-phase flow generation device 8 flows.
  • the water treatment device 31 further has a gas-liquid two-phase flow pipe 32 in the membrane separation tank 2 by arranging one end of the gas-liquid two-phase flow pipe 32 in the storage space of the membrane separation tank 2 via the liquid surface 34. There is no need to form a hole through which 32 passes. For this reason, the water treatment apparatus 31 can be easily produced, and in particular, can be easily produced by remodeling even from an existing water treatment apparatus in which a membrane separation tank is embedded. For example, when the water treatment device 1 is modified to the water treatment device 21, it is necessary to newly form a hole through which the gas-liquid two-phase flow pipe 32 passes in the membrane separation tank 2. It is easier to remodel the water treatment device 1 to the water treatment device 31 than to remodel the water treatment device 1 to the water treatment device 21 without the need to form a new hole in the membrane separation tank 2. It is.
  • the gas-liquid two-phase flow generating device 8 is disposed above the membrane separation tank 2. Since the gas-liquid two-phase flow generating device 8 is disposed above the membrane separation tank 2, even when the membrane separation tank 2 is buried underground, the air suction pipe 17 can more easily take in the space for taking in air. The space used for the maintenance of the gas-liquid two-phase flow generator 8 can be more easily secured.
  • FIG. 6 further shows a gas-liquid two-phase flow pipe 32.
  • the gas-liquid two-phase flow pipe 32 includes a line mixer 19.
  • the line mixer 19 is formed from a plurality of elements.
  • the plurality of elements are each formed in a twisted band shape.
  • Each of the plurality of elements is disposed in a flow path formed by the gas-liquid two-phase flow pipe 32 and is fixed to the gas-liquid two-phase flow pipe 32.
  • the line mixer 19 swirls the gas-liquid two-phase flow using the gas-liquid two-phase flow, thereby Stir the liquid two-phase flow.
  • the line mixer 19 agitates the gas-liquid two-phase flow to prevent the air bubbles dispersed in the gas-liquid two-phase flow from becoming coarse even when the gas-liquid two-phase flow pipe 32 is relatively long. To do.
  • Such a water treatment device 31 prevents the bubbles of air dispersed in the gas-liquid two-phase flow from becoming coarse, so that the gas-liquid two-phase flow pipe 32 is not provided with the line mixer 19. Compared to the water treatment apparatus, fine bubbles can be supplied to the stored liquid 5 more reliably, and the stored liquid 5 can be aerated more appropriately.
  • the line mixer 19 can be replaced with another gas-liquid stirring device that stirs the gas-liquid two-phase flow flowing through the gas-liquid two-phase flow pipe 32. Also in this case, the water treatment device 31 can prevent the bubbles dispersed in the gas-liquid two-phase flow from becoming coarse, can aerate the stored liquid 5 more appropriately, and properly clean the separation membrane 3. can do.
  • the gas-liquid two-phase flow pipe 11 in the above-described embodiment can include the line mixer 19 in the same manner as the gas-liquid two-phase flow pipe 32.
  • the water treatment apparatus provided with the line mixer 19 prevents the bubbles dispersed in the gas-liquid two-phase flow from becoming coarse, and aerizes the stored liquid 5 more appropriately, similarly to the water treatment apparatus 31. And the separation membrane 3 can be washed appropriately.
  • the line mixer 19 can be omitted when the gas-liquid two-phase flow is sufficiently small in size due to the gas-liquid two-phase flow pipe 32 flowing therethrough.
  • the water treatment apparatus in which the line mixer 19 is omitted can more appropriately aerate the stored liquid 5 and appropriately wash the separation membrane 3. Can do.
  • FIG. 7 shows still another embodiment of the water treatment apparatus.
  • the water treatment device 1 in the above-described embodiment further includes a biological oxidation tank 42.
  • the biooxidation tank 42 is formed in a container and forms a storage space therein.
  • the biological oxidation tank 42 stores a storage liquid 46 containing waste water and activated sludge supplied from the outside in the storage space.
  • the biological oxidation tank 42 is disposed adjacent to the membrane separation tank 2, and a weir 47 is formed between the membrane separation tank 2 and the stored liquid 46 overflows the membrane separation tank 2.
  • the storage space of the biological oxidation tank 42 includes an upward flow portion 64 and a downward flow portion 65.
  • the ascending flow portion 64 is disposed approximately at the center of the storage space.
  • the downward flow portion 65 is disposed along the side wall of the biooxidation tank 42, and is disposed between the upward flow portion 64 and the side wall thereof.
  • the water treatment device 41 further includes a gas-liquid two-phase flow generating device 43, a gas-liquid two-phase flow pipe 44, and a nozzle 45.
  • the gas-liquid two-phase flow generator 43 is formed in the same manner as the gas-liquid two-phase flow generator 8. That is, the gas-liquid two-phase flow generation device 43 generates a gas-liquid two-phase flow using the liquid flow generated by the circulation pump 7.
  • the gas-liquid two-phase flow pipe 44 is disposed so as to pass through another hole formed in the bio-oxidation tank 42, one end is connected to the gas-liquid two-phase flow generator 43, and the other end of the bio-oxidation tank 42. It is arranged in the storage space.
  • the gas-liquid two-phase flow pipe 44 forms a flow path through which the gas-liquid two-phase flow generated by the gas-liquid two-phase flow generation device 43 flows.
  • the gas-liquid two-phase flow pipe 44 can also be provided with a line mixer in its flow path, similarly to the gas-liquid two-phase flow pipe 32 in the above-described embodiment.
  • the nozzle 45 is disposed at the bottom of the downward flow portion 65 in the storage space of the biological oxidation tank 42. The nozzle 45 injects the gas-liquid two-phase flow to the bottom of the upflow portion 64 in the storage space of the biological oxidation tank 42 by supplying the gas-liquid two-phase flow from the gas-liquid two-phase flow pipe 44. .
  • such a water treatment apparatus 41 also generates treated water by filtering the stored liquid 5 stored in the membrane separation tank 2. Then, the gas-liquid two-phase flow generated by the gas-liquid two-phase flow generating device 8 is jetted toward the separation membrane 3 to appropriately wash the separation membrane 3.
  • the nozzle 45 jets the gas-liquid two-phase flow toward the bottom of the upflow portion 64 of the biological oxidation tank 42 by supplying the gas-liquid two-phase flow from the gas-liquid two-phase flow pipe 44.
  • the gas-liquid two-phase flow is supplied to the bottom of the upflow portion 64 of the bio-oxidation tank 42, the air bubbles dispersed in the gas-liquid two-phase flow rise by the buoyancy of the stored liquid 46.
  • an upward flow of the storage liquid 46 is generated in the upward flow portion 64 of the storage space of the biological oxidation tank 42.
  • the upward flow generates a downward flow in which the stored liquid 46 flows downward in the downward flow portion 65 of the storage space of the biological oxidation tank 42.
  • the upward flow and the downward flow aerate the stored liquid 46 stored in the biological oxidation tank 42 by the air dispersed in the gas-liquid two-phase flow ejected from the nozzle 45.
  • the aerobic microorganism group contained in the stored liquid 46 decomposes the organic matter contained in the stored liquid 46, and the aerobic microorganism group propagates and proliferates.
  • the bubbles dispersed in the gas-liquid two-phase flow are relatively small because the gas-liquid two-phase flow is generated by the gas-liquid two-phase flow generator 43.
  • the water treatment device 41 can increase the contact area between the stored liquid 46 and the air because the gas-liquid two-phase flow bubbles are small, and can dissolve oxygen in the stored liquid 46 more efficiently. .
  • the aerobic microorganism group can be propagated and proliferated with high efficiency by dissolving oxygen in the storage liquid 46 at a high concentration.
  • the biological oxidation tank 42 further supplies the storage liquid 46 to the membrane separation tank 2 by allowing the storage liquid 46 to overflow.
  • Such a water treatment device 41 supplies a gas-liquid two-phase flow to the storage liquid 46 stored in the biological oxidation tank 42, so that only the gas-liquid two-phase flow injected toward the separation membrane 3 can store the stored liquid. Even when the aeration of 5 is insufficient, the stored liquid 5 can be sufficiently aerated.
  • An existing water treatment apparatus including a membrane separation tank in which a separation membrane is disposed and a bio-oxidation tank that supplies a stored liquid by overflowing the membrane separation tank generally has a bio-oxidation of the stored liquid from the membrane separation tank.
  • a circulation pipe for supplying the tank is provided, and an aeration apparatus for aerating air to the stored liquid in the biological oxidation tank is provided separately from the circulation pipe.
  • Such a water treatment apparatus 41 does not need to be provided with the aeration apparatus, and can be manufactured more easily than the existing water treatment apparatus.
  • Such a water treatment device 41 can be easily produced from the existing water treatment device by remodeling by adding a gas-liquid two-phase flow generating device in the middle of the circulation pipe.
  • the separation membrane 3 can be replaced with another separation membrane provided with a filtration membrane formed in a flat membrane.
  • a water treatment apparatus provided with such a separation membrane can also wash
  • FIG. 8 shows still another embodiment of the water treatment apparatus.
  • the water treatment device 71 includes a dispersal bacteria treatment tank 72, an activated sludge treatment tank 73, and a screen 74.
  • the dispersal bacteria treatment tank 72 forms a storage space, and stores the dispersal bacteria mixed solution in the storage space.
  • the dispersed bacteria mixed solution contains wastewater supplied from the outside, and non-aggregating bacteria are dispersed without forming flocs.
  • the non-aggregating bacterium is formed from bacteria and decomposes and grows organic matter dissolved in the dispersed bacteria mixed solution by using oxygen dissolved in the dispersed bacteria mixed solution.
  • the storage space is filled with a plurality of microorganism immobilization carriers.
  • Each of the plurality of microorganism-immobilized carriers is formed of a porous object and is generally spherical.
  • the microorganism-immobilized carrier retains the non-aggregating bacteria.
  • Such a microorganism-immobilized carrier is known, and examples thereof include “Kuragale (registered trademark)” manufactured by Kuraray Co., Ltd.
  • the activated sludge treatment tank 73 forms a storage space and stores the activated sludge mixed liquid in the storage space.
  • the activated sludge mixed liquid contains dispersed bacteria treated water and activated sludge supplied by the screen 74.
  • the activated sludge contains non-aggregating bacteria and microorganisms and forms flocs in the activated sludge mixed solution.
  • the microorganism is a protozoan or metazoan that is relatively larger than non-aggregating bacteria.
  • the protozoa and metazoans use the oxygen dissolved in the activated sludge mixed solution to decompose and proliferate organic substances and non-aggregating bacteria dissolved in the activated sludge mixed solution.
  • the screen 74 is formed of a punching metal in which a plurality of holes are formed in a metal plate, and the punching metal is disposed so as to separate the storage space of the dispersal bacteria treatment tank 72 and the storage space of the activated sludge treatment tank 73. Yes. Each of the plurality of holes has a diameter smaller than that of the microorganism-immobilized support.
  • the screen 74 supplies the dispersed bacteria treated water that has passed through the punching metal in the dispersed bacteria mixed solution to the activated sludge treatment tank 73 at a predetermined flow rate.
  • the screen 74 can be replaced with another screen that can filter the dispersed bacteria mixed solution and separate it into the plurality of microorganism-immobilized carriers and the dispersed bacteria-treated water. Examples of the screen include a wire mesh in which a plurality of gaps through which the microorganism-immobilized carrier cannot pass are formed.
  • the water treatment device 71 further includes a circulating fluid pipe 75, a circulating pump 76, and a gas-liquid two-phase flow generating device 77.
  • the circulating fluid pipe 75 is disposed so as to pass through the liquid surface of the dispersed bacteria mixture stored in the dispersed bacteria treatment tank 72, one end connected to the bottom of the storage space of the dispersed bacteria treatment tank 72, and the other end.
  • a flow path connected to the circulation pump 76 is formed.
  • the circulating fluid pipe 75 extracts the dispersed bacteria mixed solution from the bottom of the dispersed bacteria treatment tank 72 and supplies the extracted circulating fluid to the circulation pump 76.
  • the circulation pump 76 takes in the circulating liquid from the dispersal bacteria treatment tank 72 via the circulating liquid pipe 75 using electric power supplied from the outside, and generates a liquid flow of the circulating liquid.
  • the gas-liquid two-phase flow generating device 77 is disposed outside the dispersed bacteria treatment tank 72.
  • the gas-liquid two-phase flow generation device 77 generates a gas-liquid two-phase flow using the liquid flow generated by the circulation pump 76. In the gas-liquid two-phase flow, air is dispersed in the circulating fluid.
  • the water treatment device 71 further includes a gas-liquid two-phase flow pipe 78 and a nozzle 79.
  • the gas-liquid two-phase flow pipe 78 is disposed so as to pass through a hole formed in a portion in the vicinity of the bottom portion of the side wall of the dispersion bacteria treatment tank 72.
  • the gas-liquid two-phase flow pipe 78 supplies the nozzle 79 with the gas-liquid two-phase flow generated by the gas-liquid two-phase flow generator 77.
  • the nozzle 79 is disposed at the bottom of the storage space of the dispersal bacteria treatment tank 72.
  • the nozzle 79 is supplied with the gas-liquid two-phase flow from the gas-liquid two-phase flow pipe 78, thereby injecting the gas-liquid two-phase flow toward the bottom of the storage space of the dispersal bacteria treatment tank 72.
  • the water treatment device 71 further includes a blower 81 and a diffuser tube 82.
  • the blower 81 supplies air to the diffuser tube 82 using electric power supplied from the outside.
  • the air diffuser 82 is disposed at the bottom of the storage space of the activated sludge treatment tank 73. When the air is supplied from the blower 81, the air diffuser 82 supplies air bubbles to the activated sludge mixed liquid stored in the activated sludge treatment tank 73, and aerates the activated sludge mixed liquid.
  • the water treatment device 71 operates when waste water is supplied to the dispersal bacteria treatment tank 72 from the outside.
  • the circulation pump 76 takes in the dispersed bacteria mixed solution from the bottom of the dispersed bacteria treatment tank 72 via the circulating fluid pipe 75 and generates a liquid flow of the taken-in circulating liquid.
  • the gas-liquid two-phase flow generating device 77 uses the liquid flow generated by the circulation pump 76 to suck air from the atmosphere, and generates a gas-liquid two-phase flow in which bubbles of the air are dispersed in the circulating liquid. .
  • the gas-liquid two-phase flow is supplied to the nozzle 79 via the gas-liquid two-phase flow pipe 78.
  • the nozzle 79 is supplied with the gas-liquid two-phase flow from the gas-liquid two-phase flow pipe 78, thereby injecting the gas-liquid two-phase flow toward the bottom of the dispersal bacteria treatment tank 72, Aerate.
  • the dispersed bacteria mixed solution is agitated by aeration to dissolve oxygen.
  • the dispersed bacteria mixed solution is mixed with wastewater supplied from the outside by being stirred.
  • the non-aggregating bacteria dispersed in the dispersed bacteria mixture and the non-aggregating bacteria retained on the microorganism-immobilized carrier use the oxygen by being dissolved in the dispersed bacteria mixture. Then, the organic matter contained in the dispersed bacteria mixture is decomposed and proliferated.
  • the microorganism-immobilized carrier that is immersed in the dispersion of the dispersed bacteria may form a biofilm (biofilm) on the surface when the influent wastewater becomes lightly loaded.
  • a biofilm biologicalfilm
  • non-aggregating bacteria may not be able to properly decompose organic substances contained in the dispersion of the dispersed bacteria.
  • the microorganism-immobilized carrier immersed in the dispersed bacteria mixed solution flows in the storage space of the dispersed bacteria treatment tank 72 when the dispersed bacteria mixed solution is stirred. The surfaces of the plurality of microorganism-immobilized carriers are washed by flowing.
  • the plurality of microorganism-immobilized carriers can be more appropriately cleaned by jetting a gas-liquid two-phase flow from the nozzle 79 at a high speed.
  • the plurality of microorganism-immobilized carriers can appropriately retain non-aggregating bacteria by appropriately washing the surface.
  • Non-aggregating bacteria appropriately held on a plurality of microorganism-immobilized carriers can appropriately decompose the pollutant contained in the dispersed bacteria mixture.
  • the screen 74 filters the dispersed bacteria mixed solution and separates it into the plurality of microorganism-immobilized carriers and dispersed bacteria-treated water.
  • the dispersal bacteria treatment tank 72 returns the microorganism-immobilized carrier to the dispersal bacteria treatment tank 72, and supplies the dispersed bacteria treatment water to the activated sludge treatment tank 73 at a predetermined flow rate.
  • the blower 81 supplies air to the air diffusion pipe 82 when the activated sludge treatment tank 73 stores the activated sludge mixed liquid.
  • the air diffuser 82 supplies air bubbles to the activated sludge mixed liquid stored in the activated sludge treatment tank 73, and aerates the activated sludge mixed liquid.
  • the activated sludge mixed solution is agitated by aeration to dissolve oxygen.
  • the activated sludge mixed liquid is mixed with the dispersed bacteria treated water supplied from the dispersed bacteria treatment tank 72 by being stirred.
  • the floc floating in the activated sludge mixed liquid flows when the activated sludge mixed liquid is stirred.
  • the activated sludge contained in the activated sludge mixed solution decomposes the organic matter contained in the activated sludge mixed solution by using the oxygen by dissolving oxygen in the activated sludge mixed solution and grows. .
  • the microorganisms contained in the activated sludge decompose non-aggregating bacteria contained in the activated sludge mixed solution using oxygen dissolved in the activated sludge mixed solution.
  • the activated sludge mixed liquid is discharged at a predetermined flow rate to the subsequent equipment.
  • subsequent equipment include a precipitation tank and a membrane separation tank.
  • the sedimentation tank stores the activated sludge mixed liquid to precipitate the solid content of the activated sludge mixed liquid, and separates the activated sludge mixed liquid into treated water and excess sludge.
  • the settling tank drains the treated water to the outside at a predetermined flow rate.
  • the settling tank further returns the excess sludge to the activated sludge treatment tank 73 at a predetermined flow rate, and discharges the excess sludge to the outside at a predetermined flow rate.
  • the membrane separation tank includes a separation membrane.
  • the separation membrane separates the activated sludge mixed liquid into surplus sludge and treated water by filtering the activated sludge mixed liquid.
  • the membrane separation tank drains the treated water to the outside at a predetermined flow rate.
  • the membrane separation tank further returns the excess sludge to the activated sludge treatment tank 73 at a predetermined flow rate, and discharges the excess sludge to the outside at a predetermined flow rate.
  • Non-aggregating bacteria can decompose organic matter other than microorganisms more efficiently than protozoa and metazoans. For this reason, the dispersal bacteria treatment tank 72 can decompose organic substances more efficiently than the activated sludge treatment tank 73. Further, the water treatment device 71 can efficiently dissolve oxygen in the dispersed bacteria mixture by injecting a gas-liquid two-phase flow into the dispersed bacteria mixture. Non-aggregating bacteria can decompose organic substances with higher efficiency by dissolving oxygen with high efficiency in the dispersion of dispersed bacteria. For this reason, the water treatment apparatus 71 can decompose
  • Dispersed bacteria treated water drained from the dispersed bacteria treatment tank 72 contains non-aggregating bacteria.
  • Non-aggregating bacteria are not easily settled as a solid matter even if they are dispersed in the dispersion-treated water and stored in the sedimentation tank as they are. According to such an operation, in the activated sludge mixed liquid drained from the activated sludge treatment tank 73, the non-aggregating bacteria form a floc together with the protozoa and metazoans. Furthermore, the protozoa and metazoans prey on the non-aggregating bacteria.
  • the water treatment device 71 can reduce the concentration of non-aggregating bacteria contained in the treated water with high efficiency. That is, according to such an operation, the water treatment device 71 is more suitable for the drainage than the water treatment device of the comparative example in which the activated sludge treatment tank 73 is not provided and the water treatment apparatus 72 performs the water treatment alone. Can be water treated.
  • the water treatment apparatus 71 can omit the activated sludge treatment tank 73 when there is no need to remove non-aggregating bacteria from the dispersed bacteria treated water separated by the screen 74.
  • Such a water treatment apparatus can also appropriately treat waste water by non-aggregating bacteria decomposing organic matter with higher efficiency.
  • FIG. 9 shows still another embodiment of the water treatment apparatus.
  • the water treatment device 91 includes a blower 81 and a diffuser pipe 82 of the water treatment device 71 in the above-described embodiment, a flow rate adjusting valve 95, a gas-liquid two-phase flow generating device 92, and a gas-liquid two-phase flow pipe 93. It is replaced with an activated sludge treatment tank nozzle 94.
  • the flow rate adjustment valve 95 is provided in the middle of the flow path for supplying the liquid flow from the circulation pump 76 to the gas-liquid two-phase flow generation device 92.
  • the flow rate adjustment valve 95 adjusts the flow rate of the liquid flow supplied from the circulation pump 76 to the gas-liquid two-phase flow generation device 77 and the flow rate of the liquid flow supplied from the circulation pump 76 to the gas-liquid two-phase flow generation device 92. To do.
  • the gas-liquid two-phase flow generating device 92 generates a gas-liquid two-phase flow using the liquid flow generated by the circulation pump 76 in the same manner as the gas-liquid two-phase flow generating device 77.
  • the gas-liquid two-phase flow pipe 93 is disposed so as to penetrate a hole formed in a portion near the bottom of the side wall of the activated sludge treatment tank 73.
  • the gas-liquid two-phase flow pipe 93 supplies the gas-liquid two-phase flow generated by the gas-liquid two-phase flow generation device 92 to the nozzle 94 for the activated sludge treatment tank.
  • the activated sludge treatment tank nozzle 94 is disposed at the bottom of the storage space of the activated sludge treatment tank 73.
  • the activated sludge treatment tank nozzle 94 is supplied with the gas-liquid two-phase flow from the gas-liquid two-phase flow pipe 93, so that the gas-liquid two-phase flow toward the bottom of the storage space of the activated sludge treatment tank 73. Inject.
  • the water treatment device 91 sprays a gas-liquid two-phase flow into the storage space of the dispersal bacteria treatment tank 72 at a high speed, thereby further reducing the organic matter in the waste water. It can be decomposed appropriately, and the waste water can be treated with water more appropriately.
  • the water treatment apparatus 91 further activates the activated sludge stored in the activated sludge treatment tank 73 by injecting the gas-liquid two-phase flow into the storage space of the activated sludge treatment tank 73 at a high speed.
  • the mixed liquid can be aerated more appropriately, and the activated sludge mixed liquid can be more appropriately stirred.
  • the water treatment device 91 can water-treat the wastewater with higher efficiency than the water treatment device 71 in the above-described embodiment by appropriately stirring and aeration of the activated sludge mixed solution.
  • the water treatment device 91 does not need to include the blower 81. For this reason, the water treatment apparatus 91 can be manufactured more easily than the water treatment apparatus 71 in the above-described embodiment, and maintenance can be saved.
  • the water treatment device 91 further includes a gas-liquid two-phase flow generation device 92, a gas-liquid two-phase flow pipe 93, and an activated sludge treatment tank nozzle 94 for the dispersed bacteria mixed solution stored in the dispersion bacteria treatment tank 72.
  • the activated sludge treatment tank 73 can be supplied at a flow rate of
  • the water treatment device 91 is not required to include the screen 74 by supplying the dispersed bacteria mixed liquid to the activated sludge treatment tank 73 at a predetermined flow rate, and is compared with the water treatment device 71 in the above-described embodiment. Can be more easily produced.
  • FIG. 10 shows still another embodiment of the water treatment apparatus.
  • the gas-liquid two-phase flow pipe 78 of the water treatment apparatus 91 in the above-described embodiment is replaced with another gas-liquid two-phase flow pipe 102, and the gas-liquid two-phase flow pipe 93 is replaced with another one.
  • the gas-liquid two-phase flow pipe 103 is replaced.
  • the gas-liquid two-phase flow pipe 102 is arranged so as to pass through the liquid surface of the dispersed bacteria mixed solution stored in the dispersed bacteria treatment tank 72 so as not to penetrate the side wall of the dispersed bacteria treatment tank 72.
  • the gas-liquid two-phase flow pipe 102 supplies the gas-liquid two-phase flow generated by the gas-liquid two-phase flow generation device 77 to the nozzle 79.
  • the gas-liquid two-phase flow pipe 103 is disposed so as to pass through the liquid level of the activated sludge mixed liquid stored in the activated sludge treatment tank 73 so as not to penetrate the side wall of the activated sludge treatment tank 73.
  • the gas-liquid two-phase flow pipe 103 supplies the gas-liquid two-phase flow generated by the gas-liquid two-phase flow generation device 92 to the nozzle 94 for the activated sludge treatment tank.
  • the water treatment device 101 sprays a gas-liquid two-phase flow into the storage space of the dispersal bacteria treatment tank 72 at a high speed, thereby more organic matter in the waste water.
  • the activated sludge mixed liquid stored in the activated sludge treatment tank 73 can be aerated more appropriately by being able to be appropriately decomposed and by jetting a gas-liquid two-phase flow into the storage space of the activated sludge treatment tank 73 at high speed. Can do.
  • the water treatment apparatus 101 does not need to form a hole through which the gas-liquid two-phase flow pipe 102 penetrates in the side wall of the dispersal bacteria treatment tank 72, and is easier than the water treatment apparatus 91 in the above-described embodiment. Can be made.
  • the water treatment apparatus 101 does not need to form a hole through which the gas-liquid two-phase flow pipe 103 penetrates in the side wall of the activated sludge treatment tank 73, and is easier than the water treatment apparatus 91 in the above-described embodiment. Can be made.
  • FIG. 11 shows still another embodiment of the water treatment apparatus.
  • the water treatment apparatus 111 includes a flow rate adjustment valve 113 in which the gas-liquid two-phase flow pipe 103 of the water treatment apparatus 101 in the above-described embodiment is replaced with another gas-liquid two-phase flow pipe 112.
  • the gas-liquid two-phase flow pipe 112 supplies the gas-liquid two-phase flow generated by the gas-liquid two-phase flow generating device 77 to the nozzle 94 for the activated sludge treatment tank.
  • the flow rate adjustment valve 113 is provided in the middle of the gas-liquid two-phase flow pipe 112.
  • the flow rate adjusting valve 113 adjusts the flow rate of the gas-liquid two-phase flow flowing through the gas-liquid two-phase flow piping 102 and the flow rate of the gas-liquid two-phase flow flowing through the gas-liquid two-phase flow piping 112.
  • the water treatment apparatus 111 ejects a gas-liquid two-phase flow into the storage space of the dispersal bacteria treatment tank 72 at a high speed, thereby further removing organic matter in the waste water.
  • the activated sludge mixed liquid stored in the activated sludge treatment tank 73 can be aerated more appropriately by being able to be appropriately decomposed and by jetting a gas-liquid two-phase flow into the storage space of the activated sludge treatment tank 73 at high speed. Can do.
  • the water treatment device 111 need not include the gas-liquid two-phase flow generation device 92. For this reason, the water treatment apparatus 111 can be manufactured more easily than the water treatment apparatus 101 in the above-described embodiment.
  • the plurality of microorganism-immobilized carriers can be replaced with other carriers capable of retaining non-aggregating bacteria.
  • the carrier include a plurality of plate-like carriers arranged along a plurality of parallel planes.
  • the dispersal bacteria treatment tank filled with such a carrier can be appropriately drained by non-aggregating bacteria more efficiently decomposing organic matter. Can be water treated.
  • the activated sludge tank 73 may further include a separation membrane immersed in the activated sludge mixed solution.
  • the separation membrane separates the activated sludge mixed solution into excess sludge and treated water by filtering the activated sludge mixed solution in the same manner as the separation membrane 3 in the above-described embodiment.
  • the treated water is discharged outside at a predetermined flow rate.
  • the nozzle 94 injects a gas-liquid two-phase flow toward the lower part of the separation membrane.
  • the nozzle 94 injects a gas-liquid two-phase flow toward the lower portion of the separation membrane in the same manner as the membrane separation tank 2 in the above-described embodiment.
  • the separation membrane can be washed appropriately, and the activated sludge mixed liquid can be appropriately filtered through the separation membrane.

Abstract

 水処理装置(1)は、貯留液(5)を貯留する生物処理槽(2)と、貯留液(5)から形成される循環液流を生成するポンプ(7)と、その循環液流を用いて、酸素を含有する気体を吸引することにより、循環液流にその気体が分散された気液二相流を生成する気液二相流生成装置(8)と、生物処理槽(2)にその気液二相流を噴射するノズル(12)とを備えている。このような水処理装置(1)は、生物処理槽(2)内で貯留液(5)を適切に循環させることができ、貯留液(5)を適切に曝気することができ、貯留液(5)を適切に処理することができる。

Description

水処理装置
 本発明は、水処理装置に関し、特に、生物処理により水処理するときに利用される水処理装置に関する。
 膜分離活性汚泥法により下水や工場排水等の汚濁物質を含む排水を浄化する水処理装置が知られている。その水処理装置は、生物処理槽と散気装置とろ過膜とを備えている。該生物処理槽は、微生物を含有する活性汚泥と流入する排水を貯留している。該散気装置は、酸素を含む気体を該活性汚泥に供給することにより、該生物処理槽を曝気する。該微生物は、該生物処理槽が曝気されることにより、該排水中の汚濁物質を分解し、繁殖・増殖する。該ろ過膜は、該生物処理槽中の該活性汚泥と処理水の懸濁液をろ過することにより、該活性汚泥から処理水を分離する。該ろ過膜は、該活性汚泥が曝気されるときに、気泡が上昇することにより生成される上昇流により洗浄され、目詰まりが防止される(特許文献1~3参照)。
 活性汚泥中の微生物相を二相に分離し、その二相で水処理する二相式高負荷活性汚泥システムが知られている。その二相式高負荷活性汚泥システムは、第1曝気槽と第2曝気槽とを備えている。第1曝気槽は、非凝集性細菌のみにより排水原水を処理する。第2曝気槽は、その非凝集性細菌を捕食する原生動物・後生動物が優位の活性汚泥により、第1曝気槽により処理された排水をさらに処理する。このような二相式高負荷活性汚泥システムは、排水原水を高効率に処理することができることにより、槽を小型化することができ、余剰汚泥を低減することができる。
特開2011-177608号公報 特開2009-61349号公報 国際公開第2008/038436号
 このような水処理装置は、排水中の汚濁物質を適切に処理することが望まれ、生物処理槽中の活性汚泥を適切に曝気することが望まれている。生物処理槽中の活性汚泥をろ過するろ過膜は、適切に洗浄されることが望まれている。このような水処理装置は、ろ過膜の膜面を適切に洗浄するために、該微生物に必要である空気量より多い空気量を曝気する必要があることがあり、曝気するための動力を増大させる必要がある場合がある。このような水処理装置は、排水を適切に処理する為に必要な曝気動力を低減することが望まれている。二相式高負荷活性汚泥システムは、非凝集性細菌を用いて排水を適切に水処理することが望まれている。
 本発明の課題は、生物処理槽中の貯留液を適切に曝気する水処理装置を提供することにある。
 本発明の他の課題は、生物処理槽を曝気する動力を低減する水処理装置を提供することにある。
 本発明のさらに他の課題は、生物処理槽中の活性汚泥をろ過するろ過膜を適切に洗浄する水処理装置を提供することにある。
 本発明のさらに他の課題は、非凝集性細菌を用いて排水を適切に水処理する水処理装置を提供することにある。
 本発明による水処理装置は、汚濁物質を分解する生物を含有する貯留液を貯留する生物処理槽と、該貯留液を槽外へ引き抜き、再び槽内へ循環する循環液流を生成する循環ポンプと、該循環液流を用いて、酸素を含有する気体を吸引することにより、該循環液流に該気体が分散された気液二相流を生成する気液二相流生成装置と、貯留液が貯留される領域に該気液二相流を噴射するノズルとを備えている。
 このような気液二相流は、このような気液二相流生成装置により生成されることにより、分散する気泡が微細になる。このような水処理装置は、その気泡が微細であることにより、貯留液への酸素溶解効率を高めることができ、従来の散気装置にくらべて少ない空気量でも、汚濁物質を分解するのに十分な酸素を供給することができる。このような水処理装置は、さらに、生物処理槽に気液二相流を噴射することにより、生物処理槽内全体に貯留液を高効率に循環させることができる。このような水処理装置は、生物処理槽内全体に貯留液を循環させることにより、貯留液を適切に撹拌することができ、貯留液を適切に曝気することができる。このため、このような水処理装置は、貯留液を適切に処理することができる。
 水処理装置は、生物処理槽の底部から貯留液を引き抜くことにより循環液をポンプに供給する循環液用配管をさらに備えている。
 生物処理槽の底部に貯留される貯留液は、気泡が少ない。このような水処理装置は、気泡が少ない貯留液から循環液を生成することにより、循環液に混入される気泡を低減することができる。このような水処理装置は、循環液に混入される気泡が低減されることにより、ポンプにより循環液流を適切に生成することができ、気液二相流生成装置により気液二相流を適切に生成することができる。
 水処理装置は、貯留液に浸漬される分離膜をさらに備えている。このとき、該分離膜は、該貯留液をろ過することにより処理水を生成する。ノズルは、分離膜に向かって気液二相流を噴射する。
 このような水処理装置は、ノズルから気液二相流を分離膜に向かって噴射することにより、気液二相流中の気泡が分離膜の下から供給され、該気泡が上昇することにより生成される上昇流により該分離膜を洗浄する従来の水処理装置に比較して、分離膜をより適切に洗浄することができる。このため、このような水処理装置は、貯留液を適切にろ過し、処理水を適切に生成することができる。
 貯留液が貯留される領域は、分離膜が配置される上昇流部と、上昇流部と水平方向に並んで配置される下降流部とを含んでいる。すなわち、分離膜は、下降流部を鉛直線に正射影した線分が分離膜をその鉛直線に正射影した線分を含むように、配置されている。循環液用配管は、下降流部から貯留液を引き抜く。
 このような水処理装置は、上昇流部に貯留液が上昇する上昇流を生成することができ、下降流部に貯留液が下降する下降流を生成することができる。このような水処理装置は、その上昇流と下降流とが生成されることにより、生物処理槽内全体で貯留液を適切に循環させることができ、貯留液を適切に曝気することができる。
 ノズルは、分離膜のうちの互いに異なる複数の領域に気液二相流をそれぞれ噴射する複数のノズルから形成されている。このような水処理装置は、気液二相流を1つのノズルで噴射する他の水処理装置に比較して、気液二相流をより均一に分離膜の全体に噴射することができ、分離膜が比較的大きい場合でも、分離膜をより適切に洗浄することができる。
 そのノズルは、それぞれ上方に向かってその気液二相流を噴射するものが好ましい。このような水処理装置は、上昇流を適切に生成することができ、分離膜をより適切に洗浄することができる。
 気液二相流生成装置は、その膜分離槽より上側に配置されている。このような水処理装置は、膜分離槽が地中に埋設されたときに、気液二相流生成装置を地上に配置させることができ、気液二相流生成装置を容易にメンテナンスすることができる。
 水処理装置は、気液二相流を気液二相流生成装置からノズルに供給する配管と、該配管を流れる流体を撹拌する気液撹拌装置とをさらに備えている。このような水処理装置は、該気液二相流に分散している気泡が粗大化することが防止されることにより、貯留液と気泡との上昇流をより適切に生成することができ、分離膜をより適切に洗浄することができる。
 その配管は、その貯留液の液面を通過するように配置されている。このような水処理装置は、膜分離槽の側壁に形成された孔にその配管が貫通している他の水処理装置に比較して、より容易に作製されることができる。
 生物処理槽は、分離膜が配置される領域を形成する膜分離槽と、貯留液を膜分離槽に供給する生物酸化槽とを含んでいる。このとき、本発明による水処理装置は、生物酸化槽用気液二相流生成装置と生物酸化槽用ノズルとをさらに備えている。生物酸化槽用気液二相流生成装置は、該貯留液を膜分離槽から引き抜き、該貯留液を生物酸化槽へ循環する循環液流を用いて、酸素を含有する気体を吸引することにより、該貯留液に該酸素を含有する気体が分散された気液二相流を生成する。生物酸化槽用ノズルは、該生物酸化槽用気液二相流生成装置にて生成された気液二相流を該生物酸化槽に供給する。
 このような水処理装置は、汚濁物質、具体的にはBOD(Biochemical Oxygen Demand、生物学的酸素要求量)、COD(Chemical Oxygen Demand、化学的酸素要求量)の負荷が高い場合、膜分離槽の曝気だけでは汚濁物質の分解が困難なため、前段に生物酸化槽を設置することで、汚濁物質の分解を促進することができ、さらに生物酸化槽用気液二相流生成装置により微細な気泡を生成することで、生物酸化槽での酸素溶解効率を高めることができ、従来の散気装置にくらべて少ない空気量でも、汚濁物質を分解するのに十分な酸素を供給することができる。
 また、生物処理槽は、汚濁物質を分解する非凝集性細菌が分散する分散菌混合液を貯留する分散菌処理槽と、その分散菌を分解する活性汚泥が浮遊する活性汚泥混合液を貯留する活性汚泥処理槽とを含んでいる。このとき、その分散菌混合液は、その活性汚泥混合液に供給される。その循環液は、その分散菌混合液から引き抜かれることにより生成される。そのノズルは、その分散菌混合液が貯留される領域にその気液二相流を噴射する。
 このような水処理装置は、分散菌混合液に分散する気泡が微細になることにより、分散菌混合液に酸素を高効率に溶解させることができ、従来の散気装置にくらべて少ない空気量でも、非凝集性細菌に十分な酸素を供給することができる。このような水処理装置は、さらに、分散菌処理槽に気液二相流を噴射することにより、分散菌混合液を適切に撹拌することができ、さらに、非凝集性細菌が担持される担体の表面を適切に洗浄することができ、その結果、排水を適切に水処理することができる。
 水処理装置は、その活性汚泥混合液が貯留される領域にその気液二相流を噴射する活性汚泥処理槽用ノズルをさらに備えている。
 このような水処理装置は、活性汚泥混合液に気液二相流を噴射することにより、活性汚泥混合液を適切に曝気することができ、その結果、排水を適切に水処理することができる。
 本発明による水処理装置は、貯留液中に気液二相流を噴射することにより、槽内で貯留液を高効率に循環させることができ、貯留液を適切に曝気することができ、貯留液を適切に処理することができる。
水処理装置の実施の形態を示す概略構成図である。 気液二相流生成装置を示す断面図である。 水処理装置の実施の他の形態を示す概略構成図である。 水処理装置の実施のさらに他の形態を示す概略構成図である。 水処理装置の実施のさらに他の形態を示す概略構成図である。 気液二相流配管を示す断面図である。 水処理装置の実施のさらに他の形態を示す概略構成図である。 水処理装置の実施のさらに他の形態を示す概略構成図である。 水処理装置の実施のさらに他の形態を示す概略構成図である。 水処理装置の実施のさらに他の形態を示す概略構成図である。 水処理装置の実施のさらに他の形態を示す概略構成図である。
 図面を参照して、水処理装置の実施の形態が以下に記載される。その水処理装置1は、図1に示されるように、膜分離槽2と分離膜3とを備えている。膜分離槽2は、容器に形成され、内部に貯留空間を形成している。膜分離槽2は、外部から供給される排水と活性汚泥とを含有する貯留液5をその貯留空間に貯留する。活性汚泥は、好気性微生物群を含有している。該好気性微生物群は、酸素を含有する気体に貯留液5が曝気されることにより、排水中の汚濁物質を分解し、繁殖・増殖する。汚濁物質としては、有機物が例示され、排水中の汚濁物質の量は、排水のBOD(Biochemical Oxygen Demand、生物学的酸素要求量)、COD(Chemical Oxygen Demand、化学的酸素要求量)に対応している。その貯留空間は、上昇流部61と第1下降流部62と第2下降流部63とを含んでいる。上昇流部61は、その貯留空間の概ね中央に配置されている。第1下降流部62は、上昇流部61と水平方向に並んで配置され、膜分離槽2の側壁の一部に沿うように配置され、上昇流部61とその側壁との間に配置されている。第2下降流部63は、上昇流部61と水平方向に並んで配置され、膜分離槽2の側壁のうちの第1下降流部62に沿う一部の反対側の一部に沿うように、すなわち、第1下降流部62と第2下降流部63との間に上昇流部61が配置されるように、上昇流部61とその側壁との間に配置されている。
 分離膜3は、貯留液5に浸漬されるように、膜分離槽2の貯留空間のうちの上昇流部61に配置されている。分離膜3は、さらに、分離膜3を鉛直線に正射影した分離膜投影線分が第1下降流部62をその鉛直線に正射影した線分に含まれるように、かつ、その分離膜投影線分が第2下降流部63をその鉛直線に正射影した線分に含まれるように、配置されている。分離膜3は、複数のモジュールから形成されている。その各モジュールは、複数の中空糸が束ねられることにより形成されている。複数の中空糸は、それぞれ、ろ過膜から形成されている。分離膜3は、該ろ過膜を用いて貯留液5をろ過することにより、処理水を生成する。該処理水に含有される汚濁物質濃度は、排水中に含有される汚濁物質濃度より小さく、該処理水に該好気性微生物群が含有される濃度は、貯留液5にその好気性微生物群が含有される濃度より小さい。
 水処理装置1は、さらに、循環液用配管6と循環ポンプ7と気液二相流生成装置8とを備えている。循環液用配管6は、一端が膜分離槽2の貯留空間のうちの第2下降流部63の底部に接続され、他端が循環ポンプ7に接続されている流路を形成している。循環液用配管6は、膜分離槽2の第2下降流部63の底部から貯留液5を抜き出し、その抜き出された循環液を循環ポンプ7に供給する。循環ポンプ7は、膜分離槽2の外側に配置されている。循環ポンプ7は、外部から供給される電力を用いて、循環液用配管6を介して膜分離槽2から循環液を取り込み、循環液の液流を生成する。気液二相流生成装置8は、膜分離槽2の外側に配置されている。気液二相流生成装置8は、循環ポンプ7により生成された液流を用いて、気液二相流を生成する。その気液二相流は、循環液に空気が分散している。
 水処理装置1は、さらに、気液二相流用配管11とノズル12とを備えている。気液二相流用配管11は、膜分離槽2の側壁のうちの第1下降流部62の底部の近傍の部分に形成された孔を貫通するように配置され、一端が気液二相流生成装置8に接続され、他端が膜分離槽2の貯留空間のうちの第1下降流部62の底部に配置されている。気液二相流用配管11は、気液二相流生成装置8により生成された気液二相流が流れる流路を形成している。ノズル12は、膜分離槽2の貯留空間のうちの第1下降流部62の底部に配置され、先端が上昇流部61の底部に向くように配置されている。ノズル12は、気液二相流用配管11のうちの膜分離槽2の貯留空間に配置されている端に接続されている。ノズル12は、気液二相流用配管11から気液二相流が供給されることにより、膜分離槽2の貯留空間のうちの上昇流部61の底部に向けて該気液二相流を噴射する。
 図2は、気液二相流生成装置8を示している。気液二相流生成装置8は、液流取入管15とオリフィス16と空気吸引管17とを備えている。液流取入管15は、循環ポンプ7により生成された循環液流が流れる流路を形成している。オリフィス16は、液流取入管15の途中に形成され、循環ポンプ7により生成された液流が流れる流路を形成している。オリフィス16により形成される流路の断面積は、液流取入管15により形成される流路の断面積より小さい。空気吸引管17は、空気が流れる流路を形成し、一端が大気中に配置され、他端が液流取入管15のうちのオリフィス16の下流側に接続されている。
 気液二相流生成装置8は、液流取入管15に循環液が流れるときに、オリフィス16の下流側に負圧を生じさせる。気液二相流生成装置8は、オリフィス16の下流側に負圧が生じることにより、空気吸引管17を介して空気を大気中から液流取入管15へ吸引する。気液二相流生成装置8は、空気吸引管17を介して空気を液流取入管15へ吸引することにより、循環液にその空気を分散させ、循環液に空気が分散した気液二相流を生成する。その気液二相流に分散した空気の気泡は、比較的細かい。このような気液二相流生成装置8は、周知であり、たとえば、特許第3854481号公報、特許第3486399号に開示されている技術に利用されている。
 水処理装置1は、外部から排水が膜分離槽2に供給され、膜分離槽2の貯留空間に貯留液5が貯留されているときに、動作する。分離膜3は、貯留液5に浸漬されているときに、貯留液5をろ過することにより、処理水を生成する。循環ポンプ7は、膜分離槽2の貯留空間に貯留液5が貯留されているときに、循環液用配管6を介して膜分離槽2の第2下降流部63の底部から貯留液5を取り込み、その取り込まれた循環液の液流を生成する。気液二相流生成装置8は、循環ポンプ7により生成された液流を用いて、大気から空気を吸引し、循環液にその空気の気泡が分散している気液二相流を生成する。その気液二相流は、気液二相流用配管11を介してノズル12に供給される。ノズル12は、気液二相流用配管11から気液二相流が供給されることにより、膜分離槽2の上昇流部61の底部に向けてその気液二相流を噴射する。
 気液二相流は、膜分離槽2の上昇流部61の底部に供給されたときに、該気液二相流に分散している空気の気泡が浮力で貯留液5を上昇することにより、膜分離槽2の貯留空間の上昇流部61に貯留液5の上昇流を生成する。その上昇流は、膜分離槽2の貯留空間の第1下降流部62と第2下降流部63とに貯留液5が下向きに流れる下降流を生成する。その上昇流と下降流とは、該気液二相流に分散している空気により、貯留液5を曝気する。
 水処理装置1は、さらに、膜分離槽2に気液二相流を噴射することにより、その上昇流と下降流との流速を加速し、膜分離槽2内全体を貯留液5が流れる循環流を適切に形成することができ、貯留液5を適切に撹拌することができる。水処理装置1は、貯留液5が適切に撹拌されることにより、その空気の気泡が貯留液5に分散している時間を長引かせることができ、貯留液5を適切に曝気することができる。
 貯留液5は、曝気されることにより、貯留液5に含有される好気性微生物群が排水中に含有される汚濁物質を分解し、該好気性微生物群が繁殖・増殖する。該気液二相流に分散している気泡は、該気液二相流が気液二相流生成装置8により生成されたことにより、比較的小さい。水処理装置1は、該気液二相流の気泡が小さいことにより、貯留液5と空気との接触面積を大きくすることができ、貯留液5に酸素をより高効率に溶解させることができる。該好気性微生物群は、貯留液5に酸素が高濃度に溶解されることにより、高効率に繁殖・増殖することができる。水処理装置1は、該好気性微生物群が高効率に繁殖・増殖することにより、排水を適切に処理することができる。
 水処理装置1は、さらに、ノズル12が該気液二相流を膜分離槽2の上昇流部61の底部に向けて噴射することにより、散気管等を用いて上昇流部61の底部に空気を静かに供給する他の水処理装置に比較して、上昇流をより高速に上昇流部61に流すことができる。その上昇流は、上昇流部61を流れることにより、分離膜3の近傍を流れる。その上昇流は、その気泡とともに分離膜3の近傍を流れることにより、分離膜3のうちの貯留液5に接触する表面を洗浄する。水処理装置1は、分離膜3の近傍を流れる上昇流が高速であることにより、分離膜3をより適切に洗浄することができる。分離膜3は、適切に洗浄されることにより、目詰まりが防止され、貯留液5を適切にろ過することができる。このため、水処理装置1は、貯留液5を適切に水処理することができる。
 その上昇流に混入される気泡の一部は、貯留液5の液面から環境に放出される。このような水処理装置1は、気泡が低減した上昇流から膜分離槽2の貯留空間の第1下降流部62と第2下降流部63とに貯留液5の下降流が生成されることと、その下降流に混入される気泡の一部が上昇することにより、貯留液5のうちの第1下降流部62の底部と第2下降流部63の底部とに配置される貯留液に含有される気泡を低減させることができる。循環液用配管6は、第2下降流部63の底部から貯留液5を引き抜くことにより、循環ポンプ7へ供給される循環液に混入される気泡の量を低減することができる。このため、循環ポンプ7は、循環液用配管6を介して供給される循環液に混入される気泡が少ないことにより、その循環液の液流を適切に生成することができる。さらに、気液二相流生成装置8は、循環ポンプ7により生成される循環液に混入される気泡が少ないことにより、循環液に空気を適切に分散させることができ、気液二相流を適切に生成することができる。
 水処理装置1は、第1下降流部62と第2下降流部63とに下降流が生成されることにより、さらに、分離膜3を形成する複数のモジュールの隙間に貯留液5が下向きに流れる下降流が流れる空間を設ける必要がなく、複数のモジュールをより密に配置することができ、分離膜3をコンパクトに形成することができる。分離膜3は、所定の期間ごとに、膜分離槽2の貯留空間から取り出され、メンテナンスされる必要がある。水処理装置1は、分離膜3をコンパクトに形成することにより、より狭い空間で分離膜3を取り扱うことができ、分離膜3をより容易にメンテナンスすることができる。水処理装置1は、さらに、分離膜3をコンパクトに形成することにより、膜分離槽2の貯留空間をより小さく形成することができることがある。
 図3は、水処理装置の実施の他の形態を示している。その水処理装置21は、既述の実施の形態における水処理装置1が他の気液二相流生成装置22と他の気液二相流用配管23と他のノズル24とをさらに備えている。気液二相流生成装置22は、気液二相流生成装置8と同様にして、形成されている。すなわち、気液二相流生成装置22は、循環ポンプ7により生成された液流を用いて、気液二相流を生成する。気液二相流用配管23は、膜分離槽2の側壁のうちの第2下降流部63の底部の近傍の部分に形成された他の孔を貫通するように配置されている。すなわち、その孔は、気液二相流用配管11が貫通する孔が形成された領域の反対側の領域に形成されている。気液二相流用配管23は、一端が気液二相流生成装置22に接続され、他端が膜分離槽2の貯留空間に配置されている。気液二相流用配管23は、気液二相流生成装置22により生成された気液二相流が流れる流路を形成している。ノズル24は、膜分離槽2の貯留空間の第2下降流部63に配置され、先端が膜分離槽2の貯留空間の上昇流部61の底部に向けられ、すなわち、先端が分離膜3に向けられている。このとき、分離膜3のうちのノズル24の先端が向けられている領域は、分離膜3のうちのノズル12の先端が向けられている領域と異なっている。ノズル24は、気液二相流用配管23から気液二相流が供給されることにより、膜分離槽2の貯留空間の上昇流部61の底部に向けて該気液二相流を噴射する。
 水処理装置21は、ノズル12から気液二相流を噴射することに並行して、ノズル24から気液二相流を噴射する。ノズル12から噴射される気液二相流とノズル24から噴射される気液二相流とは、その気液二相流に分散している空気の気泡により、貯留液5を曝気する。
 ノズル12から噴射される気液二相流とノズル24から噴射される気液二相流とは、さらに、その気液二相流に分散している空気の気泡が浮力で貯留液5を上昇することにより、膜分離槽2の貯留空間の上昇流部61に貯留液5の上昇流を生成する。このような上昇流は、分離膜3の近傍を流れることにより、分離膜3を洗浄する。このような上昇流は、1つのノズル12により噴射される気液二相流により生成される上昇流に比較して、より広範囲を流れる。このため、水処理装置21は、複数のノズルから気液二相流を噴射することにより、分離膜3が1つのノズル12に対して十分に大きい場合でも、既述の実施の形態における水処理装置1に比較して、分離膜3の表面に上昇流をより均一に作用させることができ、分離膜3の表面をより均一に洗浄することができ、分離膜3の目詰まりをより適切に防止することができる。
 図4は、水処理装置の実施のさらに他の形態を示している。その水処理装置51は、既述の実施の形態における水処理装置1のノズル12が複数のノズル33に置換されている。複数のノズル33は、それぞれ、膜分離槽2の貯留空間のうちの上昇流部61の底部に配置されている。複数のノズル33は、それぞれ、先端が上方を向くように配置され、先端が分離膜3のうちの互いに異なる複数の領域にそれぞれ向けられて配置されている。複数のノズル33は、それぞれ、気液二相流用配管32から気液二相流が供給されることにより、上方に向けて、すなわち、分離膜3に向けてその気液二相流を噴射する。
 複数のノズル33から噴射される気液二相流は、その気液二相流に分散している空気の気泡の浮力に加え、複数のノズル33より上方に向けて噴射される循環液により貯留液5を上昇することにより、膜分離槽2の上昇流部61に貯留液5の上昇流を生成する。その上昇流は、膜分離槽2の貯留空間の第1下降流部62と第2下降流部63とに貯留液5が下向きに流れる下降流を生成する。その上昇流と下降流とは、該気液二相流に分散している空気により、貯留液5を曝気する。
 このような上昇流は、分離膜3の近傍を流れることにより、分離膜3を洗浄する。このような上昇流は、さらに、複数のノズル33から気液二相流が噴射されることにより、1つのノズル12により噴射される気液二相流により生成される上昇流に比較して、より広範囲を流れる。このため、水処理装置31は、分離膜3が1つのノズル12に対して十分に大きい場合でも、既述の実施の形態における水処理装置1に比較して、分離膜3の表面に上昇流をより均一に作用させることができ、分離膜3の表面をより均一に洗浄することができ、分離膜3をより適切に洗浄することができる。
 このような上昇流は、複数のノズル33から気液二相流が上向きに噴射されることにより、上向きと平行でない他の方向に気液二相流が噴射されることにより生成される上昇流に比較して、より高速に上向きに流れる。このため、水処理装置31は、分離膜3をより適切に洗浄することができる。水処理装置31は、より高速の上昇流が流れることにより、複数のモジュールがより密に配置された分離膜3でも、適切に洗浄することができる。分離膜3は、複数のモジュールが密に配置されることにより、コンパクトに形成され、取扱いが容易になる。このため、水処理装置31は、分離膜3をより容易にメンテナンスすることができる。水処理装置31は、さらに、分離膜3をコンパクトに形成することにより、膜分離槽2の貯留空間をより小さく形成することができることがある。
 図5は、水処理装置の実施のさらに他の形態を示している。その水処理装置31は、既述の実施の形態における水処理装置51の気液二相流用配管11が他の気液二相流用配管32に置換されている。気液二相流用配管32は、貯留液5の液面34を通過するように配置され、一端が気液二相流生成装置8に接続され、他端が複数のノズル33に接続されている。気液二相流用配管32は、気液二相流生成装置8により生成された気液二相流が流れる流路を形成している。
 水処理装置31は、さらに、気液二相流用配管32が液面34を介して一端が膜分離槽2の貯留空間に配置されていることにより、膜分離槽2に気液二相流用配管32が通る孔を形成する必要がない。このため、水処理装置31は、容易に作製されることができ、特に、膜分離槽が埋設されている既存の水処理装置からでも改造により容易に作製されることができる。たとえば、水処理装置1を水処理装置21に改造する場合には、気液二相流用配管32が通る孔を膜分離槽2に新規に形成する必要がある。水処理装置1を水処理装置31に改造することは、膜分離槽2に新規に孔を形成する必要がなく、水処理装置1を水処理装置21に改造することに比較して、より容易である。
 このとき、気液二相流生成装置8は、膜分離槽2より上側に配置されている。気液二相流生成装置8は、膜分離槽2より上方に配置されていることにより、膜分離槽2が地下に埋設されている場合でも、空気吸引管17が空気を取り入れる空間をより容易に確保することができ、気液二相流生成装置8のメンテナンスに利用される空間をより容易に確保することができる。
 図6は、さらに、気液二相流用配管32を示している。気液二相流用配管32は、ラインミキサ19を備えている。ラインミキサ19は、複数のエレメントから形成されている。その複数のエレメントは、それぞれ、捩じれている帯状に形成されている。その複数のエレメントは、それぞれ、気液二相流用配管32が形成する流路に配置され、気液二相流用配管32に固定されている。ラインミキサ19は、気液二相流用配管32に気液二相流が流れているときに、その気液二相流の流れを用いてその気液二相流を旋回させることにより、その気液二相流を撹拌する。ラインミキサ19は、その気液二相流を撹拌することにより、気液二相流用配管32が比較的長い場合でも、その気液二相流に分散する空気の気泡が粗大化することを防止する。
 このような水処理装置31は、その気液二相流に分散する空気の気泡が粗大化することを防止することにより、気液二相流用配管32にラインミキサ19が設けられていない他の水処理装置に比較して、微細な気泡をより確実に貯留液5に供給することができ、貯留液5をより適切に曝気することができる。なお、ラインミキサ19は、気液二相流用配管32を流れる気液二相流を撹拌する他の気液撹拌装置に置換されることができる。この場合も、水処理装置31は、気液二相流に分散している気泡が粗大化することを防止し、貯留液5をより適切に曝気することができ、分離膜3を適切に洗浄することができる。
 なお、既述の実施の形態における気液二相流用配管11は、気液二相流用配管32と同様にして、ラインミキサ19を備えることができる。ラインミキサ19を備えた水処理装置は、水処理装置31と同様にして、気液二相流に分散している気泡が粗大化することを防止し、貯留液5をより適切に曝気することができ、分離膜3を適切に洗浄することができる。さらに、ラインミキサ19は、気液二相流が気液二相流用配管32を流れることにより粗大化する気泡が十分に少ないときに、省略されることができる。ラインミキサ19が省略された水処理装置も、既述の実施の形態における水処理装置31と同様にして、貯留液5をより適切に曝気することができ、分離膜3を適切に洗浄することができる。
 図7は、水処理装置の実施のさらに他の形態を示している。その水処理装置41は、既述の実施の形態における水処理装置1が生物酸化槽42をさらに備えている。生物酸化槽42は、容器に形成され、内部に貯留空間を形成している。生物酸化槽42は、外部から供給される排水と活性汚泥とを含有する貯留液46をその貯留空間に貯留する。生物酸化槽42は、膜分離槽2に隣接するように配置され、貯留液46を膜分離槽2に越流させる堰47が膜分離槽2との間に形成されている。生物酸化槽42の貯留空間は、上昇流部64と下降流部65とを含んでいる。上昇流部64は、その貯留空間の概ね中央に配置されている。下降流部65は、生物酸化槽42の側壁に沿うように配置され、上昇流部64とその側壁との間に配置されている。
 水処理装置41は、気液二相流生成装置43と気液二相流用配管44とノズル45とをさらに備えている。気液二相流生成装置43は、気液二相流生成装置8と同様にして、形成されている。すなわち、気液二相流生成装置43は、循環ポンプ7により生成された液流を用いて、気液二相流を生成する。気液二相流用配管44は、生物酸化槽42に形成された他の孔を貫通するように配置され、一端が気液二相流生成装置43に接続され、他端が生物酸化槽42の貯留空間に配置されている。気液二相流用配管44は、気液二相流生成装置43により生成された気液二相流が流れる流路を形成している。気液二相流用配管44は、さらに、既述の実施の形態における気液二相流用配管32と同様にして、その流路にラインミキサを備えることもできる。ノズル45は、生物酸化槽42の貯留空間のうちの下降流部65の底部に配置されている。ノズル45は、気液二相流用配管44から気液二相流が供給されることにより、生物酸化槽42の貯留空間のうちの上昇流部64の底部にその気液二相流を噴射する。
 このような水処理装置41も、既述の実施の形態における水処理装置1と同様にして、膜分離槽2に貯留されている貯留液5を分離膜3がろ過することにより処理水を生成し、気液二相流生成装置8により生成された気液二相流を分離膜3に向けて噴射することにより分離膜3を適切に洗浄する。
 ノズル45は、気液二相流用配管44から気液二相流が供給されることにより、生物酸化槽42の上昇流部64の底部に向けてその気液二相流を噴射する。気液二相流は、生物酸化槽42の上昇流部64の底部に供給されたときに、該気液二相流に分散している空気の気泡が浮力で貯留液46を上昇することにより、生物酸化槽42の貯留空間の上昇流部64に貯留液46の上昇流を生成する。その上昇流は、生物酸化槽42の貯留空間の下降流部65に貯留液46が下向きに流れる下降流を生成する。その上昇流と下降流とは、ノズル45から噴射される気液二相流に分散している空気により、生物酸化槽42に貯留された貯留液46を曝気する。貯留液46は、曝気されることにより、貯留液46に含有される好気性微生物群が貯留液46に含有される有機物を分解し、その好気性微生物群が繁殖・増殖する。その気液二相流に分散している気泡は、その気液二相流が気液二相流生成装置43により生成されたことにより、比較的小さい。水処理装置41は、その気液二相流の気泡が小さいことにより、貯留液46と空気との接触面積を大きくすることができ、貯留液46に酸素をより高効率に溶解させることができる。その好気性微生物群は、貯留液46に酸素が高濃度に溶解されることにより、高効率に繁殖・増殖することができる。
 生物酸化槽42は、さらに、貯留液46を越流させることにより貯留液46を膜分離槽2に供給する。
 このような水処理装置41は、生物酸化槽42に貯留される貯留液46に気液二相流を供給することにより、分離膜3に向けて噴射される気液二相流だけでは貯留液5の曝気が不十分な場合でも、貯留液5を十分に曝気することができる。
 分離膜が配置される膜分離槽とその膜分離槽に越流により貯留液を供給する生物酸化槽とを備える既存の水処理装置は、一般的に、貯留液をその膜分離槽から生物酸化槽に供給する循環配管を備え、その生物酸化槽の貯留液に空気を曝気する曝気装置をその循環配管と別途に備えている。このような水処理装置41は、その曝気装置を備える必要がなく、その既存の水処理装置に比較して、より容易に作製されることができる。このような水処理装置41は、その循環配管の途中に気液二相流生成装置を追加する改造により、その既存の水処理装置から容易に作製することができる。
 なお、分離膜3は、平膜に形成されるろ過膜を備える他の分離膜に置換されることができる。このような分離膜を備える水処理装置も、既述の実施の形態における水処理装置と同様にして、分離膜をより適切に洗浄することができる。
 図8は、水処理装置の実施のさらに他の形態を示している。その水処理装置71は、分散菌処理槽72と活性汚泥処理槽73とスクリーン74とを備えている。分散菌処理槽72は、貯留空間を形成し、分散菌混合液をその貯留空間に貯留する。その分散菌混合液は、外部から供給される排水を含有し、非凝集性細菌がフロックを形成しないで分散している。その非凝集性細菌は、細菌から形成され、その分散菌混合液に溶解している酸素を用いて、その分散菌混合液に溶解している有機物を分解し、増殖する。その貯留空間には、複数の微生物固定化担体が充填されている。その複数の微生物固定化担体は、それぞれ、多孔質である物体から形成され、概ね球状に形成されている。その微生物固定化担体は、その非凝集性細菌を保持する。このような微生物固定化担体は、公知であり、たとえば、株式会社クラレ製「クラゲール(登録商標)」が例示される。
 活性汚泥処理槽73は、貯留空間を形成し、その貯留空間に活性汚泥混合液を貯留する。その活性汚泥混合液は、スクリーン74により供給される分散菌処理水と活性汚泥とを含有している。その活性汚泥は、非凝集性細菌と微生物とを含み、活性汚泥混合液の中でフロックを形成している。その微生物は、非凝集性細菌より比較的大きい原生動物、後生動物である。その原生動物、後生動物は、その活性汚泥混合液に溶解している酸素を用いて、その活性汚泥混合液に溶解している有機物と非凝集性細菌とを分解し、増殖する。
 スクリーン74は、金属板に複数の孔が形成されているパンチングメタルから形成され、そのパンチングメタルが分散菌処理槽72の貯留空間と活性汚泥処理槽73の貯留空間とを隔てるように配置されている。その複数の孔は、それぞれ、径がその微生物固定化担体の径より小さい。スクリーン74は、その分散菌混合液のうちのそのパンチングメタルを通過した分散菌処理水を所定の流量で活性汚泥処理槽73に供給する。なお、スクリーン74は、その分散菌混合液を濾し、その複数の微生物固定化担体と分散菌処理水とに分離することができる他のスクリーンに置換されることができる。そのスクリーンとしては、微生物固定化担体が通過することができない複数の隙間が形成されたワイヤーメッシュが例示される。
 水処理装置71は、さらに、循環液用配管75と循環ポンプ76と気液二相流生成装置77とを備えている。循環液用配管75は、分散菌処理槽72に貯留される分散菌混合液の液面を通過するように配置され、一端が分散菌処理槽72の貯留空間の底部に接続され、他端が循環ポンプ76に接続されている流路を形成している。循環液用配管75は、分散菌処理槽72の底部から分散菌混合液を抜き出し、その抜き出された循環液を循環ポンプ76に供給する。循環ポンプ76は、外部から供給される電力を用いて、循環液用配管75を介して分散菌処理槽72から循環液を取り込み、循環液の液流を生成する。気液二相流生成装置77は、分散菌処理槽72の外側に配置されている。気液二相流生成装置77は、循環ポンプ76により生成された液流を用いて、気液二相流を生成する。その気液二相流は、循環液に空気が分散している。
 水処理装置71は、さらに、気液二相流用配管78とノズル79とを備えている。気液二相流用配管78は、分散菌処理槽72の側壁のうちの底部の近傍の部分に形成された孔を貫通するように配置されている。気液二相流用配管78は、気液二相流生成装置77により生成された気液二相流をノズル79に供給する。ノズル79は、分散菌処理槽72の貯留空間のうちの底部に配置されている。ノズル79は、気液二相流用配管78から気液二相流が供給されることにより、分散菌処理槽72の貯留空間のうちの底部に向けてその気液二相流を噴射する。
 水処理装置71は、さらに、ブロア81と散気管82とを備えている。ブロア81は、外部から供給される電力を用いて、散気管82に空気を供給する。散気管82は、活性汚泥処理槽73の貯留空間の底部に配置されている。散気管82は、ブロア81から空気が供給されることにより、活性汚泥処理槽73に貯留されている活性汚泥混合液に空気の気泡を供給し、その活性汚泥混合液を曝気する。
 水処理装置71は、外部から排水が分散菌処理槽72に供給されているときに、動作する。循環ポンプ76は、循環液用配管75を介して分散菌処理槽72の底部から分散菌混合液を取り込み、その取り込まれた循環液の液流を生成する。気液二相流生成装置77は、循環ポンプ76により生成された液流を用いて、大気から空気を吸引し、循環液にその空気の気泡が分散している気液二相流を生成する。その気液二相流は、気液二相流用配管78を介してノズル79に供給される。ノズル79は、気液二相流用配管78から気液二相流が供給されることにより、分散菌処理槽72の底部に向けてその気液二相流を噴射し、その分散菌混合液を曝気する。
 その分散菌混合液は、曝気されることにより、撹拌され、酸素が溶解される。その分散菌混合液は、撹拌されることにより、外部から供給される排水と混合される。その分散菌混合液に分散している非凝集性細菌とその微生物固定化担体に保持されている非凝集性細菌とは、その分散菌混合液に酸素が溶解されることにより、その酸素を用いて、その分散菌混合液に含有される有機物を分解し、増殖する。
 その分散菌混合液に浸漬されている微生物固定化担体は、流入する排水が低負荷となったときに、表面に生物膜(バイオフィルム)が形成されることがある。非凝集性細菌は、微生物固定化担体の表面に生物膜(バイオフィルム)が形成されると、その分散菌混合液に含有される有機物を適切に分解することができなくなることがある。その分散菌混合液に浸漬されている微生物固定化担体は、その分散菌混合液が撹拌されることにより、分散菌処理槽72の貯留空間を流動する。複数の微生物固定化担体は、流動することにより、表面が洗浄される。複数の微生物固定化担体は、さらに、ノズル79から高速で気液二相流が噴射されることにより、より適切に洗浄されることができる。複数の微生物固定化担体は、表面が適切に洗浄されることにより、非凝集性細菌を適切に保持することができる。複数の微生物固定化担体に適切に保持された非凝集性細菌は、その分散菌混合液に含有される汚濁物質を適切に分解することができる。
 スクリーン74は、その分散菌混合液を濾し、その複数の微生物固定化担体と分散菌処理水とに分離する。スクリーン74は、分散菌処理槽72は、その微生物固定化担体を分散菌処理槽72に戻し、その分散菌処理水を所定の流量で活性汚泥処理槽73に供給する。
 ブロア81は、活性汚泥処理槽73が活性汚泥混合液を貯留しているときに、散気管82に空気を供給する。散気管82は、ブロア81から空気が供給されることにより、活性汚泥処理槽73に貯留されている活性汚泥混合液に空気の気泡を供給し、その活性汚泥混合液を曝気する。
 その活性汚泥混合液は、曝気されることにより、撹拌され、酸素が溶解される。その活性汚泥混合液は、撹拌されることにより、分散菌処理槽72から供給される分散菌処理水と混合される。その活性汚泥混合液に浮遊しているフロックは、その活性汚泥混合液が撹拌されることにより、流動する。その活性汚泥混合液に含有されている活性汚泥は、その活性汚泥混合液に酸素が溶解されることにより、その酸素を用いて、その活性汚泥混合液に含有される有機物を分解し、増殖する。さらに、その活性汚泥に含有されている微生物は、その活性汚泥混合液に溶解している酸素を用いて、その活性汚泥混合液に含有される非凝集性細菌を分解する。
 その活性汚泥混合液は、後段の設備に所定の流量で排出される。その後段の設備としては、沈殿槽、膜分離槽が例示される。
 その沈殿槽は、活性汚泥混合液を貯留することにより、その活性汚泥混合液の固形分を沈殿させ、その活性汚泥混合液を処理水と余剰汚泥とに分離する。沈殿槽は、その処理水を所定の流量で外部に排水する。沈殿槽は、さらに、その余剰汚泥を活性汚泥処理槽73に所定の流量で戻し、その余剰汚泥を所定の流量で外部に排出する。
 その膜分離槽は、分離膜を備えている。分離膜は、活性汚泥混合液をろ過することにより、活性汚泥混合液を余剰汚泥と処理水とに分離する。その膜分離槽は、その処理水を所定の流量で外部に排水する。その膜分離槽は、さらに、その余剰汚泥を活性汚泥処理槽73に所定の流量で戻し、その余剰汚泥を所定の流量で外部に排出する。
 非凝集性細菌は、その原生動物・後生動物に比較して、微生物以外の有機物をより高効率に分解することができる。このため、分散菌処理槽72は、活性汚泥処理槽73に比較して、有機物をより高効率に分解することができる。水処理装置71は、さらに、分散菌混合液に気液二相流を噴射することにより、分散菌混合液に酸素を高効率に溶解させることができる。非凝集性細菌は、分散菌混合液に酸素が高効率に溶解することにより、有機物をより高効率に分解することができる。このため、水処理装置71は、散気管等を用いて分散菌処理槽72の底部より空気を供給する他の水処理装置に比較して、有機物をより高効率に分解することができる。
 分散菌処理槽72から排水される分散菌処理水は、非凝集性細菌を含有している。非凝集性細菌は、分散菌処理水に分散し、沈殿槽にそのまま貯留しても固形分として沈降しにくい。このような動作によれば、活性汚泥処理槽73から排水される活性汚泥混合液は、その非凝集性細菌が原生動物・後生動物とともにフロックを形成する。さらに、その原生動物・後生動物は、その非凝集性細菌を捕食する。このため、水処理装置71は、活性汚泥混合液が余剰汚泥と処理水とに分離されたときに、その処理水に含有される非凝集性細菌の濃度を高効率に低減することができる。すなわち、このような動作によれば、水処理装置71は、活性汚泥処理槽73を備えないで分散菌処理槽72のみで水処理する比較例の水処理装置に比較して、排水をより適切に水処理することができる。
 なお、水処理装置71は、スクリーン74により分離された分散菌処理水から非凝集性細菌を除去する必要がないときに、活性汚泥処理槽73を省略することができる。このような水処理装置も、非凝集性細菌が有機物をより高効率に分解することにより、排水を適切に水処理することができる。
 図9は、水処理装置の実施のさらに他の形態を示している。その水処理装置91は、既述の実施の形態における水処理装置71のブロア81と散気管82とが、流量調整弁95と気液二相流生成装置92と気液二相流用配管93と活性汚泥処理槽用ノズル94とに置換されている。流量調整弁95は、循環ポンプ76から気液二相流生成装置92に液流を供給する流路の途中に設けられている。流量調整弁95は、循環ポンプ76から気液二相流生成装置77に供給される液流の流量と循環ポンプ76から気液二相流生成装置92に供給される液流の流量とを調整する。気液二相流生成装置92は、気液二相流生成装置77と同様にして、循環ポンプ76により生成された液流を用いて、気液二相流を生成する。気液二相流用配管93は、活性汚泥処理槽73の側壁のうちの底部の近傍の部分に形成された孔を貫通するように配置されている。気液二相流用配管93は、気液二相流生成装置92により生成された気液二相流を活性汚泥処理槽用ノズル94に供給する。活性汚泥処理槽用ノズル94は、活性汚泥処理槽73の貯留空間のうちの底部に配置されている。活性汚泥処理槽用ノズル94は、気液二相流用配管93から気液二相流が供給されることにより、活性汚泥処理槽73の貯留空間のうちの底部に向けてその気液二相流を噴射する。
 水処理装置91は、既述の実施の形態における水処理装置71と同様にして、分散菌処理槽72の貯留空間に気液二相流を高速に噴射することにより、排水中の有機物をより適切に分解することができ、排水をより適切に水処理することができる。水処理装置91は、さらに、水処理装置91は、さらに、活性汚泥処理槽73の貯留空間にも気液二相流を高速に噴射することにより、活性汚泥処理槽73に貯留される活性汚泥混合液をより適切に曝気することができ、活性汚泥混合液をより適切に撹拌することができる。水処理装置91は、活性汚泥混合液をより適切に撹拌・曝気することにより、既述の実施の形態における水処理装置71に比較して、排水をより高効率に水処理することができる。
 水処理装置91は、ブロア81を備える必要がない。このため、水処理装置91は、既述の実施の形態における水処理装置71に比較して、より容易に作製されることができ、メンテナンスを省力化することができる。
 水処理装置91は、さらに、分散菌処理槽72に貯留されている分散菌混合液を気液二相流生成装置92と気液二相流用配管93と活性汚泥処理槽用ノズル94とが所定の流量で活性汚泥処理槽73に供給することができる。水処理装置91は、分散菌混合液が所定の流量で活性汚泥処理槽73に供給されることにより、スクリーン74を備える必要がなく、既述の実施の形態における水処理装置71に比較して、より容易に作製されることができる。
 図10は、水処理装置の実施のさらに他の形態を示している。その水処理装置101は、既述の実施の形態における水処理装置91の気液二相流用配管78が他の気液二相流用配管102に置換され、気液二相流用配管93が他の気液二相流用配管103に置換されている。気液二相流用配管102は、分散菌処理槽72の側壁を貫通しないように、分散菌処理槽72に貯留される分散菌混合液の液面を通過するように配置されている。気液二相流用配管102は、気液二相流生成装置77により生成された気液二相流をノズル79に供給する。気液二相流用配管103は、活性汚泥処理槽73の側壁を貫通しないように、活性汚泥処理槽73に貯留される活性汚泥混合液の液面を通過するように配置されている。気液二相流用配管103は、気液二相流生成装置92により生成された気液二相流を活性汚泥処理槽用ノズル94に供給する。
 水処理装置101は、既述の実施の形態における水処理装置91と同様にして、分散菌処理槽72の貯留空間に気液二相流を高速に噴射することにより、排水中の有機物をより適切に分解することができ、活性汚泥処理槽73の貯留空間に気液二相流を高速に噴射することにより、活性汚泥処理槽73に貯留される活性汚泥混合液をより適切に曝気することができる。水処理装置101は、分散菌処理槽72の側壁に気液二相流用配管102が貫通する孔を形成する必要がなく、既述の実施の形態における水処理装置91に比較して、より容易に作製されることができる。水処理装置101は、活性汚泥処理槽73の側壁に気液二相流用配管103が貫通する孔を形成する必要がなく、既述の実施の形態における水処理装置91に比較して、より容易に作製されることができる。
 図11は、水処理装置の実施のさらに他の形態を示している。その水処理装置111は、既述の実施の形態における水処理装置101の気液二相流用配管103が他の気液二相流用配管112に置換され、流量調整弁113を備えている。気液二相流用配管112は、気液二相流生成装置77により生成された気液二相流を活性汚泥処理槽用ノズル94に供給する。流量調整弁113は、気液二相流用配管112の途中に設けられている。流量調整弁113は、気液二相流用配管102を流れる気液二相流の流量と気液二相流用配管112を流れる気液二相流の流量とを調整する。
 水処理装置111は、既述の実施の形態における水処理装置101と同様にして、分散菌処理槽72の貯留空間に気液二相流を高速に噴射することにより、排水中の有機物をより適切に分解することができ、活性汚泥処理槽73の貯留空間に気液二相流を高速に噴射することにより、活性汚泥処理槽73に貯留される活性汚泥混合液をより適切に曝気することができる。水処理装置111は、気液二相流生成装置92を備える必要がない。このため、水処理装置111は、既述の実施の形態における水処理装置101に比較して、より容易に作製されることができる。
 なお、複数の微生物固定化担体は、非凝集性細菌を保持することができる他の担体に置換することができる。その担体としては、互いに平行である複数の平面にそれぞれ沿うように配置される複数の板状担体が例示される。このような担体が充填された分散菌処理槽も、既述の実施の形態における分散菌処理槽72と同様にして、非凝集性細菌が有機物をより高効率に分解することにより、排水を適切に水処理することができる。
 なお、活性汚泥槽73は、活性汚泥混合液に浸漬される分離膜をさらに備えることもできる。その分離膜は、既述の実施の形態における分離膜3と同様にして、活性汚泥混合液をろ過することにより、活性汚泥混合液を余剰汚泥と処理水とに分離する。その処理水は、所定の流量で外部に排水される。このとき、ノズル94は、その分離膜の下部に向けて気液二相流を噴射する。このような分離膜を備えた活性汚泥槽も、既述の実施の形態における膜分離槽2と同様にして、ノズル94が気液二相流をその分離膜の下部に向けて噴射することにより、その分離膜を適切に洗浄することができ、その分離膜に活性汚泥混合液を適切にろ過させることができる。
 1 :水処理装置
 2 :膜分離槽
 3 :分離膜
 5 :貯留液
 6 :循環液用配管
 7 :循環ポンプ
 8 :気液二相流生成装置
 11:気液二相流用配管
 12:ノズル
 15:液流取入管
 16:オリフィス
 17:空気吸引管
 19:ラインミキサ
 21:水処理装置
 22:気液二相流生成装置
 23:気液二相流用配管
 24:ノズル
 51:水処理装置
 31:水処理装置
 32:気液二相流用配管
 33:複数のノズル
 34:液面
 41:水処理装置
 42:生物酸化槽
 43:気液二相流生成装置
 44:気液二相流用配管
 45:ノズル
 46:貯留液
 71:水処理装置
 72:分散菌処理槽
 73:活性汚泥処理槽
 75:循環液用配管
 76:循環ポンプ
 77:気液二相流生成装置
 78:気液二相流用配管
 79:ノズル
 91:水処理装置
 92:気液二相流生成装置
 93:気液二相流用配管
 94:活性汚泥処理槽用ノズル
 101:水処理装置
 102:気液二相流用配管
 103:気液二相流用配管
 111:水処理装置
 112:気液二相流用配管

Claims (12)

  1.  汚濁物質を分解する生物を含有する貯留液を貯留する生物処理槽と、
     前記貯留液から引き抜かれた循環液から形成される循環液流を生成するポンプと、
     前記循環液流を用いて、酸素を含有する気体を吸引することにより、前記循環液に前記気体が分散された気液二相流を生成する気液二相流生成装置と、
     前記貯留液が貯留される領域に前記気液二相流を噴射するノズルとを備える水処理装置。
  2.  前記生物処理槽の底部から前記貯留液を引き抜くことにより前記循環液を前記ポンプに供給する循環液用配管をさらに備える請求項1に記載される水処理装置。
  3.  前記貯留液に浸漬される分離膜をさらに備え、
     前記分離膜は、前記貯留液をろ過することにより処理水を生成し、
     前記ノズルは、前記分離膜に向かって前記気液二相流を噴射する請求項2に記載される水処理装置。
  4.  前記領域は、
     前記分離膜が配置される上昇流部と、
     前記上昇流部と水平方向に並んで配置される下降流部とを含み、
     前記循環液用配管は、前記下降流部から前記貯留液を引き抜く請求項3に記載される水処理装置。
  5.  前記ノズルは、前記分離膜のうちの互いに異なる複数の領域に前記気液二相流をそれぞれ噴射する複数のノズルから形成される請求項4に記載される水処理装置。
  6.  前記ノズルは、それぞれ上方に向かって前記気液二相流を噴射する請求項5に記載される水処理装置。
  7.  前記気液二相流生成装置は、前記生物処理槽より上側に配置される請求項6に記載される水処理装置。
  8.  前記気液二相流を前記気液二相流生成装置から前記ノズルに供給する配管と、
     前記配管を流れる流体と気体とを撹拌する気液撹拌装置とをさらに備える請求項7に記載される水処理装置。
  9.  前記配管は、前記貯留液の液面を通過するように配置される請求項8に記載される水処理装置。
  10.  前記生物処理槽は、
     前記分離膜が配置される領域を形成する膜分離槽と、
     前記貯留液を前記膜分離槽に供給する生物酸化槽とを含み、
     さらに、
     前記生物酸化槽が前記貯留液を貯留する領域に前記気液二相流を噴射する生物酸化槽用ノズルを備える請求項9に記載される水処理装置。
  11.  前記生物処理槽は、
     汚濁物質を分解する非凝集性細菌が分散する分散菌混合液を貯留する分散菌処理槽と、
     前記分散菌を分解する活性汚泥が浮遊する活性汚泥混合液を貯留する活性汚泥処理槽とを含み、
     前記分散菌混合液は、前記活性汚泥混合液に供給され、
     前記循環液は、前記分散菌混合液から引き抜かれ、
     前記ノズルは、前記分散菌混合液が貯留される領域に前記気液二相流を噴射する請求項1に記載される水処理装置。
  12.  前記活性汚泥混合液が貯留される領域に前記気液二相流を噴射する活性汚泥処理槽用ノズルをさらに備える請求項11に記載される水処理装置。
PCT/JP2013/069392 2013-07-17 2013-07-17 水処理装置 WO2015008346A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP13889447.2A EP2998278B1 (en) 2013-07-17 2013-07-17 Water treatment device
CN201380077414.8A CN105339312B (zh) 2013-07-17 2013-07-17 水处理装置
SG11201510233WA SG11201510233WA (en) 2013-07-17 2013-07-17 Water treatment device
CA2915790A CA2915790A1 (en) 2013-07-17 2013-07-17 Water treatment device
US14/899,375 US10138147B2 (en) 2013-07-17 2013-07-17 Water treatment device
PCT/JP2013/069392 WO2015008346A1 (ja) 2013-07-17 2013-07-17 水処理装置
JP2015527098A JP6072254B2 (ja) 2013-07-17 2013-07-17 水処理装置
AU2013394505A AU2013394505B2 (en) 2013-07-17 2013-07-17 Water treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/069392 WO2015008346A1 (ja) 2013-07-17 2013-07-17 水処理装置

Publications (1)

Publication Number Publication Date
WO2015008346A1 true WO2015008346A1 (ja) 2015-01-22

Family

ID=52345842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069392 WO2015008346A1 (ja) 2013-07-17 2013-07-17 水処理装置

Country Status (8)

Country Link
US (1) US10138147B2 (ja)
EP (1) EP2998278B1 (ja)
JP (1) JP6072254B2 (ja)
CN (1) CN105339312B (ja)
AU (1) AU2013394505B2 (ja)
CA (1) CA2915790A1 (ja)
SG (1) SG11201510233WA (ja)
WO (1) WO2015008346A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
JP6265402B1 (ja) * 2017-06-07 2018-01-24 三協技研工業株式会社 固液分離装置及び固液分離方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008346A1 (ja) * 2013-07-17 2015-01-22 三菱重工業株式会社 水処理装置
US10392279B2 (en) 2015-01-14 2019-08-27 Scientific Associates Eductor-based membrane bioreactor
CN116495921B (zh) * 2023-05-04 2024-01-02 江苏格纳环境工程有限公司 一种倒向ro集成装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04290590A (ja) * 1991-03-19 1992-10-15 Kubota Corp 浄化槽における膜分離装置
JP2000051886A (ja) * 1998-06-05 2000-02-22 Agency Of Ind Science & Technol 有機性廃水の処理方法
JP2000157993A (ja) * 1998-11-26 2000-06-13 Nippon Sanso Corp 好気性水処理装置
JP2002210488A (ja) * 2000-12-26 2002-07-30 Shinkyu Zen 清浄化処理装置
JP2003205287A (ja) * 2002-01-15 2003-07-22 Hitachi Plant Eng & Constr Co Ltd 膜分離廃水処理装置
JP3486399B2 (ja) 1998-08-11 2004-01-13 三菱重工業株式会社 湿式排煙脱硫装置
JP2005329397A (ja) * 2004-04-23 2005-12-02 Mitsubishi Rayon Co Ltd 分離方法および分離装置
JP3854481B2 (ja) 2000-11-17 2006-12-06 三菱重工業株式会社 湿式排煙脱硫装置、及び、湿式排煙脱硫方法
JP2007105580A (ja) * 2005-10-12 2007-04-26 Kurita Water Ind Ltd 有機性排水の生物処理方法および装置
WO2008038436A1 (fr) 2006-09-25 2008-04-03 Toray Industries, Inc. procÉdÉ de sÉparation membranaire, sÉparateur À membrane de type immergÉ et processus de sÉparation membranaire
JP2009061349A (ja) 2007-09-04 2009-03-26 Toray Ind Inc 膜分離活性汚泥法による汚水処理方法
JP2011177608A (ja) 2010-02-26 2011-09-15 Toray Ind Inc 油分含有廃水の処理方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271304A (en) * 1964-06-26 1966-09-06 Pacific Flush Tank Co Venturi aerator and aerating process for waste treatment
FR2390192A2 (fr) * 1977-05-10 1978-12-08 Degremont Filtre biologique pour l'epuration d'eaux residuaires et installation comportant un tel fitre
DE4201167A1 (de) * 1992-01-17 1993-07-22 Linde Kca Dresden Gmbh Verfahren zur biologischen aeroben oder anaeroben behandlung von abwasser
IL105574A (en) * 1992-05-07 1996-05-14 Great Lakes Aqua Sales Service Method and device for storing and treating wastewater grout
DE9319593U1 (de) * 1993-12-21 1994-03-24 Sonnenrein Uwe Kleinkläranlage
JP3671473B2 (ja) 1995-10-05 2005-07-13 栗田工業株式会社 浸漬型膜分離装置
JPH1085565A (ja) * 1996-09-19 1998-04-07 Yamada Kogyo Kk 膜分離装置
JP4135802B2 (ja) 1999-09-27 2008-08-20 オルガノ株式会社 脱塩装置
JP2003311268A (ja) * 2002-04-22 2003-11-05 Mitsubishi Rayon Co Ltd 排水処理装置及び排水処理方法
US6946073B2 (en) * 2003-09-02 2005-09-20 Ch2M Hill, Inc. Method for treating wastewater in a membrane bioreactor to produce a low phosphorus effluent
US7311833B2 (en) * 2004-03-03 2007-12-25 Kazuo Yamamoto Zero excess sludge membrane bioreactor
US7147777B1 (en) * 2005-05-09 2006-12-12 Eimco Water Technologies Llc Wastewater treatment system with membrane separators and provision for storm flow conditions
US8017014B2 (en) * 2005-06-01 2011-09-13 Nalco Company Method for improving flux in a membrane bioreactor
CN100381375C (zh) * 2005-11-16 2008-04-16 华东师范大学 白腐真菌膜生物法活性染料废水处理方法及装置
US7147778B1 (en) * 2006-01-05 2006-12-12 I. Kruger Inc. Method and system for nitrifying and denitrifying wastewater
JP5448287B2 (ja) 2006-01-19 2014-03-19 三菱レイヨン株式会社 膜分離活性汚泥処理装置
EP2022763A4 (en) * 2006-04-28 2013-04-03 Kurita Water Ind Ltd METHOD AND APPARATUS FOR BIOLOGICALLY TREATING ORGANIC DISCHARGE WATER
JP5217159B2 (ja) * 2006-12-21 2013-06-19 株式会社日立製作所 汚水処理装置及びその方法
CN100544808C (zh) 2007-09-04 2009-09-30 北京清大国华环保科技有限公司 一种射流膜-生物反应器的方法与装置
JP2010017669A (ja) 2008-07-11 2010-01-28 Mitsubishi Heavy Industries Environment & Chemical Engineering Co Ltd 二相式活性汚泥処理装置および二相式活性汚泥処理装置の改造方法
JP5135267B2 (ja) 2009-03-13 2013-02-06 三菱レイヨン株式会社 散気装置、同散気装置を備えた浸漬型膜分離装置及び前記散気装置の運転方法
US8052874B2 (en) * 2009-04-20 2011-11-08 Ovivo Luxembourg S.a.r.l. Method using membrane bioreactor with reduced air scour requirements
US8999170B2 (en) * 2009-12-18 2015-04-07 Ovivo Luxembourg S.Å.R.L. Peak flow management in wastewater treatment using direct membrane filtration
US9199200B2 (en) * 2010-06-29 2015-12-01 Centre de Recherche Industrielle de Québec (CRIQ) Submerged membrane bioreactor system and biological methods for removing bisphenol compounds from municipal wastewater
JP5439344B2 (ja) * 2010-11-16 2014-03-12 株式会社東芝 膜分離生物処理装置
CN102491509A (zh) * 2011-12-14 2012-06-13 南京大学 一种可低温运行的污水处理方法
CN103058371A (zh) * 2012-12-31 2013-04-24 西安建筑科技大学 改善活性污泥粒径分布及微环境的复合式膜生物反应器
WO2015008346A1 (ja) * 2013-07-17 2015-01-22 三菱重工業株式会社 水処理装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04290590A (ja) * 1991-03-19 1992-10-15 Kubota Corp 浄化槽における膜分離装置
JP2000051886A (ja) * 1998-06-05 2000-02-22 Agency Of Ind Science & Technol 有機性廃水の処理方法
JP3486399B2 (ja) 1998-08-11 2004-01-13 三菱重工業株式会社 湿式排煙脱硫装置
JP2000157993A (ja) * 1998-11-26 2000-06-13 Nippon Sanso Corp 好気性水処理装置
JP3854481B2 (ja) 2000-11-17 2006-12-06 三菱重工業株式会社 湿式排煙脱硫装置、及び、湿式排煙脱硫方法
JP2002210488A (ja) * 2000-12-26 2002-07-30 Shinkyu Zen 清浄化処理装置
JP2003205287A (ja) * 2002-01-15 2003-07-22 Hitachi Plant Eng & Constr Co Ltd 膜分離廃水処理装置
JP2005329397A (ja) * 2004-04-23 2005-12-02 Mitsubishi Rayon Co Ltd 分離方法および分離装置
JP2007105580A (ja) * 2005-10-12 2007-04-26 Kurita Water Ind Ltd 有機性排水の生物処理方法および装置
WO2008038436A1 (fr) 2006-09-25 2008-04-03 Toray Industries, Inc. procÉdÉ de sÉparation membranaire, sÉparateur À membrane de type immergÉ et processus de sÉparation membranaire
JP2009061349A (ja) 2007-09-04 2009-03-26 Toray Ind Inc 膜分離活性汚泥法による汚水処理方法
JP2011177608A (ja) 2010-02-26 2011-09-15 Toray Ind Inc 油分含有廃水の処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2998278A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9956530B2 (en) 2014-10-22 2018-05-01 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US10702831B2 (en) 2014-10-22 2020-07-07 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
JP6265402B1 (ja) * 2017-06-07 2018-01-24 三協技研工業株式会社 固液分離装置及び固液分離方法
JP2018202348A (ja) * 2017-06-07 2018-12-27 三協技研工業株式会社 固液分離装置及び固液分離方法

Also Published As

Publication number Publication date
SG11201510233WA (en) 2016-01-28
EP2998278B1 (en) 2019-09-11
AU2013394505B2 (en) 2017-03-23
JPWO2015008346A1 (ja) 2017-03-02
CN105339312B (zh) 2019-09-24
US10138147B2 (en) 2018-11-27
EP2998278A1 (en) 2016-03-23
EP2998278A4 (en) 2016-05-11
CN105339312A (zh) 2016-02-17
AU2013394505A1 (en) 2016-01-21
US20160145130A1 (en) 2016-05-26
JP6072254B2 (ja) 2017-02-01
CA2915790A1 (en) 2015-01-22

Similar Documents

Publication Publication Date Title
JP6072254B2 (ja) 水処理装置
KR100709932B1 (ko) 배수처리장치 및 배수처리방법
US11339068B2 (en) Eductor-based membrane bioreactor
KR101080818B1 (ko) 초미세기포 및 용존산소조를 이용한 고농도 하폐수 처리방법
KR20090098544A (ko) 오폐수 처리 공법 및 그 장치
JP5192608B1 (ja) 水質浄化装置、およびこの水質浄化装置を用いた水質浄化方法
WO2014003007A1 (ja) 排水処理方法及び排水処理装置
JP4528828B2 (ja) 流体流動による水処理工程及び装置
JP5823489B2 (ja) 膜分離装置
JP2007222810A (ja) 排ガス排水処理方法および排ガス排水処理装置
JP4014581B2 (ja) 生物濾過装置
JP4591678B2 (ja) 生物処理装置
JP5048637B2 (ja) 膜分離装置
JP4819841B2 (ja) 膜分離装置
JP2006136783A (ja) 排水処理装置及び排水処理方法
KR102456199B1 (ko) 분리막유닛 및 이를 이용한 하폐수 고도처리시스템
JP2019018194A (ja) 汚水浄化装置
KR20120138025A (ko) 부상 분리 장치
JP5768370B2 (ja) 水処理装置及び方法
JP2023073851A (ja) 排水処理装置及び排水処理方法
KR20090049737A (ko) 오폐수 처리장치
JP2001300580A (ja) 高濃度汚水の散気装置
JP2002233738A (ja) 浸漬平膜分離装置
JP4819840B2 (ja) 膜分離装置
JP2007029865A (ja) 廃液の生物処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380077414.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889447

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015527098

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2915790

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2013889447

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14899375

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013394505

Country of ref document: AU

Date of ref document: 20130717

Kind code of ref document: A