WO2014209095A1 - Additif bactériostatique et fongistatique en mélange maître pour une application sur des plastiques et procédé d'obtention de celui-ci - Google Patents

Additif bactériostatique et fongistatique en mélange maître pour une application sur des plastiques et procédé d'obtention de celui-ci Download PDF

Info

Publication number
WO2014209095A1
WO2014209095A1 PCT/MX2013/000077 MX2013000077W WO2014209095A1 WO 2014209095 A1 WO2014209095 A1 WO 2014209095A1 MX 2013000077 W MX2013000077 W MX 2013000077W WO 2014209095 A1 WO2014209095 A1 WO 2014209095A1
Authority
WO
WIPO (PCT)
Prior art keywords
additive
concentrate
paste
zinc oxide
polymer
Prior art date
Application number
PCT/MX2013/000077
Other languages
English (en)
Spanish (es)
Other versions
WO2014209095A8 (fr
Inventor
Ricardo Benavides Perez
Jose Gertrudis Bocanegra Rojas
Carlos Sergio TENA SALCIDO
Original Assignee
Servicios Administrates Penoles, S.A. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Servicios Administrates Penoles, S.A. De C.V. filed Critical Servicios Administrates Penoles, S.A. De C.V.
Priority to EP13888169.3A priority Critical patent/EP3015422A4/fr
Priority to US14/911,214 priority patent/US20160227785A1/en
Priority to EP19000317.8A priority patent/EP3575263B1/fr
Priority to CA2926945A priority patent/CA2926945A1/fr
Priority to PCT/MX2013/000077 priority patent/WO2014209095A1/fr
Publication of WO2014209095A1 publication Critical patent/WO2014209095A1/fr
Publication of WO2014209095A8 publication Critical patent/WO2014209095A8/fr
Priority to US15/909,374 priority patent/US11154063B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • the present invention relates to the additives used in the plastics industry, and in particular refers to a masterbach additive concentrate with bacteriostatic and fungistatic functions manufactured by mixing a zinc oxide nanoparticle concentrate and a concentrate of metallic silver nanoparticles and the process for obtaining them.
  • U.S. Patent 5,180,585 (Jacobson, et al., 1993) describes a antibacterial composition and process to produce it, comprising an inorganic particle with a first coating that provides antimicrobial properties, and a second coating that provides a protective function, for incorporation into polymeric materials with antimicrobial properties.
  • an antimicrobial composition comprising a silver compound selected from AgCl, AgBr, Ag 2 C0 3 and Ag 3 P0 4 , deposited on a physiologically inert particle, selected from between oxides of Ti, Mg, Al, Si, Ce, Hf, Nb and Ta, calcium hydroxyapatite and barium sulfate. It is described that the compositions can be modified by the inclusion of other ingredients such as dispersion aids, and these compositions can be incorporated into polymeric materials in an amount of from 5-60% by weight of the compound.
  • the antimicrobial silver compound in contact with the polymer article may interact with it producing undesirable effects, such as darkening due to reduction to metallic silver.
  • zeolite particles are used as supports for antimicrobial metal ions.
  • Zeolites are aluminosilicates of either natural or synthetic origin. that have sites where cation exchange can occur. When treated with metal ion solutions, an antimicrobial metal ion can be substituted in the zeolite structure.
  • Polymeric articles having antimicrobial properties are made by incorporating the zeolites treated with the polymer, or the zeolite can be mixed with the polymer and then treated with a solution of the desired antimicrobial metal ion.
  • Patent 8,105,688 (Liu, 2012), for its part, describes a combined powder in inorganic solid phase, a masterbach, a method for manufacturing the same, and a method for manufacturing a fiber that includes, in percentage: 10-20% of the masterbach and 80-90% of a high chain polymer;
  • the silver content in the fiber of the present invention can reach up to 3-10%, with a high bactericidal rate the UV blocking rate is high, the effectiveness is durable and safe and has no side or toxic effects.
  • an antimicrobial coating which includes an inorganic antimicrobial additive, a colloidal polymeric medium and water;
  • the additive includes particles with a diameter of 2 to 3 microns that include one of the group consisting of silver, platinum, gold, palladium, copper, zinc, boron and a compound of any of them.
  • the colloidal polymeric medium has polymeric resins of a size similar to or smaller than the additive particles, preferably between 0.00.5 microns and less than 1 millimeter in diameter;
  • the preferred polymeric medium is a polyurethane, an acrylic or a polyester.
  • the difficulty in finding such materials in commerce lies mainly in the high cost of the quantities of metal and / or metal compounds necessary to achieve the desired purpose, particularly in the case of silver, since these substances must be included in the plastic in powder form, in which case the lower limit of efficiency of the metal / metal compound is frequently set in the order of magnitude of 1% by weight of the plastic, however, greater amounts are used to make it more effective.
  • plastic bodies are produced having a content of one or more oligodynamically active metals, such as a substance that is embedded in the plastic in the form of discrete particles, where the amount of active substance it is not more than 1.0% by weight, preferably not more than 0.5% by weight based on the total weight of the plastic body, and the maximum particle size of the active substance is less than 500 nm.
  • oligodynamically active metals such as a substance that is embedded in the plastic in the form of discrete particles
  • Certain polymeric materials are susceptible to a biological attack, especially fungi.
  • biocide products have been developed for incorporation into plastic materials or paints to kill responsible fungi or bacteria or prevent their proliferation. It is also known to incorporate biocidal compounds into plastics to prevent the growth of bacteria or fungi found in food products. Examples of this are described in U.S. Patent No. 5,433,424 and Japanese JP-A-06287403 and JP-A-07071 869 last type of product; and articles such as surfaces for the preparation of food and household containers etc. They are already widely available to consumers.
  • Application O-96/29361 describes a biocidal polymer matrix formed by a support matrix, an antimicrobial agent and a transport agent, wherein the transport agent and the antimicrobial agent are adapted to form at least one hydrogen or salt bond. bridge between them.
  • Application WO 96135205 describes a white piano key cover formed by injecting a homogeneous dispersion of a methyl methacrylate resin and 0.5-2% of an antibacterial agent comprising a sintered ceramic body and a phosphate mixture of calcium and metallic silver.
  • WO 98/21253 describes polymers having antimicrobial properties and copolymers of non-functional vinyl monomers with vinyl co-monomers of specified composition with ionic functionality.
  • Application WO 96/22023 describes the use of 2-alkyl or 2-aralkyl benzisothiazolin-3-one derivatives as fungicides for plastic materials.
  • Application JP-A-08257493 describes the use of a steel plate having a paint layer incorporating inorganic aggregates containing antibacterial compounds, such as a gasket for refrigerators, freezers or heating cabinets.
  • Application EP-A-606762 describes a composition of a styrene polymer, an antibacterial agent and a compound having a specific functional group to produce an antibacterial resin composition.
  • US Patent 4,533,435 describes an antimicrobial paper for surgical packaging supplies that incorporates antibacterial compounds in a vinyl polymer binder. The incorporation of antimicrobial agents is reviewed by D. Smock in Plastics Formulating and Compounding, March / April 1997 p. 16 and Plastics World March 1992 p. 58.
  • the invention in US Patent 6,632,855 (Beverly et al, 2003) is directed towards the improvement of the biocidal activity of acrylic materials containing known biocidal compounds.
  • the selection of any particular biocide for the articles of the invention is made in accordance with the final use of the article and the properties of the biocide, for example, its activity against certain types of microorganisms, toxicity, processability, etc.
  • the biocide is preferably present in a concentration of at least 0.25% by weight, more preferably at least 1% by weight of the polymer, for example 0.5-3% by weight.
  • the material 'plastic of the invention can have many applications. It is useful as a resin for molding or extrusion applications, for example to make doors or panels for interior or exterior cladding applications etc.
  • a sheet material for example, to provide walls, fittings etc. or it may be suitable for training in articles such as bathtubs for example by thermoforming.
  • a primer for example a polymethyl methacrylate resin dissolved in methyl methacrylate and opcxonally with a dispersion of fillers, colors and other functional particles for the manufacture of sinks, countertops, shower trays, etc.
  • the plastic material of the invention can be especially useful as a coating on a substrate.
  • One of the advantages of this form of the invention is that a relatively small amount of the active biocidal plastic can be used to give biocidal function to the surface of a non-biocidal substrate.
  • biocidal compounds include: triclosan, compounds that are based on heavy metals, especially silver, on inorganic carriers such as zeolites, hydroxyapatite, zinc oxide, titanium dioxide, zirconium phosphate, isothiazolones, benzisothiazolin-3-one derivatives, 10, 10 'oxibisfenoxiarsine, isothiazolines, zinc pyrithione, folpet (trichlormethyl thiophthalimide).
  • examples of biocidal compounds that are effective in the invention include those sold under the trademarks DENSIL TM S (2,356 tetrachloro-4 (methyl sulfonyl) pyridine from Zeneca Ltd), SK-NOB-Z.TM.
  • Still another object of the invention provide an additive that is effective when used in a proportion of between 0.01% and 0.5% of the total weight of the plastic formulation depending on the type of polymer and its final application.
  • fungistatic means a substance that prevents or inhibits the cellular reproduction of fungi.
  • the present invention relates to an additive that has fungistatic and bacteriostatic functions, for the preparation of plastic articles, especially for articles that have direct contact with substances be ingested or have direct contact with the skin, for example drinking water tanks, cleaning accessories, as well as utensils and equipment for personal use.
  • the additive is a concentrated pellet-shaped masterbach, prepared from a mixture of zinc oxide and silver concentrates, obtained from a nanometric zinc oxide paste to which. a surface treatment is given to improve its integration properties to the final compound and prevent its degradation, and a nanometric metallic silver paste.
  • the additive can be incorporated directly and homogeneously to the plastic material to which it is added, ensuring the same activity throughout the exposed surface, and being homogeneously integrated in the polymer , the assets (silver and zinc oxide) are not depleted by migration to the surface, which prolongs the useful life of the article in terms of its bacteriostatic and fungistatic characteristics.
  • the article offers an active surface containing said active compounds, so that the use of plastics processing techniques is possible in which the treated polymer occupies the outer layer or surface of the article, in a thickness of between 40 and 50 microns, co-extrusion processes are therefore preferred , co-injection, rotational molding for the manufacture of articles.
  • the homogeneity in the integration of the zinc oxide paste is ensured by a surface treatment of the nanoparticles with bifunctional and hydrolysable 9-carbon silane base additives, for their affinity with a wide variety of inorganic substrates and their integration into a carrier polymer prior to mixing with a concentrate of nanometric metallic silver mixed with a thermoplastic polymer that acts as a vehicle.
  • FIGURES Figure 1 is a block diagram showing the process for the production of the additive subject matter of the invention.
  • Figure 2 is a graph showing the comparative results in microbial reduction for 6 strains of organisms, for different concentrations of ZnO / silver of the additive.
  • Figure 3 is a graph showing the effect of the concentration of the additive on whiteness (L *) in containers with different ZnO / Ag ° content.
  • Figure 4 shows the comparative results of the use of the additive at concentrations 0.0, 0.1 and 0.5%, in different polymer matrices on the microbial activity for three bacterial test strains.
  • Figure 5 shows the comparative results of the use of the additive at concentrations 0.0, 0.1 and 0.5%, in different polymer matrices on the microbial activity for two fungal test strains.
  • Figure 6 shows the effects of the use of the additive in polypropylene copolymer at concentrations of 0.15 and 0.3% before and after aging in the UV chamber.
  • the present invention relates to an additive with bacteriostatic and fungistatic action containing ZnO / Ag ° nanoparticles, in presentation of pellet-shaped masterbach, used in the manufacture of plastic articles based on resins such as polypropylene, polyethylene, polyvinylchloride, polystyrene, high impact polystyrene, polyurethanes, etc. and the procedure for preparing it.
  • resins such as polypropylene, polyethylene, polyvinylchloride, polystyrene, high impact polystyrene, polyurethanes, etc. and the procedure for preparing it.
  • the additive of the invention is directed to the manufacture of polymeric products that require offering an antimicrobial function, for example automotive parts, textile products, household appliances, cleaning, storage and conduction of water, packaging, etc.
  • Figure 1 shows the preferred process for the production of the fungistatic and bacteriostatic additive of the invention, consisting of the following steps:
  • stage 2 with a resin compatible with the application to which the additive will be used, allows said resin to act as a vehicle that is easily integrated into the target resin, and the percentage of the concentrate added to the mixture should be such which allows obtaining an additive in a ZnO: Ag ° ratio desired to incorporate into the final product.
  • stage 2 with a resin compatible with the application to which the additive will be used, allows said resin to act as a vehicle that is easily integrated into the target resin, and the percentage of the concentrate added to the mixture must be such that it allows obtaining an additive in a ZnO: Ag ° ratio desired to incorporate into the final product.
  • Table 1 shows the preferred ranges of the specifications of the ZnO paste to be used in the preparation of the additive of the invention.
  • Table 2 shows the preferred ranges of the specifications for the Ag ° paste to be used in the preparation of the additive of the invention, taking it in a manner For example, the paste obtained from the method described in patent application WO 2008/075933 (Mart ⁇ nez et al, 2008).
  • Example 1 Preparation of raw material concentrates
  • Step 1 Introduce 167 g of 80% silver paste by weight to solids, Step 2. Add 1200 g of virgin LDPE resin to obtain a concentrate of approximately 10% by weight of silver,
  • Step 3 Mix for 8 minutes ensuring the complete integration to the molten polymer
  • Step 4 Homogenize the material obtained by means of a twin screw extruder
  • Step 5 Verify the final concentration, which should be approximately 10% by weight.
  • Step 1 Introduce 600 g of zinc oxide paste superficially treated with silane additives into the equipment chamber, Step 2. Introduce 1200 g of LDPE resin,
  • Step 3 Mix for 15 min to ensure a good integration of the zinc oxide nanoparticle paste with the virgin resin and obtain a 20% zinc concentrate
  • Step 4 Homogenize the material by means of a twin screw extruder.
  • Example 2 Preparation of 5 kg of the ZnO / Ag ° concentrate in 5% LDPE for a ZnO / Ag ratio of 90:10. to. Mix 225 g of the zinc oxide concentrate with 25 g of the silver concentrate, prepared according to example 1, b. For a final application of 1 kg of LDPE, 40 g of the mixture from the previous stage should be added and diluted with 960 g of LDPE for final application in a twin screw extruder in such a way that The additive ZnO / Ag ° is 0.2% by weight of the final mixture.
  • Example 3 Preparation of 5 kg of ZnO / Ag ° concentrate in 1% LDPE for a ZnO / Ag ratio of 90:10. to. Mix 45 g of the zinc oxide concentrate with 5 g of the silver concentrate, prepared according to example 1, b. For a final application of 1 kg at 0.05%, 50 g of concentrate should be added and dilute 950 g of final compound for final application in a twin screw extruder so that the ZnO / Ag ° additive is 0.05%.
  • Table 3 shows, in summary, the comparative results obtained when evaluating the effects on microbial activity (Drop Test) for strains of Staphylococcus aureus, Escherichia coli, and Trichoderma viride, Aspergillus niger, Candida albicans and Mycosphaerella fijensis fungi. in low density polyethylene (LDPE) for application in packaging.
  • Drop Test microbial activity
  • Figure 2 is a graph showing the comparative results of Table 3, for the percentage of microbial reduction in low density polyethylene (LDPE) containers, on the vertical axis, where the first group of columns corresponds to LDPE without additive and the following six groups of columns correspond to the LDPE with 0.0 and 0.05% additive in ZnO ratios: Ag ° from 10:90 to 90:10; the columns correspond, from left to right, to Staphylococcus aureus, Escherichia coli, Trichoderma viride, Aspergillus niger, Candida albicans and Mycosphaerella fijensis. Table 3. Effects of the use of the additive in LDPE on the microbial activity (Drop Test) for two strains of bacteria and four strains of fungus, at a concentration of 0.05% of additive with different ZnO ratios: Ag °
  • Figure 3 is a graph showing these results, it can be seen that the increase in additive content from 0%, for the left columns, 0.025% for the central columns and up to 0.05%, for the columns at right, does not significantly affect the L * value, shown on the vertical axis, related to the whiteness of the compound, is also important. Note that the color is not affected by the presence of silver due to the low dose in which it is used as well as by the change in the ZnO / Ag 0 ratio.
  • Tables 5 and 6 show the comparative results on the microbial activity, of the use of the additive concentrations, in different polymer matrices, tested by the Drop Test method for three bacterial test strains (table 5) and three fungus strains
  • the additive concentrations are such that an efficiency in microbial reduction greater than 90% is achieved.
  • Figures 4 and 5 are the graphic representation of the results shown in Tables 5 and 6, respectively, with the axis : vertical showing the percentage of microbial reduction and the horizontal axis the percentages of additive used for each polymer evaluated, having the Figure 4, groups of three columns corresponding to E. coli, S. choleraesius and S. aureus, from left to right, and in Figure 5 a ⁇ . viride, A. niger and M. fijiensis, respectively, being, easier to appreciate the difference in microbial reduction.
  • Table 7 shows the effects of the use of the additive at different concentrations (0.15 and 0.3%) of RP 340 polypropylene before and after aging in a UV chamber, for E.Coli before aging and for S. Aureus after aging.
  • Figure 6 graphically shows the difference in the count of bacterial colonies, vertical axis, before and after aging (left and right columns respectively in each pair of columns), as well as the effect that the additive has and the variation in concentration.
  • both Organic base compound (triclosan) as the inorganic compound Zn / Ag ° base are highly efficient in inhibiting the growth of microorganisms with values greater than 97% inhibition.
  • the compound added with the organic type antimicrobial begins to decrease its antimicrobial effectiveness as the aging time elapses at 120 h, while the inorganic additive Zn / Ag ° still remains active after 120 h, this because the additive ZnO / Ag ° is not consumed and does not migrate to the surface, but remains anchored to the polymer matrix and acts as the material wears out.
  • the additive of the invention offers ample advantages with respect to other conventionally used additives, in particular, by offering greater efficacy in the control of fungi and bacteria, in addition to maintaining no negative effects on Other properties of the destination material for a person skilled in the art, it will be apparent that the proportions of ZnO / Ag ° in the final resin mixture shown in the examples are not limiting and are only intended to show a comparison of the effect of the presence of the active elements in terms of their bacteriostatic and fungistatic activity and the safety for other properties, so that such proportions can and should be adjusted for said final purpose, however, the process of preparation of the additive is such that it guarantees its dispersibility and It allows a better control of the amount of each asset in the final mixture.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • Zoology (AREA)
  • Pest Control & Pesticides (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

La présente invention concerne un additif de ZnO/Ag° à action bactériostatique et fongistatique dans la fabrication d'articles en plastique à base de résines telles que du polypropylène, du polyéthylène, du polystyrène, du polystyrène choc, des polyuréthanes, etc., en particulier pour la fabrication de produits polymères qui nécessitent une application antimicrobienne, par exemple des produits automoteurs, électrodomestiques, d'entretien, de stockage et de conduction d'eau, d'emballage, etc.. L'additif se prépare par mélange de concentrés d'argent nanométrique et d'oxyde de zinc prétraité, avec une résine polymère compatible avec l'application de destination comme véhicule, et permettant d'obtenir des pastilles de l'additif dans une relation comprise entre 10:90 et 90:10 en poids de ZnO/Ag° : véhicule. L'additif est biologiquement efficace dans une relation dans le produit final comprise entre 0,01 et 0,5 % en poids du mélange polymère et ne présente pas d'effets négatifs au niveau d'autres propriétés du polymère, telle que sa blancheur.
PCT/MX2013/000077 2013-06-25 2013-06-25 Additif bactériostatique et fongistatique en mélange maître pour une application sur des plastiques et procédé d'obtention de celui-ci WO2014209095A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP13888169.3A EP3015422A4 (fr) 2013-06-25 2013-06-25 Additif bactériostatique et fongistatique en mélange maître pour une application sur des plastiques et procédé d'obtention de celui-ci
US14/911,214 US20160227785A1 (en) 2013-06-25 2013-06-25 Bacteriostatic and fungistatic additive in masterbatch for application in plastics, and method for producing same
EP19000317.8A EP3575263B1 (fr) 2013-06-25 2013-06-25 Procédé de production d'un additif bactériostatique et fongistatique dans un mélange maître pour application dans des matières plastiques
CA2926945A CA2926945A1 (fr) 2013-06-25 2013-06-25 Additif bacteriostatique et fongistatique en melange maitre pour une application sur des plastiques et procede d'obtention de celui-ci
PCT/MX2013/000077 WO2014209095A1 (fr) 2013-06-25 2013-06-25 Additif bactériostatique et fongistatique en mélange maître pour une application sur des plastiques et procédé d'obtention de celui-ci
US15/909,374 US11154063B2 (en) 2013-06-25 2018-03-01 Method for producing a bacteriostatic and fungistatic additive in masterbatch for application in plastics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2013/000077 WO2014209095A1 (fr) 2013-06-25 2013-06-25 Additif bactériostatique et fongistatique en mélange maître pour une application sur des plastiques et procédé d'obtention de celui-ci

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/911,214 A-371-Of-International US20160227785A1 (en) 2013-06-25 2013-06-25 Bacteriostatic and fungistatic additive in masterbatch for application in plastics, and method for producing same
US15/909,374 Division US11154063B2 (en) 2013-06-25 2018-03-01 Method for producing a bacteriostatic and fungistatic additive in masterbatch for application in plastics

Publications (2)

Publication Number Publication Date
WO2014209095A1 true WO2014209095A1 (fr) 2014-12-31
WO2014209095A8 WO2014209095A8 (fr) 2015-04-23

Family

ID=52142328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2013/000077 WO2014209095A1 (fr) 2013-06-25 2013-06-25 Additif bactériostatique et fongistatique en mélange maître pour une application sur des plastiques et procédé d'obtention de celui-ci

Country Status (4)

Country Link
US (2) US20160227785A1 (fr)
EP (2) EP3015422A4 (fr)
CA (1) CA2926945A1 (fr)
WO (1) WO2014209095A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105670092A (zh) * 2016-04-24 2016-06-15 张崇英 一种ldpe抗菌塑料及其制备方法
WO2016101082A1 (fr) * 2014-12-24 2016-06-30 Universidad de Concepción Composition d'un mélange-maître utile dans la fabrication de prothèses dentaires et son procédé d'élaboration

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700001597A1 (it) * 2017-01-10 2018-07-10 Viganò Carlo Maria Stefano preparazione semplice ed economica di compositi di poliolefine antibatterici con nano particelle di argento puro
FR3085105B1 (fr) * 2018-08-22 2021-02-12 Commissariat Energie Atomique Nouvel agent antimicrobien a base de materiau polymerique particulaire poreux dope
CN112300526B (zh) * 2020-11-14 2023-03-10 百草边大生物科技(青岛)有限公司 一种应用于冰箱的艾草hips塑料
BE1029103B1 (nl) * 2021-02-12 2022-09-12 Zinkh Nv Tandheelkundig apparaat met antimicrobiële werking
CN113334611B (zh) * 2021-03-26 2022-08-09 上犹京禾纳米科技有限公司 一种纳米铜抗菌抗病毒熔喷布母粒制造方法及应用
PL438302A1 (pl) 2021-06-29 2023-01-02 Michalik Maciej Panamedica Sposób otrzymywania przeciwdrobnoustrojowego kompozytu zawierającego związki cynku i kompozyt przeciwdrobnoustrojowy zawierający związki cynku
CN114350049B (zh) * 2022-01-10 2023-10-31 中国第一汽车股份有限公司 一种汽车用xpe风管及其制备方法
CN114557365B (zh) * 2022-02-25 2024-04-02 肇庆市盛浩新材料科技有限公司 一种复合型纳米氧化锌、纳米浆料及其制备方法与应用
IT202200008435A1 (it) * 2022-04-28 2023-10-28 Lelit S R L Macchina per l’erogazione di una bevanda ad infusione e serbatoio

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054139A (en) 1975-11-20 1977-10-18 Crossley Kent B Oligodynamic catheter
WO1984001721A1 (fr) 1982-11-05 1984-05-10 Baxter Travenol Lab Compositions antimicrobiennes
US4525410A (en) 1982-08-24 1985-06-25 Kanebo, Ltd. Particle-packed fiber article having antibacterial property
US4533435A (en) 1984-06-07 1985-08-06 Microban Products Company Antimicrobial paper
EP0190504A2 (fr) 1984-12-28 1986-08-13 Johnson Matthey Public Limited Company Compositions antimicrobiennes
EP0251783A2 (fr) 1986-07-03 1988-01-07 Johnson Matthey Public Limited Company Composition antimicrobienne
US4741779A (en) 1985-07-19 1988-05-03 Nippon Chemical Industrial Co. Ltd. Additives for resins and their composition
US4775585A (en) 1983-01-21 1988-10-04 Kanebo Ltd./Kanto Chemical Co. Polymer article having an antibacterial property containing zeolite particles therein and the processes for producing same
DE3725728A1 (de) 1987-08-04 1989-02-16 Freudenberg Carl Fa Medizinisches geraet und verfahren zu seiner herstellung
DE3942112A1 (de) 1989-12-20 1991-06-27 Braun Melsungen Ag Medizinische vorrichtung mit einem oligodynamisch wirkenden material
US5180585A (en) 1991-08-09 1993-01-19 E. I. Du Pont De Nemours And Company Antimicrobial compositions, process for preparing the same and use
EP0606762A2 (fr) 1992-12-25 1994-07-20 Japan Synthetic Rubber Co., Ltd. Composition résineuse antibacterielle
JPH06287403A (ja) 1993-04-02 1994-10-11 Denki Kagaku Kogyo Kk 抗菌性樹脂組成物及び冷蔵庫内装用真空成形品
JPH0771869A (ja) 1993-09-03 1995-03-17 Matsushita Refrig Co Ltd 冷蔵庫
US5433424A (en) 1993-02-16 1995-07-18 Daikyo Co., Ltd. Anti-bacterial chopping board
JPH08145392A (ja) 1994-11-21 1996-06-07 Sanyo Electric Co Ltd 送風装置及びこの送風装置を備えた空気調和機
JPH08145394A (ja) 1994-11-25 1996-06-07 Sanyo Electric Co Ltd 送風装置及びこの送風装置を備えた空気調和機
WO1996022023A1 (fr) 1995-01-17 1996-07-25 Zeneca Limited Composition et son utilisation
WO1996029361A1 (fr) 1995-03-17 1996-09-26 Bioshield (Uk) Limited Procede pour preparer des matrices antimicrobiennes
JPH08257493A (ja) 1995-03-22 1996-10-08 Sanyo Electric Co Ltd 抗菌剤入り塗装鋼板および塗料
WO1996035205A1 (fr) 1995-05-01 1996-11-07 Kabushiki Kaisha Kawai Gakki Seisakusho Clavier antibacterien
WO1998021253A1 (fr) 1996-11-14 1998-05-22 Röhm Gmbh Polymeres a proprietes antimicrobiennes
US6544536B1 (en) 1994-02-01 2003-04-08 J. Peter Guggenbichler Bactericidal/fungicidal plastic articles
US6632855B1 (en) 1998-03-17 2003-10-14 Lucite International Uk Limited Biocidal plastic material
WO2008075933A1 (fr) 2006-12-20 2008-06-26 Servicios Industriales Peñoles, S.A. De C.V. Procédé de fabrication d'argent métallique nanométrique, monodispersé et stable et produit obtenu
WO2009061165A1 (fr) * 2007-11-05 2009-05-14 Servicios Industriales Peñoles S.A. de C.V. Additif pour revêtements contenant des nanoparticules métalliques et son procédé de préparation
WO2010053232A1 (fr) * 2008-11-04 2010-05-14 Kiss Products Korea Co.,Ltd. Procédé pour la fabrication d’un ongle artificiel présentant une fonction antimicrobienne et incolore à l’aide de nanoparticules de métal traitées
CN102286208A (zh) * 2011-06-24 2011-12-21 明助实业股份有限公司 抗菌塑料母粒及其制造方法与由其所制得的抗菌切菜板
US8105688B2 (en) 2008-03-28 2012-01-31 Yanping Liu Inorganic solid-phase combined powder, master batch and method for manufacturing the same, fiber and method for manufacturing the same
US8282951B2 (en) 2003-01-13 2012-10-09 EnviroCare Corporation Antimicrobial coatings for treatment of surfaces in a building setting and method of applying same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08287403A (ja) 1995-04-11 1996-11-01 Hitachi Metals Ltd 磁気記録装置
US20050203237A1 (en) * 2004-03-11 2005-09-15 Cornelius Maria Dekkers Josephus H. Biocidal compositions and methods of making thereof
TWI285694B (en) * 2005-12-29 2007-08-21 Taiwan Textile Res Inst Long-term antibiotic and deodorant textile and preparation method thereof
US20080242794A1 (en) * 2007-03-30 2008-10-02 Sandford David W Color stabilized antimicrobial polymer composites
DE102008052837A1 (de) * 2008-10-13 2010-04-15 Aesculap Ag Textiles Implantat mit Kern-Mantel-Aufbau und Verfahren zu seiner Herstellung
JP2010202731A (ja) * 2009-03-02 2010-09-16 Shin-Etsu Chemical Co Ltd 紫外線遮蔽性シリコーンコーティング組成物及び被覆物品
EP2440603A1 (fr) * 2009-06-10 2012-04-18 Holland Colours N. V. Composition concentrée pour polymères
US20120294919A1 (en) * 2011-05-16 2012-11-22 Basf Se Antimicrobial Silver Silica Composite
WO2012167084A1 (fr) * 2011-06-03 2012-12-06 Sabic Innovative Plastics Ip B.V. Articles stérilisés polyétherimide/polyphénylène éther sulfone

Patent Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054139A (en) 1975-11-20 1977-10-18 Crossley Kent B Oligodynamic catheter
US4525410A (en) 1982-08-24 1985-06-25 Kanebo, Ltd. Particle-packed fiber article having antibacterial property
WO1984001721A1 (fr) 1982-11-05 1984-05-10 Baxter Travenol Lab Compositions antimicrobiennes
US4775585A (en) 1983-01-21 1988-10-04 Kanebo Ltd./Kanto Chemical Co. Polymer article having an antibacterial property containing zeolite particles therein and the processes for producing same
US4533435A (en) 1984-06-07 1985-08-06 Microban Products Company Antimicrobial paper
EP0190504A2 (fr) 1984-12-28 1986-08-13 Johnson Matthey Public Limited Company Compositions antimicrobiennes
US4741779A (en) 1985-07-19 1988-05-03 Nippon Chemical Industrial Co. Ltd. Additives for resins and their composition
US4906466A (en) 1986-07-03 1990-03-06 Johnson Matthey Public Limited Company Silver compound antimicrobial compositions
EP0251783A2 (fr) 1986-07-03 1988-01-07 Johnson Matthey Public Limited Company Composition antimicrobienne
DE3725728A1 (de) 1987-08-04 1989-02-16 Freudenberg Carl Fa Medizinisches geraet und verfahren zu seiner herstellung
DE3942112A1 (de) 1989-12-20 1991-06-27 Braun Melsungen Ag Medizinische vorrichtung mit einem oligodynamisch wirkenden material
US5180585A (en) 1991-08-09 1993-01-19 E. I. Du Pont De Nemours And Company Antimicrobial compositions, process for preparing the same and use
EP0606762A2 (fr) 1992-12-25 1994-07-20 Japan Synthetic Rubber Co., Ltd. Composition résineuse antibacterielle
US5433424A (en) 1993-02-16 1995-07-18 Daikyo Co., Ltd. Anti-bacterial chopping board
JPH06287403A (ja) 1993-04-02 1994-10-11 Denki Kagaku Kogyo Kk 抗菌性樹脂組成物及び冷蔵庫内装用真空成形品
JPH0771869A (ja) 1993-09-03 1995-03-17 Matsushita Refrig Co Ltd 冷蔵庫
US6544536B1 (en) 1994-02-01 2003-04-08 J. Peter Guggenbichler Bactericidal/fungicidal plastic articles
JPH08145392A (ja) 1994-11-21 1996-06-07 Sanyo Electric Co Ltd 送風装置及びこの送風装置を備えた空気調和機
JPH08145394A (ja) 1994-11-25 1996-06-07 Sanyo Electric Co Ltd 送風装置及びこの送風装置を備えた空気調和機
WO1996022023A1 (fr) 1995-01-17 1996-07-25 Zeneca Limited Composition et son utilisation
WO1996029361A1 (fr) 1995-03-17 1996-09-26 Bioshield (Uk) Limited Procede pour preparer des matrices antimicrobiennes
JPH08257493A (ja) 1995-03-22 1996-10-08 Sanyo Electric Co Ltd 抗菌剤入り塗装鋼板および塗料
WO1996035205A1 (fr) 1995-05-01 1996-11-07 Kabushiki Kaisha Kawai Gakki Seisakusho Clavier antibacterien
WO1998021253A1 (fr) 1996-11-14 1998-05-22 Röhm Gmbh Polymeres a proprietes antimicrobiennes
US6632855B1 (en) 1998-03-17 2003-10-14 Lucite International Uk Limited Biocidal plastic material
US8282951B2 (en) 2003-01-13 2012-10-09 EnviroCare Corporation Antimicrobial coatings for treatment of surfaces in a building setting and method of applying same
WO2008075933A1 (fr) 2006-12-20 2008-06-26 Servicios Industriales Peñoles, S.A. De C.V. Procédé de fabrication d'argent métallique nanométrique, monodispersé et stable et produit obtenu
WO2009061165A1 (fr) * 2007-11-05 2009-05-14 Servicios Industriales Peñoles S.A. de C.V. Additif pour revêtements contenant des nanoparticules métalliques et son procédé de préparation
US8105688B2 (en) 2008-03-28 2012-01-31 Yanping Liu Inorganic solid-phase combined powder, master batch and method for manufacturing the same, fiber and method for manufacturing the same
WO2010053232A1 (fr) * 2008-11-04 2010-05-14 Kiss Products Korea Co.,Ltd. Procédé pour la fabrication d’un ongle artificiel présentant une fonction antimicrobienne et incolore à l’aide de nanoparticules de métal traitées
CN102286208A (zh) * 2011-06-24 2011-12-21 明助实业股份有限公司 抗菌塑料母粒及其制造方法与由其所制得的抗菌切菜板

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
D. SMOCK, FORMULATING AND COMPOUNDING PLASTICS, March 1997 (1997-03-01), pages 16
DATABASE WPI Derwent World Patents Index; AN 2012-A51916, XP055282737, MINGZO *
EMAMIFAR A. ET AL.: "Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice", INNOVATIVE FOOD SCINCE AND EMERGING TECHNOLOGIES, vol. 11, 2010, pages 742 - 748, XP027450755 *
PLASTICS WORLD MARCH, 1992, pages 58
See also references of EP3015422A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016101082A1 (fr) * 2014-12-24 2016-06-30 Universidad de Concepción Composition d'un mélange-maître utile dans la fabrication de prothèses dentaires et son procédé d'élaboration
CN105670092A (zh) * 2016-04-24 2016-06-15 张崇英 一种ldpe抗菌塑料及其制备方法

Also Published As

Publication number Publication date
US11154063B2 (en) 2021-10-26
EP3575263A1 (fr) 2019-12-04
CA2926945A1 (fr) 2014-12-31
EP3015422A1 (fr) 2016-05-04
US20180249715A1 (en) 2018-09-06
EP3575263B1 (fr) 2024-06-12
WO2014209095A8 (fr) 2015-04-23
EP3015422A4 (fr) 2017-01-04
US20160227785A1 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
WO2014209095A1 (fr) Additif bactériostatique et fongistatique en mélange maître pour une application sur des plastiques et procédé d'obtention de celui-ci
US11547116B2 (en) Metal oxide compounds and infusion into polymer compounds
Honary et al. Preparation, characterization and antibacterial properties of silver-chitosan nanocomposites using different molecular weight grades of chitosan
ES2640928T3 (es) Regeneración de revestimientos antimicrobianos que contienen derivados metálicos tras la exposición a peróxido de hidrógeno acuoso
AU2015315108B2 (en) Antimicrobial and biologically active polymer composites and related methods, materials and devices
US9901094B2 (en) Antibacterial resin composition
Farrokhi et al. Recent advance in antibacterial activity of nanoparticles contained polyurethane
KR20170039725A (ko) 방부 제품, 이의 제조 방법 및 이의 용도
JP5599470B2 (ja) 抗真菌材料
US20030152632A1 (en) Antibacterial solid surface materials containing chitosan-metal complexes
CN107841219A (zh) 一种银离子抗菌内墙水漆及其制备方法
CN106172434A (zh) 一种墙衣杀菌防霉剂及其制备方法
KR101045274B1 (ko) 펠릿형 항균성 마스터배치
JP2007211238A (ja) 水分散体、表面被覆処理剤、木材処理剤、床ワックス、風路表面処理剤、繊維処理剤、および、塗料
Assis et al. Polypropylene modified with Ag-based semiconductors as a potential material against SARS-CoV-2 and other pathogens
Allaker et al. Nanometals as antimicrobials
ES2296291T3 (es) Compuestos bactericidas y los articulos que los contienen.
JP2000044408A (ja) 抗菌剤および抗菌性樹脂組成物ならびに抗菌性成形品
Martínez-Abad Silver-and nanosilver-based plastic technologies
Abedin et al. Antimicrobial capability of inorganic materials as fillers for thermoplastic Elastomer–A state of the art review
JP2002179514A (ja) 抗菌剤,抗菌剤の製造方法及び抗菌性樹脂組成物
WO2018217761A1 (fr) Composition antimicrobienne
US20140097660A1 (en) Antimicrobial furniture and method of making
CN102321275A (zh) 一种塑料用防霉剂及其制备方法
US20200238673A1 (en) Antimicrobial sheet and construction material comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013888169

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14911214

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2926945

Country of ref document: CA