WO2014203858A1 - 鋼管杭及び鋼管杭の施工法 - Google Patents

鋼管杭及び鋼管杭の施工法 Download PDF

Info

Publication number
WO2014203858A1
WO2014203858A1 PCT/JP2014/065896 JP2014065896W WO2014203858A1 WO 2014203858 A1 WO2014203858 A1 WO 2014203858A1 JP 2014065896 W JP2014065896 W JP 2014065896W WO 2014203858 A1 WO2014203858 A1 WO 2014203858A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
pile
pipe pile
injection nozzle
fluidized
Prior art date
Application number
PCT/JP2014/065896
Other languages
English (en)
French (fr)
Inventor
俊介 森安
宮本 孝行
正和 武野
崇亮 水谷
嘉之 森川
喜昭 菊池
壮 平井
鈴木 勇吉
久男 山下
靖英 中元
高橋 健二
横山 博康
Original Assignee
新日鐵住金株式会社
独立行政法人港湾空港技術研究所
調和工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社, 独立行政法人港湾空港技術研究所, 調和工業株式会社 filed Critical 新日鐵住金株式会社
Priority to AU2014282262A priority Critical patent/AU2014282262B2/en
Priority to JP2015522912A priority patent/JP6093923B2/ja
Publication of WO2014203858A1 publication Critical patent/WO2014203858A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/24Prefabricated piles
    • E02D5/28Prefabricated piles made of steel or other metals

Definitions

  • the present invention relates to a steel pipe pile and a construction method of the steel pipe pile.
  • Steel pipe piles can be classified into several types according to the construction method.
  • a hitting pile is a steel pipe pile driven to a support layer by a hitting method.
  • the frictional force (in-pipe frictional force) generated between the inner peripheral surface of the tip of the steel pipe pile and the ground increases in proportion to the pile diameter.
  • the cross-sectional area (closed cross-sectional area) at the tip of the steel pipe pile increases in proportion to the square of the pile diameter. Therefore, as the pile diameter of the steel pipe pile is larger, the in-pipe friction force of the steel pipe pile becomes relatively smaller than the closed cross-sectional area of the steel pipe pile, and a sufficient tip closing effect cannot be obtained. As a result, the tip support force of the steel pipe pile also decreases.
  • FIG. 13A is a diagram schematically showing a state in which a split member 110 composed of a plurality of steel plates orthogonal to each other is attached to the inside of the tip portion of the steel pipe pile 100.
  • the split member 110 is welded to the inner peripheral surface of the tip portion of the steel pipe pile 100.
  • the length of the dividing member 110 in the length direction (axial direction) of the steel pipe pile 100 is set to be twice or more the outer diameter D of the steel pipe pile 100. It is desirable. However, when attaching the split member 110 having a length of twice or more the outer diameter D of the steel pipe pile 100 to the inside of the steel pipe pile 100, an operator needs to enter the steel pipe pile 100 to perform a welding operation. As a result, there arises a problem that the physical burden on the worker increases.
  • the attachment of the dividing member 110 improves the tip closing effect of the steel pipe pile 100, and the resistance generated between the tip portion of the steel pipe pile 100 driven into the ground by the striking method and the ground also increases. As a result, even if the steel pipe pile 100 is hit, there is a case where the steel pipe pile 100 cannot penetrate (cannot be driven in) before the steel pipe pile 100 reaches the target support layer.
  • Nakabori method or cement milk method that can suppress noise and vibration generated when driving steel pipe piles is widely used.
  • the excavation rod is inserted into the steel pipe pile, the ground excavation with the excavation rod and the subsidence of the steel pipe pile are performed at the same time, and the fluidized solidified material ( Cement milk etc. is injected.
  • a solidified bulb is formed so as to cover the tip portion of the steel pipe pile by solidifying the fluidized solid material injected into the support layer.
  • the formation of the root-tightening bulb closes the tip of the steel pipe pile and repairs the ground disturbed by the excavation rod (see, for example, Patent Documents 1 to 5 and Non-Patent Document 1 below).
  • FIG. 13B is a diagram schematically illustrating a state in which the steel pipe pile 100 is driven by the Nakabori method.
  • the ground is excavated by the excavating rod 120 inserted into the steel pipe pile 100 until the tip of the steel pipe pile 100 reaches the support layer.
  • the fluidized solidified material cement milk or the like
  • the tip portion of the steel pipe pile 100 placed by the Nakabori method or the cement milk method is constrained by the friction force generated between the soil cement filled inside the tip portion of the steel pipe pile 100 and the surface of the steel pipe pile 100. .
  • This restraining force exerts a tip closing effect.
  • the tip blocking effect decreases as the outer diameter D of the steel pipe pile 100 increases. Therefore, in order to obtain the restraining force, it is necessary to increase the soil cement length (the length of the root consolidation bulb) inside the tip portion of the steel pipe pile 100. Moreover, since it is necessary to inject
  • Nakabori method or cement milk method that can suppress vibration and noise generated when driving steel pipe piles is increasing.
  • the Nakabori method or the cement milk method requires the insertion of a drilling rod into the steel pipe pile, so a split member for enhancing the tip blocking effect is provided inside the steel pipe pile. Cannot be attached.
  • the present invention has been made in view of the above circumstances, and obtains the maximum support force at the tip by increasing the binding force of the steel pipe pile by the root-solidifying bulb built by solidifying the fluidized solidifying material. It aims at providing the construction method of the steel pipe pile which can be used, and a steel pipe pile.
  • a steel pipe pile includes a pile main body configured of a steel pipe; a split member that is attached to the inside of the distal end portion of the pile main body and divides the cross section of the pile main body into a plurality of parts; An injection nozzle that is attached to at least one of an outer peripheral surface of the tip end portion of the pile body and an inner peripheral surface of the tip end portion of the pile body, and selectively jets water and a fluidized solidifying material; Piping for selectively supplying water and the fluidized solidifying material.
  • the divided member may be a member for building a rooted bulb by solidifying the fluidized solidifying material.
  • the split member is attached to the inside of the tip portion of the pile body so as to be parallel to the axial direction of the pile body.
  • a steel plate may be used.
  • the injection nozzle may be attached to the split member.
  • an injection direction of the injection nozzle is parallel to an axial direction of the pile body, and the pile body It may be directed to the inside of the inner peripheral surface.
  • a plurality of the injection nozzles are provided on at least one of the outer peripheral surface and the inner peripheral surface of the tip portion of the pile body. It is equipped and each injection direction of the said several injection nozzle may cross
  • the outer peripheral surface of the pile body may include a protrusion.
  • the split member and the inner peripheral surface of the pile main body may include a protrusion.
  • the split member may include a through hole.
  • the length of the divided member in the axial direction of the pile body is less than twice the outer diameter of the pile body. May be.
  • the injection nozzle and the pipe may be detachably attached to the pile body.
  • a steel pipe pile construction method is the steel pipe pile according to any one of (1) to (10), wherein the water is injected from the injection nozzle in the support layer.
  • a step of driving up to a maximum excavation depth; a step of pulling up the steel pipe pile to a predetermined pulling depth while injecting the fluidized solidified material from the injection nozzle; and a continuous injection of the fluidized solidified material from the injection nozzle A step of driving the steel pipe pile to a fixing depth in the support layer; and a step of building a root bulb of the steel pipe pile by solidifying the fluidized solidifying material.
  • a steel pipe pile construction method includes a step of driving the steel pipe pile according to (11) above to a maximum excavation depth in the support layer while jetting the water from the jet nozzle.
  • a step of driving to the fixing depth in the medium; a step of separating the injection nozzle and the pipe from the steel pipe pile in a state where the injection of the fluidized solid material from the injection nozzle is once stopped; and the fluidity from the injection nozzle A step of pulling up the injection nozzle and the pipe to the ground while injecting the solidifying material; and a step of building a root-solidifying bulb of the steel pipe pile by solidifying the fluidized solidifying material.
  • a method for constructing a steel pipe pile according to another aspect of the present invention includes a step of driving the steel pipe pile according to (11) to a maximum excavation depth in the support layer while jetting the water from the jet nozzle. A step of pulling up the steel pipe pile to a predetermined lifting depth while injecting the fluidized solidified material from the injection nozzle; and a step of continuously injecting the fluidized solidified material from the injection nozzle while the steel pipe pile is supported by the support layer.
  • a step of driving to the fixing depth in the medium a step of separating at least a part of the pipe from the steel pipe pile in a state where the injection of the fluidized solidification material from the injection nozzle is once stopped; A step of pulling up a part of the separated pipe to the ground while injecting the fluidized solidifying material; and a step of building a rooted bulb of the steel pipe pile by solidifying the fluidized solidifying material.
  • the steel pipe pile is pulled up to the lifting depth.
  • the step of pulling up the steel pipe pile and injecting the steel pipe pile may be performed at least once while the flowable solidifying material or the water is injected from the injection nozzle.
  • the contact area between the root-solidifying bulb built by solidifying the fluidized solidifying material and the inside of the tip of the pile body increases, The binding force of the steel pipe pile against the bulb can be increased. Therefore, according to the said aspect, when the outer diameter of a steel pipe pile (pile main body) is large, even if it shortens the length of the consolidation bulb in the inside of a pile main body, the contact area is ensured, and the steel pipe pile of Since sufficient restraining force can be obtained, the tip support force of the steel pipe pile by the support layer can be obtained to the maximum.
  • FIG. 1 shows typically the construction method of the steel pipe pile 1 which concerns on one Embodiment of this invention.
  • FIG. 2 which shows typically the construction method of the steel pipe pile 1 which concerns on one Embodiment of this invention.
  • FIG. 3 shows typically the construction method of the steel pipe pile 1 which concerns on one Embodiment of this invention.
  • FIG. 1 shows typically the root hardening bulb FPB built by the construction method of steel pipe pile 1 concerning one embodiment of the present invention.
  • FIG. 1 It is a figure which shows typically the modification by which the injection nozzle 4 was mounted
  • FIG. It is a figure which shows typically the modification by which the some through-hole 3a was provided in the division member 3.
  • FIG. The injection nozzle 4 is disposed on the outer peripheral surface 2b of the pile main body 2, and the cross section of the pile main body 2 is divided into three by three divided members 6 (flat steel plates) joined at the center of the pile main body 2. It is a figure which shows a modification typically.
  • FIG. 1 shows typically the modification by which the injection nozzle 4 is arrange
  • FIG. The injection nozzle 4 is arranged on the outer peripheral surface 2b and the inner peripheral surface 2a of the pile body 2, and the cross section of the pile body 2 is 3 by the three divided members 6 (flat steel plates) joined at the center of the pile body 2.
  • the injection nozzle 4 is arrange
  • FIG. It is a figure which shows typically the modification by which the two injection nozzles 4 are arrange
  • FIG. 6B It is a figure which shows the modification by which the one injection nozzle 4 is each arrange
  • FIG. It is the schematic diagram which looked at the pile main body 2 by which the four protrusions 11 (steel plate) were provided in the outer peripheral surface 2b from the axial direction AX. It is the schematic diagram which looked at the pile main body 2 by which the four protrusion 11 (steel plate) was provided in the outer peripheral surface 2b from the direction orthogonal to the axial direction AX.
  • FIG. 1A is a side view of a steel pipe pile 1 according to an embodiment of the present invention.
  • 1B is a cross-sectional view taken along the line AA of the steel pipe pile 1 shown in FIG. 1A.
  • a steel pipe pile 1 according to this embodiment includes a pile body 2, a split member 3, a plurality of (for example, six) injection nozzles 4, and a plurality of (for example, six) pipes. And 5.
  • the pile body 2 is composed of a steel pipe having a constant outer diameter D along the axial direction AX.
  • one edge part to which the division member 3 is attached is called a front-end
  • the dividing member 3 is a single flat steel plate having a rectangular shape.
  • the dividing member 3 is attached inside the tip end portion of the pile body 2 so as to divide the cross section of the pile body 2 into two.
  • the split member 3 is welded to the inner peripheral surface 2a of the pile body 2 so as to be parallel to the axial direction AX of the pile body 2.
  • the length L of the split member 3 in the axial direction AX of the pile body 2 is preferably less than twice the outer diameter D of the pile body 2.
  • the steel plate used as the dividing member 3 has a strength and a thickness sufficient to withstand the placing of the steel pipe pile 1 and the pile tip support force.
  • the method for joining the dividing member 3 to the pile body 2 is not particularly limited. For example, bolt joining can be employed. However, welding is preferable as a method of joining the divided member 3 and the pile body 2.
  • the material of the steel plate used as the dividing member 3 is preferably the same as the material of the pile body 2, but may be a material different from the pile body 2 as long as the material has good weldability.
  • the six injection nozzles 4 are mounted at regular intervals along the circumferential direction of the pile main body 2 on the outer peripheral surface 2 b of the tip end portion of the pile main body 2.
  • Each of the injection nozzles 4 selectively injects water and a fluidized solidified material (for example, cement milk) along the axial direction AX of the pile body 2. That is, the injection direction JD of each injection nozzle 4 is parallel to the axial direction AX and is an outward direction of the axial direction AX.
  • a fluidized solidified material for example, cement milk
  • the six pipes 5 correspond one-to-one with the six injection nozzles 4. That is, one pipe 5 is connected to one injection nozzle 4. Each pipe 5 is arranged on the outer peripheral surface 2 b of the pile body 2 so as to extend along the axial direction AX of the pile body 2. Water and the fluidized solidifying material are selectively supplied to the injection nozzle 4 via the pipe 5. In the present embodiment, each pipe 5 is detachably attached to the pile body 2 in the same manner as the injection nozzle 4. In addition, in the steel pipe pile 1 which concerns on one Embodiment of this invention shown to FIG. 1A and FIG.
  • Each pipe 5 of the steel pipe pile 1 is connected to a fluid supply device (not shown).
  • This fluid supply device has a function of selectively supplying water and a fluidized solidifying material to each pipe 5 in accordance with an operation by an operator. At this time, the fluid supplied from the fluid supply device to each pipe 5 is set to water.
  • vibrations acting in the axial direction AX by the vibro hammer BH are generated while high-pressure water (water jet) WJ is injected from each injection nozzle 4 of the steel pipe pile 1.
  • high-pressure water WJ water jet
  • the ground existing in the placement direction (vertical downward direction) of the steel pipe pile 1 is excavated, and a placement hole DH of the steel pipe pile 1 is formed along the placement direction. Is done.
  • the steel pipe pile 1 sinks along the placement hole DH by its own weight and the weight of the vibro hammer BH.
  • the vibration generating operation of the vibrator hammer BH is resumed, and the fluidized solidified material SM is injected from each injection nozzle 4 of the steel pipe pile 1 while the steel pipe pile 1 is in a predetermined state.
  • the vibro hammer BH is pulled up by the crane until it returns to the lifting depth.
  • the fluidized solid material SM is injected from each injection nozzle 4 and the vibratory hammer BH is lifted by the crane (that is, the steel pipe pile). 1) is stopped.
  • the steel pipe pile 1 starts to settle again along the placement hole DH by its own weight and the weight of the vibro hammer BH.
  • the crane wire is fixed, and the position of the steel pipe pile 1 in the placement hole DH is maintained at the fixing depth.
  • the fixing depth is set at a position shallower than the maximum excavation depth and deeper than the pulling depth in the support layer.
  • the distance between the fixing depth and the lifting depth is preferably longer than the length L of the dividing member 3 in the axial direction AX of the pile body 2.
  • the fluidized solidified material SM is injected from each injection nozzle 4 of the steel pipe pile 1, while the injection nozzle 4 and piping 5 are pulled up to the ground.
  • the injection nozzle 4 and the pipe 5 Prior to pulling up the injection nozzle 4 and the pipe 5, it is necessary to disconnect the injection nozzle 4 and the pipe 5 from the steel pipe pile 1 in a state where the injection of the fluidized solid material SM from the injection nozzle 4 is once stopped.
  • the seventh step in FIG. 2C the example in which the injection nozzle 4 and the pipe 5 are pulled up to the ground has been shown.
  • the pipe 5 is separated from the joint between the injection nozzle 4 and the pipe 5 and only the pipe 5 is pulled to the ground. Also good.
  • at least a part of the pipe 5 is disconnected from the steel pipe pile 1 and disconnected while the fluidized solid material SM is injected from the tip of the disconnected pipe. Only a part of the pipes may be lifted to the ground.
  • vibratory hammer BH is removed from pile body 2, Construction (placement) of the steel pipe pile 1 is completed.
  • the pile main body 2 and the tip of the pile main body 2 are included.
  • the split member 3 (not shown in FIG. 2C) attached to the peripheral surface 2a remains, and the fluidized solidified material SM is also filled in the section between the lifting depth in the placement hole DH and the ground surface GS. That is, among the outer peripheral surface 2b of the pile main body 2, a region included between the ground surface GS and the fixing depth is covered with the fluidized solid material SM, and the internal space of the pile main body 2 (the space divided by the dividing member 3).
  • the fluid solidifying material SM is filled in a space between the pulling depth and the fixing depth.
  • a rooted bulb FPB soil cement solidified body
  • This root-fixing bulb FPB also enters the space between the lifting depth and the fixing depth in the internal space of the pile body 2 (including the space divided by the dividing member 3) without any gap.
  • the inner peripheral surface 2a of the pile body 2 and the surface of the dividing member 3 are in contact with the root-fixing bulb FPB, that is, the soil cement solidified body.
  • the contact area between the root compaction bulb FPB and the inside of the tip end portion of the pile body 2 is increased, so that the binding force of the pile body 2 by the root consolidation bulb FPB is increased.
  • the binding force of the pile body 2 by the root compaction bulb FPB can be increased by increasing the contact area between the root compaction bulb FPB and the inside of the tip of the pile body 2 as described above. . Therefore, according to this embodiment, when the outer diameter D of the pile main body 2 is large, even if the length of the root compaction bulb FPB inside the pile main body 2 is set short, the pile main body 2 by the root compaction bulb FPB A sufficient restraining force can be secured, and as a result, the tip closing effect (tip supporting force) of the pile body 2 can be obtained to the maximum.
  • the binding force of the pile body 2 by the root compaction bulb FPB varies greatly depending on the presence or absence of the division member 3 at the tip of the pile body 2.
  • the effect of improving the tip support force obtained by the above is remarkable.
  • the distance between the fixing depth and the lifting depth is set to be longer than the length L of the dividing member 3 in the axial direction AX of the pile body 2. Therefore, as shown in FIG. 3, the rooted bulb FPB enters the space above the split member 3 in the internal space of the pile body 2.
  • the anchor effect by the root-fixing bulb FPB is also obtained by covering the upper end of the split member 3 with the root-fixing bulb FPB, the tip supporting force of the pile body 2 is further improved. be able to.
  • the length L of the split member 3 integrated with the root-fixing bulb FPB will be described.
  • the split member 3 is integrated with the fluidized solidified material SM, and the root solidified bulb FPB is built together with the tip of the pile body 2.
  • the length L is sufficient if it is integrated with the fluidized solid material SM.
  • the upper limit of the length L of the dividing member 3 depends on the ground state and the outer diameter D of the pile body 2. According to the test results of the inventors of the present application, the length L of the split member 3 is less than twice the outer diameter D of the pile body 2 in order to sufficiently secure the restraining force by the root compaction bulb FPB. preferable.
  • the length L of the divided member 3 is more than twice the outer diameter D of the pile body 2, it is necessary for an operator to enter the inside of the pile body 2 and perform the welding operation of the divided member 3. The work time for installation becomes longer and the physical burden on the worker increases.
  • the lower limit of the length L of the dividing member 3 depends on the state of the ground, the outer diameter D of the pile body 2, and the number of divisions by the dividing member 3. According to the test results of the present inventors, the lower limit of the length L of the dividing member 3 is preferably 0.5 times or more the outer diameter D of the pile body 2.
  • the present invention is not limited to the above-described embodiment, and the following modifications are exemplified.
  • FIG. 4 is a diagram illustrating an example in which the injection nozzle 4 is mounted on both the outer peripheral surface 2b and the inner peripheral surface 2a of the tip end portion of the pile body 2.
  • the injection nozzle 4 is mounted on both the outer peripheral surface 2b and the inner peripheral surface 2a of the tip end portion of the pile body 2.
  • three injection nozzles 4 are mounted along the circumferential direction of the pile main body 2, and on the inner peripheral surface 2 a of the tip end portion of the pile main body 2.
  • the three injection nozzles 4 are mounted along the circumferential direction of the pile body 2.
  • the ground existing in the direction of placing the steel pipe pile 1 can be efficiently excavated. Moreover, since the inner peripheral surface 2b of the pile main body 2 is washed, the adhesion between the fluidized solidified material SM and the inner peripheral surface 2a of the pile main body 2 is enhanced.
  • the division member 3 may be provided with a plurality of through holes 3a.
  • the through hole 3a in the divided member 3 steerel plate
  • the fluidized solidified material SM solidified inside the pile body 2 is integrated with the divided member 3 through the through hole 3a. Is further improved, and the supporting force of the pile body 2 is also improved. It is sufficient that at least one through hole 3 a is provided in the divided member 3.
  • the number of through holes 3a is not limited, it is preferable to appropriately set the number of through holes 3a in consideration of the strength of the divided member 3 and the restraining force of the solidified fluidized solid material SM on the divided member 3.
  • FIG. 6A the injection nozzle 4 is arranged on the outer peripheral surface 2 b of the pile body 2, and three cross sections of the pile body 2 are obtained by three divided members 6 (flat steel plates) joined at the center of the pile body 2.
  • An example of division is shown in FIG.
  • FIG. 6B shows an example in which the injection nozzle 4 is arranged on the outer peripheral surface 2b of the pile body 2 and the cross section of the pile body 2 is divided into three by two arc-shaped division members 7.
  • the surface area of the dividing member 6 (or 7) increases, so that the restraining force of the pile main body 2 by the root compaction bulb FPB increases.
  • the cross section of the pile body 2 is not affected so as not to impair the workability of the steel pipe pile 1 in consideration of the outer diameter D of the pile body 2. It is preferable to set the number of divisions as appropriate.
  • the length of the split member 6 (or 7) in the axial direction AX of the pile body 2 may be shorter than the length L of the split member 3.
  • FIG. 7A the injection nozzle 4 is arranged on the outer peripheral surface 2b and the inner peripheral surface 2a of the pile body 2, and the three split members 6 (flat steel plates) joined at the center of the pile body 2
  • FIG. 7B shows an example in which the injection nozzle 4 is arranged on the outer peripheral surface 2b and the inner peripheral surface 2a of the pile body 2, and the cross section of the pile body 2 is divided into three by two arc-shaped dividing members 7. Show.
  • the injection nozzle 4 since the injection nozzle 4 is arrange
  • the injection nozzle 4 only needs to be attached to at least one of the outer peripheral surface 2b and the inner peripheral surface 2a of the pile body 2, but it increases the casting speed of the steel pipe pile 1 and closes the tip. In order to improve the effect, the injection nozzle 4 may also be attached to the dividing member 3 (or 6, 7).
  • FIG. 8 shows an example in which two injection nozzles 4 are arranged on both surfaces of a split member 3 that is a single flat steel plate as shown in FIG. 1B.
  • FIG. 9A shows an example in which one injection nozzle 4 is disposed on one side of three divided members 6 as shown in FIG. 6A.
  • FIG. 9B shows an example in which one injection nozzle 4 is arranged on one side of two arc-shaped split members 7 as shown in FIG. 6B.
  • the arrangement of the injection nozzle 4 is not limited to the examples shown in FIGS. 8, 9A, and 9B.
  • two injection nozzles 4 may be arranged on one side of the dividing member 3.
  • a total of two or more injection nozzles 4 may be arranged on both surfaces of one split member 6.
  • at least one injection nozzle 4 may be arranged inside the dividing member 7 on one arc.
  • each injection nozzle 4 was parallel with respect to the axial direction AX of the pile main body 2, and was an outward direction of the axial direction AX was illustrated.
  • the injection direction JD of each injection nozzle 4 may be parallel to the axial direction AX of the pile body 2 and directed toward the inside of the inner peripheral surface 2a of the pile body 2.
  • the injection direction JD of each injection nozzle 4 is preferably set in consideration of the ground condition, excavation efficiency, and the like.
  • the injection direction JD of each injection nozzle 4 may mutually differ.
  • each injection direction JD of this intersects with the axial direction AX of the pile body 2.
  • FIG. 10 shows an example in which the injection directions of the two injection nozzles 4 intersect with the axial direction AX of the pile body 2.
  • the injection direction JD of the injection nozzle 4 b arranged in the split member 3 that is a single steel plate is parallel to the axial direction AX of the pile body 2 and is the axial direction of the pile body 2. It goes to point X on AX.
  • the injection directions JD of the two injection nozzles 4 c and 4 d that are disposed on the outer peripheral surface 2 b of the pile main body 2 and face each other intersect at a point X on the axial direction AX of the pile main body 2.
  • At least one protrusion may be provided on the outer peripheral surface 2b of the tip portion of the pile body 2.
  • the contact area between the rooted bulb FPB covering the front end of the pile main body 2 and the surface of the pile main body 2 is expanded.
  • the support force of 2 is improved.
  • at least one protrusion may be provided also in the inner peripheral surface 2a and the division member 3 (or 6, 7) of the front-end
  • FIG. 11A shows a schematic view of a pile body 2 having four protrusions (steel plates) provided on the outer peripheral surface 2b as viewed from the axial direction AX.
  • FIG. 11B shows a schematic view of the pile main body 2 provided with four protrusions (steel plates) on the outer peripheral surface 2b as viewed from a direction orthogonal to the axial direction AX.
  • the four protrusions 11 which are steel plates are welded along the axial direction AX to the outer peripheral surface 2b of the front-end
  • the number of protrusions may be set as appropriate in consideration of the ground condition and excavation efficiency.
  • the shape of the protrusion is not limited to the plate shape, but the shape of the protrusion is preferably a plate shape.
  • FIG. 12 shows an example in which protrusions 12 (reinforcing bars) are provided on the dividing member 3 which is a single flat steel plate. As shown in FIG. 12, a plurality of protrusions 12 that are reinforcing bars are welded to the surface of the split member 3 so as to extend in a direction orthogonal to the axial direction AX and at a constant interval along the axial direction AX. Has been.
  • protrusion may be formed not only by welding but also by bolt joining.
  • the method of constructing the steel pipe pile 1 is a step of driving the steel pipe pile 1 to the maximum excavation depth in the support layer while injecting the high-pressure water WJ from the injection nozzle 4; A step of pulling up the steel pipe pile 1 to a predetermined pulling depth while injecting the fluidized solid material SM from the nozzle; and a step of continuously injecting the fluid solidifying material SM from the injection nozzle 4 to the fixing depth in the support layer A step of driving; a step of separating the injection nozzle 4 and the pipe 5 from the steel pipe pile 1 in a state in which the injection of the fluidized solid material SM from the injection nozzle 4 is once stopped; And a step of pulling up the injection nozzle 4 and the pipe 5 to the ground; and a step of building a rooted bulb of the steel pipe pile (that is, the pile main
  • the injection nozzle 4 and the pipe 5 may not be pulled up to the ground, but the pipe 5 may be separated at the joint between the spray nozzle 4 and the pipe 5 and only the pipe 5 may be pulled up to the ground.
  • the pipe 5 may be separated at the joint between the spray nozzle 4 and the pipe 5 and only the pipe 5 may be pulled up to the ground.
  • at least a part of the pipe 5 is disconnected from the steel pipe pile 1 and disconnected while the fluidized solid material SM is injected from the tip of the disconnected pipe. Only a part of the pipes may be lifted to the ground.
  • the steel pipe pile 1 is lifted to a predetermined level while injecting the fluidized solid material SM from the injection nozzle 4.
  • the step of pulling up the steel pipe pile 1 and injecting the steel pipe pile 1 while spraying the fluidized solid material SM or water from the spray nozzle 4 may be performed at least once. In the case of a hard ground, by repeating this process, the ground can be stirred to sufficiently secure a built-up area of the root bulb FPB. In this step, it is preferable to use water instead of the fluidized solid material SM from the viewpoint of delaying solidification.
  • the injection nozzle 4 and the piping 5 may be fixed to the pile main body 2 with respect to such an embodiment.
  • the injection nozzle 4 and the pipe 5 are not pulled up to the ground but are buried in the ground together with the pile body 2.
  • the construction method of the steel pipe pile 1 in this modified example is a process of driving the steel pipe pile 1 from the injection nozzle 4 to the maximum excavation depth while injecting high-pressure water WJ; A step of pulling up the steel pipe pile 1 to a predetermined pulling depth while injecting the solidified material SM; a step of driving the steel pipe pile 1 to a fixing depth in the support layer while injecting the fluidized solid material SM from the injection nozzle 4; And a step of building a rooted bulb of the steel pipe pile 1 by solidifying the fluidized solid material SM.
  • the construction method of the steel pipe pile 1 in this modified example is the same as the construction method of the above embodiment up to the first to sixth steps shown in FIGS. 2A and 2B, but the seventh step shown in FIG. 2C is omitted.
  • the root bulb is built with all the components of the steel pipe pile 1 remaining in the ground.
  • the conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • Example 1 A pile main body (steel pipe) having an outer diameter D of 1300 mm was prepared, and a steel plate that bisects the transverse section of the pile main body was welded to the tip of the pile main body as a divided member.
  • the length L of the dividing member in the axial direction of the pile body was set to 0.5 times the outer diameter D of the pile body (that is, 650 mm).
  • the steel pipe pile in a present Example is the pile main body which has the outer diameter D of 1300 mm, the division member attached inside the front-end
  • the tip supporting force of the steel pipe pile in this example is about 11000 kN. Also, when drilling the inside of the steel pipe pile and investigating the construction shape of the root-clamping bulb, the pile body that can integrate the required maximum length of the split member (less than twice the outer diameter D of the pile body) It was confirmed that a root-fixing bulb having a length more than twice the outer diameter D was built.
  • the strength of the soil cement of the root-capped bulb that expressed the tip bearing force (11000 kN) was measured from a core taken from the root-capped bulb and measured by a uniaxial compression test. The strength of the soil cement was 15 to 40 MPa. It was.
  • the binding force of the tip blocking effect of the steel pipe pile is improved by the fluidized solidifying material (for example, cement milk) and the divided member, and the support capacity of the steel pipe pile by the support layer is increased.
  • the restraint force varies greatly depending on the presence or absence of a split member at the tip of the steel pipe pile, and therefore the increase in the support force of the support layer according to the present invention is significant.
  • the present invention it is possible to reduce the number of piles to be laid by improving the bearing capacity per single pile, and to obtain economic effects such as reduction in material cost, shortening construction period, and reduction in construction cost. Can do. Furthermore, when a steel pipe pile is driven using an injection nozzle, the driving speed is faster than that of the excavating rod, so that the construction cost can be further reduced and the economic effect can be improved. Therefore, the present invention has high applicability in the civil engineering and construction industries.

Abstract

鋼管杭は、鋼管で構成された杭本体と;前記杭本体の先端部の内部に取付けられ、前記杭本体の横断面を複数に分割する分割部材と;前記杭本体の前記先端部の外周面及び前記杭本体の前記先端部の内周面の少なくとも一方に装着され、水及び流動性固化材を選択的に噴射する噴射ノズルと;前記噴射ノズルに前記水及び前記流動性固化材を選択的に供給する配管と;を備える。

Description

鋼管杭及び鋼管杭の施工法
本発明は、鋼管杭及び鋼管杭の施工法に関する。
本願は、2013年06月19日に、日本に出願された特願2013-128351号に基づき優先権を主張し、その内容をここに援用する。
鋼管杭は、施工法によっていくつかの種類に分類できる。例えば、打撃杭は、打撃工法で支持層まで打ち込まれる鋼管杭である。鋼管杭の先端部の内周面と地盤との間に生じる摩擦力(管内摩擦力)は、杭径に比例して増大する。一方、鋼管杭の先端部の断面積(閉鎖断面積)は、杭径の二乗に比例して増加する。従って、鋼管杭の杭径が大きいほど、鋼管杭の管内摩擦力が、鋼管杭の閉鎖断面積に対して相対的に小さくなり、十分な先端閉塞効果が得られなくなる。その結果、鋼管杭の先端支持力も低下する。
従来では、鋼管杭の先端閉塞効果を向上させるために、鋼管杭の管内摩擦力を増大させる方法として、鋼管杭の先端部の内部に、鋼管杭の横断面を分割する分割部材を取り付けることにより、鋼管杭の先端部の総表面積を大きくする方法が知られている(例えば、下記非特許文献1参照)。
図13Aは、鋼管杭100の先端部の内部に、互いに直交する複数の鋼板で構成された分割部材110が取り付けられた状態を模式的に示す図である。分割部材110は、鋼管杭100の先端部の内周面に溶接されている。
鋼管杭100の先端閉塞効果を確実に向上させるために、鋼管杭100の長さ方向(軸線方向)における分割部材110の長さは、鋼管杭100の外径Dの2倍以上に設定されることが望ましい。しかしながら、鋼管杭100の外径Dの2倍以上の長さを有する分割部材110を鋼管杭100の内部に取付ける場合、作業者が鋼管杭100の内部に入って溶接作業を行う必要がある。その結果、作業者の肉体的な負担が増えるという問題が生じる。
また、分割部材110の取付けによって、鋼管杭100の先端閉塞効果が向上するとともに、打撃工法によって地盤に打ち込まれる鋼管杭100の先端部と地盤との間に生じる抵抗も大きくなる。その結果、鋼管杭100に打撃を加えても、鋼管杭100が目標の支持層に到達する前に、貫入できなくなる(打ち込みが不可能になる)場合がある。
この場合、対策として、鋼管杭100に加えられる打撃力を大きくすることが考えられる。しかしながら、打撃工法を採用する場合、杭打機などの重機が大型化する。このため、設備費用の増加や施工性の低下を招く。また、大きな騒音及び振動が発生するので、市街地のように環境規制の厳しい地域では、単純に打撃力を大きくすることは難しい。従って、大きな杭径(外径D)を有する鋼管杭100に分割部材110を取り付けたとしても、そのような鋼管杭100を打撃工法によって支持層まで打ち込むことは困難になる場合がある。
一方、環境規制の厳しい地域では、鋼管杭の打ち込み時に発生する騒音及び振動を抑制可能な中堀工法又はセメントミルク工法が広く用いられている。これらの工法では、掘削ロッドが鋼管杭の内部に挿入された状態で、掘削ロッドによる地盤の掘削と鋼管杭の沈設とが同時に行われ、掘削ロッドによって乱された支持層に流動性固化材(セメントミルク等)が注入される。支持層に注入された流動性固化材が固化することにより、鋼管杭の先端部を覆うように根固め球根が造成される。根固め球根の造成によって、鋼管杭の先端部が閉塞されるとともに、掘削ロッドによって乱された地盤が修復される(例えば、下記特許文献1~5及び下記非特許文献1参照)。
図13Bは、中堀工法によって鋼管杭100が打ち込まれる様子を模式的に示す図である。鋼管杭100の先端部が支持層に到達するまで、鋼管杭100の内部に挿入された掘削ロッド120によって地盤が掘削される。鋼管杭100の先端部が支持層に到達した後、掘削ロッド120によって乱された支持層と、鋼管杭100の先端部内とに、掘削ロッド120の先端部から流動性固化材(セメントミルク等)が注入されて、根固め球根130が築造される。
中堀工法またはセメントミルク工法を採用することにより、鋼管杭100の打ち込み時に発生する騒音及び振動を抑制することができるので、市街地等の環境規制の厳しい地域で鋼管杭100を打設することが可能である。しかしながら、上記のように、中堀工法及びセメントミルク工法では、掘削ロッド120を鋼管杭100の内部に挿入する必要があるので、先端閉塞効果を高めるための分割部材110を鋼管杭100に取り付けることはできない。
中堀工法またはセメントミルク工法によって打設された鋼管杭100の先端部は、鋼管杭100の先端部の内部に充填されたソイルセメントと鋼管杭100の表面との間に生じる摩擦力によって拘束される。この拘束力が先端閉塞効果を発揮する。
鋼管杭100の外径Dが大きくなるほど、先端閉塞効果が減少する。従って、上記拘束力を得るためには、鋼管杭100の先端部の内部におけるソイルセメント長(根固め球根の長さ)を長くする必要がある。また、根固め球根の伸長に伴い、多量のセメントミルク等を鋼管杭100及び地盤に注入する必要があるので、施工時間が長くなるとともに、施工費が増加する。
日本国特開2009-057817号公報 日本国特開2009-068326号公報 日本国特開2010-209516号公報 日本国特開2012-097511号公報 日本国特開2012-127082号公報

「鋼管杭-その設計と施工-」(平成21年4月1日、改訂12版、鋼管杭・鋼矢板技術協会発行)328~329頁、469~470頁
近年、厳しい環境規制の下では、鋼管杭の打ち込み時に発生する振動及び騒音を抑制可能な中堀工法又はセメントミルク工法の適用が増加している。しかしながら、打撃工法とは異なり、中堀工法又はセメントミルク工法では、掘削ロッドを鋼管杭の内部に挿入する必要があるので、鋼管杭の先端部の内部に、先端閉塞効果を高めるための分割部材を付設することができない。
そのため、中堀工法又はセメントミルク工法を採用する場合、流動性固化材が固化することで築造された根固め球根による鋼管杭の拘束力を向上させるためには、鋼管杭の外径が大きいほど、鋼管杭の先端部内の根固め球根の長さを長くする必要がある。根固め球根の長さが鋼管杭の外径に対して適切でない場合、支持層による鋼管杭の支持力を最大限に得ることができない。そのため、構造物全体の所要の支持力を得るために、鋼管杭の本数を増加する必要があり、施工費の増加、及び施工期間の長期化などの経済的負担が増大する。
本発明は、上記の事情に鑑みてなされたものであり、流動性固化材が固化することで築造された根固め球根による鋼管杭の拘束力を高めることにより、先端支持力を最大限に得ることが可能な鋼管杭及び鋼管杭の施工法を提供することを目的とする。
 本発明は、上記課題を解決して係る目的を達成するために、以下の手段を採用する。
(1)本発明の一態様に係る鋼管杭は、鋼管で構成された杭本体と;前記杭本体の先端部の内部に取付けられ、前記杭本体の横断面を複数に分割する分割部材と;前記杭本体の前記先端部の外周面及び前記杭本体の前記先端部の内周面の少なくとも一方に装着され、水及び流動性固化材を選択的に噴射する噴射ノズルと;前記噴射ノズルに前記水及び前記流動性固化材を選択的に供給する配管と;を備える。
(2)上記(1)に記載の鋼管杭において、前記分割部材が、前記流動性固化材の固化によって根固め球根を築造するための部材であってもよい。
(3)上記(1)または(2)に記載の鋼管杭において、前記分割部材が、前記杭本体の軸線方向に対して平行となるように、前記杭本体の前記先端部の内部に取り付けられた鋼板であってもよい。
(4)上記(1)~(3)のいずれか一つに記載の鋼管杭において、前記噴射ノズルが、前記分割部材にも装着されていてもよい。
(5)上記(1)~(4)のいずれか一つに記載の鋼管杭において、前記噴射ノズルの噴射方向が、前記杭本体の軸線方向に対して平行であって、かつ前記杭本体の内周面の内側に向かうものであってもよい。
(6)上記(1)~(5)のいずれか一つに記載の鋼管杭において、複数の前記噴射ノズルが、前記杭本体の前記先端部の前記外周面及び前記内周面の少なくとも一方に装着されており、複数の前記噴射ノズルのそれぞれの噴射方向が、前記杭本体の軸線方向と交差していてもよい。
(7)上記(1)~(6)のいずれか一つに記載の鋼管杭において、前記杭本体の前記外周面が突起を備えていてもよい。
(8)上記(1)~(7)のいずれか一つに記載の鋼管杭において、前記分割部材及び前記杭本体の前記内周面が突起を備えていてもよい。
(9)上記(1)~(8)のいずれか一つに記載の鋼管杭において、前記分割部材が貫通孔を備えていてもよい。
(10)上記(1)~(9)のいずれか一つに記載の鋼管杭において、前記杭本体の軸線方向における前記分割部材の長さが、前記杭本体の外径の2倍未満であってもよい。
(11)上記(1)~(10)のいずれか一つに記載の鋼管杭において、前記噴射ノズル及び前記配管が、前記杭本体に対して着脱自在に装着されていてもよい。
(12)本発明の一態様に係る鋼管杭の施工法は、上記(1)~(10)のいずれか一つに記載の鋼管杭を、前記噴射ノズルから前記水を噴射しつつ支持層中の最大掘削深度まで打ち込む工程と;前記噴射ノズルから前記流動性固化材を噴射しつつ前記鋼管杭を所定の引上深度まで引き上げる工程と;前記噴射ノズルから前記流動性固化材を引続き噴射しつつ、前記鋼管杭を前記支持層中の定着深度まで打ち込む工程と;前記流動性固化材の固化により、前記鋼管杭の根固め球根を築造する工程と;を有する。
(13)本発明の他の態様に係る鋼管杭の施工法は、上記(11)に記載の鋼管杭を、前記噴射ノズルから前記水を噴射しつつ支持層中の最大掘削深度まで打ち込む工程と;前記噴射ノズルから前記流動性固化材を噴射しつつ前記鋼管杭を所定の引上深度まで引き上げる工程と;前記噴射ノズルから前記流動性固化材を引続き噴射しつつ、前記鋼管杭を前記支持層中の定着深度まで打ち込む工程と;前記噴射ノズルからの前記流動性固化材の噴射を一旦停止した状態で、前記噴射ノズル及び前記配管を前記鋼管杭から切り離す工程と;前記噴射ノズルから前記流動性固化材を噴射しつつ、前記噴射ノズル及び前記配管を地上へ引き上げる工程と;前記流動性固化材の固化により、前記鋼管杭の根固め球根を築造する工程と;を有する。
(14)本発明の他の態様に係る鋼管杭の施工法は、上記(11)に記載の鋼管杭を、前記噴射ノズルから前記水を噴射しつつ支持層中の最大掘削深度まで打ち込む工程と;前記噴射ノズルから前記流動性固化材を噴射しつつ前記鋼管杭を所定の引上深度まで引き上げる工程と;前記噴射ノズルから前記流動性固化材を引続き噴射しつつ、前記鋼管杭を前記支持層中の定着深度まで打ち込む工程と;前記噴射ノズルからの前記流動性固化材の噴射を一旦停止した状態で、前記配管の少なくとも一部を前記鋼管杭から切り離す工程と;切り離した前記配管の先端から前記流動性固化材を噴射しつつ、切り離した前記配管の一部を地上へ引き上げる工程と;前記流動性固化材の固化により、前記鋼管杭の根固め球根を築造する工程と;を有する。
(15)上記(12)~(14)のいずれか一つに記載の鋼管杭の施工法において、前記鋼管杭を前記最大掘削深度まで打ち込む工程の後、前記鋼管杭を前記引上深度まで引き上げる工程の前に、前記噴射ノズルから前記流動性固化材または前記水を噴射しつつ、前記鋼管杭を引き上げ、さらに前記鋼管杭を打ち込む工程を少なくとも1回行ってもよい。
上記態様によれば、流動性固化材が固化することで築造された根固め球根と杭本体の先端部の内部(杭本体の先端部及び分割部材)との接触面積が増加するので、根固め球根に対する鋼管杭の拘束力を高めることができる。
従って、上記態様によれば、鋼管杭(杭本体)の外径が大きい場合に、杭本体の内部における根固め球根の長さを短くしても、接触面積は確保されており、鋼管杭の拘束力を十分に得ることができるので、支持層による鋼管杭の先端支持力を最大限に得ることができる。
本発明の一実施形態に係る鋼管杭1の側面図である。 図1Aに示す鋼管杭1のA-A矢視断面図である。 本発明の一実施形態に係る鋼管杭1の施工法を模式的に示す第1図である。 本発明の一実施形態に係る鋼管杭1の施工法を模式的に示す第2図である。 本発明の一実施形態に係る鋼管杭1の施工法を模式的に示す第3図である。 本発明の一実施形態に係る鋼管杭1の施工法によって築造された根固め球根FPBを模式的に示す図である。 杭本体2の先端部の外周面2b及び内周面2aの両方に噴射ノズル4が装着された変形例を模式的に示す図である。 分割部材3に複数の貫通孔3aが設けられた変形例を模式的に示す図である。 杭本体2の外周面2bに噴射ノズル4が配置され、杭本体2の中心で接合された3枚の分割部材6(平らな鋼板)によって、杭本体2の横断面が3つに分割された変形例を模式的に示す図である。 杭本体2の外周面2bに噴射ノズル4が配置され、2枚の円弧状の分割部材7によって、杭本体2の横断面が3つに分割された変形例を模式的に示す図である。 杭本体2の外周面2b及び内周面2aに噴射ノズル4が配置され、杭本体2の中心で接合された3枚の分割部材6(平らな鋼板)によって、杭本体2の横断面が3つに分割された変形例を模式的に示す図である。 杭本体2の外周面2b及び内周面2aに噴射ノズル4が配置され、2枚の円弧状の分割部材7によって、杭本体2の横断面が3つに分割された変形例を模式的に示す図である。 図1Bに示すような1枚の平らな鋼板である分割部材3の両面にも2つの噴射ノズル4が配置された変形例を模式的に示す図である。 図6Aに示すような3つの分割部材6の片面に、それぞれ1つの噴射ノズル4が配置された変形例を模式的に示す図である。 図6Bに示すような2つの円弧状の分割部材7の片面に、それぞれ1つの噴射ノズル4が配置された変形例を示す図である。 複数の噴射ノズル4の噴射方向が、杭本体2の軸線方向AXと交差する変形例を模式的に示す図である。 外周面2bに4つの突起11(鋼製プレート)が設けられた杭本体2を、軸線方向AXから視た模式図である。 外周面2bに4つの突起11(鋼製プレート)が設けられた杭本体2を、軸線方向AXに直交する方向から視た模式図である。 一枚の平らな鋼板である分割部材3に突起12(鉄筋)が設けられた変形例を模式的に示す図である。 鋼管杭100の先端部の内部に、互いに直交する2枚の鋼板で構成された分割部材110が取り付けられた状態を模式的に示す図である。 中堀工法によって鋼管杭100が地盤に打ち込まれる様子を模式的に示す図である。
以下、本発明の一実施形態について図面を参照しながら詳細に説明する。
図1Aは、本発明の一実施形態に係る鋼管杭1の側面図である。図1Bは、図1Aに示す鋼管杭1のA-A矢視断面図である。図1A及び図1Bに示すように、本実施形態に係る鋼管杭1は、杭本体2と、分割部材3と、複数(例えば6個)の噴射ノズル4と、複数(例えば6本)の配管5とを備えている。
杭本体2は、軸線方向AXに沿って一定の外径Dを有する鋼管で構成されている。以下では、杭本体2の2つの端部のうち、分割部材3が取り付けられる一方の端部を先端部と呼称し、他方の端部を後端部と呼称する。
分割部材3は、矩形形状を有する一枚の平らな鋼板である。この分割部材3は、杭本体2の先端部の内部において、杭本体2の横断面を2つに分割するように取り付けられている。分割部材3は、杭本体2の軸線方向AXに対して平行となるように、杭本体2の内周面2aに溶接されている。後述するように、杭本体2の軸線方向AXにおける分割部材3の長さLは、杭本体2の外径Dの2倍未満が好ましい。
上記のように、分割部材3として、平板状の金属部材を使用することが好ましい。特に、分割部材3として使用される鋼板は、鋼管杭1の打設及び杭先端支持力に耐え得る強度と板厚を有することが好ましい。分割部材3を杭本体2に接合する方法は特に問わない。例えば、ボルト接合を採用することができる。しかし、分割部材3と杭本体2の接合方法は溶接が好ましい。この場合、分割部材3として使用される鋼板の材質は、杭本体2の材質と同一であることが好ましいが、溶接性の良好な材質であれば、杭本体2と異なる材質でもよい。
6個の噴射ノズル4は、杭本体2の先端部の外周面2b上において、杭本体2の周方向に沿って一定間隔で装着されている。噴射ノズル4の各々は、杭本体2の軸線方向AXに沿って、水及び流動性固化材(例えばセメントミルク)を選択的に噴射する。つまり、各噴射ノズル4の噴射方向JDは、軸線方向AXに対して平行であって且つ軸線方向AXの外向きの方向である。各噴射ノズル4から水が噴射される場合、図1Bに示す掘削範囲4aに含まれる地盤が掘削される。本実施形態において、各噴射ノズル4は、杭本体2に対して着脱自在に装着されている。
6本の配管5は、6個の噴射ノズル4と一対一で対応している。つまり、一つの噴射ノズル4に対して一本の配管5が接続されている。各配管5は、杭本体2の外周面2b上において、杭本体2の軸線方向AXに沿って延びるように配置されている。水及び流動性固化材は、配管5を介して噴射ノズル4へ選択的に供給される。本実施形態において、各配管5は、噴射ノズル4と同じく、杭本体2に対して着脱自在に装着されている。なお、図1A及び図1Bに示す本発明の一実施形態に係る鋼管杭1では、配管5と噴射ノズル4が一対一で対応した例を示したが、これに限らず、複数の噴射ノズル4に対して一本の配管から分岐した配管が接続されていてもよく、一つの噴射ノズル4に対して複数の配管が接続されていてもよい。
次に、上記のように構成された本実施形態に係る鋼管杭1の施工法について説明する。
まず、図2A中の第1工程に示すように、鋼管杭1の先端部(つまり杭本体2の先端部)が地表GSに接触した状態で、鋼管杭1が地表GSに立設された後、鋼管杭1の後端部(つまり杭本体2の後端部)にバイブロハンマBHが装着される。バイブロハンマBHは、不図示のクレーンによって吊り下げられている。
また、鋼管杭1の各配管5は、不図示の流体供給装置に接続されている。この流体供給装置は、作業者による操作に応じて、水及び流動性固化材を選択的に各配管5に供給する機能を有している。この時点では、流体供給装置から各配管5へ供給される流体は水に設定されている。
続いて、図2A中の第2工程に示すように、鋼管杭1の各噴射ノズル4から高圧水(ウオータージェット)WJが噴射されながら、バイブロハンマBHによって軸線方向AXに作用する振動が鋼管杭1に加えられる。高圧水WJの噴射及び鋼管杭1の振動によって、鋼管杭1の打設方向(鉛直下向きの方向)に存在する地盤が掘削され、打設方向に沿って鋼管杭1の打設穴DHが形成される。鋼管杭1は、自重とバイブロハンマBHの重量とによって打設穴DHに沿って沈降する。
続いて、図2A中の第3工程に示すように、鋼管杭1の先端部が支持層内の最大掘削深度まで到達すると、各噴射ノズル4による高圧水WJの噴射が停止されるとともに、バイブロハンマBHの振動発生動作も停止される。これにより、鋼管杭1は、最大掘削深度で停止する。このように、鋼管杭1が最大掘削深度で停止した状態で、流体供給装置から各配管5へ供給される流体が、水から流動性固化材(例えばセメントミルク)に切替えられる。
続いて、図2B中の第4工程に示すように、バイブロハンマBHの振動発生動作が再開され、鋼管杭1の各噴射ノズル4から流動性固化材SMが噴射されながら、鋼管杭1が所定の引上深度に戻るまで、バイブロハンマBHがクレーンによって引き上げられる。このように、鋼管杭1が最大掘削深度から引上深度まで引き上げられると、打設穴DHにおける最大掘削深度と引上深度との間の区間は、流動性固化材SMによって満たされる。
図2B中の第5工程に示すように、鋼管杭1が引上深度に到達した後も、各噴射ノズル4から流動性固化材SMを噴射しつつ、クレーンによるバイブロハンマBHの引き上げ(つまり鋼管杭1の引き上げ)が停止される。鋼管杭1は、自重とバイブロハンマBHの重量とによって打設穴DHに沿って再び沈降を開始する。そして、図2B中の第6工程に示すように、鋼管杭1が定着深度に到達すると、クレーンのワイヤが固定されて、打設穴DHにおける鋼管杭1の位置が定着深度で維持される。
なお、定着深度は、支持層内において、最大掘削深度よりも浅く、且つ引上深度よりも深い位置に設定されている。また、定着深度と引上深度との間の距離は、杭本体2の軸線方向AXにおける分割部材3の長さLよりも長いことが好ましい。
そして、図2C中の第7工程に示すように、鋼管杭1の位置が定着深度で維持された状態で、鋼管杭1の各噴射ノズル4から流動性固化材SMが噴射されながら、噴射ノズル4及び配管5が地上へ引き上げられる。噴射ノズル4及び配管5の引き上げに先立ち、噴射ノズル4から流動性固化材SMの噴射を一旦停止した状態で、噴射ノズル4及び配管5を鋼管杭1から切り離す必要がある。図2C中の第7工程では、噴射ノズル4及び配管5を地上へ引き上げる例を示したが、噴射ノズル4と配管5との接合部から配管5を分離し、配管5のみを地上へ引き上げてもよい。または、噴射ノズル4から流動性固化材SMの噴射を一旦停止した状態で、配管5の少なくとも一部を鋼管杭1から切り離し、切り離した配管の先端から流動性固化材SMを噴射しつつ、切り離した配管の一部のみを地上へ引き上げてもよい。
そして、図2C中の第8工程に示すように、噴射ノズル4及び配管5の引き上げ(回収)が完了し、流動性固化材SMが固化した後、バイブロハンマBHが杭本体2から外されて、鋼管杭1の施工(打設)が完了する。
図2Cに示すように、噴射ノズル4及び配管5の回収が完了した後、打設穴DH内には、鋼管杭1の構成要素のうち、杭本体2と、杭本体2の先端部の内周面2aに取付けられた分割部材3(図2Cでは図示省略)とが残り、打設穴DHにおける引上深度と地表GSとの間の区間にも、流動性固化材SMが充填される。
すなわち、杭本体2の外周面2bのうち、地表GSと定着深度との間に含まれる領域が流動性固化材SMによって覆われるとともに、杭本体2の内部空間(分割部材3によって分割された空間も含む)のうち、引上深度と定着深度との間の空間に流動性固化材SMが充填される。
このような状態で流動性固化材SMが固化すると、図3に示すように、杭本体2の先端部を覆うように、根固め球根FPB(ソイルセメント固化体)が築造される。この根固め球根FPBは、杭本体2の内部空間(分割部材3によって分割された空間も含む)のうち、引上深度と定着深度との間の空間にも隙間なく入り込んでいる。
上記のような根固め球根FPBが築造されることにより、杭本体2の内周面2a及び分割部材3の表面が、根固め球根FPB、つまりソイルセメント固化体と接触する。その結果、根固め球根FPBと杭本体2の先端部内部との接触面積が大きくなるので、根固め球根FPBによる杭本体2の拘束力が高まる。
既に述べたように、従来技術では、鋼管杭の外径が大きい場合、根固め球根による鋼管杭の拘束力を高めて、十分な先端閉塞効果(先端支持力)を得るためには、鋼管杭の内部における根固め球根の長さ(ソイルセメント固化体の長さ)を長くする必要がある。
しかしながら、本実施形態によれば、上記のように、根固め球根FPBと杭本体2の先端部内部との接触面積の増加によって、根固め球根FPBによる杭本体2の拘束力を高めることができる。従って、本実施形態によれば、杭本体2の外径Dが大きい場合に、杭本体2の内部における根固め球根FPBの長さを短く設定したとしても、根固め球根FPBによる杭本体2の拘束力を十分に確保することができ、その結果、杭本体2の先端閉塞効果(先端支持力)を最大限に得ることができる。
特に、杭本体2の外径Dが1000mmを越える場合、杭本体2の先端部における分割部材3の有無によって、根固め球根FPBによる杭本体2の拘束力は大きく異なるので、分割部材3の取付けによって得られる先端支持力の向上効果は顕著である。
また、本実施形態では、定着深度と引上深度との間の距離を、杭本体2の軸線方向AXにおける分割部材3の長さLよりも長く設定している。そのため、図3に示すように、杭本体2の内部空間のうち、分割部材3の上方の空間にまで根固め球根FPBが入り込んでいる。このように、本実施形態によれば、根固め球根FPBによって分割部材3の上端が覆われることにより、根固め球根FPBによるアンカー効果も得られるので、杭本体2の先端支持力をより向上させることができる。
ここで、根固め球根FPBと一体化する分割部材3の長さLについて説明する。既に述べたように、打撃工法によって打設される鋼管杭に分割部材を取り付ける場合、分割部材の長さを鋼管杭の外径の2倍以上に設定することが好ましい。しかしながら、本実施形態では、図3に示すように、分割部材3は、流動性固化材SMと一体化して、杭本体2の先端部とともに根固め球根FPBを築造するので、分割部材3の長さLは、流動性固化材SMと一体化する長さであれば十分である。
分割部材3の長さLの上限は、地盤の状態及び杭本体2の外径Dに依存する。本願発明者らの試験結果によれば、根固め球根FPBによる拘束力を十分に確保するために、分割部材3の長さLは、杭本体2の外径Dの2倍未満であることが好ましい。分割部材3の長さLが杭本体2の外径Dの2倍以上の場合、作業者が杭本体2の内部に入って分割部材3の溶接作業を行う必要があるので、分割部材3の取付けのための作業時間が長くなり、作業者の肉体的な負担が増える。
一方、分割部材3の長さLが短すぎると、分割部材3が流動性固化材SMと一体化しても、堅固な根固め球根FPBを築造するのが難しく、また、杭本体2と分割部材3との溶接部の品質及び強度を確保するのが難しい。分割部材3の長さLの下限は、地盤の状態、杭本体2の外径D、及び分割部材3による分割数に依存する。本願発明者らの試験結果によれば、分割部材3の長さLの下限は、杭本体2の外径Dの0.5倍以上が好ましい。
本発明は、上記実施形態に限定されず、以下のような変形例が挙げられる。
(1)上記実施形態では、噴射ノズル4が、杭本体2の先端部の外周面2bのみに装着されている場合を例示した。しかしながら、噴射ノズル4は、杭本体2の先端部の外周面2b、及び杭本体2の先端部の内周面2aの少なくとも一方に装着されていればよい。
図4は、杭本体2の先端部の外周面2b及び内周面2aの両方に噴射ノズル4が装着された例を示す図である。図4に示す例では、杭本体2の先端部の外周面2b上において、杭本体2の周方向に沿って3つの噴射ノズル4が装着され、杭本体2の先端部の内周面2a上において、杭本体2の周方向に沿って3つの噴射ノズル4が装着されている。
杭本体2の内周面2aに装着された噴射ノズル4から高圧水を噴射することにより、鋼管杭1の打設方向に存在する地盤を効率的に掘削することができる。また、杭本体2の内周面2bが洗浄されるので、流動性固化材SMと杭本体2の内周面2aとの付着性が高まる。
なお、鋼管杭1の先端部(つまり杭本体2の先端部)を優先的に閉塞させる場合、分割部材3により杭本体2の先端部の断面積が小さく分割されているので、杭本体2の内周面2aに配置された噴射ノズル4を引き上げつつ、その噴射ノズル4から流動性固化材SMを噴射することにより、杭本体2の内周面2a、分割部材3の表面及び流動性固化材SMを一体化する根固め球根FPBを築造することが可能となる。
(2)上記実施形態では、噴射ノズル4の個数が6個の場合を例示したが、噴射ノズル4の個数、位置、及び配置間隔等は、地盤の状態及び杭本体2の外径Dなどに応じて適宜設定すればよい。
(3)図5に示すように、分割部材3に複数の貫通孔3aが設けられていてもよい。分割部材3(鋼板)に貫通孔3aを設けることにより、杭本体2の内部で固化した流動性固化材SMが貫通孔3aを介して分割部材3と一体となるので、分割部材3に対する拘束力がより向上し、杭本体2の支持力も向上する。貫通孔3aは、分割部材3に、少なくとも1つ以上設けられていればよい。貫通孔3aの数に制限はないが、分割部材3の強度、固化した流動性固化材SMの分割部材3に対する拘束力を考慮して、貫通孔3aの数を適宜設定することが好ましい。
(4)上記実施形態では、1枚の平らな鋼板を分割部材3として用いて、杭本体2の横断面を2つに分割する場合を例示したが、杭本体1の横断面の分割数、及び分割部材3の配置は、地盤の状態や杭本体2の外径Dに応じて適宜設定すればよい。
図6Aは、杭本体2の外周面2bに噴射ノズル4が配置され、杭本体2の中心で接合された3枚の分割部材6(平らな鋼板)によって、杭本体2の横断面が3つに分割された例を示す。図6Bは、杭本体2の外周面2bに噴射ノズル4が配置され、2枚の円弧状の分割部材7によって、杭本体2の横断面が3つに分割された例を示す。
杭本体2の横断面の分割数が増すと、分割部材6(または7)の表面積が増えるので、根固め球根FPBによる杭本体2の拘束力は増大する。しかしながら、分割部材6(または7)の取付け作業が煩雑になるので、杭本体2の外径Dを考慮したうえで、鋼管杭1の施工性を阻害しないように、杭本体2の横断面の分割数を適宜設定することが好ましい。
また、杭本体2の横断面の分割数が増すと、分割部材6(または7)の表面積が増えるので、根固め球根FPBによる杭本体2の拘束力は増大する。そのため、杭本体2の軸線方向AXにおける分割部材6(または7)の長さは、分割部材3の長さLより短くてもよい。
図7Aは、杭本体2の外周面2b及び内周面2aに噴射ノズル4が配置され、杭本体2の中心で接合された3枚の分割部材6(平らな鋼板)によって、杭本体2の横断面が3つに分割された例を示す。図7Bは、杭本体2の外周面2b及び内周面2aに噴射ノズル4が配置され、2枚の円弧状の分割部材7によって、杭本体2の横断面が3つに分割された例を示す。
図7A及び図7Bに示す例では、杭本体2の外周面2b及び内周面2aに噴射ノズル4が配置されているので、内周面2aに配置された噴射ノズル4により、杭本体2の先端部における分割部分に流動性固化材SMを確実に噴射することができ、先端閉塞効果が著しく向上する。
(5)上記のように、噴射ノズル4は杭本体2の外周面2b及び内周面2aの少なくとも一方に装着されていればよいが、鋼管杭1の打設速度を速め、また、先端閉塞効果を向上するためには、噴射ノズル4を、分割部材3(または、6、7)にも装着してもよい。
図8は、図1Bに示すような1枚の平らな鋼板である分割部材3の両面にも2つの噴射ノズル4が配置された例を示す。図9Aは、図6Aに示すような3つの分割部材6の片面に、それぞれ1つの噴射ノズル4が配置された例を示す。図9Bは、図6Bに示すような2つの円弧状の分割部材7の片面に、それぞれ1つの噴射ノズル4が配置された例を示す。
噴射ノズル4の配置については、図8、図9A及び図9Bに示す例に限定されない。例えば、図8に示す例において、分割部材3の片面に2つの噴射ノズル4が配置されてもよい。図9Aに示す例において、例えば、1つの分割部材6の両面に、合計2つ以上の噴射ノズル4が配置されてもよい。図9Bに示す例において、1つの円弧上の分割部材7の内側に、少なくとも1つの噴射ノズル4が配置されてもよい。

(6)上記実施形態では、各噴射ノズル4の噴射方向JDが、杭本体2の軸線方向AXに対して平行であって且つ軸線方向AXの外向きの方向である場合を例示した。しかしながら、各噴射ノズル4の噴射方向JDは、杭本体2の軸線方向AXに対して平行であって、かつ杭本体2の内周面2aの内側に向かうものであってもよい。各噴射ノズル4の噴射方向JDは、地盤の状態及び掘削効率等を考慮して設定することが好ましい。なお、各噴射ノズル4の噴射方向JDは、互いに異なっていてもよい。
特に、硬質地盤に鋼管杭1を打設する場合は、鋼管杭1の中心部の地盤が掘削できない可能性もある。従って、地盤を容易に掘削するために、複数の噴射ノズル4が、杭本体2の先端部の外周面2b及び内周面2aの少なくとも一方に装着されている場合には、複数の噴射ノズル4のそれぞれの噴射方向JDが、杭本体2の軸線方向AXと交差することが好ましい。
図10は、2つの噴射ノズル4の噴射方向が、杭本体2の軸線方向AXと交差する例を示す。図10に示す例において、一枚の鋼板である分割部材3に配置された噴射ノズル4bの噴射方向JDは、杭本体2の軸線方向AXに対して平行であって、杭本体2の軸線方向AX上の点Xに向かうものである。一方、杭本体2の外周面2bに配置された、互いに対向する2つの噴射ノズル4cと4dの噴射方向JDは、杭本体2の軸線方向AX上の点Xで交差している。
(7)杭本体2の先端部の外周面2bに、少なくとも1つの突起が設けられていてもよい。杭本体2の先端部の外周面2bに突起が設けられている場合、杭本体2の先端部を覆う根固め球根FPBと杭本体2の表面との接触面積が拡大するので、地盤による杭本体2の支持力が向上する。また、杭本体2の先端部の内周面2a及び分割部材3(または6,7)にも、少なくとも1つの突起が設けられていてもよい。
図11Aは、外周面2bに4つの突起(鋼製プレート)が設けられた杭本体2を、軸線方向AXから視た模式図を示す。図11Bは、外周面2bに4つの突起(鋼製プレート)が設けられた杭本体2を、軸線方向AXに直交する方向から視た模式図を示す。図11A及び図11Bにおいて、根固め球根FPBに埋没する杭本体2の先端部の外周面2bに、鋼製プレートである4つの突起11が、軸線方向AXに沿って溶接されている。
なお、突起の数は、地盤の状態及び掘削効率等を考慮して、適宜設定すればよい。また、突起の形状はプレート形状に限定されないが、突起の形状は、プレート形状が好ましい。

 図12は、一枚の平らな鋼板である分割部材3に突起12(鉄筋)が設けられた例を示す。図12に示すように、分割部材3の表面に、鉄筋である複数の突起12が、軸線方向AXに対して直交する方向に延びるように、且つ軸線方向AXに沿って一定の間隔で、溶接されている。 
なお、分割部材3(または、6、7)に設けられる突起の数は、地盤の状態及び掘削効率等を考慮して、適宜設定すればよい。また、分割部材3(または、6、7)に設けられる突起として、鉄筋の代わりに、リブ鋼板が設けられてもよい。また、突起は、溶接に限らずボルト接合などで形成してもよい。
(8)上記実施形態では、噴射ノズル4及び配管5が、着脱自在に杭本体2に装着されている場合を例示した。この場合、上記実施形態で説明したように、鋼管杭1の施工法は、鋼管杭1を噴射ノズル4から高圧水WJを噴射しつつ支持層中の最大掘削深度まで打ち込む工程と;噴射ノズル4から流動性固化材SMを噴射しつつ鋼管杭1を所定の引上深度まで引き上げる工程と;噴射ノズル4から流動性固化材SMを引続き噴射しつつ、鋼管杭1を支持層中の定着深度まで打ち込む工程と;噴射ノズル4から流動性固化材SMの噴射を一旦停止した状態で、噴射ノズル4及び配管5を鋼管杭1から切り離す工程と;噴射ノズル4から流動性固化材SMを噴射しつつ、噴射ノズル4及び配管5を地上へ引き上げる工程と;流動性固化材SMの固化により、鋼管杭(つまり地中に残った杭本体2)の根固め球根を築造する工程とを有する。
このような上記実施形態に対し、噴射ノズル4及び配管5を地上に引き上げるのではなく、噴射ノズル4と配管5との接合部で配管5を切り離して配管5のみを地上に引き上げてもよい。または、噴射ノズル4から流動性固化材SMの噴射を一旦停止した状態で、配管5の少なくとも一部を鋼管杭1から切り離し、切り離した配管の先端から流動性固化材SMを噴射しつつ、切り離した配管の一部のみを地上へ引き上げてもよい。
 また、鋼管杭1を、噴射ノズル4から水を噴射しつつ支持層中の最大掘削深度まで打ち込む工程の後、噴射ノズル4から流動性固化材SMを噴射しつつ鋼管杭1を所定の引上深度まで引き上げる工程の前に、噴射ノズル4から流動性固化材SMまたは水を噴射しつつ、鋼管杭1を引き上げ、さらに鋼管杭1を打ち込む工程を少なくとも1回行ってもよい。硬い地盤の場合は、この工程を繰り返すことで地盤を攪拌して根固め球根FPBの築造領域を十分に確保することができる。この工程では、固化を遅らせる観点から、流動性固化材SMではなく水を用いることが好ましい。
さらに、このような上記実施形態に対して、噴射ノズル4及び配管5が杭本体2に固定されていてもよい。この変形例における鋼管杭1の施工法では、噴射ノズル4及び配管5は地上に引き上げられずに、杭本体2とともに地中に埋設される。
具体的には、この変形例における鋼管杭1の施工法は、鋼管杭1を噴射ノズル4から高圧水WJを噴射しつつ支持層中の最大掘削深度まで打ち込む工程と;噴射ノズル4から流動性固化材SMを噴射しつつ鋼管杭1を所定の引上深度まで引き上げる工程と;噴射ノズル4から流動性固化材SMを噴射しつつ、鋼管杭1を支持層中の定着深度まで打ち込む工程と;流動性固化材SMの固化により、鋼管杭1の根固め球根を築造する工程とを有する。
つまり、この変形例における鋼管杭1の施工法では、図2A及び図2Bに示す第1~第6工程まで上記実施形態の施工法と同じであるが、図2Cに示す第7工程が省略されて、地中に鋼管杭1の構成要素の全てが残った状態で、根固め球根が築造されることになる。 
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 (実施例1) 1300mmの外径Dを有する杭本体(鋼管)を用意し、その杭本体の先端部に、杭本体の横断面を二分割する鋼板を、分割部材として溶接した。杭本体の軸線方向における分割部材の長さLは、杭本体の外径Dの0.5倍(つまり650mm)に設定された。
6個の噴射ノズルが杭本体の外周面に装着され、4個の噴射ノズルが分割部材に装着された。これら10個の噴射ノズルに水及び流動性固化材を選択的に供給する10本の配管も杭本体に装着された。外周面に装着される噴射ノズルの配管は杭本体の外周面に沿って延長され、噴射ノズルに接続された。分割部材に装着される噴射ノズルの配管は杭本体の内周面及び分割部材に沿って延長されるとともに、杭本体と分割部材の接合部で屈折され、噴射ノズルに接続された。このように、本実施例における鋼管杭は、1300mmの外径Dを有する杭本体と、杭本体の先端部の内部に取付けられた分割部材と、10個の噴射ノズルと、10本の配管とによって構成された。

 10個の噴射ノズルから水を噴射して地盤を掘削しつつ、本実施例における鋼管杭を打設した。鋼管杭が、支持層に到達した後、噴射ノズルから噴射される流体を水から流動性固化材(セメントミルク)に切り替えて、根固め球根を築造した。 
 本願発明者らは、本実施例における鋼管杭の先端支持力が11000kN程度であることを確認した。また、鋼管杭の内部をボーリングで掘削し、根固め球根の築造形状を調査したところ、分割部材の必要最大長さ(杭本体の外径Dの2倍未満)を一体化可能な、杭本体の外径Dの2倍以上の長さを有する根固め球根が築造されていたことを確認できた。
 上記先端支持力(11000kN)を発現した上記根固め球根のソイルセメントの強度を、該根固め球根からコアーを採取して、一軸圧縮試験で測定したところ、ソイルセメントの強度は15~40MPaであった。
 ここで、上記先端支持力(11000kN)を、杭本体の横断面積(1.3m=(1.3m/2)×π)で割ると、ソイルセメントの必要強度として8.3MPaが得られる。
 本実施例における根固め球根の強度は15~40MPaであるから、必要強度8.3MPaを大幅に上回っている。
 したがって、杭本体の先端部に分割部材及び噴射ノズルが取り付けられた本実施例における鋼管杭を採用することにより、従来以上に強固な根固め球根を築造できることを確認することができた。
 前述したように、本発明によれば、流動性固化材(例えばセメントミルク)と分割部材により鋼管杭の先端閉塞効果の拘束力が向上し、支持層による鋼管杭の支持力が増大する。特に、外径Dが1000mmを越える鋼管杭の場合、鋼管杭の先端部における分割部材の有無によって、上記拘束力が大きく異なるので、本発明による支持層の支持力の増大は顕著である。
 したがって、本発明によれば、単杭当りの支持力の向上で、打設する杭数を削減でき、材料費の減少、工期の短縮、及び、施工費の低減等の経済的効果を得ることができる。さらに、噴射ノズルを使用して鋼管杭を打設する場合、掘削ロッドに比べ打設速度が速いので、より施工費を低減でき、経済的効果の向上に寄与する。よって、本発明は、土木産業及び建築産業において利用可能性が高いものである。
1  鋼管杭
 2  杭本体
 3、6、7  分割部材
 4  噴射ノズル
 5  配管
 3a  貫通孔
 4a  掘削範囲
 11、12  突起
 WJ  高圧水
 SM  流動性固化材
 FPB  根固め球根
 D  杭本体の外径 
AX  杭本体の軸線方向
 JD  噴射ノズルの噴射方向
 L  分割部材の長さ
 DH  打設穴
 BH  バイブロハンマ

Claims (15)

  1. 鋼管で構成された杭本体と;
    前記杭本体の先端部の内部に取付けられ、前記杭本体の横断面を複数に分割する分割部材と;
    前記杭本体の前記先端部の外周面及び前記杭本体の前記先端部の内周面の少なくとも一方に装着され、水及び流動性固化材を選択的に噴射する噴射ノズルと;
    前記噴射ノズルに前記水及び前記流動性固化材を選択的に供給する配管と;
    を備えることを特徴とする鋼管杭。
  2. 前記分割部材は、前記流動性固化材の固化によって根固め球根を築造するための部材であることを特徴とする請求項1に記載の鋼管杭。
  3.  前記分割部材は、前記杭本体の軸線方向に対して平行となるように、前記杭本体の前記先端部の内部に取り付けられた鋼板であることを特徴とする請求項1または2に記載の鋼管杭。
  4.  前記噴射ノズルは、前記分割部材にも装着されていることを特徴とする請求項1~3のいずれか一項に記載の鋼管杭。
  5.  前記噴射ノズルの噴射方向が、前記杭本体の軸線方向に対して平行であって、かつ前記杭本体の内周面の内側に向かうものであることを特徴とする請求項1~4のいずれか1項に記載の鋼管杭。
  6.  複数の前記噴射ノズルが、前記杭本体の前記先端部の前記外周面及び前記内周面の少なくとも一方に装着されており、
     複数の前記噴射ノズルのそれぞれの噴射方向が、前記杭本体の軸線方向と交差することを特徴とする請求項1~5のいずれか1項に記載の鋼管杭。
  7. 前記杭本体の前記外周面が、突起を備えることを特徴とする請求項1~6のいずれか1項に記載の鋼管杭。
  8.  前記分割部材及び前記杭本体の前記内周面が、突起を備えることを特徴とする請求項1~7のいずれか1項に記載の鋼管杭。
  9.  前記分割部材が、貫通孔を備えることを特徴とする請求項1~8のいずれか1項に記載の鋼管杭。
  10.  前記杭本体の軸線方向における前記分割部材の長さが、前記杭本体の外径の2倍未満であることを特徴とする請求項1~9のいずれか1項に記載の鋼管杭。
  11. 前記噴射ノズル及び前記配管が、前記杭本体に対して着脱自在に装着されていることを特徴とする請求項1~10のいずれか一項に記載の鋼管杭。
  12. 請求項1~10のいずれか一項に記載の鋼管杭を、前記噴射ノズルから前記水を噴射しつつ支持層中の最大掘削深度まで打ち込む工程と;
    前記噴射ノズルから前記流動性固化材を噴射しつつ前記鋼管杭を所定の引上深度まで引き上げる工程と;
    前記噴射ノズルから前記流動性固化材を引続き噴射しつつ、前記鋼管杭を前記支持層中の定着深度まで打ち込む工程と;
    前記流動性固化材の固化により、前記鋼管杭の根固め球根を築造する工程と;
    を有することを特徴とする鋼管杭の施工法。
  13. 請求項11に記載の鋼管杭を、前記噴射ノズルから前記水を噴射しつつ支持層中の最大掘削深度まで打ち込む工程と;
    前記噴射ノズルから前記流動性固化材を噴射しつつ前記鋼管杭を所定の引上深度まで引き上げる工程と;
    前記噴射ノズルから前記流動性固化材を引続き噴射しつつ、前記鋼管杭を前記支持層中の定着深度まで打ち込む工程と;
    前記噴射ノズルから前記流動性固化材の噴射を一旦停止した状態で、前記噴射ノズル及び前記配管を前記鋼管杭から切り離す工程と;
    前記噴射ノズルから前記流動性硬化材を噴射しつつ、前記噴射ノズル及び前記配管を地上へ引き上げる工程と;
    前記流動性固化材の固化により、前記鋼管杭の根固め球根を築造する工程と;
    を有することを特徴とする鋼管杭の施工法。
  14. 請求項11に記載の鋼管杭を、前記噴射ノズルから前記水を噴射しつつ支持層中の最大掘削深度まで打ち込む工程と;
    前記噴射ノズルから前記流動性固化材を噴射しつつ前記鋼管杭を所定の引上深度まで引き上げる工程と;
    前記噴射ノズルから前記流動性固化材を引続き噴射しつつ、前記鋼管杭を前記支持層中の定着深度まで打ち込む工程と;
    前記噴射ノズルから前記流動性固化材の噴射を一旦停止した状態で、前記配管の少なくとも一部を前記鋼管杭から切り離す工程と;
    切り離した前記配管の先端から前記流動性固化材を噴射しつつ、切り離した前記配管の一部を地上へ引き上げる工程と;
    前記流動性固化材の固化により、前記鋼管杭の根固め球根を築造する工程と;
    を有することを特徴とする鋼管杭の施工法。
  15. 前記鋼管杭を前記最大掘削深度まで打ち込む工程の後、
    前記鋼管杭を前記引上深度まで引き上げる工程の前に、
    前記噴射ノズルから前記流動性固化材または前記水を噴射しつつ、前記鋼管杭を引き上げ、さらに前記鋼管杭を打ち込む工程を少なくとも1回行うことを特徴とする請求項12~14のいずれか一項に記載の鋼管杭の施工法。
PCT/JP2014/065896 2013-06-19 2014-06-16 鋼管杭及び鋼管杭の施工法 WO2014203858A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2014282262A AU2014282262B2 (en) 2013-06-19 2014-06-16 Steel-pipe pile and steel-pipe pile construction method
JP2015522912A JP6093923B2 (ja) 2013-06-19 2014-06-16 鋼管杭及び鋼管杭の施工法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013128351 2013-06-19
JP2013-128351 2013-06-19

Publications (1)

Publication Number Publication Date
WO2014203858A1 true WO2014203858A1 (ja) 2014-12-24

Family

ID=52104591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065896 WO2014203858A1 (ja) 2013-06-19 2014-06-16 鋼管杭及び鋼管杭の施工法

Country Status (3)

Country Link
JP (1) JP6093923B2 (ja)
AU (1) AU2014282262B2 (ja)
WO (1) WO2014203858A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016075137A (ja) * 2015-02-16 2016-05-12 調和工業株式会社 導管引上げ装置及び導管引上げ方法並びに杭の打込み方法
JP2017110350A (ja) * 2015-12-14 2017-06-22 東亜建設工業株式会社 岩盤への杭打設工法
JP2017218810A (ja) * 2016-06-08 2017-12-14 株式会社大林組 場所打ちコンクリート杭の構築方法
JP2018178382A (ja) * 2017-04-04 2018-11-15 東亜建設工業株式会社 岩盤への杭打設工法
JP2020007829A (ja) * 2018-07-10 2020-01-16 株式会社技研製作所 杭圧入機および杭圧入方法
CN112392031A (zh) * 2020-11-19 2021-02-23 浙江坤皇基础工程有限公司 一种高承载及抗拔的预应力混凝土管桩
CN113186903A (zh) * 2021-06-10 2021-07-30 河南中城建设集团股份有限公司 组合式桩型结构及采用组合式桩型结构处理深基坑施工桩承载力不足的施工方法
US11441288B2 (en) 2017-09-20 2022-09-13 Innogy Se Pile and method of installing

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933410A (ja) * 1972-07-28 1974-03-27
JPS5152610A (en) * 1974-11-01 1976-05-10 Kajima Corp Kokankuino uchikomikoho oyobisono sochi
JPS5851234Y2 (ja) * 1979-06-20 1983-11-22 晴彦 稲葉 大口径開端ぐい
JPS5938427A (ja) * 1982-08-25 1984-03-02 Hitachi Zosen Corp 筒状構造物の設置方法
JPH06136746A (ja) * 1992-10-30 1994-05-17 Sumitomo Metal Ind Ltd 基礎杭の先端根固め工法
JP2004019132A (ja) * 2002-06-12 2004-01-22 Tosa Kikai Kogyo Kk 高圧水噴射装置及び高圧水噴射装置における圧力ホースの回収方法
JP2004270157A (ja) * 2003-03-05 2004-09-30 Nippon Steel Corp 鋼杭及びその施工方法
JP2005325513A (ja) * 2004-05-12 2005-11-24 Nippon Steel Corp 鋼杭の施工管理方法
JP2007284866A (ja) * 2006-04-12 2007-11-01 Nippon Steel Corp 回転圧入鋼管杭及び鋼管杭を用いた圧入工法
JP2009280966A (ja) * 2008-05-19 2009-12-03 Nippon Steel Corp 鋼管杭および鋼管杭の施工方法
JP2011214340A (ja) * 2010-04-01 2011-10-27 Nippon Steel Corp 脱気工程を含む鋼杭打設工法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933410A (ja) * 1972-07-28 1974-03-27
JPS5152610A (en) * 1974-11-01 1976-05-10 Kajima Corp Kokankuino uchikomikoho oyobisono sochi
JPS5851234Y2 (ja) * 1979-06-20 1983-11-22 晴彦 稲葉 大口径開端ぐい
JPS5938427A (ja) * 1982-08-25 1984-03-02 Hitachi Zosen Corp 筒状構造物の設置方法
JPH06136746A (ja) * 1992-10-30 1994-05-17 Sumitomo Metal Ind Ltd 基礎杭の先端根固め工法
JP2004019132A (ja) * 2002-06-12 2004-01-22 Tosa Kikai Kogyo Kk 高圧水噴射装置及び高圧水噴射装置における圧力ホースの回収方法
JP2004270157A (ja) * 2003-03-05 2004-09-30 Nippon Steel Corp 鋼杭及びその施工方法
JP2005325513A (ja) * 2004-05-12 2005-11-24 Nippon Steel Corp 鋼杭の施工管理方法
JP2007284866A (ja) * 2006-04-12 2007-11-01 Nippon Steel Corp 回転圧入鋼管杭及び鋼管杭を用いた圧入工法
JP2009280966A (ja) * 2008-05-19 2009-12-03 Nippon Steel Corp 鋼管杭および鋼管杭の施工方法
JP2011214340A (ja) * 2010-04-01 2011-10-27 Nippon Steel Corp 脱気工程を含む鋼杭打設工法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016075137A (ja) * 2015-02-16 2016-05-12 調和工業株式会社 導管引上げ装置及び導管引上げ方法並びに杭の打込み方法
JP2017110350A (ja) * 2015-12-14 2017-06-22 東亜建設工業株式会社 岩盤への杭打設工法
JP2017218810A (ja) * 2016-06-08 2017-12-14 株式会社大林組 場所打ちコンクリート杭の構築方法
JP2018178382A (ja) * 2017-04-04 2018-11-15 東亜建設工業株式会社 岩盤への杭打設工法
US11441288B2 (en) 2017-09-20 2022-09-13 Innogy Se Pile and method of installing
JP2020007829A (ja) * 2018-07-10 2020-01-16 株式会社技研製作所 杭圧入機および杭圧入方法
JP7154051B2 (ja) 2018-07-10 2022-10-17 株式会社技研製作所 杭圧入機および杭圧入方法
CN112392031A (zh) * 2020-11-19 2021-02-23 浙江坤皇基础工程有限公司 一种高承载及抗拔的预应力混凝土管桩
CN113186903A (zh) * 2021-06-10 2021-07-30 河南中城建设集团股份有限公司 组合式桩型结构及采用组合式桩型结构处理深基坑施工桩承载力不足的施工方法

Also Published As

Publication number Publication date
AU2014282262A1 (en) 2015-10-15
JP6093923B2 (ja) 2017-03-15
AU2014282262B2 (en) 2016-09-22
JPWO2014203858A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6093923B2 (ja) 鋼管杭及び鋼管杭の施工法
JP4392453B2 (ja) 地中埋設体の浮上抑止方法および埋設構造
JP5867301B2 (ja) 管杭及びその施工方法
JP3850802B2 (ja) 鋼杭及びその施工方法
JP4885313B2 (ja) 基礎用鋼製部材、基礎用鋼製部材の打設方法、及び基礎用鋼製連続壁
JP6168336B2 (ja) 鋼管杭の埋込み方法
JP2011006946A (ja) 地盤改良工法
JP3733533B2 (ja) 既存構造物の被圧水下の基礎補強方法
JP2014227729A (ja) 盛土補強構造及び盛土の補強方法
JP5783894B2 (ja) 先端拡径杭
JP5471381B2 (ja) 盛土の補強工法
JP7017541B2 (ja) 既存矢板式岸壁の改良構造及び改良方法
EP1992742A2 (en) Laying a foundation by vibrating and fluidizing
JP2017179904A (ja) 構造物の支持構造及び杭基礎構造物の補強方法
JP4102543B2 (ja) 鋼管杭の撤去工法
CN102785760A (zh) 一种埋入式钢筋混凝土分体锚
JP6981606B2 (ja) 岩盤への杭打設工法
JP3591778B2 (ja) 杭の打込み工法
JP2010248714A (ja) 杭孔壁防護方法
JP2014109143A (ja) 鋼杭の根固め工法
JP2000120066A (ja) 鋼管杭の施工方法
JP6770398B2 (ja) 橋台背面盛土の沈下抑制工法
JP2008266935A (ja) 既存基礎の補強構造および補強方法
JPH10176483A (ja) 補強及び補修用管体とこの管体を用いた地下埋設体の補強及び補修方法
JP5890677B2 (ja) 鋼杭の施工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14814457

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014282262

Country of ref document: AU

Date of ref document: 20140616

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201508547

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2015522912

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14814457

Country of ref document: EP

Kind code of ref document: A1