WO2014198593A1 - Verfahren zum betrieb einer wärmepumpenanordnung und wärmepumpenanordnung - Google Patents

Verfahren zum betrieb einer wärmepumpenanordnung und wärmepumpenanordnung Download PDF

Info

Publication number
WO2014198593A1
WO2014198593A1 PCT/EP2014/061528 EP2014061528W WO2014198593A1 WO 2014198593 A1 WO2014198593 A1 WO 2014198593A1 EP 2014061528 W EP2014061528 W EP 2014061528W WO 2014198593 A1 WO2014198593 A1 WO 2014198593A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
heat
heat pump
temperature
useful
Prior art date
Application number
PCT/EP2014/061528
Other languages
German (de)
English (en)
French (fr)
Inventor
Bernd Gromoll
Florian REISSNER
Jochen SCHÄFER
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to JP2016518920A priority Critical patent/JP6526639B2/ja
Priority to KR1020187000078A priority patent/KR20180005281A/ko
Priority to US14/897,914 priority patent/US20160138837A1/en
Priority to KR1020167000674A priority patent/KR20160018795A/ko
Priority to CA2915305A priority patent/CA2915305C/en
Priority to CN201480032455.XA priority patent/CN105264306A/zh
Priority to EP14728920.1A priority patent/EP2989395A1/de
Publication of WO2014198593A1 publication Critical patent/WO2014198593A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Definitions

  • the invention relates to a method for operating a heat pump arrangement according to the preamble of claim 1.
  • the invention also relates to a heat pump arrangement according to the preamble of claim 8.
  • a heat pump is a machine that uses technical labor to absorb thermal energy in the form of heat from a lower temperature source of heat and, together with the drive energy of a compressor, dissipates it as waste heat to a heat sink with a higher temperature. For temporary storage or for the transfer of heat thereby serves a fluid which is guided within the heat pump by means of the compressor in a cyclic process. This cyclic process is also called thermodynamic vapor compression cycle.
  • HMWP high-temperature heat pumps
  • Object of the present invention is, therefore, reindeer a procedural and to provide a heat pump arrangement by means of which useful heat can be particularly high temperatures solicitge ⁇ represents.
  • COP coefficient of performance
  • the useful heat at a fluid temperature of at least 150 ° C. and more preferably of at least 160 ° C. is withdrawn from the second fluid.
  • the second heat pump By means of the second heat pump, particularly high fluid temperatures can be achieved.
  • a useful heat can be withdrawn from the second fluid with a particularly high temperature, which can be provided more effectively, for example, useful heat for industrial use.
  • the first heat pump of at least one fluoroketone as the ers ⁇ th fluid flows through. Fluoroketones are particularly harmless ⁇ industrially applicable, since it can be dispensed with special protective measures in case of danger.
  • Fluoroketones are be ⁇ Sonder's future-proof applications. In addition, they have a particularly low global warming potential, are non-flammable and non-toxic. For this reason, fluoroketones are especially suitable for use as fluids in heat pump arrangements, in particular if by means of these perennialpumpenanord ⁇ voltages industrial process heat, especially useful heat with a temperature greater than 120 ° C, is provided.
  • both water and fluoroketones are particularly suitable as fluids in applications in which high fluid temperatures occur. Because they are neither flammable nor poisonous.
  • the coefficient of performance (COP) of the respective heat pump depends on the respective temperature lift.
  • a heat pump is defined as the temperature difference which can be achieved between a respective capacitor of the heat pump and a respective evaporator of the heat pump.
  • waste heat of a particularly high temperature can thus be provided and transferred by means of the heat exchanger to the second fluid of the second heat pump.
  • An achievable by means of the second heat pump maximum tempera ture ⁇ of the second fluid thus depends directly on the transferred from the first fluid amount of heat.
  • NOVEC 524 ge only up to a maximum fluid temperature of said 140 ° C is suitable, it is recommended to realize by means of the second heat ⁇ pump, for example, a temperature of 140 ° C to 200 ° C, as a second fluid, for example, water enforce ⁇ , which is also suitable for fluid temperatures greater than 140 ° C.
  • the heat output from ers ⁇ th on the second fluid is largely isothermal.
  • the temperature of the heat released amount is kept very constant, whereby tempera ⁇ turschwankungen particularly largely excluded and thus a largely constant temperature increase by means of the second heat pump can be achieved.
  • the first fluid In order to realize an isothermal ditch ab ⁇ transfer means of the heat exchanger, the first fluid must be operated subcritical, that is to say that the first fluid can only be used below its critical temperature. In other words, the first fluid must therefore be operated at a temperature at which both the liquid and the gaseous state of aggregation can be present.
  • the useful heat at a volumetric heat output of at least 1000 kJ / m 3 , preferably of at least 1200 kJ / m 3 and more preferably of at least 1500 kJ / m 3 of the second
  • the fluid in the heat pump assembly should be operated at a point where the volumetric heating capacity is at least 1000 kJ / m 3 is present.
  • the higher the volumetric heat output above the said 1000 kJ / m 3 the higher the coefficient of performance (COP) of the respective heat pump.
  • COP coefficient of performance
  • the second fluid at a Fluidtempera- ture of at least 120 ° C, a useful heat transferable, wherein the first fluid and the second fluid having a volumetric heating ⁇ power of at least 500 kJ / m 3.
  • the second fluid can be withdrawn depending on the heat transferred from the first fluid, a useful heat with a particularly high temperature.
  • a heat pump arrangement which is also referred to as a heat pump cascade, wherein the second heat pump can provide a useful heat in egg ⁇ ner particularly high temperature, a very high volumetric heat output of the first fluid of the first heat pump is low, which is low is when the heat transferred from the first to the second fluid amount of heat is transmitted at a particularly high temperature.
  • At least one temperature stroke can be increased by means of an at least two-stage compression as a result of a higher pressure ratio of the first fluid and / or of the second fluid.
  • an intermediate cooling can be installed between the compression devices effecting the respective stage of the compression. This is especially useful for water as a fluid.
  • the heat of the intermediate cooling can be supplied in a particularly energy-efficient manner to an evaporation device of the respective heat pump. In order to realize very high temperature strokes, cascades of more than two heat pump cycles are still possible.
  • the second fluid is ver ⁇ sealable by means of a liquid ring compressor ⁇ substantially isothermally. The compression, so the compression of the
  • Fluids can be largely isothermal by means of a liquid ring compressor.
  • the liquid ring of the liquid ring compressor is in direct contact with the fluid to be compressed, whereby compression heat from the fluid to the ring liquid, from which the liquid ring is formed, can be transferred in a particularly effective manner. In other words, therefore, the heat transfer resistance is particularly low, since the fluid and the ring liquid are not separated from each other by a wall.
  • FIG. 1 shows a schematic diagram of a heat pump cascade according to the prior art, which corresponds to a heat ⁇ pump arrangement with present two heat pump circuits.
  • FIG. 2 shows a schematic diagram of a respective course of a volumetric heating power of different fluids of the heat pump arrangement over the temperature
  • 3 is a schematic diagram of a dressingpumpenkaska ⁇ de, which corresponds to a heat pump assembly with two heat pump circuits, one of the heat pump circuits is operated with a fluorine ketone as a fluid.
  • FIG. 1 shows, in a schematic diagram, a heat pump arrangement which comprises two heat pump circuits and is known as a cascade heat pump 1 according to the state of the art.
  • the cascade heat pump 1 comprises a first heat ⁇ me pump 2, which is flowed through by a first fluid and a second heat pump 3, which is flowed through by a second fluid.
  • a heat exchanger 19 By means of a heat exchanger 19, the first and the second fluid are heat-coupled ge ⁇ coupled.
  • the heat exchanger 19 in this case comprises a Kondensa ⁇ gate 6 of the first heat pump 2, and an evaporator 8 of the second heat pump 3.
  • the first fluid of the first heat pump 2 is evaporated by an evaporator 4 in which the evaporator 4 is supplied by a heat source 12 with thermal energy ,
  • the heated and compressed first fluid in the condenser 6 gives off heat to the evaporator 8, the second fluid of the second heat pump 3 being evaporated by means of the evaporator 8.
  • the first fluid is expanded by means of an expansion Sven ⁇ TILs 7 of the first heat pump 2 and then takes heat in turn through the evaporator 4 at.
  • Heat pump 3 compresses and releases heat in a condenser 10 of the second heat pump 3 to a heat sink 13.
  • the second fluid flows in accordance with arrow direction of an arrow 15 through an expansion valve 11 of the second heat pump 3 and is expanded there. Following this, the second fluid again absorbs heat by means of the heat exchanger 19 and the cycle of the second heat pump 3 is thus closed.
  • FIG. 2 shows schematically in a diagram different curves of volumetric heating powers, wherein a volumetric heating power 20 is plotted on the ordinate axis of the diagram and a fluid temperature 21 which corresponds to the condensation temperature of the fluid is plotted on the abscissa axis.
  • a heating power curve 16 which corresponds to the heating power curve of a fluor ⁇ ketone called NOVEC 52 for each same fluid temperatures 21 has higher values, as a Schuleis ⁇ ment curve 17, which corresponds to the heating power curve of a Flu ⁇ orketons called NOVEC 649.
  • the heating power curve 16 of the fluoroketone NOVEC 524 is limited by reaching a critical point 28 at 148 ° C. and the heat output curve 17 of the fluoroketone NOVEC 649 by reaching a critical point 29 at approximately 169 ° C.
  • the heating power curve 18 of water is fluid temperatures below the kriti ⁇ rule point 28 and the critical point 29 below the heating power curve 16 and the
  • the heating power curve 18 of water at high fluid temperatures 21 increases to greater values than the heating power curve 16 and the Heat output curve 17 can be achieved as a result of the respective achievement of the respective critical points 28 and 29. It is also seen that an amount of heat can be delivered at a useful temperature of minds- least 160 ° C to the heat sink 13 by means of the cascade heat ⁇ pump 1 when the fluoroketone NOVEC is used 649 as the first fluid of the first heat ⁇ pump.
  • Heat transfer from the first fluid to the second fluid by means of the heat exchanger 19 is to take place isothermally.
  • the first fluid of the first heat pump 2 is operated at a fluid temperature 21 which is below the critical temperature of the respective critical point 28, 29.
  • their theoretically achievable coefficient of performance increases with a respective higher volumetric heat output 20.
  • FIG. 3 shows a cascade heat pump 1 shown in a schematic diagram, which essentially has the structure shown in FIG. 1 components already described, which is why in the following only the differences should be discussed.
  • the heat exchanger 19 comprises according to FIG. 3, a high-temperature condenser 22 of the first heat pump 2 and a high-temperature evaporator 23 of the second heat pump 3. Further, as shown in FIG. 3 recognizable for conveying the water 27 instead of the compressor 9, a liquid ring compressor 24 is used. By means of the liquid ring compressor 24, the water 27, which was previously evaporated as a result of heat input by means of the high-temperature evaporator, now compressed and fed to a high-temperature condenser 25.
  • At 200 ° C is the volumetric heating value metric 20 of water 27 over 4000 kJ / m 3, ie ei ⁇ nem significantly greater value than 1500 kJ / m 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
PCT/EP2014/061528 2013-06-14 2014-06-04 Verfahren zum betrieb einer wärmepumpenanordnung und wärmepumpenanordnung WO2014198593A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2016518920A JP6526639B2 (ja) 2013-06-14 2014-06-04 ヒートポンプ装置を動作させる方法、及びヒートポンプ装置
KR1020187000078A KR20180005281A (ko) 2013-06-14 2014-06-04 열 펌프 배열체를 작동시키기 위한 방법, 및 열 펌프 배열체
US14/897,914 US20160138837A1 (en) 2013-06-14 2014-06-04 Heat pump arrangement and method for operating heat pump arrangement
KR1020167000674A KR20160018795A (ko) 2013-06-14 2014-06-04 열 펌프 배열체를 작동시키기 위한 방법, 및 열 펌프 배열체
CA2915305A CA2915305C (en) 2013-06-14 2014-06-04 Method for operating a heat pump arrangement, and heat pump arrangement
CN201480032455.XA CN105264306A (zh) 2013-06-14 2014-06-04 运行热泵装置的方法和热泵装置
EP14728920.1A EP2989395A1 (de) 2013-06-14 2014-06-04 Verfahren zum betrieb einer wärmepumpenanordnung und wärmepumpenanordnung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013211087.1 2013-06-14
DE102013211087.1A DE102013211087A1 (de) 2013-06-14 2013-06-14 Verfahren zum Betrieb einer Wärmepumpenanordnung und Wärmepumpenanordnung

Publications (1)

Publication Number Publication Date
WO2014198593A1 true WO2014198593A1 (de) 2014-12-18

Family

ID=50897593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/061528 WO2014198593A1 (de) 2013-06-14 2014-06-04 Verfahren zum betrieb einer wärmepumpenanordnung und wärmepumpenanordnung

Country Status (8)

Country Link
US (1) US20160138837A1 (ja)
EP (1) EP2989395A1 (ja)
JP (1) JP6526639B2 (ja)
KR (2) KR20160018795A (ja)
CN (1) CN105264306A (ja)
CA (1) CA2915305C (ja)
DE (1) DE102013211087A1 (ja)
WO (1) WO2014198593A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018536439A (ja) * 2016-02-26 2018-12-13 シノケム ランティアン カンパニー リミテッドSinochem Lantian Co., Ltd. フッ素含有ケトンを含む組成物

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013214891A1 (de) * 2013-07-30 2015-02-05 Siemens Aktiengesellschaft Wärmetechnische Verschaltung einer Geothermiequelle mit einem Fernwärmenetz
WO2016016297A1 (de) * 2014-07-29 2016-02-04 Siemens Aktiengesellschaft Verfahren und vorrichtung zur trocknung eines trocknungsguts, industrielle anlage, papierfabrik sowie steuereinrichtung
DE112015004688T5 (de) * 2014-10-18 2018-01-18 Aerosol Dynamics Inc. Anhaltende Übersättigungen für Kondensationswachstum von Teilchen
DE102016204158A1 (de) 2016-03-14 2017-09-14 Efficient Energy Gmbh Wärmepumpenanlage mit zwei Stufen, Verfahren zum Betreiben einer Wärmepumpenanlage und Verfahren zum Herstellen einer Wärmepumpenanlage
DE102017011134B4 (de) 2017-12-01 2022-09-08 Emz-Hanauer Gmbh & Co. Kgaa Haushaltskältegerät sowie Verfahren zum Steuern einer in diesem angeordneten Lichtquellenanordnung
EP4063762A1 (en) 2021-03-26 2022-09-28 Mitsubishi Electric R&D Centre Europe B.V. Cascaded heat pump system with low gwp refrigerant
AU2022291952A1 (en) * 2021-06-16 2024-01-04 Atmoszero, Inc. Air source heat pump system and method of use for industrial steam generation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241829A (en) * 1989-11-02 1993-09-07 Osaka Prefecture Government Method of operating heat pump
US20100123095A1 (en) * 2008-11-19 2010-05-20 E. I. Du Pont De Nemours And Company Compositions comprising 2,3,3,3-tetrafluoropropene and hydrocarbons and uses thereof
DE202009016576U1 (de) * 2009-12-08 2011-01-13 Gebhardt, Peter Vorrichtung zur Wärmegewinnung umfassend zwei Wärmepumpen
WO2011045752A1 (en) * 2009-10-14 2011-04-21 Innovation Factory S.C.A R.L. Heating device with irreversible thermodynamic cycle for heating installations having high delivery temperature
DE102010001929A1 (de) * 2010-02-15 2011-08-18 Konvekta AG, 34613 Kälteanlage zur Kühlung eines umschlossenen Raumes
WO2013045361A1 (de) * 2011-09-30 2013-04-04 Siemens Aktiengesellschaft Hochtemperaturwärmepumpe und verfahren zur verwendung eines arbeitsmediums in einer hochtemperaturwärmepumpe

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE394741B (sv) * 1974-04-18 1977-07-04 Projectus Ind Produkter Ab Vermepumpsystem
FR2374539A1 (fr) * 1976-12-15 1978-07-13 Air Ind Procede de compression de vapeur d'eau, et circuits thermiques pour sa mise en oeuvre
US4149389A (en) * 1978-03-06 1979-04-17 The Trane Company Heat pump system selectively operable in a cascade mode and method of operation
DE3433366A1 (de) * 1984-09-08 1986-03-20 Peter 2351 Hasenkrug Koch Verfahren zur waermeenergiezu- und -abfuhr sowie waermepumpeneinrichtung
JPS61138059A (ja) * 1984-12-10 1986-06-25 三井造船株式会社 高温用ヒ−トポンプ
JPS62190360A (ja) * 1986-02-17 1987-08-20 株式会社東芝 カスケ−ド結合ヒ−トポンプ装置
US4907410A (en) * 1987-12-14 1990-03-13 Chang Yan P Thermal energy from environmental fluids
US7100380B2 (en) * 2004-02-03 2006-09-05 United Technologies Corporation Organic rankine cycle fluid
KR20070053265A (ko) * 2004-09-17 2007-05-23 바스프 악티엔게젤샤프트 액체 고리 압축기의 작동 방법
EP1764487A1 (de) * 2005-09-19 2007-03-21 Solvay Fluor GmbH Arbeitsfluid für einen ORC-Prozess
ES2656411T3 (es) * 2008-03-07 2018-02-27 Arkema, Inc. Uso del R-1233 en enfriadores de líquidos
JP5612250B2 (ja) * 2008-03-07 2014-10-22 出光興産株式会社 冷凍機用潤滑油組成物
US20130091843A1 (en) * 2008-12-05 2013-04-18 Honeywell International Inc. Fluoro olefin compounds useful as organic rankine cycle working fluids
FR2941039B1 (fr) * 2009-01-14 2013-02-08 Arkema France Procede de transfert de chaleur
TW201124687A (en) * 2009-11-03 2011-07-16 Du Pont Cascade refrigeration system with fluoroolefin refrigerant
US8846754B2 (en) * 2009-12-16 2014-09-30 Honeywell International Inc. Azeotrope-like compositions of cis-1,1,1,4,4,4-hexafluoro-2-butene
US8535559B2 (en) * 2010-03-26 2013-09-17 3M Innovative Properties Company Nitrogen-containing fluoroketones for high temperature heat transfer
JP2012172866A (ja) * 2011-02-18 2012-09-10 Showa Denko Kk 沸騰冷却装置
JP6746566B2 (ja) * 2014-09-23 2020-08-26 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー 高温熱ポンプ中における(2e)−1,1,1,4,5,5,5−ヘプタフルオロ−4−(トリフルオロメチル)ペンタ−2−エンの使用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241829A (en) * 1989-11-02 1993-09-07 Osaka Prefecture Government Method of operating heat pump
US20100123095A1 (en) * 2008-11-19 2010-05-20 E. I. Du Pont De Nemours And Company Compositions comprising 2,3,3,3-tetrafluoropropene and hydrocarbons and uses thereof
WO2011045752A1 (en) * 2009-10-14 2011-04-21 Innovation Factory S.C.A R.L. Heating device with irreversible thermodynamic cycle for heating installations having high delivery temperature
DE202009016576U1 (de) * 2009-12-08 2011-01-13 Gebhardt, Peter Vorrichtung zur Wärmegewinnung umfassend zwei Wärmepumpen
DE102010001929A1 (de) * 2010-02-15 2011-08-18 Konvekta AG, 34613 Kälteanlage zur Kühlung eines umschlossenen Raumes
WO2013045361A1 (de) * 2011-09-30 2013-04-04 Siemens Aktiengesellschaft Hochtemperaturwärmepumpe und verfahren zur verwendung eines arbeitsmediums in einer hochtemperaturwärmepumpe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018536439A (ja) * 2016-02-26 2018-12-13 シノケム ランティアン カンパニー リミテッドSinochem Lantian Co., Ltd. フッ素含有ケトンを含む組成物
US10953256B2 (en) 2016-02-26 2021-03-23 Sinochem Lantian Co., Ltd Composition comprising fluorine-containing ketone

Also Published As

Publication number Publication date
JP2016526650A (ja) 2016-09-05
KR20180005281A (ko) 2018-01-15
JP6526639B2 (ja) 2019-06-05
EP2989395A1 (de) 2016-03-02
US20160138837A1 (en) 2016-05-19
CN105264306A (zh) 2016-01-20
CA2915305A1 (en) 2014-12-18
KR20160018795A (ko) 2016-02-17
CA2915305C (en) 2018-04-10
DE102013211087A1 (de) 2015-01-15

Similar Documents

Publication Publication Date Title
WO2014198593A1 (de) Verfahren zum betrieb einer wärmepumpenanordnung und wärmepumpenanordnung
DE2754626C2 (de) Mit einer Energiequelle relativ niedriger Temperatur, insbesondere Solarenergie, arbeitende Kälteanlage
DE102008005978B4 (de) Niedertemperaturkraftwerk und Verfahren zum Betreiben eines thermodynamischen Zyklus
DE69730125T2 (de) Kältegerät und verfahren zu seiner herstellung
DE2819276A1 (de) Vorrichtung und verfahren zur waermeuebertragung zwischen fluiden medien oder sonstigen materialien
EP3004754B1 (de) Wärmepumpe zur verwendung von umweltverträglichen kältemitteln
DE102011086476A1 (de) Hochtemperaturwärmepumpe und Verfahren zur Verwendung eines Arbeitsmediums in einer Hochtemperaturwärmepumpe
EP3097370A1 (de) Wärmepumpe mit vorratsbehälter
DE102013210177A1 (de) Kühlsystem und Kühlprozess für den Einsatz in Hochtemperatur-Umgebungen
EP1706599B1 (de) Verfahren und anlage zur umwandlung von anfallender wärmeenergie in mechanische energie
WO2014183892A1 (de) Thermischer energiespeicher
EP2321592B1 (de) Wärmepumpe oder kältemaschine und verfahren zum betreiben einer wärmepumpe oder kältemaschine
EP3540332B1 (de) Sorptionswärmepumpe und sorptionskreisprozess
EP2215412A1 (de) Anlage für die kälte-, heiz- oder klimatechnik, insbesondere kälteanlagen
DE102010004187A1 (de) Wärmepumpe für hohe Vor- und Rücklauftemperaturen
EP2989397B1 (de) Verfahren und vorrichtung zum kühlen eines motors
DE102013203240A1 (de) Kältemaschine und Verfahren zum Betreiben einer Kältemaschine
DE102007062343B4 (de) Verfahren und Anordnung zur Kälteerzeugung nach einem Wasser-Lithiumbromid-Resorptionskälteprozess
DE102012100645B4 (de) ORC - Organischer Rankine Zyklus
DE102016220634A1 (de) Abwärme-Kraftanlage mit stufenweiser Wärmezufuhr
WO2018166740A1 (de) Wärmepumpe und verfahren zum betreiben einer wärmepumpe
WO2014131591A1 (de) Wärmepumpe und verfahren zum betreiben einer wärmepumpe
WO2014117924A2 (de) Verfahren zum betrieb eines niedertemperaturkraftwerkes, sowie niedertemperaturkraftwerk selbst
DE10338388B3 (de) Verfahren zur Regelung einer Klimaanlage
DE102017101304A1 (de) Wärmeübertragungsanlage

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480032455.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14728920

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014728920

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2915305

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14897914

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016518920

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167000674

Country of ref document: KR

Kind code of ref document: A