EP2989397B1 - Verfahren und vorrichtung zum kühlen eines motors - Google Patents

Verfahren und vorrichtung zum kühlen eines motors Download PDF

Info

Publication number
EP2989397B1
EP2989397B1 EP14714996.7A EP14714996A EP2989397B1 EP 2989397 B1 EP2989397 B1 EP 2989397B1 EP 14714996 A EP14714996 A EP 14714996A EP 2989397 B1 EP2989397 B1 EP 2989397B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
compression stage
stage
motor
fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14714996.7A
Other languages
English (en)
French (fr)
Other versions
EP2989397A1 (de
Inventor
Max Meise
Simon Klink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2989397A1 publication Critical patent/EP2989397A1/de
Application granted granted Critical
Publication of EP2989397B1 publication Critical patent/EP2989397B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator

Definitions

  • the invention relates to a method for cooling an engine according to the preamble of claim 1 and an apparatus for performing the method.
  • Such a refrigerant circuit with a two-stage compressor is used, for example, in connection with heat pumps.
  • the two compression stages of the compressor are driven by a motor that is mechanically connected to it.
  • the refrigerant gas is compressed from a low level to a medium level.
  • the pressure level is then increased further until the refrigerant has a high pressure level.
  • Heat can then be released from the refrigerant via a condenser connected downstream of the second compression stage, which is then expanded and can again absorb heat in an evaporator in order to be supplied in gaseous form to the first compression stage of the compressor.
  • such a refrigerant circuit can be used to heat or cool a room, for example.
  • the refrigerant also serves to cool the engine, which can be operated at an optimal operating temperature.
  • the motor of the compressor is usually cooled either by the coolant drawn in by the compressor or by the gaseous coolant that has already been compressed.
  • the engine waste heat is fed to the gaseous refrigerant either directly before or immediately after compression.
  • Refrigerant circuits with two-stage compressors which comprise a first compression stage and a second compression stage, are known to cool the engine with the refrigerant which is at a medium pressure level. This then happens either through the suction gas upstream of the second or second compression stage or through the compressed gas at the first or first compression stage.
  • the invention is based on the object of eliminating the disadvantages of the prior art and, in particular, of specifying a method and a device for cooling an engine in which the waste heat of the engine enters the cooling circuit can be returned without having a negative impact on the efficiency of the overall system.
  • the manufacturing effort and the regulatory effort should be as low as possible and be made with as few components as possible.
  • a method for cooling at least one engine that drives at least one at least two-stage compressor of a refrigerant circuit, which comprises at least a first compression stage and a second compression stage, wherein a refrigerant is passed through the refrigerant circuit, which in the first compression stage from a low pressure level to a medium pressure level and in the second compression stage from the medium pressure level to a high pressure level and after the second compression stage is released to the medium pressure level with heat
  • the engine is cooled with a two-phase refrigerant main flow, which the medium Has pressure level.
  • the two-phase main refrigerant flow contains both gaseous and liquid refrigerants. Since the main refrigerant flow, i.e. usually the entire refrigerant flow, is used for engine cooling, no additional expansion valves are required. Accordingly, no relevant regulation is required.
  • the waste heat dissipated by the engine has no negative impact on efficiency, since it has no negative impact on either the pressure side or the suction side of the compression stages.
  • the process is used between two of the compression levels. If there is more than one refrigerant compressor, the method can be used between two refrigerant compressors. It can also do more than one engine be cooled, where appropriate, each engine can be assigned its own refrigerant circuit.
  • the main refrigerant flow is separated into a liquid refrigerant part and a gaseous refrigerant part after cooling the engine, the gaseous refrigerant part being fed to the second compression stage and the liquid refrigerant part being fed to the first compression stage of the two-stage compressor.
  • the two-phase refrigerant main flow is separated into the two phases, the gaseous fraction being further compressed in the second compression stage.
  • this enables the gaseous refrigerant to be compressed very efficiently to a high pressure at high temperature.
  • the refrigerant is preferably evaporated before the first compression stage with the absorption of heat and condensed after the second compression stage with the emission of heat.
  • the liquid refrigerant part is expanded with subsequent evaporation in an evaporator, in which heat can be absorbed, for example, from the environment.
  • the previously liquid refrigerant part also changes into the gaseous phase and is supplied in gaseous form to the first compression stage of the two-stage compressor, where it is compressed and heated.
  • a condenser can be provided, for example, in which the previously gaseous refrigerant part is condensed and heat is emitted, for example, to the environment. From there, the refrigerant is carried on under high pressure and partially liquefied and finally expanded to the medium pressure level.
  • the refrigerant part after the first compression stage with that of the second compression stage Heat emission coming refrigerant part merged before use to cool the engine. This combines the two refrigerant parts so that the entire refrigerant flow is available for cooling the engine.
  • the refrigerant part is fed directly to the second compression step after the first compression stage, the gaseous middle part after cooling the engine being fed to the second compression stage and being brought together with the refrigerant part coming from the first compression stage, the refrigerant -The main flow-forming refrigerant coming from the second compression stage after heat is used to cool the engine.
  • the invention provides that it has a motor and a refrigerant circuit in which a two-stage compressor with a first compression stage and a second compression stage is arranged , which can be driven by the engine, an engine cooling system being integrated into the refrigerant circuit in such a way that a main refrigerant flow can flow through it, a phase separation element being arranged in the flow direction behind the engine cooling system, which is connected via a suction gas line for a gaseous refrigerant part with the second compression stage and is connected to the first compression stage of the two-stage refrigerant compressor via a first line for a liquid refrigerant part.
  • the entire refrigerant which is at a medium pressure level, can be used to cool the engine and the waste heat can be returned to the refrigerant circuit.
  • This does not have a negative impact on efficiency, since with the help of the phase separation element after the absorption of the engine's waste heat or after the engine cooling, a separation into a gaseous and a liquid refrigerant part takes place, whereby only the gaseous refrigerant part of the second compression stage is fed and thus further compressed. It can therefore be operated with high efficiency.
  • an evaporator and, if appropriate, a throttle element and, if appropriate, further components are arranged in the first line before the first compression stage. This allows the refrigerant part, which has been liquid up to that point, to be expanded and evaporated so that it can be supplied in gaseous form to the first compression stage.
  • the evaporator absorbs heat from an environment, which is thereby cooled.
  • the other components include, for example, filters or the like.
  • a condenser and optionally a throttle element and optionally further components are arranged in a second line of the refrigerant circuit after the second compression stage.
  • heat can be released from the gaseous refrigerant part to the environment after the second compression stage, as a result of which this refrigerant part is at least partially liquefied.
  • the subsequently arranged throttle element which can be designed, for example, as a simple throttle or as an expansion valve, then relaxes this refrigerant part, so that it can be used in liquid and / or gaseous form for engine cooling at a medium pressure level.
  • the other components can be designed, for example, as cooling elements for power electronics or the like.
  • a mixing device is arranged in the refrigerant circuit before the engine cooling, which is connected to a compressed gas line coming from the first compression stage and the second line.
  • the mixer coming from the first compression stage thus meets Refrigerant part and the refrigerant part coming from the second compression stage and can be routed together from there to the engine cooling.
  • the entire refrigerant flow thus serves to cool the engine.
  • the second line is connected to the engine cooling, a compressed gas line coming from the first compression stage opening into the suction gas line leading to the second compression stage.
  • the gaseous refrigerant part after the phase separation element can be combined with the refrigerant part running from the first to the second compression stage before the second compression stage. Even with this simplified structure, the entire refrigerant flow is led to the engine cooling system and used there to absorb waste heat. However, the refrigerant part coming from the first compression stage is not combined with the refrigerant part coming from the second compression stage directly before the engine cooling, but also only passes through the second compression stage.
  • Further components can be arranged in a refrigerant line between the engine cooling and the phase separating element. These are, for example, throttle elements and / or additional cooling elements, which are used, for example, to cool elements of power electronics.
  • the refrigerant compressor preferably has more than two compression stages, the method according to one of claims 1 to 5 being applied between two of the compression stages. A very strong cooling can also be achieved in this way.
  • the device has two refrigerant compressors, the method according to one of claims 1 to 5 being used between the refrigerant compressors or between compression stages of the refrigerant compressors, optionally with more than one engine cooling.
  • the device can therefore be used very universally.
  • FIG. 1 schematically shows a refrigerant circuit 1 of a heat pump, which has a two-stage compressor 2 with a first compression stage 3 and a second compression stage 4.
  • the two-stage compressor 2 is operated with a motor 5, a mechanical connection between the motor 5 and the compression stages 3, 4 of the two-stage compressor 2 not being shown for reasons of clarity.
  • the pressure level of a refrigerant is raised from a first pressure level first to a medium pressure level and then to a high pressure level.
  • a fluid that is liquid under excess pressure and becomes gaseous after pressure relief and heat absorption is used as the refrigerant.
  • the refrigerant is supplied, for example, in gaseous form and at low pressure to the first compression stage 3 of the compressor 2, where it is brought to a medium pressure level, while being heated at the same time.
  • a gaseous refrigerant portion then reaches the refrigerant circuit via a compressed gas line 6 Figure 1 to a mixing device 7 and is merged there with a refrigerant part coming from the second compression stage 4.
  • This refrigerant part had been supplied to the second compression stage of the compressor 2 in gaseous form and with a medium pressure level and was brought to a high pressure level in the second compression stage 4 while being heated.
  • the gaseous refrigerant part is then fed to a condenser 9 via a second line 8 after the second compression stage 4. There is a release of heat from the refrigerant part to an environment or heat sink 10.
  • the condensed heat medium part which can have both liquid and gaseous phases, is then expanded with the aid of a throttle element 11, which is designed, for example, as an expansion valve, to the average pressure level with which this coolant part arrives at the mixing device 7 and is brought together with the refrigerant part coming from the first compression stage 3.
  • a throttle element 11 which is designed, for example, as an expansion valve, to the average pressure level with which this coolant part arrives at the mixing device 7 and is brought together with the refrigerant part coming from the first compression stage 3.
  • the merged refrigerant parts that is to say the main refrigerant flow, which comprises the entire volume flow, passes from the mixing device 7 to an engine cooling of the engine 5 and absorbs heat from the engine 5 there.
  • the main refrigerant stream is then separated in a phase separation element 12 into the gaseous refrigerant part and the liquid refrigerant part.
  • the gaseous refrigerant part is then again fed to the second compression stage 4.
  • the liquid refrigerant part is expanded with the aid of a throttle element 13, which in turn can be designed as an expansion valve, and fed to an evaporator 14 at low pressure and low temperature, in which the liquid refrigerant part is converted into a gaseous phase.
  • the evaporator 14 absorbs heat from the environment or from a heat source 15, which is absorbed by the refrigerant part.
  • the throttle element 13 and the evaporator 14 are arranged in a first line 16, which connects the phase separating element 12 to the first compression stage 3 of the two-stage compressor 2. In the first compression stage 3 there is then an increase in the pressure of the refrigerant part evaporated in the evaporator 14, so that it can in turn be fed to the mixing device 7 at a medium pressure level and at an elevated temperature.
  • FIG. 2 shows an alternative preferred embodiment, in which corresponding elements are provided with the same reference numerals.
  • the refrigerant part is not fed to a mixing device upstream of the engine cooling, but rather directly to the second compression stage 4. Since the gaseous refrigerant part coming from the phase separation element 12 also The second compression stage 4 is supplied, the main refrigerant flow in the second compression stage 4 is brought to the high pressure level and heated. After heat has been given off and condensation in the condenser 9 and subsequent expansion via the throttle element 11, the main refrigerant flow, which has gaseous and liquid constituents, then cools the motor 5 and can absorb heat there.
  • the liquid refrigerant part separated from the main flow of refrigerant by the phase separating element 12 is guided via the first line 16 and is first expanded to a low pressure level with the help of the throttle element 13. Evaporation then takes place in the evaporator 14, so that it is finally supplied in gaseous form to the first compression stage 3 of the compressor 3 and is brought to an intermediate pressure level there with simultaneous heating, in order then to reach the second compression stage 4.
  • the motor which is required to drive the two-stage compressor, is cooled with the aid of the main refrigerant flow, that is to say through the entire refrigerant.
  • An additional bypass connection to branch off some of the refrigerant to cool the engine is not required. Accordingly, there is a simplified structure, in particular by reducing the number of expansion valves required and thus simpler regulation.
  • the engine's waste heat is returned to the refrigerant circuit without reducing the efficiency of the overall system due to the phase separation that occurs after the waste heat has been absorbed.
  • the procedure according to the invention can be adapted to a refrigeration cycle with a single-stage compressor with relatively little effort, wherein an intermediate injection and an internal heat exchanger or also an intermediate injection and a phase separation can be used in a phase separation element.
  • the refrigerant circuit can be reversed for defrosting and / or for cooling operation, but the phase separation element must always be flowed through in the same direction.

Description

  • Die Erfindung betrifft ein Verfahren zum Kühlen eines Motors nach dem Oberbegriff des Patentanspruchs 1 sowie eine Vorrichtung zum Durchführen des Verfahrens.
  • Ein derartiger Kältemittelkreislauf mit einem zweistufigen Kompressor wird beispielsweise in Zusammenhang mit Wärmepumpen eingesetzt. Die beiden Kompressionsstufen des Kompressors werden dabei über einen Motor angetrieben, der dafür mechanisch mit diesem verbunden ist. Mit Hilfe der ersten Kompressionsstufe des Kompressors erfolgt eine Verdichtung des Kältemittelgases von einem niedrigen Niveau auf ein mittleres Niveau. In der zweiten Kompressionsstufe wird das Druckniveau dann weiter erhöht, bis das Kältemittel ein hohes Druckniveau aufweist. Über einen der zweiten Kompressionsstufe nachgeschalteten Kondensator kann dann eine Wärmeabgabe vom Kältemittel erfolgen, das anschließend entspannt wird und in einem Verdampfer erneut Wärme aufnehmen kann, um gasförmig der ersten Kompressionsstufe des Kompressors zugeführt zu werden.
  • Je nach Betriebsweise lässt sich durch einen derartigen Kältemittelkreislauf dabei ein Erwärmen oder Abkühlen beispielsweise eines Raumes erreichen. Dabei dient das Kältemittel gleichzeitig zur Kühlung des Motors, der damit bei einer optimalen Betriebstemperatur betrieben werden kann.
  • In Kältemittelkreisen wird üblicherweise der Motor des Kompressors entweder durch das vom Kompressor angesaugte oder durch das bereits verdichtete, gasförmige Kühlmittel gekühlt. Die Motorabwärme wird dabei dem gasförmigen Kältemittel entweder direkt vor oder direkt nach der Verdichtung zugeführt. Bei Kältemittelkreisen mit zweistufigen Kompressoren, die eine erste Kompressionsstufe und eine zweite Kompressionsstufe umfassen, ist es bekannt, den Motor mit dem auf einem mittleren Druckniveau befindlichen Kältemittel zu kühlen. Dies geschieht dann also entweder durch das Sauggas vor der zweiten bzw. zweiten Kompressionsstufe oder durch das Druckgas der ersten bzw. ersten Kompressionsstufe.
  • In der Regel wird nur gasförmiges Kältemittel zum Kühlen des Motors genutzt, um eine Verdünnung des zur Schmierung für die Motorlager im Motor befindlichen Schmieröles zu verhindern. Dies könnte zu einer Mangelschmierung in den Lagern führen und damit eine Beschädigung des Motors verursachen. Allerdings vermindert die Kühlung mit Sauggas vor der Verdichtung in der zweiten Kompressionsstufe des Kompressors durch die Erwärmung des Sauggases die Effizienz des Kältemittelkreislaufes, weil sie eine Abnahme der Dichte des Sauggases und damit des geförderten Massenstroms bewirkt. Die Kühlung des Motors mit Druckgas nach der Verdichtung in der ersten Kompressionsstufe hat Verluste zur Folge und erhöht Temperatur des Druckgases der ersten Kompressionsstufe. Damit steigen auch die Anforderungen an die Temperaturbeständigkeit des Motors.
  • Zur Kühlung eines Motors eines zweistufigen Kompressors ist es bekannt, aus dem Kältemittelkreislauf nach einem der zweiten Kompressionsstufe nachgeschalteten Kondensator einen Teilstrom vom Kältemittelhauptstrom abzuzweigen und über eine Art Bypass-Verbindung zu einer Motorkühlung zu leiten. Dabei erfolgt eine separate Entspannung in der Bypass-Leitung, für die je nach Betriebsmodus ein oder zwei Expansionsventile erforderlich sind, die eine gesonderte Regelung benötigen.
  • Die bekannten Verfahren zur Kühlung des Motors haben also entweder eine Verringerung der Effizienz des Gesamtsystems zur Folge oder sind relativ aufwendig und nur mit zusätzlichen Leitungen und Expansionsventilen zu realisieren, für die noch eine gesonderte Regelung erforderlich ist.
  • Der Erfindung liegt nun die Aufgabe zugrunde, die Nachteile des Standes der Technik zu beheben und insbesondere ein Verfahren und eine Vorrichtung zum Kühlen eines Motors anzugeben, bei dem die Abwärme des Motors in den Kältekreis zurückgeführt werden kann, ohne negativen Einfluss auf die Effizienz des Gesamtsystems zu haben. Dabei sollen der Herstellungsaufwand sowie der Regelungsaufwand möglichst gering sein und mit möglichst wenigen Bauelementen ausgekommen werden.
  • Erfindungsgemäß wird diese Aufgabe durch ein Verfahren mit den Merkmalen des Patentanspruchs 1 und durch eine Vorrichtung mit den Merkmalen des Patentanspruchs 6 gelöst. Vorteilhafte Ausgestaltungen finden sich in den Unteransprüchen.
  • Bei einem Verfahren zum Kühlen mindestens eines Motors, der mindestens einen zumindest zweistufigen Kompressor eines Kältemittelkreislaufs antreibt, der zumindest eine erste Kompressionsstufe und eine zweite Kompressionsstufe umfasst, wobei ein Kältemittel durch den Kältemittelkreislauf geleitet wird, das in der ersten Kompressionsstufe von einem niedrigen Druckniveau auf ein mittleres Druckniveau und in der zweiten Kompressionsstufe vom mittleren Druckniveau auf ein hohes Druckniveau gebracht und im Anschluss an die zweite Kompressionsstufe unter Wärmeabgabe auf das mittlere Druckniveau entspannt wird, ist erfindungsgemäß vorgesehen, dass der Motor mit einem zweiphasigen Kältemittel-Hauptstrom gekühlt wird, der das mittlere Druckniveau aufweist.
  • Der zweiphasige Kältemittel-Hauptstrom enthält sowohl gasförmiges als auch flüssiges Kältemittel. Da der Kältemittel-Hauptstrom, also üblicherweise der gesamte Kältemittelstrom, für die Motorkühlung genutzt wird, sind keine zusätzlichen Expansionsventile nötig. Dementsprechend ist auch keine diesbezügliche Regelung erforderlich. Die vom Motor abgeführte Abwärme hat dabei keinen negativen Einfluss auf die Effizienz, da es weder auf der jeweiligen Druckseite, noch auf der jeweiligen Saugseite der Kompressionsstufen einen negativen Einfluss hat.
  • Bei Kältemittelkompressoren mit mehr als zwei Kompressionsstufen findet das Verfahren zwischen zweien der Kompressionsstufen Anwendung. Bei mehr als einem Kältemittelkompressor kann das Verfahren zwischen zwei Kältemittelkompressoren angewendet werden. Dabei kann auch mehr als ein Motor gekühlt werden, wobei gegebenenfalls jedem Motor ein eigener Kältemittelkreislauf zugeordnet werden kann.
  • In einer bevorzugten Weiterbildung wird der Kältemittel-Hauptstrom nach Kühlen des Motors in einen flüssigen Kältemittelteil und einen gasförmigen Kältemittelteil getrennt, wobei der gasförmige Kältemittelteil der zweiten Kompressionsstufe und der flüssige Kältemittelteil der ersten Kompressionsstufe des zweistufigen Kompressors zugeführt werden. Im Anschluss an die Kühlung des Motors folgt also eine Auftrennung des zweiphasigen Kältemittel-Hauptstroms in die beiden Phasen, wobei der gasförmige Anteil in der zweiten Kompressionsstufe weiter verdichtet wird. Damit kann in der zweiten Kompressionsstufe direkt eine sehr effiziente Verdichtung des gasförmigen Kältemittels auf einen hohen Druck bei hoher Temperatur erfolgen. Zum Trennen der Phasen des Kältemittels aus dem Kältemittel-Hauptstrom kann beispielsweise ein Mitteldruckbehälter, oder dienen, wobei es sich um einen Sammelbehälter handelt, in dem das Kältemittel in einen gasförmigen Anteil und in einen flüssigen Anteil getrennt wird.
  • Bevorzugterweise wird dabei das Kältemittel vor der ersten Kompressionsstufe unter Wärmeaufnahme verdampft und nach der zweiten Kompressionsstufe unter Wärmeabgabe kondensiert. Dafür erfolgt beispielsweise nach dem Trennen des Kältemittel-Hauptstroms in den flüssigen und den gasförmigen Kältemittelteil eine Expansion des flüssigen Kältemittelteils mit einer anschließenden Verdampfung in einem Verdampfer, in dem Wärme beispielsweise aus der Umgebung aufgenommen werden kann. Dadurch geht der bis dahin flüssige Kältemittelteil ebenfalls in die gasförmige Phase über und wird gasförmig zur ersten Kompressionsstufe des zweistufigen Kompressors zugeführt, dort verdichtet und erwärmt. Im Anschluss an die zweite Kompressionsstufe kann beispielsweise ein Kondensator vorgesehen sein, in dem eine Kondensation des bis dahin gasförmigen Kältemittelteils erfolgt und dabei Wärme beispielsweise an die Umgebung abgegeben wird. Von dort wird das Kältemittel unter hohem Druck und teilweise verflüssigt weitergeführt und schließlich bis auf das mittlere Druckniveau entspannt.
  • In einer bevorzugten Ausführungsform wird der Kältemittelteil nach der ersten Kompressionsstufe mit dem von der zweiten Kompressionsstufe nach Wärmeabgabe kommenden Kältemittelteil vor der Verwendung zum Kühlen des Motors zusammengeführt. Damit erfolgt eine Vereinigung der beiden Kältemittelteile, sodass der gesamte Kältemittelstrom zur Kühlung des Motors zur Verfügung steht.
  • In einer alternativen Ausgestaltung ist vorgesehen, dass der Kältemittelteil nach der ersten Kompressionsstufe direkt der zweiten Kompressionsstufe zugeführt wird, wobei der nach Kühlen des Motors gasförmige Mittelteil der zweiten Kompressionsstufe zugeführt und mit dem von der ersten Kompressionsstufe kommenden Kältemittelteil zusammen geführt wird, wobei das den Kältemittel-Hauptstrom bildende, von der zweiten Kompressionsstufe nach Wärmeabgabe kommende Kältemittel zum Kühlen des Motors verwendet wird. Damit ergibt sich ein relativ einfacher Aufbau, wobei auch dann der gesamte Kältemittelstrom zur Kühlung des Motors genutzt wird.
  • Bei einer Vorrichtung zum Durchführen des oben genannten Verfahrens, die insbesondere als zweistufige Wärmepumpe, Klimatisierungsgerät oder Kälteanlage ausgebildet ist, ist erfindungsgemäß vorgesehen, dass sie einen Motor und einen Kältemittelkreislauf aufweist, in dem ein zweistufiger Kompressor mit einer ersten Kompressionsstufe und einer zweiten Kompressionsstufe angeordnet ist, der vom Motor antreibbar ist, wobei eine Motorkühlung derart in den Kältemittelkreislauf eingebunden ist, dass sie von einem Kältemittel-Hauptstrom durchströmbar ist, wobei in Strömungsrichtung hinter der Motorkühlung ein Phasentrennelement angeordnet ist, das über eine Sauggasleitung für einen gasförmigen Kältemittelteil mit der zweiten Kompressionsstufe und über eine erste Leitung für einen flüssigen Kältemittelteil mit der ersten Kompressionsstufe des zweistufigen Kältemittelkompressors verbunden ist.
  • Dadurch kann das gesamte, auf einem mittleren Druckniveau befindliche Kältemittel zur Motorkühlung genutzt werden und die Abwärme in den Kältemittelkreis zurückgeführt werden. Ein negativer Einfluss auf die Effizienz erfolgt damit nicht, da mit Hilfe des Phasentrennelementes im Anschluss an die Aufnahme der Abwärme des Motors beziehungsweise im Anschluss an die Motorkühlung eine Trennung in einen gasförmigen und einen flüssigen Kältemittelteil erfolgt, wobei nur der gasförmige Kältemittelteil der zweiten Kompressionsstufe zugeführt und damit weiter verdichtet wird. Diese kann daher mit hoher Effizienz betrieben werden.
  • Auf zusätzliche Bypass-Verbindung mit zusätzlichen Expansionsventilen zur Versorgung der Motorkühlung kann somit verzichtet werden. Vielmehr wird die Motorkühlung einfach mit dem Kältemittel-Hauptstrom durchströmt, der entsprechende Wärme aufnehmen kann. Eine zusätzliche Regelung ist dafür nicht erforderlich. Damit wird der Herstellungs- und Regelungsaufwand gering gehalten.
  • In einer bevorzugten Weiterbildung sind in der ersten Leitung vor der ersten Kompressionsstufe ein Verdampfer und gegebenenfalls ein Drosselelement sowie gegebenenfalls weitere Bauteile angeordnet. Damit kann eine Entspannung und Verdampfung des bis dahin flüssigen Kältemittelteils erfolgen, sodass dieses gasförmig der ersten Kompressionsstufe zuführbar ist. Im Verdampfer erfolgt dabei eine Wärmeaufnahme aus einer Umgebung, die dadurch gekühlt wird. Die weiteren Bauteile umfassen beispielsweise Filter oder ähnliches.
  • Dabei ist besonders bevorzugt, dass in einer zweiten Leitung des Kältemittelkreislaufes nach der zweiten Kompressionsstufe ein Kondensator und gegebenenfalls ein Drosselelement sowie gegebenenfalls weitere Bauteile angeordnet sind. Im Kondensator kann von dem gasförmigen Kältemittelteil nach der zweiten Kompressionsstufe Wärme an die Umgebung abgegeben werden, wodurch dieser Kältemittelteil mindestens teilweise verflüssigt wird. Durch das anschließend angeordnete Drosselelement, das beispielsweise als einfache Drossel oder als Expansionsventil ausgebildet sein kann, erfolgt anschließend eine Entspannung dieses Kältemittelteils, sodass es auf einem mittleren Druckniveau flüssig und/oder gasförmig zur Motorkühlung genutzt werden kann. Die weiteren Bauteile können beispielsweise als Kühlelemente für eine Leistungselektronik oder ähnliches ausgebildet sein.
  • In einer bevorzugten Ausgestaltung ist im Kältemittelkreislauf vor der Motorkühlung eine Mischeinrichtung angeordnet, die mit einer von der ersten Kompressionsstufe kommenden Druckgasleitung und der zweiten Leitung verbunden ist. In der Mischeinrichtung treffen also der von der ersten Kompressionsstufe kommende Kältemittelteil und der von der zweiten Kompressionsstufe kommende Kältemittelteil zusammen und können von dort gemeinsam zur Motorkühlung geführt werden. Damit dient der gesamte Kältemittelstrom zur Motorkühlung.
  • In einer alternativen Ausgestaltung ist vorgesehen, dass die zweite Leitung mit der Motorkühlung verbunden ist, wobei eine von der ersten Kompressionsstufe kommende Druckgasleitung in die zur zweiten Kompressionsstufe führende Sauggasleitung mündet. Der gasförmige Kältemittelteil nach dem Phasentrennelement kann dabei mit dem von der ersten zur zweiten Kompressionsstufe laufenden Kältemittelteil vor der zweiten Kompressionsstufe zusammengeführt werden. Auch bei diesem vereinfachten Aufbau wird der gesamte Kältemittelstrom zur Motorkühlung geführt und dort zum Aufnehmen von Abwärme genutzt. Der von der ersten Kompressionsstufe kommende Kältemittelteil wird aber nicht direkt vor der Motorkühlung mit dem von der zweiten Kompressionsstufe kommenden Kältemittelteil kombiniert, sondern durchläuft erst ebenfalls die zweite Kompressionsstufe.
  • In einer Kältemittelleitung zwischen Motorkühlung und Phasentrennelement können weitere Bauteile angeordnet sein. Dies sind beispielsweise Drosselelemente und/oder zusätzliche Kühlelemente, die beispielsweise zur Kühlung von Elementen einer Leistungselektronik dienen.
  • Vorzugsweise weist der Kältemittelkompressor mehr als zwei Kompressionsstufen auf, wobei das Verfahren nach einem der Ansprüche 1 bis 5 zwischen zwei der Kompressionsstufen angewendet wird. Damit kann auch eine sehr starke Abkühlung erreicht werden.
  • In einer bevorzugten Weiterbildung weist die Vorrichtung zwei Kältemittelkompressoren auf, wobei das Verfahren nach einem der Ansprüche 1 bis 5 zwischen den Kältemittelkompressoren oder zwischen Kompressionsstufen der Kältemittelkompressoren angewendet wird, wobei gegebenenfalls mehr als eine Motorkühlung erfolgt. Die Vorrichtung ist dadurch sehr universell einsetzbar.
  • Die Erfindung wird im Folgenden anhand bevorzugter Ausführungsbeispiele in Verbindung mit den Zeichnungen näher beschrieben. Hierin zeigen:
    • Fig. 1 einen Kältemittelkreislauf mit einem zweistufigen Kompressor einer ersten Ausführungsform und
    • Fig. 2 einen Kältemittelkreislauf mit einem zweistufigen Kompressor einer zweiten Ausführungsform.
  • In Fig. 1 ist schematisch ein Kältemittelkreislauf 1 einer Wärmepumpe dargestellt, der einen zweistufigen Kompressor 2 mit einer ersten Kompressionsstufe 3 und einer zweiten Kompressionsstufe 4 aufweist. Der zweistufige Kompressor 2 wird mit einem Motor 5 betrieben, wobei eine mechanische Verbindung zwischen dem Motor 5 und den Kompressionsstufen 3, 4 des zweistufigen Kompressors 2 aus Gründen der Übersichtlichkeit nicht dargestellt ist.
  • Mit Hilfe der Kompressionsstufen 3, 4 des zweistufigen Kompressors 2 erfolgt ein Anheben des Druckniveaus eines Kältemittels von einem ersten Druckniveau zunächst auf ein mittleres Druckniveau und anschließend auf ein hohes Druckniveau. Als Kältemittel wird dabei ein unter Überdruck flüssiges Fluid, das nach einer Druckentlastung und Wärmeaufnahme gasförmig wird, verwendet. Das Kältemittel wird beispielsweise gasförmig und mit niedrigem Druck der ersten Kompressionsstufe 3 des Kompressors 2 zugeführt und dort auf ein mittleres Druckniveau gebracht, wobei es gleichzeitig erwärmt wird.
  • Über eine Druckgasleitung 6 gelangt ein gasförmiger Kältemittelanteil dann bei dem Kältemittelkreislauf gemäß Figur 1 zu einer Mischeinrichtung 7 und wird dort mit einem von der zweiten Kompressionsstufe 4 kommenden Kältemittelteil zusammengeführt. Dieser Kältemittelteil war der zweiten Kompressionsstufe des Kompressors 2 gasförmig und mit einem mittleren Druckniveau zugeführt worden und wurde in der zweiten Kompressionsstufe 4 bei gleichzeitiger Erwärmung auf ein hohes Druckniveau gebracht. Der gasförmige Kältemittelteil wird dann im Anschluss an die zweite Kompressionsstufe 4 über eine zweite Leitung 8 einem Kondensator 9 zugeführt. Dort erfolgt eine Wärmeabgabe vom Kältemittelteil an eine Umgebung beziehungsweise Wärmesenke 10. Der dadurch kondensierte Wärmemittelteil, der sowohl flüssige als auch gasförmige Phasen aufweisen kann, wird anschließend mit Hilfe eines Drosselelementes 11, das beispielsweise als Expansionsventil ausgebildet ist, auf das mittlere Druckniveau entspannt, mit der dieser Kältemittelteil bei der Mischeinrichtung 7 ankommt und mit dem von der ersten Kompressionsstufe 3 kommenden Kältemittelteil zusammengeführt wird.
  • Die zusammengeführten Kältemittelteile, also der Kältemittel-Hauptstrom, der den gesamten Volumenstrom umfasst, gelangt von der Mischeinrichtung 7 zu einer Motorkühlung des Motors 5 und nimmt dort Wärme vom Motor 5 auf. Anschließend wird der Kältemittel-Hauptstrom in einem Phasentrennelement 12 in den gasförmigen Kältemittelteil und den flüssigen Kältemittelteil aufgetrennt. Der gasförmige Kältemittelteil wird dann wiederum der zweiten Kompressionsstufe 4 zugeführt.
  • Der flüssige Kältemittelteil wird mit Hilfe eines Drosselelementes 13, das wiederum als Expansionsventil ausgebildet sein kann, entspannt und mit niedrigem Druck und niedriger Temperatur einem Verdampfer 14 zugeführt, in dem der flüssige Kältemittelteil in eine gasförmige Phase überführt wird. Der Verdampfer 14 nimmt dabei aus der Umgebung beziehungsweise von einer Wärmequelle 15 Wärme auf, die vom Kältemittelteil aufgenommen wird. Dabei sind das Drosselelement 13 und der Verdampfer 14 in einer ersten Leitung 16 angeordnet, die das Phasentrennelement 12 mit der ersten Kompressionsstufe 3 des zweistufigen Kompressors 2 verbindet. In der ersten Kompressionsstufe 3 erfolgt dann eine Erhöhung des Druckes des im Verdampfer 14 verdampften Kältemittelteils, sodass dieser auf mittlerem Druckniveau und mit erhöhter Temperatur wiederum der Mischeinrichtung 7 zugeführt werden kann.
  • Figur 2 zeigt ein alternatives bevorzugtes Ausführungsbeispiel, bei dem entsprechende Elemente mit den gleichen Bezugszeichen versehen sind. Im Unterschied zum Ausführungsbeispiel nach Figur 1 wird der Kältemittelteil nach der ersten Kompressionsstufe 3 nicht einer der Motorkühlung vorgelagerten Mischeinrichtung zugeführt, sondern direkt der zweiten Kompressionsstufe 4. Da auch der vom Phasentrennelement 12 kommende gasförmige Kältemittelteil der zweiten Kompressionsstufe 4 zugeführt wird, wird der Kältemittel-Hauptstrom in der zweiten Kompressionsstufe 4 auf das hohe Druckniveau gebracht und dabei erwärmt. Nach Wärmeabgabe und Kondensation im Kondensator 9 und anschließender Entspannung über das Drosselelement 11 gelangt dann der Kältemittel-Hauptstrom, der gasförmige und flüssige Bestandteile aufweist, zur Kühlung des Motors 5 und kann dort Wärme aufnehmen. Der vom Phasentrennelement 12 aus dem Kältemittel-Hauptstrom abgetrennte flüssige Kältemittelteil wird über die erste Leitung 16 geführt und zunächst mit Hilfe des Drosselelementes 13 auf ein niedriges Druckniveau entspannt. Anschließend erfolgt eine Verdampfung im Verdampfer 14, so dass es schließlich gasförmig der ersten Kompressionsstufe 3 des Kompressors 3 zugeführt und dort bei gleichzeitiger Erwärmung auf ein mittleres Druckniveau gebracht wird, um dann zur zweiten Kompressionsstufe 4 zu gelangen.
  • Bei den erfindungsgemäßen Verfahren beziehungsweise bei den erfindungsgemäßen Vorrichtungen, bei der es sich insbesondere um eine Wärmepumpenanordnung handelt, erfolgt eine Kühlung des Motors, der zum Antreiben des zweistufigen Kompressors erforderlich ist, mit Hilfe des Kältemittel-Hauptstroms, also durch das gesamte Kältemittel. Eine zusätzliche Bypass-Verbindung, um einen Teil des Kältemittels zur Kühlung des Motors abzuzweigen, ist nicht erforderlich. Dementsprechend ergibt sich ein vereinfachter Aufbau insbesondere durch Reduzieren der Anzahl der erforderlichen Expansionsventile und damit eine einfachere Regelung.
  • Die Abwärme des Motors wird dabei dem Kältemittelkreislauf wieder zugeführt, ohne aufgrund der nach Aufnahme der Abwärme erfolgenden Phasentrennung die Effizienz des Gesamtsystems zu verschlechtern.
  • Mit relativ geringem Aufwand lässt sich das erfindungsgemäße Vorgehen an einen Kältekreislauf mit einem einstufigen Kompressor anpassen, wobei eine Zwischeneinspritzung und ein interner Wärmeübertrager oder auch eine Zwischeneinspritzung und eine Phasentrennung in einem Phasentrennelement Anwendung finden können.
  • Aufgrund des Designs des Kältemittelkreislaufs kann eine Umkehrung des Kältekreises zur Abtauung und/oder für den Kühlbetrieb erfolgen, wobei das Phasentrennelement jedoch immer in gleicher Richtung durchströmt werden muss.

Claims (11)

  1. Verfahren zum Kühlen eines Motors, der mindestens einen zumindest zweistufigen Kompressor (2) eines Kältemittelkreislaufes (1) antreibt, der zumindest eine erste Kompressionsstufe (3) und eine zweite Kompressionsstufe (4) umfasst, wobei ein Kältemittel durch den Kältemittelkreislauf (1) geleitet wird, das in der ersten Kompressionsstufe (3) von einem niedrigen Druckniveau auf ein mittleres Druckniveau und in der zweiten Kompressionsstufe (4) vom mittleren Druckniveau auf ein hohes Druckniveau gebracht wird und im Anschluss an die zweite Kompressionsstufe (4) unter Wärmeabgabe auf das mittlere Druckniveau entspannt wird,
    dadurch gekennzeichnet, dass
    der Motor (5) mit dem gesamten Kältemittelstrom der im Kältemittelkreislauf zirkuliert, als zweiphasiger Kältemittel-Hauptstrom gekühlt wird, der das mittlere Druckniveau aufweist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Kältemittel-Hauptstrom nach Kühlen des Motors (5) in einen flüssigen Kältemittelteil und einen gasförmigen Kältemittelteil getrennt wird, wobei der gasförmige Kältemittelteil der zweiten Kompressionsstufe (4) und der flüssige Kältemittelteil der ersten Kompressionsstufe (3) des zweistufigen Kompressors (2) zugeführt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Kältemittel vor der ersten Kompressionsstufe (3) unter Wärmeaufnahme verdampft und nach der zweiten Kompressionsstufe (4) unter Wärmeabgabe kondensiert wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Kältemittelteil nach der ersten Kompressionsstufe (3) mit dem von der zweiten Kompressionsstufe (4) nach Wärmeabgabe kommenden Kältemittelteil vor der Verwendung zum Kühlen des Motors (5) zusammengeführt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Kältemittelteil nach der ersten Kompressionsstufe (3) direkt der zweiten Kompressionsstufe (4) zugeführt wird, wobei der nach Kühlen des Motors (5) gasförmige Kältemittelteil der zweiten Kompressionsstufe (4) zugeführt und mit dem von der ersten Kompressionsstufe (3) kommenden Kältemittelteil zusammengeführt wird und das den Kältemittel-Hauptstrom bildende, von der zweiten Kompressionsstufe (4) kommende Kältemittel nach Wärmeabgabe zum Kühlen des Motors (5) verwendet wird.
  6. Vorrichtung, insbesondere zweistufige Wärmepumpe, Klimatisierungsgerät oder Kälteanlage, zum Durchführen eines Verfahrens nach den Ansprüchen 1 bis 5, umfassend einen Motor (5) und einen Kältemittelkreislauf (1) ; in dem ein zweistufiger Kompressor (2) mit einer ersten Kompressionsstufe (3) und einer zweiten Kompressionsstufe (4) angeordnet ist, der vom Motor (5) antreibbar ist, dadurch gekennzeichnet, dass eine Motorkühlung derart in den Kältemittelkreislauf (1) eingebunden ist, dass sie von dem gesamten Kältemittelstrom, der im Kältemittelkreislauf zirkuliert, als zweiphasiger Kältemittel-Hauptstrom durchströmbar ist, wobei in Strömungsrichtung hinter der Motorkühlung ein Phasentrennelement (12) angeordnet ist, das über eine Sauggasleitung (17) für einen gasförmigen Kältemittelteil mit der zweiten Kompressionsstufe (4) und über eine erste Leitung (16) für einen flüssigen Kältemittelteil mit der ersten Kompressionsstufe (3) des zweistufigen Kältemittelkompressors (2) verbunden ist.
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass in der ersten Leitung (16) vor der ersten Kompressionsstufe (3) ein Verdampfer (14) und gegebenenfalls ein Drosselelement (13) sowie gegebenenfalls weitere Bauteile angeordnet sind.
  8. Vorrichtung nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass in einer zweiten Leitung (8) des Kältemittelkreislaufs (1) nach der zweiten Kompressionsstufe (4) ein Kondensator (9) und gegebenenfalls ein Drosselelement (11) sowie gegebenenfalls weitere Bauteile angeordnet sind.
  9. Vorrichtung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass im Kältemittelkreislauf (1) vor der Motorkühlung eine Mischeinrichtung angeordnet ist, die mit einer von der ersten Kompressionsstufe (3) kommenden Druckgasleitung (6) und der zweiten Leitung (8) verbunden ist.
  10. Vorrichtung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die zweite Leitung (8) mit der Motorkühlung verbunden ist, wobei eine von der ersten Kompressionsstufe (3) kommende Druckgasleitung (6) in die zur zweiten Kompressionsstufe (4) führende Sauggasleitung (17) mündet.
  11. Vorrichtung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass in einer Kältemittelleitung zwischen Motorkühlung (5) und Phasentrennelement (12) weitere Bauteile angeordnet sind.
EP14714996.7A 2013-04-23 2014-04-02 Verfahren und vorrichtung zum kühlen eines motors Active EP2989397B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013207344.5A DE102013207344A1 (de) 2013-04-23 2013-04-23 Verfahren und Vorrichtung zum Kühlen eines Motors
PCT/EP2014/056567 WO2014173641A1 (de) 2013-04-23 2014-04-02 Verfahren und vorrichtung zum kühlen eines motors

Publications (2)

Publication Number Publication Date
EP2989397A1 EP2989397A1 (de) 2016-03-02
EP2989397B1 true EP2989397B1 (de) 2020-06-10

Family

ID=50434195

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14714996.7A Active EP2989397B1 (de) 2013-04-23 2014-04-02 Verfahren und vorrichtung zum kühlen eines motors

Country Status (5)

Country Link
US (1) US20160273812A1 (de)
EP (1) EP2989397B1 (de)
CN (1) CN105143790B (de)
DE (1) DE102013207344A1 (de)
WO (1) WO2014173641A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10391835B2 (en) * 2015-05-15 2019-08-27 Ford Global Technologies, Llc System and method for de-icing a heat pump
EP3692309A1 (de) * 2017-10-04 2020-08-12 BITZER Kühlmaschinenbau GmbH Kältemittelverdichteranlage

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2746269A (en) * 1955-03-17 1956-05-22 Trane Co Plural stage refrigerating apparatus
US3232074A (en) * 1963-11-04 1966-02-01 American Radiator & Standard Cooling means for dynamoelectric machines
FR2620205A1 (fr) * 1987-09-04 1989-03-10 Zimmern Bernard Compresseur hermetique pour refrigeration avec moteur refroidi par gaz d'economiseur
AU5848296A (en) * 1996-04-18 1997-11-07 Zakrytoe Aktsionernoe Obschestvo Nauchno-Proizvodstvennoe Obiedinenie "VIK" 5 or 8 kw refrigerating system and centrifugal compressor assembly for said system
WO1997039292A1 (fr) * 1996-04-18 1997-10-23 Zakrytoe Aktsionernoe Obschestvo Nauchno-Proizvodstvennoe Obiedinenie 'vik' INSTALLATION DE REFROIDISSEMENT D'UNE PUISSANCE DE 5 ET 8 kW ET SYSTEME DE COMPRESSEUR CENTRIFUGE POUR CETTE INSTALLATION
KR100288315B1 (ko) * 1999-03-15 2001-04-16 김평길 2단 원심압축기
US7600390B2 (en) * 2004-10-21 2009-10-13 Tecumseh Products Company Method and apparatus for control of carbon dioxide gas cooler pressure by use of a two-stage compressor
CN201488382U (zh) * 2009-09-11 2010-05-26 河南千年冷冻设备有限公司 一种双级制冷系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102013207344A1 (de) 2014-10-23
CN105143790B (zh) 2018-02-23
WO2014173641A1 (de) 2014-10-30
CN105143790A (zh) 2015-12-09
US20160273812A1 (en) 2016-09-22
EP2989397A1 (de) 2016-03-02

Similar Documents

Publication Publication Date Title
EP3697635B1 (de) Verfahren zum betreiben eines kältemittelkreislaufs sowie fahrzeugkälteanlage
EP1719650B1 (de) Vorrichtung zur Luftkonditionierung für ein Kraftfahrzeug
DE102015122721B4 (de) Klimatisierungssystem eines Kraftfahrzeugs und Verfahren zum Betreiben des Klimatisierungssystems
EP3444542B1 (de) Kreislaufsystem für ein fahrzeug und verfahren dazu
DE102010051976B4 (de) Klimaanlage für ein Kraftfahrzeug
EP2199706B1 (de) Schaltschrank-Klimagerät und Verfahren zum Betreiben eines Solchen
DE112015002568T5 (de) Ejektor-Kühlkreislauf
DE102017211256B4 (de) Kälteanlage für ein Fahrzeug mit einem einen Wärmeübertrager aufweisenden Kältemittelkreislauf
EP2928710A1 (de) Verfahren zum betreiben eines kältemittelkreislaufs als wärmepumpe sowie als wärmepumpe betreibbarer kältemittelkreislauf
DE102019132689A1 (de) Wärmemanagementsystem für ein Kraftfahrzeug und Kraftfahrzeug mit einem solchen
WO2022106119A1 (de) Kühleinrichtung für ein fahrzeug
DE10358944A1 (de) Kältemittelkreislauf und Kälteanlage
DE10313850B4 (de) Kältemittelkreislauf mit zweistufiger Verdichtung für einen kombinierten Kälteanlagen- und Wärmepumpenbetrieb, insbesondere für Kraftfahrzeuge
EP2989397B1 (de) Verfahren und vorrichtung zum kühlen eines motors
DE102008005076A1 (de) Kältemittelkreis und Verfahren zum Betreiben eines Kältemittelkreises
DE3313429A1 (de) Waermepumpenvorrichtung
DE102017213973A1 (de) Verfahren zum Betreiben einer Kälteanlage eines Fahrzeugs mit einem eine Kühl- und Heizfunktion aufweisenden Kältemittelkreislauf
DE19708428C2 (de) Kälteanlage
DE102008011255A1 (de) Ejektorzyklus mit einphasigem Strahl
DE10343820A1 (de) Dampfverdichtungskältemittelkreislauf
DE112017005948T5 (de) Klimatisierungsvorrichtung
WO2014131606A1 (de) Kältemaschine und verfahren zum betreiben einer kältemaschine
DE102020216027A1 (de) Gaswärmepumpensystem und Verfahren zu seiner Steuerung
DE102019001161A1 (de) Kältemittelverdichter und Verfahren zum Betreiben eines Kältemittelverdichters
EP1010954A1 (de) Verfahren und Vorrichtung zum Abkühlen eines Gasstromes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190322

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

PUAC Information related to the publication of a b1 document modified or deleted

Free format text: ORIGINAL CODE: 0009299EPPU

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: PK

Free format text: DIE ERTEILUNG WURDE VOM EPA WIDERRUFEN.

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1175930

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

APBV Interlocutory revision of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNIRAPE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014012564

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

DB1 Publication of patent cancelled

Effective date: 20190906

REG Reference to a national code

Ref country code: LU

Ref legal event code: HK

Effective date: 20191002

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

REG Reference to a national code

Ref country code: AT

Ref legal event code: REZ

Ref document number: 1175930

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190904

INTG Intention to grant announced

Effective date: 20191125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R107

Ref document number: 502014012564

Country of ref document: DE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: PK

Free format text: DIE ERTEILUNG VOM 04.09.2019 WURDE VOM EPA WIDERRUFEN.

Ref country code: AT

Ref legal event code: REF

Ref document number: 1175930

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014012564

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200910

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200910

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201012

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014012564

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

26N No opposition filed

Effective date: 20210311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210421

Year of fee payment: 8

Ref country code: DE

Payment date: 20210624

Year of fee payment: 8

Ref country code: IT

Payment date: 20210430

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20210420

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210402

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210402

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1175930

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210402

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502014012564

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220403

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220402

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610