EP2199706B1 - Schaltschrank-Klimagerät und Verfahren zum Betreiben eines Solchen - Google Patents

Schaltschrank-Klimagerät und Verfahren zum Betreiben eines Solchen Download PDF

Info

Publication number
EP2199706B1
EP2199706B1 EP09014199.5A EP09014199A EP2199706B1 EP 2199706 B1 EP2199706 B1 EP 2199706B1 EP 09014199 A EP09014199 A EP 09014199A EP 2199706 B1 EP2199706 B1 EP 2199706B1
Authority
EP
European Patent Office
Prior art keywords
switching device
pumping operation
air conditioner
cooling
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09014199.5A
Other languages
English (en)
French (fr)
Other versions
EP2199706A1 (de
Inventor
Andreas Pfannenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfannenberg GmbH
Original Assignee
Pfannenberg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfannenberg GmbH filed Critical Pfannenberg GmbH
Publication of EP2199706A1 publication Critical patent/EP2199706A1/de
Application granted granted Critical
Publication of EP2199706B1 publication Critical patent/EP2199706B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0401Refrigeration circuit bypassing means for the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Definitions

  • the invention relates to a cabinet air conditioner with a compressor, a condenser, an expansion valve, a heat receiving means, and a refrigerant circuit for performing a compression operation in which a refrigerant is compressed via the compressor to high pressure level and passed into the condenser and cooled there, wherein Heat energy is released to an environment and is then expanded through the expansion valve, wherein the refrigerant evaporates by absorbing heat through the heat receiving means.
  • the invention relates to a method for operating a cabinet air conditioner for cooling a cabinet, wherein in a compression operation of the cabinet air conditioner (19) in a refrigerant circuit of the cabinet air conditioner (19) a refrigerant via a compressor (11) is compressed to high pressure level and in a condenser (12) and is cooled there, wherein heat energy is released to an environment, and then via an expansion valve (13) is relaxed, so that the refrigerant evaporates by absorbing heat energy through a heat receiving means (14)
  • the US 2008/0115515 describes a so-called hybrid solution with a cooling mode and a pumping operation for building cooling.
  • a refrigeration device for a cabinet with a refrigeration cycle which has a compressor, an evaporator and a condenser.
  • the invention has for its object to provide a cabinet air conditioner for cabinets of the type mentioned, which consumes less total electrical energy, d. H. with a very low energy consumption.
  • the invention is based on the idea that at a lower ambient temperature and higher cabinet temperature heat exchange takes place by pumping the refrigerant.
  • the heat output absorbed in the control cabinet is transferred to the fluid in the internal heat exchanger, heats the fluid and is delivered to the outer heat exchanger.
  • the absorbed heat output is delivered to the cooler ambient air.
  • Heat-emitting control cabinet components may be electronic components such as programmable logic controllers, other controllers, computers, servers, telecommunications equipment and the like, as well as electromechanical components such as switchgear.
  • cabinets are often housed in special rooms for switchgear or in other rooms in which an ambient temperature of about 20 ° occurs relatively often.
  • a heat exchange according to the principle of a heat exchanger is low.
  • pumping mode preferably no compressor is used.
  • a high pressure is not required in pumping operation. High pressure is required to provide the high pressure. Electrical energy is only needed to run the required pump or additional fans. However, this energy requirement is relatively low.
  • a further reduction of components is realized in a simple manner by providing heat exchangers designed for both plants both in the compression mode and in the pumping mode.
  • a significant advantage of the invention is that cabinets can be designed with very high IP protection class, because the pumping operation according to the heat exchanger principle allows a closed cabinet system without direct air inlet openings, as it is for air conditioning with e.g. Filter fans would be necessary.
  • Another advantage of the air conditioner according to the invention is that components such as condenser or heat exchanger can be used for both modes, whereby the number of additional components required is relatively low.
  • the circulating refrigerant fluid practically fulfills various functions.
  • a first function is the use as a conventional refrigerant in a compression refrigeration cycle with the thermodynamic processes of compressing and expanding, evaporating and liquefying.
  • the refrigerant By compressing from a low pressure to a high pressure, the refrigerant is able to absorb heat at low evaporation temperature and thereafter discharge to the environment at high pressure and temperature in the condenser.
  • the high pressure is brought to low pressure. The refrigerant expands, evaporates and withdraws heat from the control cabinet.
  • a second function of the fluid is that of pure thermal energy transport in pumping mode, without pressure change.
  • the fluid absorbs the heat loss generated by the cabinet components in the heat exchanger and transports it to the outside. Evaporation and condensation processes do not necessarily take place here, but can be part of the heat exchange.
  • the same coolant can be used in a cabinet cooling for both types of cooling, so that the cooling process can be carried out substantially or over large parts of the circle via a common circuit.
  • the invention is based on the fact that a combination of a standard refrigeration cycle in the air-conditioning mode with a pumping operation without pressure change of a fluid provides efficient cooling with a lower energy requirement.
  • the invention is thus based on an extension of a standard refrigeration cycle.
  • a bypass line is connected in parallel to the compressor, through which the refrigerant is pumped during pumping operation. Through the bypass line, a fluid can be transported without flowing through the compressor and without pressure difference during pumping operation.
  • the bypass line can be closed, for example via a shut-off valve.
  • the refrigerant is pumped via the condenser.
  • the condenser then fulfills two functions.
  • the first function is the liquefaction of the gaseous refrigerant by the heat transfer to the environment.
  • the other function is heat dissipation for pumping.
  • the cooling system without the use of the pump work analogously to a gravity heating, which reduces the energy consumption and creates a structure with few components.
  • the reservoir acts as a buffer, so that a trouble-free operation is given when switching from one mode to another.
  • the sump is disposed between the branch to the pump and the expansion valve and the condenser.
  • a common use of condenser and evaporator is possible when pumped the refrigerant via condenser and evaporator without pressure change, so that takes place through the condenser, heat dissipation to the environment or in the evaporator, the heat absorption. As a result, a cost-effective implementation of the invention is possible.
  • the various operating modes can be selectively operated by switching over from the compression mode to pumping mode and vice versa via shut-off valves.
  • a control can be done in the simplest way by a two- or three-point control.
  • the first temperature window with a low temperature range defines that neither climatic operation nor pumping occurs. No cooling is required here.
  • the second temperature window with a medium temperature range defines that only one pumping operation takes place.
  • the third temperature window with a higher temperature range defines that only one climatic operation takes place.
  • dynamic control structures such as P, I, IP, PID controllers and the like can also be used.
  • the control device can be effected by a pump operation which is temperature-dependent with respect to an ambient temperature. It is therefore possible that the ambient temperature is present as a parameter in the control loop. This is done by an ambient temperature sensor connected to the control device reached. The consideration of the ambient temperature brings in a simple way the desired energy savings. By taking into account the ambient temperature in the control as a parameter, namely at a relatively low ambient temperature, a pumping operation can be used, which would be quite sufficient. It is also clear that if the ambient temperature is equal to or higher than the internal temperature, at most only one climatic operation comes into question, since no cooling will take place in pumping operation.
  • the invention further comprises an air conditioning unit designed according to one or more of claims 1 to 7 for control cabinets with a very high IP protection class and with very low energy consumption.
  • the invention relates to a method for operating a cabinet air conditioner for cooling a cabinet, wherein in a compression operation of the cabinet air conditioner in a refrigerant circuit of the cabinet air conditioner refrigerant is compressed via a compressor to high pressure level and passed into a condenser and cooled there wherein heat energy is released to an environment, and is then expanded via an expansion valve, so that the refrigerant evaporates by absorbing heat energy via a heat receiving means, and further in an additional pumping operation of the cabinet air conditioner, the refrigerant is pumped without pressure change, so that a heat transfer is carried out by a heat-absorbing heat exchanger to a heat-emitting heat exchanger according to a heat exchanger principle, wherein both in the compression mode and in the pumping operation executed for both operations, the switching is provided in the pumping operation, the refrigerant via the condenser facing the environment, wherein the refrigerant is pumped in the pumping operation via a pump connected in parallel to the expansion valve, wherein the refriger
  • Fig. 1 illustrates a standard refrigeration cycle of an air conditioner for use in a control cabinet.
  • the air conditioner includes a refrigerant circuit with coolant lines L1 to L4. This circuit is used to execute a compression operation. A refrigerant is compressed by the line L1 via a compressor 11 to high pressure level. The rising
  • the refrigerant is supplied via line L2 to a condenser 12. As the refrigerant releases heat energy to the environment, it condenses to reach a liquid state. The heat release to the environment is indicated by the arrow A. The condenser 12 is in contact with the outside air.
  • the refrigerant still has high pressure in line L3. It is then expanded via an expansion valve 13. Via the line L4, the refrigerant is supplied to the evaporator 14, which is in contact with the air of the control cabinet. Here is a heat absorption of dissipated heat loss in the cabinet, which is indicated by the arrow B, the refrigerant evaporates.
  • Fig. 2 This principle is also used by the invention.
  • another cooling principle is provided.
  • an additional pumping operation is present, which in Fig. 2 is illustrated.
  • the refrigerant is pumped around without pressure change, so that a heat transfer takes place according to a heat exchanger principle.
  • the refrigerant circulates in a circle. Without a pump, the system works analogously to a gravity heater. At high transmitted power densities and suitable temperature conditions, evaporation or condensation processes can also occur during the heat exchange processes, which further increases the efficiency of the process.
  • Analogous to the circle according to Fig. 1 are the condenser 12 and the heat receiving means 14, which is designed as a heat exchanger 15, arranged.
  • the heat exchangers 15 and 12 are designed both for the compression operation and for the pumping operation. In pumping operation, the refrigerant is pumped via the condenser 12 without pressure change, so that the heat dissipation takes place to the environment through the condenser.
  • a bypass line L5 is connected parallel to the compressor. There is no compressor in this line L5.
  • the refrigerant is conveyed via this line L5.
  • the line L5 is connected on the one hand to the lines L1a and L1b and on the other hand to the lines L2a and L2b.
  • Parallel to the expansion valve 13 a pump 16 is connected, through which the refrigerant is pumped during pumping operation.
  • the refrigerant is pumped via the condenser 12, via the lines L6 or L6a, L6b and L4b, L1a, L5, L2b, L3a and L3b.
  • a collecting container 17 is connected for the liquid refrigerant collected therein.
  • the collecting tank 17 is located between the lines L3a and L3b or between the condenser 12 and the branch to the expansion valve 13 or the pump 16.
  • the pump 16 sucks liquid refrigerant from the collecting tank 17.
  • the compression operation and the pumping operation are reversible.
  • Fig. 3 shows a cabinet 18 with an air conditioner 19.
  • This can be designed as a cooling module 20 for modular expansion of the control cabinet.
  • the cooling module 20 may be disposed on and sealed to the cabinet so as to preclude ingress of water and dust into the cabinet.
  • the device 19 may be provided with air inlet openings 21 and air outlet openings 22, wherein the arrows C, D illustrate an external air flow. This air flow can be by convection and / or by at least a fan.
  • Fig. 3 is an example to be cooled component K shown.
  • control cabinet 18 circulates a closed air flow E, which can also be done by convection and / or by at least one fan.
  • the outside air is not in contact with the air of the control cabinet in order to achieve the high IP protection class.
  • the control cabinet is practically hermetically sealed.
  • a control device 23 is shown. To these are an internal temperature sensor S1 and / or an ambient temperature sensor S2, the compressor 11, the pump 16, and one or more shut-off valves V1 to Vn and the expansion valve 13 connected.
  • a pumping operation may be turned on at a low ambient temperature.
  • a pumping mode can also be switched on with a low nominal actual value control deviation, while with a high nominal actual value control deviation, the air conditioning mode can be switched on.
  • the cabinet temperature may be 35 ° while the ambient temperature is 20 °.
  • the ambient temperature sensor S2 creates a temperature-dependent cooling operation with respect to the ambient temperature. This is particularly favorable in pumping operation.
  • the control device 23 may be designed so that a constant temperature is regulated in accordance with an adjustable or fixed setpoint of, for example, 35 °. If necessary, the control can turn on the compressor 11 or the pump 16 in case of deviations or control corresponding valves 13, V1 to Vn.
  • the invention is not limited to this example, so instead of a control cabinet analog another housing can be used.
  • a control cabinet analog another housing can be used.
  • any pressure change is to be understood in which a significant increase in the temperature of the refrigerant occurs.

Description

  • Die Erfindung betrifft ein Schaltschrank-Klimagerät mit einem Verdichter, einem Verflüssiger, einem Expansionsventil, einem Wärmeaufnahmemittel, und einem Kältekreis zur Ausführung eines Verdichtungsbetriebs, bei dem ein Kältemittel über den Verdichter auf Hochdruckniveau verdichtet wird sowie in den Verflüssiger geleitet und dort abgekühlt wird, wobei Wärmeenergie an eine Umgebung abgegeben wird und anschließend über das Expansionsventil entspannt wird, wobei das Kältemittel unter Aufnahme von Wärme über das Wärmeaufnahmemittel verdampft. Ferner betrifft die Erfindung ein Verfahren zum Betreiben eines Schaltschrank-Klimagerätes zur Kühlung eines Schaltschrankes, wobei in einem Verdichtungsbetrieb des Schaltschrank-Klimageräts (19) bei einem Kältekreis des Schaltschrank-Klimageräts (19) ein Kältemittel über einen Verdichter (11) auf Hochdruckniveau verdichtet wird sowie in einen Verflüssiger (12) geleitet und dort abgekühlt wird, wobei Wärmeenergie an eine Umgebung abgegeben wird, und anschließend über ein Expansionsventil (13) entspannt wird, damit das Kältemittel durch Aufnahme von Wärmeenergie über ein Wärmeaufnahmemittel (14) verdampft
  • Zur Wärmeabfuhr bei Schaltschränken ist es bekannt, Klimageräte der genannten Art einzusetzen. Bei diesem Klimabetrieb erfolgt eine Kühlung nahezu unabhängig von der Umgebungstemperatur, so dass auch eine Kühlung erfolgen, wenn die Umgebungstemperatur höher ist als die gewünschte Schaltschranktemperatur.
  • Durch die Wärmeabgabe an die Umgebung nach diesem Prinzip entstehen jedoch durch die relativ hohe aufzuwendende Energie für den Verdichtungsprozess des Kältemittels hohe Energieverbräuche.
  • In der JP 60057154 wird eine Solar-Wärmepumpe beschrieben, welche für Gebäude geeignet ist und eine Kombination aus Kühlsystem und Solarheizung darstellt.
  • Die US 2008/0115515 beschreibt eine sogenannte Hybridlösung mit einem Kühlmodus und einem Pumpbetrieb zur Gebäudekühlung.
  • In der WO 2008/079116 wird ein Kühlsystem beschrieben, welches den Pumpbetrieb mit einem Kühlmodus nach dem Verdichtungs-Expansions-Prinzip kombiniert.
  • Durch die DE 100 13 039 A1 ist ein Kühlgerät für einen Schaltschrank mit einem Kältekreislauf bekannt, der einen Kompressor, einen Verdampfer und einen Verflüssiger aufweist.
  • In der WO 2008/082379 A1 wird ein Klimagerät beschrieben, welches auf dem Verdichtungsprinzip basiert und zusätzlich einen Modus aufweist, bei welchem das Kühlmittel mittels einer Pumpe zirkuliert wird.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Schaltschrank-Klimagerät für Schaltschränke der genannten Art zu schaffen, das insgesamt weniger elektrische Energie verbraucht, d. h. mit einem sehr geringen Energieverbrauch.
  • Diese Aufgabe wird durch ein Schaltschrank-Klimagerät gemäß Anspruch 1 gelöst. Dabei erfolgt ein alternativer Pumpbetrieb, bei dem das Kältemittel ohne Druckveränderung umgepumpt wird, so dass ein Wärmetransport nach einem Wärmetauscherprinzip erfolgt.
  • Die Erfindung beruht auf den Gedanken, dass bei geringerer Umgebungstemperatur und höherer Schaltschranktemperatur ein Wärmeaustausch durch Pumpen des Kältemittels erfolgt. Die im Schaltschrank aufgenommene Wärmeleistung wird im internen Wärmetauscher an das Fluid übertragen, erwärmt das Fluid und wird zu dem äußeren Wärmetauscher gefördert. Hier wird die aufgenommene Wärmeleistung an die kühlere Umgebungsluft abgegeben. Wärmeabgebende Schaltschrankkomponenten können sein sowohl Elektronikkomponenten, wie speicherprogrammierbare Steuerungen, andere Steuerungen, Computer, Server, Geräte für die Telekommunikation und dergleichen als auch elektromechanische Komponenten, wie Schaltgeräte. In der Regel sind Schaltschränke häufig in speziellen Räumen für Schaltanlagen oder in anderen Räumen untergebracht, in denen eine Umgebungstemperatur von etwa 20° relativ häufig vorkommt. Bei dieser Temperatur ist ein Wärmetausch nach dem Prinzip eines Wärmetauschers günstig. Im Pumpbetrieb wird vorzugsweise nämlich kein Verdichter eingesetzt. Ein Hochdruck ist im Pumpbetrieb nicht erforderlich. Für die Bereitstellung des Hochdrucks ist eine hohe Leistung erforderlich. Elektrische Energie wird lediglich benötigt, um die erforderliche Pumpe bzw. zusätzliche Lüfter zu betreiben. Dieser Energiebedarf ist jedoch verhältnismäßig gering.
  • Eine weitere Reduzierung von Baugruppen wird in einfacher Weise dadurch realisiert, dass sowohl im Verdichtungsbetrieb als auch im Pumpbetrieb für beide Betriebe ausgeführte Wärmetauscher vorgesehen sind.
  • Ein erheblicher Vorteil der Erfindung ist, dass Schaltschränke mit sehr hoher IP-Schutzklasse ausgeführt sein können, denn der Pumpbetrieb nach dem Wärmetauscherprinzip erlaubt ein geschlossenes Schaltschranksystem ohne direkte Lufteintrittsöffnungen, wie es für die Klimatisierung mit z.B. Filterlüftern notwendig wäre.
  • Ein anderer Vorteil des erfindungsgemäßen Klimagerätes ist, dass Komponenten, wie Verflüssiger oder Wärmetauscher, für beide Betriebsarten genutzt werden können, wodurch die Anzahl der erforderlichen zusätzlichen Komponenten relativ gering ist.
  • Das im Kreislauf eingesetzte Kältemittel Fluid erfüllt praktisch verschiedene Funktionen.
  • Eine erste Funktion ist die Verwendung als konventionelles Kältemittel in einem Kompressions-Kältekreislauf mit den thermodynamischen Prozessen Verdichten und Expandieren, Verdampfen und Verflüssigen. Durch das Verdichten von einem Niederdruck auf einem Hochdruck ist das Kältemittel in der Lage, Wärme bei niedriger Verdampfungstemperatur aufzunehmen und danach bei hohem Druck und hoher Temperatur im Verflüssiger an die Umgebung abzugeben. Bei der anschließenden Expansion des Kältemittels über das Expansionsventil wird der Hochdruck auf Niederdruck gebracht. Das Kältemittel expandiert, verdampft und entzieht dem Schaltschrank erneut Wärme.
  • Eine zweite Funktion des Fluids ist die des reinen Wärmeenergietransports im Pumpbetrieb, und zwar ohne Druckänderung. Das Fluid nimmt im Wärmetauscher die von den Schaltschrankkomponenten erzeugte Verlustwärme auf und transportiert sie nach außen. Verdampfungs- und Kondensationsprozesse finden hier nicht zwingend statt, können aber Bestandteil des Wärmeaustausches sein.
  • In überraschender Weise kann bei einer Schaltschrankkühlung für beide Kühlarten dasselbe Kühlmittel eingesetzt werden, so dass der Kühlprozess im Wesentlichen bzw. über weite Teile des Kreises über einen gemeinsamen Kreislauf erfolgen kann.
  • Die Erfindung beruht darauf, dass eine Kombination von einem Standard-Kältekreislauf im Klimabetrieb mit einem Pumpbetrieb ohne Druckänderung eines Fluids eine effiziente Kühlung bei geringerem Energiebedarf schafft. Die Erfindung beruht also auf einer Erweiterung eines Standard-Kältekreislaufs.
  • Eine kostengünstige Lösung, um das Fluid zu pumpen, ist dadurch gegeben, dass parallel zum Expansionsventil eine Pumpe angeschlossen ist, durch welche im Pumpbetrieb das Kältemittel gefördert wird. Durch den Parallelanschluss erfolgt
  • ein Abzweig, bei dem im Pumpbetrieb das Expansionsventil geschlossen werden kann, so dass das Fluid nur über die Pumpe fließen kann.
  • Ferner ist bei dem Klimagerät vorgesehen, dass parallel zum Verdichter eine Bypassleitung angeschlossen ist, durch welche im Pumpbetrieb das Kältemittel gefördert wird. Durch die Bypassleitung kann ein Fluid, ohne den Verdichter zu durchfließen und ohne Druckunterschied im Pumpbetrieb, transportiert werden. Die Bypassleitung kann beispielsweise über einen Absperrventil geschlossen werden.
  • Ferner wird im Pumpbetrieb das Kältemittel über den Verflüssiger gepumpt. Der Verflüssiger erfüllt dann zwei Funktionen. Die erste Funktion ist die Verflüssigung des gasförmigen Kältemittels durch die Wärmeabgabe an die Umgebung. Die andere Funktion ist die einer Wärmeabgabe für den Pumpbetrieb.
  • Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
  • Von besonderem Vorteil ist es, wenn nach dem Verflüssiger ein Sammelbehälter für das flüssige Kältemittel angeschlossen ist. Dadurch kann einerseits das Kühlsystem ohne den Einsatz der Pumpe analog einer Schwerkraftheizung arbeiten, was den Energiebedarf reduziert und einen Aufbau mit wenigen Komponenten schafft. Andererseits wirkt der Sammelbehälter als Puffer, so dass ein störungsfreier Betrieb bei Umschaltung von einer zur anderen Betriebsart gegeben ist. Zweckmäßigerweise ist der Sammelbehälter zwischen dem Abzweig zur Pumpe bzw. dem Expansionsventil und dem Verflüssiger angeordnet.
  • Eine gemeinsame Nutzung von Verflüssiger und Verdampfer ist dadurch möglich, wenn im Pumpbetrieb das Kältemittel über Verflüssiger und Verdampfer ohne Druckveränderung gepumpt wird, so dass durch den Verflüssiger eine Wärmeabgabe an die Umgebung stattfindet bzw. im Verdampfer die Wärmeaufnahme. Dadurch ist eine kostengünstige Realisierung der Erfindung möglich.
  • Zweckmäßigerweise können die verschiedenen Betriebsarten dadurch wahlweise betrieben werden, dass eine Umschaltung vom Verdichtungsbetrieb auf Pumpbetrieb und umgekehrt über Absperrventile erfolgt.
  • Eine Regelung kann in einfachster Weise durch eine Zwei- oder Dreipunktregelung erfolgen. Es können beispielsweise drei Temperaturfenster vorhanden sein. Das erste Temperaturfenster mit einem niedrigen Temperaturbereich definiert, dass weder ein Klimabetrieb noch ein Pumpbetrieb erfolgt. Hier ist keine Kühlung erforderlich. Das zweite Temperaturfenster mit einem mittleren Temperaturbereich definiert, dass nur ein Pumpbetrieb erfolgt. Das dritte Temperaturfenster mit einem höheren Temperaturbereich definiert, dass nur ein Klimabetrieb erfolgt.
  • Anstatt einer Mehrpunktregelung können auch dynamische Regelstrukturen, wie P-, I-, IP-, PID-Regler und dergleichen eingesetzt werden.
  • Zusätzlich oder alternativ zur von der Innentemperatur abhängigen Regelung kann die Regelvorrichtung durch einen bezüglich einer Umgebungstemperatur temperaturabhängigen Pumpbetrieb erfolgen. Möglich ist also, dass die Umgebungstemperatur als Parameter im Regelkreis vorhanden ist. Dies wird durch einen an die Regelvorrichtung angeschlossenen Umgebungstemperatur-Sensor erreicht. Die Berücksichtigung der Umgebungstemperatur bringt in einfacher Weise die gewünschte Energieeinsparung mit sich. Indem die Umgebungstemperatur bei der Regelung als Parameter berücksichtigt wird, kann nämlich bei relativ niedriger Umgebungstemperatur ein Pumpbetrieb eingesetzt werden, der völlig ausreichend wäre. Es ist auch klar, dass wenn die Umgebungstemperatur gleich oder höher der Innentemperatur ist, allenfalls nur ein Klimabetrieb in Frage kommt, da im Pumpbetrieb keine Kühlung erfolgen wird.
  • Die Erfindung umfasst ferner ein nach einem oder mehreren der Ansprüche 1 bis 7 ausgebildetes Klimagerät für mit sehr hoher IP-Schutzklasse ausgeführte Schaltschränke mit einem sehr geringen Energieverbrauch.
  • Ferner betrifft die Erfindung ein Verfahren zum Betreiben eines Schaltschrank-Klimagerätes zur Kühlung eines Schaltschrankes, wobei in einem Verdichtungsbetrieb des Schaltschrank-Klimageräts bei einem Kältekreis des Schaltschrank-Klimageräts ein Kältemittel über einen Verdichter auf Hochdruckniveau verdichtet wird sowie in einen Verflüssiger geleitet und dort abgekühlt wird, wobei Wärmeenergie an eine Umgebung abgegeben wird, und anschließend über ein Expansionsventil entspannt wird, damit das Kältemittel durch Aufnahme von Wärmeenergie über ein Wärmeaufnahmemittel verdampft, wobei ferner in einem zusätzlichen Pumpbetrieb des Schaltschrank-Klimageräts das Kältemittel ohne Druckveränderung umgepumpt wird, so dass ein Wärmetransport von einem Wärme aufnehmenden Wärmetauscher zu einem Wärme abgebenden Wärmetauscher nach einem Wärmetauscherprinzip erfolgt, wobei sowohl im Verdichtungsbetrieb als auch im Pumpbetrieb ein für beide Betriebe ausgeführter, der Schaltschrankinnenseite zugewandter Wärmetauscher, der das Wärmeaufnahmemittel bildet, vorgesehen wird, wobei im Pumpbetrieb das Kältemittel über den der Umgebung zugewandten Verflüssiger gepumpt wird, wobei das Kältemittel im Pumpbetrieb über eine parallel zum Expansionsventil angeschlossene Pumpe gefördert wird, wobei das Kältemittel im Pumpbetrieb über eine parallel zum Verdichter angeschlossene Bypassleitung gefördert wird, wobei eine mit einem Innentemperatur-Sensor verbundene Regelvorrichtung bezüglich eines Innenraumes des Schaltschrankes temperaturabhängig zwischen dem Verdichtungsbetrieb und dem Pumpbetrieb umschaltet oder regelt, und/oder wobei eine mit einem Umgebungstemperatur-Sensor verbundene Regelvorrichtung bezüglich einer Umgebungstemperatur temperaturabhängig einen Kühlbetrieb, insbesondere einen Pumpbetrieb, regelt.
  • Ein Ausführungsbeispiel wird anhand der Zeichnungen näher erläutert, wobei weitere vorteilhafte Weiterbildungen der Erfindung und Vorteile derselben beschrieben sind.
  • Es zeigen:
  • Fig. 1
    eine Darstellung eines Standard-Kältekreislaufs nach dem Stand der Technik,
    Fig. 2
    eine Darstellung eines erfindungsgemäßen Kältekreislaufs,
    Fig. 3
    eine perspektivische Darstellung eines Schaltschrankes mit einem Kühlmodul, und
    Fig. 4
    ein Blockschaltbild einer Regelvorrichtung des erfindungsgemäßen Kältekreislaufs.
  • Fig. 1 veranschaulicht einen Standard-Kältekreislauf eines Klimagerätes zur Verwendung bei einem Schaltschrank. Das Klimagerät umfasst einen Kältekreis mit Kühlmittelleitungen L1 bis L4. Dieser Kreis dient zur Ausführung eines Verdichtungsbetriebs. Ein Kältemittel wird durch die Leitung L1 über einen Verdichter 11 auf Hochdruckniveau verdichtet. Dabei steigt die
  • Temperatur des Kältemittels an. Danach wird das Kältemittel über die Leitung L2 einem Verflüssiger 12 zugeführt. Indem das Kältemittel dort Wärmeenergie an die Umgebung abgibt, kondensiert es, so dass es einen flüssigen Zustand erreicht. Die Wärmeabgabe an die Umgebung ist durch den Pfeil A gekennzeichnet. Der Verflüssiger 12 steht in Kontakt mit der Außenluft.
  • Das Kältemittel hat in der Leitung L3 noch einen hohen Druck. Anschließend wird es über ein Expansionsventil 13 entspannt. Über die Leitung L4 wird das Kältemittel dem Verdampfer 14 zugeführt, der mit der Luft des Schaltschrankes in Kontakt steht. Hier erfolgt eine Wärmeaufnahme der abzuführenden Verlustwärme im Schaltschrank, was durch den Pfeil B gekennzeichnet ist, das Kältemittel verdampft.
  • Dieses Prinzip wird ebenfalls durch die Erfindung genutzt. Zusätzlich ist jedoch noch ein weiteres Kühlprinzip vorgesehen. Erfindungsgemäß ist ein zusätzlicher Pumpbetrieb vorhanden, der in Fig. 2 veranschaulicht ist. Hierbei wird das Kältemittel ohne Druckveränderung umgepumpt, so dass ein Wärmetransport nach einem Wärmetauscherprinzip erfolgt. Das Kältemittel zirkuliert im Kreis. Ohne Pumpe arbeitet das System analog einer Schwerkraftheizung. Bei hohen übertragenen Leistungsdichten und geeigneten Temperaturverhältnissen kann es bei den Wärmeaustauschvorgängen auch zu Verdampfungs- bzw. Kondensationsvorgängen kommen, was die Effizienz des Prozesses weiter erhöht.
  • Analog zum Kreis gemäß Fig. 1 sind der Verflüssiger 12 und das Wärmeaufnahmemittel 14, welches als Wärmetauscher 15 ausgeführt ist, angeordnet. Die Wärmetauscher 15 und 12 sind sowohl für den Verdichtungsbetrieb als auch für den Pumpbetrieb ausgeführt. Im Pumpbetrieb wird das Kältemittel über den Verflüssiger 12 ohne Druckveränderung gepumpt, so dass durch den Verflüssiger die Wärmeabgabe an die Umgebung stattfindet.
  • Wie Fig. 2 zeigt, ist parallel zum Verdichter eine Bypassleitung L5 angeschlossen. In dieser Leitung L5 liegt kein Verdichter. Im Pumpbetrieb wird das Kältemittel über diese Leitung L5 gefördert. Die Leitung L5 ist einerseits an die Leitungen L1a und L1b und andererseits mit den Leitungen L2a und L2b verbunden. Parallel zum Expansionsventil 13 ist eine Pumpe 16 angeschlossen, durch welche im Pumpbetrieb das Kältemittel gefördert wird. Im Pumpbetrieb wird das Kältemittel über den Verflüssiger 12 gepumpt, und zwar über die Leitungen L6 bzw. L6a, L6b sowie L4b, L1a, L5, L2b, L3a und L3b.
  • Wie weiterhin Fig. 2 veranschaulicht, ist nach dem Verflüssiger 12 ein Sammelbehälter 17 für das darin aufgefangene flüssige Kältemittel angeschlossen. Der Sammelbehälter 17 liegt zwischen den Leitungen L3a und L3b bzw. zwischen dem Verflüssiger 12 und dem Abzweig zum Expansionsventil 13 oder der Pumpe 16. Die Pumpe 16 saugt aus dem Sammelbehälter 17 flüssiges Kältemittel.
  • Vorzugsweise sind der Verdichtungsbetrieb und der Pumpbetrieb umschaltbar ausgeführt. Eine Umschaltung vom Verdichtungsbetrieb auf Pumpbetrieb und umgekehrt erfolgt über Absperrventile.
  • Fig. 3 zeigt einen Schaltschrank 18 mit einem Klimagerät 19. Dieser kann als Kühlmodul 20 zur modulartigen Erweiterung des Schaltschrankes ausgeführt sein. Das Kühlmodul 20 kann zum Beispiel auf dem Schrank angeordnet sein und ihm gegenüber abgedichtet sein, so dass ein Eindringen von Wasser und Staub in dem Schaltschrank ausgeschlossen wird. Dadurch kann eine hohe IP-Schutzklasse realisiert werden. Das Gerät 19 kann mit Lufteintrittsöffnungen 21 und Luftaustrittsöffnungen 22, wobei die Pfeile C, D einen externen Luftstrom veranschaulichen sollen, versehen sein. Dieser Luftstrom kann durch Konvektion und/oder durch mindestens
    einen Lüfter erfolgen. In Fig. 3 ist beispielhaft eine zu kühlende Komponente K dargestellt.
  • Im Schaltschrank 18 zirkuliert ein geschlossener Luftstrom E, der ebenfalls durch Konvektion und/oder durch mindestens einen Lüfter erfolgen kann.
  • Vorzugsweise steht die Außenluft nicht in Kontakt mit der Luft des Schaltschrankes, um die hohe IP-Schutzklasse zu erreichen. Der Schaltschrank ist praktisch hermetisch abgedichtet.
  • In Fig. 4 ist eine Regelvorrichtung 23 dargestellt. An diese sind ein Innentemperatur-Sensor S1 und/oder ein Umgebungstemperatur-Sensor S2, der Verdichter 11, die Pumpe 16, sowie ein oder mehrere Absperrventile V1 bis Vn bzw. das Expansionsventil 13 angeschlossen.
  • Durch den Innentemperatur-Sensor S1 wird eine bezüglich des Schaltschrank-Innenraumes temperaturabhängige Regelung oder Umschaltung vom Verdichtungsbetrieb auf Pumpbetrieb und umgekehrt erreicht. Ein Pumpbetrieb kann zum Beispiel bei einer niedrigen Umgebungstemperatur eingeschaltet werden. Ein Pumpbetrieb kann auch bei geringer Soll-IstWert-Regelabweichung eingeschaltet werden, während bei hoher Soll-IstWert-Regelabweichung der Klimabetrieb eingeschaltet werden kann. Im Pumpbetrieb kann zum Beispiel die Schaltschranktemperatur 35° sein, während die Umgebungstemperatur 20° ist.
  • Durch den Umgebungstemperatur-Sensor S2 wird ein bezüglich der Umgebungstemperatur temperaturabhängiger Kühlbetrieb geschaffen. Dies ist insbesondere im Pumpbetrieb günstig.
  • Um auszuschließen, dass Wärme von außen nach innen gepumpt wird, ist es zweckmäßig, dass ein Pumpbetrieb nur erfolgt, wenn die Umgebungstemperatur niedriger als die Innentemperatur ist.
  • Die Regelvorrichtung 23 kann so ausgeführt sein, dass eine konstante Temperatur gemäß eines einstellbaren oder festen Sollwertes von zum Beispiel 35° geregelt wird. Bedarfsweise kann die Regelung bei Regelabweichungen den Verdichter 11 oder die Pumpe 16 einschalten bzw. entsprechende Ventile 13, V1 bis Vn ansteuern.
  • Die Erfindung ist nicht auf dieses Beispiel beschränkt, so kann anstatt eines Schaltschrankes analog ein anderes Gehäuse eingesetzt werden. Als Hochdruck im Sinne der Beschreibung ist jede Druckänderung zu verstehen, bei dem eine signifikante Temperaturerhöhung des Kältemittels eintritt. Denkbar sind auch Ausführungen ohne zusätzliche Pumpe, wobei der Verdichter die Aufgabe einer Pumpfunktion ohne Druckveränderung übernehmen könnte.
  • Bezugszeichenliste
  • 11
    Verdichter
    12
    Verflüssiger
    13
    Expansionsventil
    14
    Wärmeaufnahmemittel
    15
    Wärmetauscher
    16
    Pumpe
    17
    Sammelbehälter
    18
    Schaltschrank
    19
    Klimagerät
    20
    Kühlmodul
    21
    Lufteintrittsöffnungen
    22
    Luftaustrittsöffnungen
    23
    Regelvorrichtung
    25
    Bypassleitungen
    L1-L6
    Kühlmittelleitungen
    S1
    Innenraumtemperatur-Sensor
    S2
    Umgebungstemperatur-Sensor
    V1-Vn
    Absperrventile

Claims (8)

  1. Schaltschrank-Klimagerät (19) mit einem Verdichter (11), einem Verflüssiger (12), einem Expansionsventil (13), einem Wärmeaufnahmemittel (14), und einem Kältekreis zur Ausführung eines Verdichtungsbetriebs, bei dem ein Kältemittel über den Verdichter (11) auf Hochdruckniveau verdichtet wird sowie in den Verflüssiger (12) geleitet und dort abgekühlt wird, wobei Wärmeenergie an eine Umgebung abgegeben wird, und anschließend über das Expansionsventil (13) entspannt wird, damit das Kältemittel durch Aufnahme von Wärmeenergie über das Wärmeaufnahmemittel (14) verdampft,
    wobei das Schaltschrank-Klimagerät (19) einen zusätzlichen Pumpbetrieb aufweist, bei dem das Kältemittel ohne Druckveränderung umpumpbar ist, so dass ein Wärmetransport von einem Wärme aufnehmenden Wärmetauscher zu einem Wärme abgebenden Wärmetauscher nach einem Wärmetauscherprinzip erfolgt, und wobei im Pumpbetrieb das Kältemittel über den der Umgebung zugewandten Verflüssiger (12) pumpbar ist,
    wobei sowohl im Verdichtungsbetrieb als auch im Pumpbetrieb ein für beide Betriebe ausgeführter, der Schaltschrankinnenseite zugewandter Wärmetauscher (15), der das Wärmeaufnahmemittel (14) bildet, vorgesehen ist,
    wobei parallel zum Expansionsventil (13) eine Pumpe (16) angeschlossen ist, durch welche im Pumpbetrieb das Kältemittel förderbar ist,
    wobei parallel zum Verdichter (11) eine Bypassleitung (L5) angeschlossen ist, durch welche im Pumpbetrieb das Kältemittel förderbar ist,
    wobei ein Innentemperatur-Sensor (S1) sowie eine damit verbundene Regelvorrichtung (23), bei der eine bezüglich eines Innenraumes des Schaltschrankes temperaturabhängige Regelung oder Umschaltung vom Verdichtungsbetrieb auf Pumpbetrieb und umgekehrt erfolgt, und/oder ein Umgebungstemperatur-Sensor (S2) sowie eine damit verbundene Regelvorrichtung (23), durch die ein bezüglich einer Umgebungstemperatur temperaturabhängiger Kühlbetrieb, insbesondere ein Pumpbetrieb, erfolgt, vorgesehen sind.
  2. Schaltschrank-Klimagerät nach Anspruch 1,
    dadurch gekennzeichnet,
    dass nach dem Verflüssiger (12) ein Sammelbehälter (17) für das flüssige Kältemittel angeschlossen ist.
  3. Schaltschrank-Klimagerät nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet,
    dass im Pumpbetrieb das Kältemittel über den Verflüssiger (12) ohne Druckveränderung pumpbar ist, so dass durch den Verflüssiger (12) eine Wärmeabgabe an die Umgebung stattfindet.
  4. Schaltschrank-Klimagerät nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Verdichtungsbetrieb und der Pumpbetrieb umschaltbar ausgeführt sind, wobei eine Umschaltung vom Verdichtungsbetrieb auf Pumpbetrieb und umgekehrt über Absperrventile (V1 - Vn) erfolgt.
  5. Schaltschrank-Klimagerät nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass ein Pumpbetrieb erfolgt, wenn die Umgebungstemperatur niedriger als die Innentemperatur ist.
  6. Schaltschrank-Klimagerät nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Ausführung als modulartige Baugruppe.
  7. Schaltschrank-Klimagerät nach Anspruch 1 für mit sehr hoher IP-Schutzklasse ausgeführte Schaltschränke mit einem sehr geringen Energieverbrauch.
  8. Verfahren zum Betreiben eines Schaltschrank-Klimagerätes (19) zur Kühlung eines Schaltschrankes, wobei in einem Verdichtungsbetrieb des Schaltschrank-Klimageräts (19) bei einem Kältekreis des Schaltschrank-Klimageräts (19) ein Kältemittel über einen Verdichter (11) auf Hochdruckniveau verdichtet wird sowie in einen Verflüssiger (12) geleitet und dort abgekühlt wird, wobei Wärmeenergie an eine Umgebung abgegeben wird, und anschließend über ein Expansionsventil (13) entspannt wird, damit das Kältemittel durch Aufnahme von Wärmeenergie über ein Wärmeaufnahmemittel (14) verdampft,
    wobei in einem zusätzlichen Pumpbetrieb des Schaltschrank-Klimageräts (19) das Kältemittel ohne Druckveränderung umgepumpt wird, so dass ein Wärmetransport von einem Wärme aufnehmenden Wärmetauscher zu einem Wärme abgebenden Wärmetauscher nach einem Wärmetauscherprinzip erfolgt, wobei sowohl im Verdichtungsbetrieb als auch im Pumpbetrieb ein für beide Betriebe ausgeführter, der Schaltschrankinnenseite zugewandter Wärmetauscher (15), der das Wärmeaufnahmemittel (14) bildet, vorgesehen wird, wobei im Pumpbetrieb das Kältemittel über den der Umgebung zugewandten Verflüssiger (12) gepumpt wird, wobei das Kältemittel im Pumpbetrieb über eine parallel zum Expansionsventil (13) angeschlossene Pumpe (16) gefördert wird, wobei das Kältemittel im Pumpbetrieb über eine parallel zum Verdichter (11) angeschlossene Bypassleitung (L5) gefördert wird, wobei eine mit einem Innentemperatur-Sensor (S1) verbundene Regelvorrichtung (23) bezüglich eines Innenraumes des Schaltschrankes temperaturabhängig zwischen dem Verdichtungsbetrieb und dem Pumpbetrieb umschaltet oder regelt, und/oder wobei eine mit einem Umgebungstemperatur-Sensor (S2) verbundene Regelvorrichtung (23) bezüglich einer Umgebungstemperatur temperaturabhängig einen Kühlbetrieb, insbesondere einen Pumpbetrieb, regelt.
EP09014199.5A 2008-12-17 2009-11-13 Schaltschrank-Klimagerät und Verfahren zum Betreiben eines Solchen Active EP2199706B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE202008016671U DE202008016671U1 (de) 2008-12-17 2008-12-17 Klimagerät

Publications (2)

Publication Number Publication Date
EP2199706A1 EP2199706A1 (de) 2010-06-23
EP2199706B1 true EP2199706B1 (de) 2018-01-03

Family

ID=40530980

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09014199.5A Active EP2199706B1 (de) 2008-12-17 2009-11-13 Schaltschrank-Klimagerät und Verfahren zum Betreiben eines Solchen

Country Status (2)

Country Link
EP (1) EP2199706B1 (de)
DE (1) DE202008016671U1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009023394A1 (de) * 2009-05-29 2010-12-30 Airbus Deutschland Gmbh Verbesserte Kälteerzeugungsvorrichtung, insbesondere für Flugzeuge
ITPN20090043A1 (it) * 2009-07-13 2011-01-14 Parker Hiross Spa Dispositivo di raffreddamento migliorato
WO2012066763A1 (ja) * 2010-11-15 2012-05-24 三菱電機株式会社 冷凍装置
FR2972047B1 (fr) * 2011-02-25 2022-07-29 Julien Guillaume Leprieur Dispositif pour ameliorer la performance des installations frigorifiques
US9140475B2 (en) * 2012-12-07 2015-09-22 Liebert Corporation Receiver tank purge in vapor compression cooling system with pumped refrigerant economization
CN104764235B (zh) * 2015-04-10 2017-01-11 深圳科士达科技股份有限公司 一种提高低温制冷的氟泵空调一体系统
DE202018106277U1 (de) 2018-11-05 2020-02-06 Pfannenberg Gmbh Klimatisierungsanordnung für einen Schaltschrank und Schaltschrank
CN113251703A (zh) * 2021-06-09 2021-08-13 爱法科技(无锡)有限公司 一种热能聚合技术和设备
CN113405277A (zh) * 2021-07-22 2021-09-17 爱法科技(无锡)有限公司 一种环境能量收集使用系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10013039A1 (de) * 2000-03-17 2001-10-04 Loh Kg Rittal Werk Kühlgerät für eien Schaltschrank
WO2008082379A1 (en) * 2006-12-28 2008-07-10 Carrier Corporation Free-cooling capacity control for air conditioning systems

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057154B2 (ja) 1977-10-13 1985-12-13 日本周辺機株式会社 デイスクパツク
JPS6057154A (ja) * 1983-09-07 1985-04-02 Mitsubishi Electric Corp ソ−ラ−ヒ−トポンプ装置
US7658079B2 (en) 2006-11-22 2010-02-09 Bailey Peter F Cooling system and method
EP2102563B1 (de) 2006-12-22 2018-02-07 Carrier Corporation Klimaanlagen und verfahren mit freikühlungspumpenschutzsequenzen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10013039A1 (de) * 2000-03-17 2001-10-04 Loh Kg Rittal Werk Kühlgerät für eien Schaltschrank
WO2008082379A1 (en) * 2006-12-28 2008-07-10 Carrier Corporation Free-cooling capacity control for air conditioning systems

Also Published As

Publication number Publication date
DE202008016671U1 (de) 2009-04-09
EP2199706A1 (de) 2010-06-23

Similar Documents

Publication Publication Date Title
EP2199706B1 (de) Schaltschrank-Klimagerät und Verfahren zum Betreiben eines Solchen
EP1611778B1 (de) Verfahren und anordnung zur kühlung eines substrats, insbesondere eines halbleiters
DE102012208174B4 (de) Wärmepumpe und verfahren zum pumpen von wärme im freikühlungsmodus
WO2012003895A1 (de) System und verfahren zur kühlung einer rechenanlage
DE3805987A1 (de) Kaelteerzeugungskreis mit kaeltespeicherungsmaterial
DE3907859C2 (de) Luftgekühltes Kälteaggregat mit einem Kühlmittelkreislauf
EP2891397A1 (de) Wärmetauscher für die schaltschrankkühlung und eine entsprechende kühlanordnung
DE19921554C2 (de) Vorrichtung und Verfahren zum Kühlen eines Schalt- oder Steuerschrankes
EP3417213B1 (de) Kältegerät mit mehreren lagerkammern
WO2011082790A1 (de) System und verfahren zur kühlung einer rechenanlage
DE102020117471A1 (de) Wärmepumpenanordnung mit indirekter Batterieerwärmung für batteriebetriebene Kraftfahrzeuge und Verfahren zum Betreiben einer Wärmepumpenanordnung
EP3652490A1 (de) Wärmepumpenanordnung mit einem steuerbaren wärmetauscher und betriebsverfahren einer wärmepumpenanordnung
EP2837275B1 (de) Kühlgerät für einen schaltschrank sowie ein entsprechendes verfahren
EP2257147B1 (de) Kühlgerät
EP0152608A2 (de) Verfahren zur Steuerung einer Verbundkälteanlage
EP2989397B1 (de) Verfahren und vorrichtung zum kühlen eines motors
EP4224092A1 (de) Wärmepumpensystem mit co2 als erstem wärmepumpenmedium und wasser als zweitem wärmepumpenmedium
DE19832682A1 (de) Abtaueinrichtung für einen Verdampfer einer Wärmepumpe oder eines Klimageräts
DE202018001404U1 (de) Einrichtung zum Temperieren von durch Filter gereinigten flüssigen Mediums
EP3244143A1 (de) Kühlvorrichtung
DE102020003962B4 (de) Kälteanlage und Verfahren zum Betreiben einer Kälteanlage mit einem Lüftermotor als Wärmequelle
AT504762B1 (de) Wärmepumpe
EP3309478B1 (de) Verfahren zum betreiben eines kältekreislaufs
DE102011116602A1 (de) Produktionsanlage
EP2853842A1 (de) Verfahren zum Steuern einer Klimaanlage und Vorrichtung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20100517

17Q First examination report despatched

Effective date: 20100622

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 25/00 20060101AFI20170612BHEP

Ipc: F25B 41/00 20060101ALI20170612BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170725

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 960663

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009014635

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180103

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180403

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180403

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180503

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009014635

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

26N No opposition filed

Effective date: 20181005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181113

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 960663

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091113

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231103

Year of fee payment: 15

Ref country code: MT

Payment date: 20231122

Year of fee payment: 15

Ref country code: IT

Payment date: 20231130

Year of fee payment: 15

Ref country code: FR

Payment date: 20231122

Year of fee payment: 15

Ref country code: DE

Payment date: 20231128

Year of fee payment: 15