EP2853842A1 - Verfahren zum Steuern einer Klimaanlage und Vorrichtung zur Durchführung des Verfahrens - Google Patents

Verfahren zum Steuern einer Klimaanlage und Vorrichtung zur Durchführung des Verfahrens Download PDF

Info

Publication number
EP2853842A1
EP2853842A1 EP14450040.2A EP14450040A EP2853842A1 EP 2853842 A1 EP2853842 A1 EP 2853842A1 EP 14450040 A EP14450040 A EP 14450040A EP 2853842 A1 EP2853842 A1 EP 2853842A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
valves
compressor
mode
outdoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14450040.2A
Other languages
English (en)
French (fr)
Inventor
Matthias Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vossloh Kiepe GmbH Austria
Original Assignee
Vossloh Kiepe GmbH Austria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vossloh Kiepe GmbH Austria filed Critical Vossloh Kiepe GmbH Austria
Publication of EP2853842A1 publication Critical patent/EP2853842A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/28Means for preventing liquid refrigerant entering into the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves

Definitions

  • the invention relates to a method for controlling an air conditioning system with heat pump function, wherein the system comprises an indoor heat exchanger and an outdoor heat exchanger and a compressor and valves are arranged, which control the circulation of a refrigerant such that in one mode of operation of the indoor heat exchanger as the evaporator, in the operating mode other than condenser works.
  • the invention is a device for carrying out the method according to the invention.
  • Compressors in air conditioners and heat pumps can only compress gaseous refrigerant, they break down when aspirating liquid fractions.
  • a liquid separator is installed in the refrigeration circuit to protect the compressor with to make sure that no liquid components are sucked by the compressor.
  • the necessary arrangement of a liquid separator increases the cost of the known systems and also requires a complex construction.
  • the invention has set itself the goal of providing a method of the type mentioned in the application no liquid separator is required.
  • This method is characterized in that the mode change pressure equalization is performed by the compressor stopped and the inner and the outer heat exchanger are connected by switching the valves directly, whereupon the pressure in the valves and in-between heat exchanger after entering a pressure and temperature compensation the desired operating mode corresponding position are brought and the compressor is set in motion.
  • An apparatus for carrying out the method according to the invention is characterized in that the compressor upstream of two valves and two valves downstream, depending on the mode of operation of one of the valves to the outdoor heat exchanger, the other is switchable to the indoor heat exchanger.
  • the gaseous state is indicated by dots
  • the liquid state of the refrigerant in the respective regions is indicated by waves.
  • the compressor 12 compresses the gaseous refrigerant, which now flows under high pressure through the solenoid valve 1 to the outdoor heat exchanger 10.
  • the refrigerant releases heat to the ambient air and is thereby liquefied.
  • the outdoor heat exchanger is a "condenser" in this mode.
  • the refrigerant flows through the collector 9 and via the solenoid valve 5 to the expansion valve 7.
  • the expansion valve 7 drops the pressure abruptly, which not only results in cooling of the refrigerant, it also begins to evaporate.
  • the refrigerant absorbs heat from the room air until it is completely evaporated.
  • the indoor heat exchanger is in this mode an "evaporator".
  • valves 2, 4 and 6 In heating mode, the valves 2, 4 and 6 remain open by the use of electromagnets. The valves 1, 3 and 5 are closed.
  • the compressor 12 compresses the gaseous refrigerant, which now flows under high pressure through the solenoid valve 4 to the inner heat exchanger 11.
  • the refrigerant releases heat to the room air and is thereby liquefied.
  • the indoor heat exchanger is a "condenser" in this mode.
  • the refrigerant flows through the collector 9 via the solenoid valve 6 to the expansion valve eighth
  • the expansion valve 8 abruptly lowers the pressure, which not only causes the refrigerant to cool, it also starts to evaporate.
  • the refrigerant absorbs heat from the ambient air until it is completely evaporated.
  • the outdoor heat exchanger is an "evaporator" in this mode.
  • the compressor 12 Both in heating mode and in cooling mode, the compressor 12 always sucks pure gaseous refrigerant from the respective evaporator.
  • the functions of the heat exchangers 10, 11 change, the evaporator becomes the condenser and vice versa.
  • the problem with the mode change results from the fact that the compressor 12 sucks after the change from that heat exchanger 10, 11, which previously worked as a condenser. In the condenser is partly liquid coolant, which, if it would get in this state to the compressor 12, this would destroy.
  • a pressure compensation is therefore carried out during operation change. First, the compressor 12 is stopped and all solenoid valves 1-6 are closed.
  • valves 2 and 3 are closed again. Thereafter, the valves for the desired state are reopened (1, 3, 5 for cooling operation, 2, 4, 6 for heating operation) and the compressor 12 is started.
  • the term "valves” used above is not to be understood in the strict sense. Rather, it should be recorded all Absperrorgange that meet the intended purpose. The control of the "valves" is carried out according to the specifications of the present invention issued device-internal control.

Abstract

Bei einem Verfahren zum Steuern einer Klimaanlage mit Wärmepumpenfunktion weist die Anlage einen Innenwärmetauscher (11) und einen Außenwärmetauscher (10) sowie einen Verdichter (12) auf und es sind Ventile (1 bis 6) angeordnet, welche den Kreislauf eines Kältemittels derart steuern, dass bei einer Betriebsart der Innenwärmetauscher (11) als Verdampfer, bei der anderen Betriebsart als Verflüssiger arbeitet. Beim Betriebsartenwechsel wird ein Druckausgleich durchgeführt, indem der Verdichter (12) angehalten und der Innen- (11) und der Außenwärmetauscher (10) durch Schaltung der Ventile (1 bis 6) direkt verbunden werden, worauf nach Eintritt eines Druck- und Temperaturausgleiches zwischen Innen- (11) und Außenwärmetauscher (10) die Ventile (1 bis 6) in die der gewünschten Betriebsart entsprechenden Stellung gebracht werden und der Verdichter (12) in Gang gesetzt wird. Dadurch ist kein Flüssigkeitsabscheider notwendig.

Description

  • Die Erfindung bezieht sich auf ein Verfahren zum Steuern einer Klimaanlage mit Wärmepumpenfunktion, wobei die Anlage einen Innenwärmetauscher und einen Außenwärmetauscher sowie einen Verdichter aufweist und Ventile angeordnet sind, welche den Kreislauf eines Kältemittels derart steuern, dass bei einer Betriebsart der Innenwärmetauscher als Verdampfer, bei der anderen Betriebsart als Verflüssiger arbeitet.
  • Ferner ist Gegerlstand der Erfindung eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens.
  • Verdichter in Klimageräten und Wärmepumpen können ausschließlich gasförmiges Kältemittel verdichten, sie gehen bei Ansaugung von flüssigen Anteilen kaputt. Bei bekannten Anlagen wird zum Schutz des Kompressors ein Flüssigkeitsabscheider in den Kältekreislauf mit eingebaut um sicher zu stellen, dass keine flüssigen Anteile vom Kompressor angesaugt werden. Die notwendige Anordnung eines Flüssigkeitsabscheiders verteuert die bekannten Anlagen und erfordert auch eine aufwendige Konstruktion.
  • Die Erfindung hat es sich zum Ziel gesetzt, ein Verfahren der eingangs genannten Art zu schaffen, bei dessen Anwendung kein Flüssigkeitsabscheider erforderlich ist.
  • Dieses Verfahren zeichnet sich dadurch aus, dass beim Betriebsartenwechsel ein Druckausgleich durchgeführt wird, indem der Verdichter angehalten und der Innen- und der Außenwärmetauscher durch Schaltung der Ventile direkt verbunden werden, worauf nach Eintritt eines Druck- und Temperaturausgleiches zwischen Innen- und Außenwärmetauscher die Ventile in die der gewünschten Betriebsart entsprechenden Stellung gebracht werden und der Verdichter in Gang gesetzt wird.
  • Eine Vorrichtung zur Durchführung des Verfahrens nach der Erfindung zeichnet sich dadurch aus, dass dem Verdichter zwei Ventile vorgeschaltet und zwei Ventile nachgeschaltet sind, wobei abhängig von der Betriebsart eines der Ventile an den Außenwärmetauscher, das andere an den Innenwärmetauscher schaltbar ist.
  • Nachstehend ist die Erfindung anhand der Zeichnungen näher beschrieben, ohne auf diese Beispiele beschränkt zu sein. Dabei zeigen:
    • Figur 1 das Schaltbild einer erfindungsgemäßen Anlage beim Betrieb als Klimaanlage;
    • Figur 2 das Schaltbild einer erfindungsgemäßen Anlage beim Betrieb als Wärmepumpe;
    • Figur 3 das Schaltbild der erfindungsgemäßen Anlage im Zustand des Druckausgleiches.
  • In allen Figuren ist durch Punkte der gasförmige Zustand, durch Wellen der flüssige Zustand des Kältemittels in den jeweiligen Bereichen angedeutet.
  • Auch werden in allen Figuren die gleichen Bezugszeichen verwendet:
    • 1 bis 6 elektromagnetisch betätigte Ventile;
    • 7, 8 Expansionsventile mit integriertem Rückschlagventil;
    • 9 Sammler;
    • 10 Außenwärmetauscher;
    • 11 Innenwärmetauscher;
    • 12 Verdichter.
  • Bei Kühlbetrieb nach Fig. 1 bleiben die Ventile 1, 3 und 5 durch den Einsatz von Elektromagneten geöffnet. Die Ventile 2, 4 und 6 sind geschlossen.
  • Der Verdichter 12 komprimiert das gasförmige Kältemittel, das nun unter hohem Druck durch das Magnetventil 1 zum Außenwärmetauscher 10 strömt.
  • Im Außenwärmetauscher 10 gibt das Kältemittel Wärme an die Umgebungsluft ab und wird dadurch verflüssigt. Der Außenwärmetauscher ist in dieser Betriebsart ein "Verflüssiger".
  • Im flüssigen und weiter unter hohem Druck stehenden Zustand fließt das Kältemittel durch den Sammler 9 und über das Magnetventil 5 zum Expansionsventil 7.
  • Das Expansionsventil 7 senkt den Druck schlagartig ab, was nicht nur ein Abkühlen des Kältemittels zur Folge hat, es beginnt außerdem zu verdampfen. Im Innenwärmetauscher 11 nimmt das Kältemittel Wärme aus der Raumluft auf, bis es vollständig verdampft ist. Der Innenwärmetauscher ist in dieser Betriebsart ein "Verdampfer".
  • Das nunmehr wieder gasförmige Kältemittel wird vom Verdichter 12 über das Magnetventil 3 angesaugt und erneut komprimiert. Der Kreislauf beginnt von vorne.
  • Im Heizbetrieb bleiben die Ventile 2, 4 und 6 durch den Einsatz von Elektromagneten geöffnet. Die Ventile 1, 3 und 5 sind geschlossen.
  • Der Verdichter 12 komprimiert das gasförmige Kältemittel, das nun unter hohem Druck durch das Magnetventil 4 zum Innenwärmetauscher 11 strömt.
  • Im Innenwärmetauscher 11 gibt das Kältemittel Wärme an die Raumluft ab und wird dadurch verflüssigt. Der Innenwärmetauscher ist in dieser Betriebsart ein "Verflüssiger".
  • Im flüssigen und weiter unter hohem Druck stehendem Zustand fließt das Kältemittel durch den Sammler 9 über das Magnetventil 6 zum Expansionsventil 8.
  • Das Expansionsventil 8 senkt den Druck schlagartig ab, was nicht nur ein Abkühlen des Kältemittels zur Folge hat, es beginnt außerdem zu verdampfen. Im Außenwärmetauscher 10 nimmt das Kältemittel Wärme aus der Umgebungsluft auf, bis es vollständig verdampft ist. Der Außenwärmetauscher ist in dieser Betriebsart ein "Verdampfer".
  • Das nunmehr wieder gasförmige Kältemittel wird vom Verdichter 12 über das Magnetventil 2 angesaugt und erneut komprimiert. Der Kreislauf beginnt von vorne.
  • Sowohl im Heizbetrieb als auch im Kühlbetrieb saugt der Verdichter 12 immer rein gasförmiges Kältemittel aus dem jeweiligen Verdampfer an. Beim Wechsel der Betriebsarten ändern sich die Funktionen der Wärmetauscher 10, 11, der Verdampfer wird zum Verflüssiger und umgekehrt. Das Problem beim Betriebsartenwechsel ergibt sich daraus, dass der Verdichter 12 nach dem Wechsel aus jenem Wärmetauscher 10, 11 ansaugt, der zuvor noch als Verflüssiger gearbeitet hat. Im Verflüssiger befindet sich zum Teil flüssiges Kühlmittel, das, wenn es in diesem Zustand zum Verdichter 12 gelangen würde, diesen zerstören würde.
  • Es muss also sichergestellt werden, dass keine flüssigen Anteile aus dem Wärmetauscher mit angesaugt werden.
  • Erfindungsgemäß wird daher beim Betriebswechsel ein Druckausgleich durchgeführt. Es werden zunächst der Verdichter 12 angehalten und alle Magnetventile 1-6 geschlossen.
  • Danach werden der Außen- 10 und der Innenwärmetauscher 11 direkt verbunden. Das geschieht, indem nur die Magnetventile 2 und 3 geöffnet werden.
  • Es kommt zwischen dem zuvor unter hohem Druck stehenden und heißen Verflüssiger und dem unter niedrigem Druck stehenden und kalten Verdampfer zum Druck- und Temperaturausgleich. Die Bauteile und Rohre der Anlage müssen so dimensioniert sein, dass sich das Kältemittel nach vollständigem Ausgleich auf einem Temperatur-DruckNiveau befindet, in dem es vollständig gasförmig austritt.
  • Nachdem dieser Zustand eingetreten ist, werden die Ventile 2 und 3 wieder geschlossen. Danach werden die Ventile für den gewünschten Zustand wieder geöffnet (1, 3, 5 für Kühlbetrieb, 2, 4, 6 für Heizbetrieb) und der Verdichter 12 wird gestartet. Der vorstehend verwendete Begriff "Ventile" ist nicht im engen Sinne zu verstehen. Vielmehr sollen dadurch alle Absperrorgange erfasst werden, die den angestrebten Zweck erfüllen. Die Ansteuerung der "Ventile" erfolgt nach den Vorgaben der erfindungsgemäß ausgegebenen geräteinternen Steuerung.

Claims (2)

  1. Verfahren zum Steuern einer Klimaanlage mit Wärmepumpenfunktion, wobei die Anlage einen Innenwärmetauscher (11) und einen Außenwärmetauscher (10) sowie einen Verdichter (12) aufweist und Ventile (1 bis 6) angeordnet sind, welche den Kreislauf eines Kältemittels derart steuern, dass bei einer Betriebsart der Innenwärmetauscher (11) als Verdampfer, bei der anderen Betriebsart als Verflüssiger arbeitet, dadurch gekennzeichnet, dass beim Betriebsartenwechsel ein Druckausgleich durchgeführt wird, indem der Verdichter (12) angehalten und der Innen- (11) und der Außenwärmetauscher (10) durch Schaltung der Ventile (1 bis 6) direkt verbunden werden, worauf nach Eintritt eines Druck- und Temperaturausgleiches zwischen Innen-(11) und Außenwärmetauscher (10) die Ventile (1 bis 6) in die der gewünschten Betriebsart entsprechenden Stellung gebracht werden und der Verdichter (12) in Gang gesetzt wird.
  2. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1, dadurch gekennzeichnet, dass dem Verdichter (12) zwei Ventile (2, 3) vorgeschaltet und zwei Ventile (1, 4) nachgeschaltet sind, wobei abhängig von der Betriebsart eines (1,2) der Ventile (1, 2, 3, 4) an den Außenwärmetauscher (10), das andere (3, 4) an den Innenwärmetauscher (11) schaltbar ist.
EP14450040.2A 2013-08-29 2014-08-21 Verfahren zum Steuern einer Klimaanlage und Vorrichtung zur Durchführung des Verfahrens Withdrawn EP2853842A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA669/2013A AT513855B1 (de) 2013-08-29 2013-08-29 Verfahren zum Steuern einer Klimaanlage

Publications (1)

Publication Number Publication Date
EP2853842A1 true EP2853842A1 (de) 2015-04-01

Family

ID=51300415

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14450040.2A Withdrawn EP2853842A1 (de) 2013-08-29 2014-08-21 Verfahren zum Steuern einer Klimaanlage und Vorrichtung zur Durchführung des Verfahrens

Country Status (3)

Country Link
US (1) US20150059372A1 (de)
EP (1) EP2853842A1 (de)
AT (1) AT513855B1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9884394B2 (en) 2014-05-19 2018-02-06 Lennox Industries Inc. Solenoid control methods for dual flow HVAC systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143209A1 (de) * 1998-12-16 2001-10-10 Daikin Industries, Ltd. Kältevorrichtung
EP2042817A1 (de) * 2006-07-10 2009-04-01 Daikin Industries, Ltd. Steuervorrichtung für klimaanlage
WO2013006172A1 (en) * 2011-07-07 2013-01-10 Carrier Corporation Method and system for transport container refrigeration control

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2486608A (en) * 1946-06-03 1949-11-01 Alco Valve Co Reverse cycle device
US3204420A (en) * 1962-09-06 1965-09-07 Walter O Lum Reversible refrigerating system and control therefor
JP2008520945A (ja) * 2005-06-03 2008-06-19 キャリア コーポレイション 水の加熱を伴う冷媒システム
KR100788302B1 (ko) * 2006-04-13 2007-12-27 주식회사 코벡엔지니어링 고속제상 히트펌프
CN101617184B (zh) * 2007-03-12 2011-03-02 星崎电机株式会社 冷却贮藏库
EP2610559A2 (de) * 2012-01-02 2013-07-03 Samsung Electronics Co., Ltd Wärmepumpe und Steuerungsverfahren dafür
JP5976333B2 (ja) * 2012-02-13 2016-08-23 三菱重工業株式会社 空気調和装置及び空気調和装置の四方弁制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143209A1 (de) * 1998-12-16 2001-10-10 Daikin Industries, Ltd. Kältevorrichtung
EP2042817A1 (de) * 2006-07-10 2009-04-01 Daikin Industries, Ltd. Steuervorrichtung für klimaanlage
WO2013006172A1 (en) * 2011-07-07 2013-01-10 Carrier Corporation Method and system for transport container refrigeration control

Also Published As

Publication number Publication date
AT513855B1 (de) 2014-08-15
US20150059372A1 (en) 2015-03-05
AT513855A4 (de) 2014-08-15

Similar Documents

Publication Publication Date Title
EP3697635B1 (de) Verfahren zum betreiben eines kältemittelkreislaufs sowie fahrzeugkälteanlage
DE60219753T2 (de) Wärmepumpenartige Klimaanlage
EP2620715B1 (de) Verfahren zum Betrieb eines Lüftungsheizgerätes und Lüftungsheizgerät
DE102014219514A1 (de) Anlagen-Aus-Konfiguration für eine Klimaanlage
DE102018126933A1 (de) Dampfeinspritzungswärmepumpe und Steuerverfahren
DE102017211256B4 (de) Kälteanlage für ein Fahrzeug mit einem einen Wärmeübertrager aufweisenden Kältemittelkreislauf
EP2199706B1 (de) Schaltschrank-Klimagerät und Verfahren zum Betreiben eines Solchen
EP3417213B1 (de) Kältegerät mit mehreren lagerkammern
EP1348920A2 (de) Wärmepumpe zum gleichzeitigen Kühlen und Heizen
DE102016004999B3 (de) Fahrzeugklimaanlage
DE102017125078A1 (de) Variable Öffnung für einen Kälteerzeuger
DE112019003520T5 (de) Kältevorrichtung und hierauf bezogenes betriebsverfahren
WO2022008112A1 (de) Kälteanlage mit wärmepumpenfunktion basierend auf einem erweiterbaren basissystem und kraftfahrzeug mit einer solchen kälteanlage
DE102013219146A1 (de) Fahrzeug-wärmepumpensystem und -steuerverfahren
AT513855B1 (de) Verfahren zum Steuern einer Klimaanlage
EP3791123B1 (de) Kühlsystem sowie verfahren zum temperieren eines rechenzentrums unter nutzung eines kühlsystems
DE102013203240A1 (de) Kältemaschine und Verfahren zum Betreiben einer Kältemaschine
DE19832682C2 (de) Abtaueinrichtung für einen Verdampfer einer Wärmepumpe oder eines Klimageräts
WO2020216586A1 (de) Verfahren zum betreiben einer fahrzeug-kälteanlage mit einem kombinierten kälteanlagen- und wärmepumpenbetrieb
DE102011082333A1 (de) Kältemittelkreislauf und Verfahren zum Temperieren von in einem Kältemittelkreislauf strömenden Kältemittel
DE102020112376A1 (de) Wärmepumpen-Anlage
DE10338388B3 (de) Verfahren zur Regelung einer Klimaanlage
DE102008046590A1 (de) Fahrzeugklimaanlage
DD288207A5 (de) Einrichtung zum gasdichten absperren der druckleitung einer kompressionskaelteanlage
DE102004003501A1 (de) Klimaanlage für ein Fahrzeug, insbesondere für ein Kraftfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140821

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150520

RAX Requested extension states of the european patent have changed

Extension state: BA

Payment date: 20150520

Extension state: ME

Payment date: 20150520

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20171218

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200820