EP3004754B1 - Wärmepumpe zur verwendung von umweltverträglichen kältemitteln - Google Patents

Wärmepumpe zur verwendung von umweltverträglichen kältemitteln Download PDF

Info

Publication number
EP3004754B1
EP3004754B1 EP14727748.7A EP14727748A EP3004754B1 EP 3004754 B1 EP3004754 B1 EP 3004754B1 EP 14727748 A EP14727748 A EP 14727748A EP 3004754 B1 EP3004754 B1 EP 3004754B1
Authority
EP
European Patent Office
Prior art keywords
temperature
compressor
working fluid
heat pump
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14727748.7A
Other languages
English (en)
French (fr)
Other versions
EP3004754A1 (de
Inventor
Florian REISSNER
Bernd Gromoll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL14727748T priority Critical patent/PL3004754T3/pl
Publication of EP3004754A1 publication Critical patent/EP3004754A1/de
Application granted granted Critical
Publication of EP3004754B1 publication Critical patent/EP3004754B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/027Compressor control by controlling pressure
    • F25B2600/0272Compressor control by controlling pressure the suction pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/19Refrigerant outlet condenser temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to heat pumps and the use of refrigerant therein.
  • the use of a refrigerant in a heat pump is characterized by the so-called temperature lift.
  • the temperature lift is the difference between condensation and evaporation temperature.
  • the temperature lift thus means how much the heat source is raised in the temperature level to be used at the heat sink.
  • the phase boundary line of a suitable environmentally friendly refrigerant is shown, which is characterized by a strongly overhanging dew line.
  • a heat pump process is shown for a temperature elevation of 50 Kelvin from 75 ° C evaporation temperature to 125 ° C condensation temperature.
  • the compression endpoint In order to operate a heat pump with such a refrigerant, the compression endpoint must maintain a minimum distance from the dew line to still be in the gas phase region.
  • the distance from state 4 to state 5 and the distance from state 7 to state 1 is the same enthalpy difference, as can be seen from the pressure-enthalpy diagrams 1 to 4. How out FIG. 3
  • the approach with the internal heat exchanger is not suitable for every temperature lift. At a temperature lift of, for example, 20 Kelvin, the amount of heat which the internal heat exchanger can supply for overheating the suction gas is insufficient, and the compression end point is problematically again within the phase boundary line.
  • Fluids heretofore used in heat pumps and chillers, such as R134a (1,1,1,2-tetrafluoroethane) have the problem that the compression end point in the two-phase region does not exist at all and can therefore be used with heat pumps and chillers known from the prior art operate.
  • the US 2010/0192607 A1 describes an air conditioning system and a heat pump with an injection circuit and an automatic control of the injection circuit.
  • the injection circuit is used to cool a portion of a working fluid of the heat pump by means of an expansion valve and then to use in a heat exchanger to cool the working fluid at a location in the cycle of the working fluid before the branch of the injection circuit.
  • document US2010 / 0192607 A1 discloses a heat pump according to the preamble of claim 1.
  • the EP 2 752 627 A1 describes a refrigerator in which a working fluid of the refrigerator is superheated at the input side of a compressor in a liquid / gas heat exchanger, wherein the overheating takes place by means of a portion of the working fluid provided by a liquid / gas separator disposed at an outlet of a steam condenser becomes.
  • the heat pump according to the invention comprises a compressor, a condenser, an internal heat exchanger, an expansion valve, an evaporator and a control device which is designed to bring the temperature of the working fluid at the outlet of the compressor to a predeterminable minimum distance, above the dew point.
  • the minimum temperature distance refers to the working fluid at constant pressure and is in particular at least one Kelvin, preferably at least 5 Kelvin.
  • the control device is a temperature control device which is designed to increase the temperature of the working fluid at the inlet of the compressor.
  • the temperature control device is designed such that it regulates the pipeline heating via the temperature of the working fluid at the compressor outlet.
  • the pipeline heating is switched on or off or varies in temperature.
  • the pipeline heating can thus start briefly, for example, in fluctuating heat sources or réellesenketemperaturen or be in continuous operation. This has the advantage of compensating for a too low temperature lift.
  • the temperature limit for the temperature lift depends on the refrigerant used, or working fluid.
  • the temperature lift depends on various properties and parameters of the heat pump.
  • the temperature control device comprises a bypass line with a valve which connects the high-pressure region at the outlet of the compressor to the low-pressure region at the inlet of the compressor such that the working fluid flowing from the internal heat exchanger to the compressor can be overheated by means of the hot gas which can be returned via the bypass line.
  • the temperature control device is in particular designed such that it regulates the passage through the valve of the bypass line via the temperature of the working fluid at the compressor outlet. Also, this embodiment has the advantage in a temperature lift, which would land without additional intervention in the heat pump process with the compression end point in the two-phase region, so to regulate that the heat pump can be operated stable with the working fluid used in a steady state.
  • the bypass valve used may be, for example, a thermostatic or an electronically controlled valve.
  • the control device is a pressure control device which is configured is to lower the pressure of the working fluid at the inlet of the compressor.
  • the pressure control device may in particular comprise an automatic expansion valve, which is arranged as an expansion valve in the heat pump cycle between the internal heat exchanger and the evaporator.
  • An automatic expansion valve is a pure evaporator pressure control valve by means of which it is possible to set the evaporation temperature and therefore the evaporation pressure.
  • is the isentropic exponent
  • T 2 and T 1 are the temperatures before and after the compressor
  • P ratio is the pressure ratio of the gas pressures upstream and downstream of the compressor.
  • an automatic expansion valve in the heat pump has the additional advantage of a control option represent for the application that the temperature lift is not below a threshold temperature but well above the limit temperature. If the temperature lift is just too far above it, the pressure gas temperature T 2 after the compressor would also be very far above the minimum distance to the dew point to be maintained. This may be another problem when, for example, the compressor has an upper service temperature limit. Such an upper temperature limit of use of a compressor may be due, for example, to the thermal stability of the lubricants or to excessive expansion for close fits in the compressor. By the automatic expansion valve, however, the pressure in the evaporator can be increased so far that the working fluid only slightly overheated or even partially evaporated.
  • the embodiment with the automatic expansion valve at a temperature elevation above the threshold temperature has the added advantage of increasing the overall efficiency of the heat pump due to the pressure increase because decreasing the temperature difference in the evaporator decreases the pressure ratio and demands less compressor power. At the same time, the density of the fluid increases, thus increasing the power density in the compressor. In addition, an increased service life of the compressor can be ensured by the lower pressure gas temperature.
  • the heat pump preferably comprises a working fluid which, in the temperature-entropy diagram, has a pitch of the dew line below 1000 (kg K 2 ) / kJ.
  • a working fluid which, in the temperature-entropy diagram, has a pitch of the dew line below 1000 (kg K 2 ) / kJ.
  • working fluids from the family of fluoroketones can be used.
  • Particularly advantageous therefrom are the working fluids Novec649 (dodecafluoro-2-methylpentan-3-one) and Novec524 (decafluoro-3-methylbutan-2-one).
  • Novec649 has a dew line slope of 601 (kgK 2 ) / kJ
  • Novec524 has a dewline slope of 630 (kgK 2 ) / kJ
  • a Another suitable example is R245fa (1,1,1,3,3-pentafluoropropane), which has a slope in the TS diagram of 1653 (kgK 2 ) / kJ, the slope being indicated in each case for a saturation temperature of 75 ° C.
  • a working fluid is used in a heat pump, which has a slope in the tau line in the temperature-entropy diagram of less than 1000 (kg K 2 ) / kJ.
  • the temperature of a working fluid after compression is brought to a predeterminable minimum distance, in particular of one Kelvin, above the dew point.
  • FIGS. 1 to 4 show pressure-enthalpy diagrams in which the pressure p is plotted on a logarithmic scale.
  • the isotherms IT and dotted the isentropes IE are shown in dashed lines.
  • the temperatures for the isotherms IT in degrees Celsius, the entropy values for the isentropes IE in kJ / (kg ⁇ K) are given.
  • the consistently drawn curve is in each case the phase boundary line PG of a new working medium, for example the fluid Novec649. This has a critical point at 169 ° C.
  • the dew line would be inclined by 601 (kgK 2 ) / kJ in the temperature-entropy diagram.
  • Another suitable example of a working medium is Novec524 with a critical point at 148 ° C.
  • a heat pump process WP is shown in dashed lines. Beginning from the state point 1, a compression leads to the state point 2 or 3, which coincide in purely theoretical considerations and will be referred to below only as the state point 2. By means of a condensation process, the state point 4 is reached. From the state point 4 to the state point 5 there is a subcooling. From the state point 5 to the state point 6, one arrives via an expansion process and from the state point 6 to the state point 7 via an evaporation process. The path from state point 7 back to the starting point 1 is an overheating of the working medium.
  • the heat pump process WP shown has an evaporation temperature at 75 ° C and a condensation temperature at 125 ° C, so a temperature of 50 Kelvin.
  • supercooling will reduce enthalpy by the same amount as overheating.
  • the distance of state 2 from the tau line TL in the heat pump process WP, ie the temperature difference of state 2 to its dew point at the same pressure is 10 Kelvin. This minimum distance is sufficient to ensure a stable operation of the heat pump 10 without endangering the compressor 11 by liquid hammer.
  • a minimum distance should be maintained, which must be set for each system of working fluid and heat pump 10 depending on possible fluctuation parameters.
  • a minimum distance of one Kelvin advantageously a minimum distance of 5 Kelvin should be maintained.
  • the temperature lift of the heat pump process WP changes whether the exchanged heat quantity Q IHX through the internal heat exchangers IHX for overheating the suction gas before the compressor 11 is sufficient to place the compression end point 2 in the gas phase region g.
  • FIG. 3 is, for example, again a heat pump process WP with the working medium Novec649 as in the FIG. 1 which, however, has a condensation temperature of only 95 ° C. This temperature lift of 20 Kelvin is thus below the limit for this system.
  • the internal heat exchanger IHX would operate in this example with a power of 0.64 kW.
  • the in FIG. 4 shown heat pump process WP has a very high temperature lift of 60 Kelvin up to a condensation temperature of 135 ° C.
  • the internal heat exchanger IHX for example, operates with a power of 5.9 kW.
  • the compression end point 2 is very far away from the tau line TL, the temperature lift thus clearly exceeds the limit value of the temperature lift for this system of heat pump 10 and work equipment.
  • the example values for the transferred heat output Q IHX through the internal heat exchanger IHX refer to a capacitor output of 10 kW. In these examples, therefore, not enough heat can be transferred at a small temperature lift of 20 Kelvin to maintain a minimum distance of, for example, 5 Kelvin for this system. At a temperature lift of 60 Kelvin, however, the transferred heat Q IHX of the internal heat exchanger IHX is sufficient for the minimum distance. The temperature lift of 60 Kelvin is therefore above the limit temperature lift for this system. For the system of heat pump 10 with Novec649 and 10 kW capacitor capacity described here by way of example at an evaporation temperature of 70 ° C., the limit temperature lift is 37 Kelvin. If, for example, Novec524 were used as the working fluid with otherwise identical parameters, the limit temperature lift would be 31 Kelvin.
  • a limit temperature lift can be determined correspondingly for each heat pump working fluid system, above which an internal heat exchanger IHX can maintain the necessary heat for maintaining the minimum distance of the compression end point 2 from the tau line TL. If the temperature lift is below the limit temperature lift, work must be done with a system as described in this application to ensure the compression end point 2 at the minimum distance to the tau line TL. Only in this way can a stable stationary operation be realized with low taulin control fluids in heat pumps 10.
  • FIGS. 5 to 7 show embodiments of heat pump 10 with different control options for the use of new work equipment.
  • heat pump processes WP with too low a temperature lift below the limit temperature lift can nevertheless be operated stably stable.
  • the starting point is in each case an evaporation temperature at 70 ° C and a Condensation temperature at 100 ° C, so a temperature of 30 Kelvin, which would be in both cases for the working fluid Novec649 as well as for Novec524 below the temperature limit lift.
  • the capacitor power for example, is 10 kW.
  • the heat pump 10 is operated with a conventional expansion valve 14, which may be, for example, a thermostatic or an electronically controlled expansion valve 14.
  • This expansion valve 14 regulates the flow of the working fluid and the superheat after the evaporator 15.
  • a piping heater 20 is then arranged around the pipe section between the internal heat exchanger 13 and the compressor 11 around.
  • the working medium flowing therein can be heated. How much the pipe heater 20, the working fluid in the state 1 is heated over the temperature T 2 at state 2, that is regulated at the output of the compressor 11.
  • the temperature T 2 is measured there and, via an adjustment to a minimum distance of the temperature T 1, the heating is switched on or off or its heating power is lowered or increased.
  • temperature control device 30 includes a hot gas bypass 31, the compressed gas from the pressure side 2 of the compressor 11 back to the suction side 1 of the compressor 11 and thus further heated by the hot pressurized gas, the suction gas.
  • the increase in the temperature T 1 of the suction gas is limited by a bypass valve 31, which in turn is controlled by the temperature T 2 in state 2.
  • the valve 31 may be a thermostatically or electronically controlled valve 31.
  • the additional power required for this temperature control 30 is, for example, 0.58 kW, which is an additional compressor output in an isentropic pressure and temperature increase.
  • FIG. 7 an alternative embodiment for temperature control 30 is shown, namely a control over the suction gas pressure:
  • an automatic expansion valve 40 so a pure evaporator pressure control valve, it is possible to adjust the evaporation pressure and thus the evaporation temperature.
  • the pressure ratio that the compressor 11 has to implement increases and thus the pressure gas temperature T 2 in state 2.
  • the pressure of 1.96 bar are lowered to 1.35 bar so as to maintain the minimum distance of 5 Kelvin.
  • an additional compressor power at isentropic pressure and temperature increase by the compressor 11 of 0.45 kW is necessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Compressor (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

  • Die vorliegende Erfindung betrifft Wärmepumpen und den Einsatz von Kältemittel darin.
  • Bisher in Wärmepumpen eingesetzte Kältemittel sind entweder toxisch oder umweltschädlich, d.h. sie weisen ein hohes Global Warming Potential auf. Andere sind brennbar oder, die am wenigstens problematischen, zumindest gesundheitsgefährdend. Bisher bekannte Ansätze mit nichttoxischen umweltverträglichen Kältemitteln zu arbeiten scheitern bislang daran, dass diese Arbeitsmittel nicht für eine adäquate Leistung der Wärmepumpe sorgen können oder in konventionellen Wärmepumpenaufbauten nicht einsetzbar sind.
  • Der Einsatz eines Kältemittels in einer Wärmepumpe ist durch den sogenannten Temperaturlift charakterisiert. Der Temperaturlift ist die Differenz zwischen Kondensations- und Verdampfungstemperatur. Der Temperaturlift besagt also um wie viel die Wärmequelle im Temperaturniveau angehoben wird um an der Wärmesenke genutzt zu werden. In der Figur 1 ist zur Verdeutlichung der Problematik die Phasengrenzlinie eines geeigneten umweltfreundlichen Kältemittels gezeigt, die sich durch eine stark überhängende Taulinie auszeichnet. Zusätzlich ist ein Wärmepumpenprozess für einen Temperaturlift von 50 Kelvin von 75°C Verdampfungstemperatur auf 125°C Kondensationstemperatur gezeigt. Um eine Wärmepumpe mit einem derartigen Kältemittel betreiben zu können, muss der Kompressionsendpunkt einen Mindestabstand von der Taulinie einhalten, um noch im Gasphasengebiet zu liegen. Würde der Temperaturlift beispielsweise bei nur 20 Kelvin, die Kondensationstemperatur also bei nur 95°C liegen, wie in Figur 3 gezeigt, würde der Kompressionsendpunkt innerhalb der Phasengrenzlinie also im Gemischtphasengebiet liegen. Dies würde zu Flüssigkeitsschlägen im Kompressor führen und einen stabilen Betrieb der Wärmepumpe verhindern.
    Bisher ist für den Einsatz derartiger neuer Arbeitsfluide mit diesen speziellen thermodynamischen Eigenschaften nur ein Ansatz bekannt, der auf den instationären Anfahrvorgang einer Wärmepumpe ausgerichtet ist. In der deutschen Anmeldung 10 2013 203243.9 ist eine Wärmepumpe mit einem internen Wärmeübertrager beschrieben, welcher, wie in Figur 2 graphisch dargestellt, durch Unterkühlung des Kondensats von Zustand 4 nach Zustand 5 die dabei anfallende Wärme auf den Zustand 7 überträgt und so das Sauggas vor der Kompression überhitzt. Der Abstand von Zustand 4 nach Zustand 5 und der Abstand von Zustand 7 nach Zustand 1 beträgt die gleiche Enthalpiedifferenz, wie aus den Druck-Enthalpie-Diagrammen 1 bis 4 zu entnehmen ist. Wie aus Figur 3 wiederum zu erkennen ist, ist der Ansatz mit dem internen Wärmetauscher jedoch nicht für jeden Temperaturlift geeignet. Bei einem Temperaturlift von beispielsweise 20 Kelvin reicht die Wärmemenge, die der interne Wärmetauscher für die Überhitzung des Sauggases liefern kann nicht aus und der Kompressionsendpunkt liegt problematischerweise wieder innerhalb der Phasengrenzlinie.
    Fluide die bisher in Wärmepumpen und Kältemaschinen eingesetzt werden, wie beispielsweise R134a (1,1,1,2-tetrafluoroethan) weisen das Problem, dass der Kompressionsendpunkt im Zweiphasengebiet liegt gar nicht auf und können daher mit aus dem Stand der Technik bekannten Wärmepumpen und Kältemaschinen betrieben werden.
    Die US 2010/0192607 A1 beschreibt eine Klimaanlage und eine Wärmepumpe mit einem Injektionskreislauf und einer automatischen Steuerung des Injektionskreislaufs. Der Injektionskreislauf wird verwendet, um einen Teil eines Arbeitsfluids der Wärmepumpe mittels eines Expansionsventils abzukühlen und dann in einem Wärmetauscher zum Abkühlen des Arbeitsfluids an einer Stelle zu verwenden, welche im Kreislauf des Arbeitsfluids vor der Abzweigung des Injektionskreislaufs liegt. Dokument US2010/0192607 A1 offenbart eine Wärmepumpe gemäß dem Oberbegriff des Anspruchs 1.
  • Die EP 2 752 627 A1 beschreibt ein Kühlgerät, bei dem ein Arbeitsfluid des Kühlgeräts an der Eingangsseite eines Kompressors in einem Flüssig/Gas-Wärmetauscher überhitzt wird, wobei das Überhitzen mittels eines Teils des Arbeitsfluids erfolgt, welches von einem an einem Ausgang eines Dampfkondensators angeordneten Flüssig/Gas-Separator bereitgestellt wird.
  • Es ist eine Aufgabe der vorliegenden Erfindung eine Wärmepumpe und ein Verfahren zu deren Betrieb anzugeben, welche den Einsatz von umweltfreundlichen Arbeitsfluiden erlaubt und einen stabilen stationären Betrieb gewährleistet, wobei ein Arbeitsfluid vor dessen Eintritt in einen Kompressor auf besonders effiziente Weise überhitzbar ist.
  • Die Aufgabe ist mittels einer Wärmepumpe gemäß Patentanspruch 1 und einem Verfahren zu deren Betrieb gemäß Patentanspruch 5 sowie durch die erfindungsgemäße Verwendung von neuen Arbeitsfluiden gemäß Patentanspruch 4 gelöst. Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
  • Die erfindungsgemäße Wärmepumpe umfasst einen Kompressor, einen Kondensator, einen internen Wärmetauscher, ein Expansionsventil, einen Verdampfer sowie eine Regeleinrichtung, welche ausgestaltet ist, die Temperatur des Arbeitsfluids am Ausgang des Kompressors auf einen vorgebbaren Mindestabstand, oberhalb des Taupunktes zu bringen. Der Temperaturmindestabstand bezieht sich auf das Arbeitsfluid bei gleichbleibendem Druck und beträgt insbesondere mindestens ein Kelvin, vorzugsweise mindestens 5 Kelvin. Dies hat den Vorteil, dass umweltfreundliche nicht toxische sichere Arbeitsmedien, die sich häufig durch sehr spezielle thermodynamische Eigenschaften wie etwa eine sehr geringe Tauliniensteigung von unter 1000 (kg K2)/kJ im Temperatur-Entropie-Diagramm auszeichnen, eingesetzt werden können und ein stationärer stabiler Wärmepumpenbetrieb ermöglicht wird.
  • Die Regeleinrichtung ist eine Temperaturregeleinrichtung, welche ausgestaltet ist, die Temperatur des Arbeitsfluids am Eingang des Kompressors zu erhöhen. Die Temperaturregeleinrichtung ist dabei so ausgestaltet, dass sie die Rohrleitungsheizung über die Temperatur des Arbeitsfluids am Kompressorausgang regelt. Je nachdem welche Temperatur von der Temperaturregeleinrichtung am Kompressorausgang gemessen wird, wird die Rohrleitungsheizung an- oder ausgeschaltet oder in ihrer Temperatur variiert. Die Rohrleitungsheizung kann also beispielsweise bei schwankenden Wärmequellen oder Wärmesenketemperaturen kurzzeitig anspringen oder auch im Dauerbetrieb sein. Dies hat den Vorteil, einen zu geringen Temperaturlift auszugleichen. Die Grenztemperatur für den Temperaturlift ist abhängig vom eingesetzten Kältemittel, beziehungsweise Arbeitsfluid. Der Temperaturlift ist von verschiedenen Eigenschaften und Parametern der Wärmepumpe abhängig.
  • Die Temperaturregeleinrichtung umfasst eine Bypassleitung mit einem Ventil, welche den Hochdruckbereich am Ausgang des Kompressors so mit dem Niedrigdruckbereich am Eingang des Kompressors verbindet, dass das vom internen Wärmetauscher zum Kompressor strömende Arbeitsfluid mittels dem über die Bypassleitung rückführbaren Heißgas überhitzbar ist. Die Temperaturregeleinrichtung ist dabei insbesondere so ausgestaltet, dass sie den Durchlass durch das Ventil der Bypassleitung über die Temperatur des Arbeitsfluids am Kompressorausgang regelt. Auch diese Ausführungsform hat den Vorteil bei einem Temperaturlift, der ohne zusätzliches Eingreifen in den Wärmepumpenprozess mit dem Kompressionsendpunkt im Zweiphasengebiet landen würde, so zu regeln, dass die Wärmepumpe mit dem eingesetzten Arbeitsfluid stabil in einem stationären Zustand betrieben werden kann. Das eingesetzte Bypassventil kann beispielsweise ein thermostatisch oder auch ein elektronisch geregeltes Ventil sein.
  • In einer beispielhaften Gestaltungsform der Wärmepumpe ist die Regeleinrichtung eine Druckregeleinrichtung, welche ausgestaltet ist den Druck des Arbeitsfluids am Eingang des Kompressors zu erniedrigen. Dazu kann die Druckregeleinrichtung insbesondere ein automatisches Expansionsventil umfassen, welches als Expansionsventil im Wärmepumpenkreislauf zwischen dem internen Wärmetauscher und dem Verdampfer angeordnet ist. Ein automatisches Expansionsventil ist ein reines Verdampferdruckregelventil mittels dem es ermöglicht wird, die Verdampfungstemperatur und demnach den Verdampfungsdruck einzustellen.
  • Durch eine Druckerniedrigung im Verdampfer kann ein höheres Druckverhältnis Pratio zwischen der Druckseite nach dem Kompressor und der Niedrigdruckseite vor dem Kompressor erzeugt werden. Dadurch, dass der Kompressor ein höheres Druckverhältnis Pratio umsetzen muss, wird auch eine höhere Druckgastemperatur T2 am Kompressorausgang erzeugt. Je höher das Druckverhältnis Pratio, desto höher die Temperatur T2 des Druckgases nach dem Kompressor. T 2 T 1 = P ratio κ 1 κ
    Figure imgb0001
  • Dabei ist κ der Isentropenexponent, T2 und T1 die Temperaturen nach und vor dem Kompressor und Pratio ist das Druckverhältnis der Gasdrücke nach und vor dem Kompressor. Alternativ zu einer Erhöhung der Temperatur T1 kann also auch der Druck vor dem Kompressor erniedrigt werden. Anstelle der zusätzlichen Heizleistung ist in diesem Fall eine zusätzliche Kompressorleistung für das erhöhte umzusetzende Druckverhältnis notwendig. Diese Ausführungsform hat den Vorteil auf zusätzliche Heizelemente und Temperaturregeleinrichtungen verzichten zu können und durch den Ersatz des Expansionsventils durch das automatische Expansionsventil keine zusätzlichen Bauteile in der Wärmepumpe für einen stationären Betrieb zu benötigen.
  • Der Einsatz eines automatischen Expansionsventils in der Wärmepumpe hat den zusätzlichen Vorteil auch eine Regelmöglichkeit für den Anwendungsfall darzustellen, dass der Temperaturlift nicht unterhalb einer Grenztemperatur sondern deutlich über der Grenztemperatur liegt. Liegt der Temperaturlift eben zu weit darüber, würde auch die Druckgastemperatur T2 nach dem Kompressor sehr weit über dem einzuhaltenden Mindestabstand zum Taupunkt liegen. Daraus kann sich ein weiteres Problem ergeben, wenn beispielsweise der Kompressor eine obere Temperatureinsatzgrenze aufweist. Eine derartige obere Temperatureinsatzgrenze eines Kompressors kann beispielsweise durch die thermische Stabilität der Schmierstoffe oder durch zu hohe Ausdehnungen für enge Passungen im Kompressor bedingt sein. Durch das automatische Expansionsventil jedoch kann der Druck im Verdampfer auch so weit erhöht werden, dass das Arbeitsfluid nur noch gering überhitzt oder sogar nur teilverdampft. Die dann noch notwendige Überhitzung für den Mindestabstand von der Taulinie könnte mittels des internen Wärmetauschers erfolgen. Die Ausführungsform mit dem automatischen Expansionsventil bei einem Temperaturlift oberhalb der Grenztemperatur hat den zusätzlichen Vorteil aufgrund der Druckerhöhung die Gesamteffizienz der Wärmepumpe zu erhöhen, da durch die Verringerung der Temperaturdifferenz im Verdampfer das Druckverhältnis sinkt und eine geringere Kompressorleistung abverlangt wird. Gleichzeitig steigt die Dichte des Fluids und erhöht so die Leistungsdichte im Kompressor. Zusätzlich kann durch die geringere Druckgastemperatur eine erhöhte Lebensdauer des Kompressors gewährleistet werden.
  • Vorzugsweise umfasst die Wärmepumpe dazu ein Arbeitsfluid, welches im Temperatur-Entropie-Diagramm eine Steigung der Taulinie unter 1000 (kg K2)/kJ aufweist. Der Vorteil des Einsatzes eines derartigen Arbeitsfluids liegt in dessen hervorragenden Umwelt- und Sicherheitseigenschaften. Beispielsweise können als solches Arbeitsfluide aus der Familie der Fluoroketone eingesetzt werden. Besonders vorteilhaft daraus sind die Arbeitsfluide Novec649 (Dodecafluoro-2-Methylpentan-3-one) und Novec524 (Decafluoro-3-Methylbutan-2-one). Novec649 hat eine Steigung der Taulinie von 601 (kgK2)/kJ, Novec524 hat eine Steigung der Taulinie von 630 (kgK2)/kJ, und ein weiteres geeignetes Beispiel ist R245fa (1,1,1,3,3 - Pentafluoropropan), welches eine Steigung im T-S-Diagramm von 1653 (kgK2)/kJ aufweist, wobei die Steigung jeweils für eine Sättigungstemperatur von 75°C angegeben ist.
  • Erfindungsgemäß wird ein Arbeitsfluid in einer Wärmepumpe verwendet, welches eine Steigung in der Taulinie im Temperatur-Entropie-Diagramm von unter 1000 (kg K2)/kJ aufweist.
  • Bei dem erfindungsgemäßen Verfahren zum Betrieb einer Wärmepumpe wird die Temperatur eines Arbeitsfluids nach der Kompression auf einen vorgebbaren Mindestabstand, insbesondere von einem Kelvin, über den Taupunkt gebracht.
  • Ausführungsformen der vorliegenden Erfindung werden in exemplarischer Weise mit Bezug auf die Figuren 1 bis 7 der angehängten Zeichnung beschrieben:
  • Figur 1
    zeigt ein logarithmisches Druck-Enthalpie-Diagramm eines neuen Arbeitsmediums und einen damit gefahrenen Wärmepumpenprozess mit 50 Kelvin Temperaturlift.
    Figur 2
    zeigt den Wärmeübertrag durch den internen Wärmeübertrager in einem logarithmischen Druck-EnthalpieDiagramm.
    Figur 3
    zeigt ein logarithmisches Druck-Enthalpie-Diagramm des Arbeitsmediums wie in Figur 1 mit einem Wärmepumpenprozess mit 20 Kelvin Temperaturlift.
    Figur 4
    zeigt ein logarithmisches Druck-Enthalpie-Diagramm des Arbeitsmediums wie in Figur 1 mit einem Wärmepumpenprozess mit 60 Kelvin Temperaturlift.
    Figur 5
    zeigt ein Fließbild einer Wärmepumpe mit Rohrleitungsheizung,
    Figur 6
    ein Fließbild einer Wärmepumpe mit Heißgas-Bypass und
    Figur 7
    zeigt ein Fließbild einer Wärmepumpe mit automatischem Expansionsventil.
  • Die Figuren 1 bis 4 zeigen Druck-Enthalpie-Diagramme, bei denen der Druck p auf einer logarithmischen Skala aufgetragen ist. In den Diagrammen 1, 3 und 4 sind gestrichpunktet die Isothermen IT und gepunktet die Isentropen IE eingezeichnet. Dabei sind die Temperaturen zu den Isothermen IT in Grad Celsius, die Entropiewerte zu den Isentropen IE in kJ/(kg·K) angegeben. Die durchgängig eingezeichnete Kurve ist jeweils die Phasengrenzlinie PG eines neuen Arbeitsmediums, beispielsweise handelt es sich um das Fluid Novec649. Dieses weist einen kritischen Punkt bei 169°C auf. Die Taulinie wäre im Temperatur-Entropie-Diagramm um 601 (kgK2)/kJ geneigt. Ein weiteres geeignetes Beispiel für ein Arbeitsmedium ist Novec524 mit einem kritischen Punkt bei 148°C.
  • In der Figur 1 ist zusätzlich ein Wärmepumpenprozess WP gestrichelt eingezeichnet. Beginnend vom Zustandspunkt 1 gelangt man über eine Kompression zum Zustandspunkt 2 bzw. 3, welche in rein theoretischen Betrachtungen zusammenfallen und im Folgenden nur als Zustandspunkt 2 benannt werden. Mittels eines Kondensationsvorgangs wird der Zustandspunkt 4 erreicht. Vom Zustandspunkt 4 zum Zustandspunkt 5 erfolgt eine Unterkühlung. Vom Zustandspunkt 5 zum Zustandspunkt 6 gelangt man über einen Expansionsvorgang und vom Zustandspunkt 6 zu Zustandspunkt 7 über einen Verdampfungsvorgang. Der Weg von Zustandspunkt 7 zurück zum Ausgangspunkt 1 ist eine Überhitzung des Arbeitsmediums. Der gezeigte Wärmepumpenprozess WP weist eine Verdampfungstemperatur bei 75°C und eine Kondensationstemperatur bei 125°C auf, also einen Temperaturlift von 50 Kelvin. Die Unterkühlung von 4 nach 5 bzw. die Überhitzung von 7 nach 1 werden, wie in Figur 2 verdeutlicht, durch einen internen Wärmetauscher IHX gekoppelt. Dieser nutzt die bei der Unterkühlung anfallende Wärme und überträgt diese auf den Zustand 7. Bei jeweils konstantem Druck wird bei der Unterkühlung die Enthalpie um den gleichen Betrag verringert wie bei der Überhitzung erhöht. Der Abstand des Zustandes 2 von der Taulinie TL im Wärmepumpenprozess WP, d.h. die Temperaturdifferenz des Zustands 2 zu dessen Taupunkt bei gleichem Druck beträgt 10 Kelvin. Dieser Mindestabstand ist ausreichend um einen stabilen Betrieb der Wärmepumpe 10 ohne Gefährdung des Kompressors 11 durch Flüssigkeitsschläge zu gewährleisten. Um den Kompressionsendpunkt, also den Zustand 2, zuverlässig außerhalb des gemischten Phasengebietes l+g, also außerhalb der Phasengrenzlinie PG zu platzieren, sollte ein Mindestabstand eingehalten werden, der für jedes System von Arbeitsfluid und Wärmepumpe 10 je nach möglichen Schwankungsparametern festgelegt werden muss. Insbesondere sollte aber ein Mindestabstand von einem Kelvin, vorteilhafterweise ein Mindestabstand von 5 Kelvin eingehalten werden.
  • Wie in den Figuren 3 und 4 zu sehen ist, ändert der Temperaturlift des Wärmepumpenprozesses WP ob die ausgetauschte Wärmemenge QIHX durch die internen Wärmetauscher IHX zur Überhitzung des Sauggases vor dem Kompressor 11 ausreicht, den Kompressionsendpunkt 2 im Gasphasengebiet g zu platzieren.
  • In der Figur 3 ist beispielsweise wieder ein Wärmepumpenprozess WP mit dem Arbeitsmittel Novec649 wie in der Figur 1 gezeigt, welcher jedoch eine Kondensationstemperatur von nur 95°C aufweist. Dieser Temperaturlift von 20 Kelvin liegt also unterhalb des Grenzwertes für dieses System. Der interne Wärmetauscher IHX würde in diesem Beispiel mit einer Leistung von 0,64 kW arbeiten.
  • Der in Figur 4 gezeigte Wärmepumpenprozess WP weist einen sehr hohen Temperaturlift von 60 Kelvin bis zu einer Kondensationstemperatur von 135°C auf. Bei diesem Wärmepumpenprozess WP arbeitet der interne Wärmetauscher IHX z.B. mit einer Leistung von 5,9 kW. In diesem Fall liegt der Kompressionsendpunkt 2 sehr weit von der Taulinie TL entfernt, der Temperaturlift übersteigt also deutlich den Grenzwert des Temperaturlifts für dieses System aus Wärmepumpe 10 und Arbeitsmittel.
  • Die Beispielwerte für die übertragene Wärmeleistung QIHX durch den internen Wärmetauscher IHX beziehen sich auf eine Kondensatorleistung von 10 kW. In diesen Beispielen kann also bei einem kleinen Temperaturlift von 20 Kelvin nicht genügend Wärme übertragen werden um einen Mindestabstand von beispielsweise 5 Kelvin für dieses System einzuhalten. Bei einem Temperaturlift von 60 Kelvin hingegen ist die übertragene Wärme QIHX des internen Wärmetauschers IHX ausreichend für den Mindestabstand. Der Temperaturlift von 60 Kelvin liegt also über dem Grenztemperaturlift für dieses System. Für das hier beispielhaft beschriebene System aus Wärmepumpe 10 mit Novec649 und 10 kW Kondensatorleistung bei einer Verdampfungstemperatur von 70°C liegt der Grenztemperaturlift bei 37 Kelvin. Würde man bei ansonsten gleichen Parametern beispielsweise Novec524 als Arbeitsfluid einsetzen, läge der Grenztemperaturlift bei 31 Kelvin.
  • Es kann also entsprechend für jedes Wärmepumpen-Arbeitsfluid-System ein Grenztemperaturlift bestimmt werden, oberhalb dessen ein interner Wärmetauscher IHX die notwendige Wärme für die Einhaltung des Mindestabstandes des Kompressionsendpunktes 2 von der Taulinie TL einzuhalten. Liegt der Temperaturlift unterhalb des Grenztemperaturlifts, muss mit einem System, wie es in dieser Anmeldung beschrieben wird gearbeitet werden, um den Kompressionsendpunkt 2 im Mindestabstand zur Taulinie TL zu gewährleisten. Nur so kann ein stabiler stationärer Betrieb mit Fluiden geringer Tauliniensteigung in Wärmepumpen 10 realisiert werden.
  • Die Figuren 5 bis 7 zeigen Ausführungsformen von Wärmepumpen 10 mit verschiedenen Regelmöglichkeiten für den Einsatz neuer Arbeitsmittel. Damit können Wärmepumpenprozesse WP mit zu geringem Temperaturlift unterhalb des Grenztemperaturlifts dennoch stabil stationär betrieben werden. Ausgegangen wird jeweils von einer Verdampfungstemperatur bei 70°C und einer Kondensationstemperatur bei 100°C, also einem Temperaturlift von 30 Kelvin, welcher in beiden Beispielfällen für das Arbeitsfluid Novec649 genauso wie für Novec524 unterhalb des Grenztemperaturlifts liegen würde. Die Kondensatorleistung beispielsweise beträgt 10 kW. In den Figuren 5 und 6 sind zwei alternative Temperaturregelungen gezeigt. In diesen Fällen wird die Wärmepumpe 10 mit einem konventionellen Expansionsventil 14 betrieben, welches beispielsweise ein thermostatisch oder ein elektronisch geregeltes Expansionsventil 14 sein kann. Dieses Expansionsventil 14 regelt den Durchfluss des Arbeitsfluids und die Überhitzung nach dem Verdampfer 15. Zwischen dem internen Wärmetauscher 13 und dem Kompressor 11 ist dann eine Rohrleitungsheizung 20 um das Leitungsstück zwischen internem Wärmetauscher 13 und Kompressor 11 herum angeordnet. Mittels dieser Rohrleitungsheizung 20 kann das darin strömende Arbeitsmedium erwärmt werden. Wie stark die Rohrleitungsheizung 20 das Arbeitsmedium im Zustand 1 erwärmt wird über die Temperatur T2 am Zustand 2 also am Ausgang des Kompressors 11 geregelt. Dazu wird dort die Temperatur T2 gemessen und über einen Abgleich zu einem Mindestabstand der Temperatur T1 die Heizung an- oder ausgeschaltet bzw. deren Heizleistung erniedrigt oder erhöht.
  • Die in Figur 6 gezeigte Temperaturregeleinrichtung 30 umfasst einen Heißgas-Bypass 31, der Druckgas von der Druckseite 2 des Kompressors 11 auf die Saugseite 1 des Kompressors 11 zurückführt und so mittels dem heißen Druckgas das Sauggas weiter aufheizt. Die Erhöhung der Temperatur T1 des Sauggases ist durch ein Bypassventil 31 limitiert, welches wiederum über die Temperatur T2 im Zustand 2 geregelt wird. Das Ventil 31 kann ein thermostatisch oder ein elektronisch geregeltes Ventil 31 sein. Die für diese Temperaturregelung 30 zusätzlich erforderliche Leistung beträgt beispielsweise 0,58 kW, wobei es sich dabei um eine zusätzliche Kompressorleistung bei einer isentropen Druck- und Temperaturerhöhung handelt.
  • In Figur 7 ist schließlich eine alternative Ausführungsform zur Temperaturregelung 30 gezeigt, nämlich eine Regelung über den Sauggasdruck: Durch die Verwendung eines automatischen Expansionsventils 40, also einem reinen Verdampferdruckregelventil, ist es möglich den Verdampfungsdruck und damit die Verdampfungstemperatur einzustellen. Durch eine Druckerniedrigung im Verdampfer 15 kann das Druckverhältnis, dass der Kompressor 11 umsetzen muss erhöht werden und somit auch die Druckgastemperatur T2 im Zustand 2. Für das Beispiel mit dem Temperaturlift von 30 Kelvin von 70°C auf 100°C würde der Druck von 1,96 bar auf 1,35 bar erniedrigt werden um so den Mindestabstand von 5 Kelvin einzuhalten. Dazu ist beispielsweise eine zusätzliche Kompressorleistung bei isentroper Druck- und Temperaturerhöhung durch den Kompressor 11 von 0,45 kW notwendig.
  • Es ist möglich mit der Regelmöglichkeit durch ein automatisches Expansionsventil, wie in Figur 7 gezeigt, auch einen weiteren Problemfall, der bei den neuen Arbeitsmedien auftreten kann, zu lösen: wenn der Temperaturlift sehr weit über dem Grenztemperaturlift liegt. Ein zu hoher Abstand des Kompressionsendpunktes 2 zur Taulinie T2 kann deswegen problematisch werden, weil der Kompressor 11 eine obere Temperatureinsatzgrenze aufweisen kann. Durch das automatische Expansionsventil 40 jedoch ist es möglich den Druck im Verdampfer 15 soweit zu erhöhen, dass das Fluid beim Verdampfungsvorgang nur noch gering überhitzt oder auch nur teilverdampft. Die dann evtl. noch notwendige Überhitzung für den Mindestabstand würde wieder über den internen Wärmetauscher 13 erfolgen können. Somit ist es möglich mit dieser Druckregelung eine Druckerhöhung hervorzurufen, die die Gesamteffizienz der Wärmepumpe 10 erhöht, da mittels der Temperaturverringerung an den Zustandspunkten 1 bzw. 2 auch das Druckverhältnis Pratio sinkt, dementsprechend eine geringere Kompressorleistung notwendig ist, gleichzeitig die Dichte des Fluids steigt, was eine höhere Leistungsdichte im Kompressor 11 hervorruft. Zudem kann aufgrund der geringeren Druckgastemperatur T2 von einer erhöhten Lebensdauer des Kompressors 11 ausgegangen werden.
  • sinkt, dementsprechend eine geringere Kompressorleistung notwendig ist, gleichzeitig die Dichte des Fluids steigt, was eine höhere Leistungsdichte im Kompressor 11 hervorruft. Zudem kann aufgrund der geringeren Druckgastemperatur T2 von einer erhöhten Lebensdauer des Kompressors 11 ausgegangen werden.

Claims (5)

  1. Wärmepumpe (10) mit einem Kompressor (11), einem Kondensator (12), einem internen Wärmetauscher (13), einem Expansionsventil (14), einem Verdampfer (15) und einer Regeleinrichtung (21, 30), wobei eine Primärseite des internen Wärmetauschers (13) mit dem Verdampfer (15) und dem Kompressor (11) und eine Sekundärseite des internen Wärmetauschers (13) mit dem Kondensator (12) und dem Expansionsventil (14) fluidisch verbunden sind, wobei die Regeleinrichtung (21, 30) ausgestaltet ist, die Temperatur des Arbeitsfluids am Ausgang des Kompressors (11) auf einen vorgebbaren Mindestabstand vom Taupunkt zu bringen;
    wobei die Regeleinrichtung eine Temperaturregeleinrichtung (21, 30) ist, welche ausgestaltet ist die Temperatur des Arbeitsfluids am Eingang des Kompressors (11) zu erhöhen; dadurch gekennzeichnet, dass die Temperaturregeleinrichtung (30) eine Bypassleitung mit Ventil (31) umfasst, welche den Hochdruckbereich (2) am Ausgang des Kompressors (11) so mit dem Niedrigdruckbereich (1) am Eingang des Kompressors (11) verbindet, dass das von dem internen Wärmetauscher (13) zu dem Kompressor (11) strömende Arbeitsfluid mittels dem über die Bypassleitung (31) rückführbaren Heißgas überhitzbar ist.
  2. Wärmepumpe (10) nach Anspruch 1, wobei die Regeleinrichtung (21, 30, 40') ausgestaltet ist, die Temperatur des Arbeitsfluids am Ausgang des Kompressors (11) auf einen vorgebbaren Mindestabstand von mindestens 1 Kelvin oberhalb des Taupunktes zu bringen.
  3. Wärmepumpe (10) nach einem der vorstehenden Ansprüche mit einem Arbeitsfluid, welches im Temperatur-Entropie-Diagramm eine Steigung der Taulinie (TL) unter 1000 (kgK2)/kJ aufweist.
  4. Verwendung eines Arbeitsfluids in einer Wärmepumpe (10) nach einem der vorstehenden Ansprüche, wobei das Arbeitsfluid im Temperatur-Entropie-Diagramm eine Steigung der Taulinie (TL) unter 1000 (kgK2)/kJ aufweist.
  5. Verfahren zum Betrieb einer Wärmepumpe (10), mit den Schritten:
    Bereitstellen eines Kondensators (12), eines internen Wärmetauschers (13), eines Expansionsventils (14), eines Verdampfers (15) und einer Regeleinrichtung (21, 30), wobei Arbeitsfluid von dem Verdampfer (15) durch eine Primärseite des internen Wärmetauschers (13) zu dem Kompressor (11) gefördert wird, wobei Arbeitsfluid von dem Expansionsventil (14) durch eine Sekundärseite des internen Wärmetauschers (13) zu dem Kondensator (12) gefördert wird,
    wobei die Temperatur eines Arbeitsfluids nach der Kompression auf einen vorgebbaren Mindestabstand, insbesondere von 1 Kelvin, über den Taupunkt gebracht wird;
    wobei die Temperatur des Arbeitsfluids am Eingang des Kompressors (11) erhöht wird; und
    mittels einer Bypassleitung mit Ventil (31), welche den Hochdruckbereich (2) am Ausgang eines Kompressors (11) mit einem Niedrigdruckbereich (1) am Eingang des Kompressors (11) verbindet, überhitzt wird.
EP14727748.7A 2013-05-31 2014-05-16 Wärmepumpe zur verwendung von umweltverträglichen kältemitteln Active EP3004754B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL14727748T PL3004754T3 (pl) 2013-05-31 2014-05-16 Pompa ciepła do stosowania z przyjaznymi dla środowiska czynnikami chłodniczymi

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013210175.9A DE102013210175A1 (de) 2013-05-31 2013-05-31 Wärmepumpe zur Verwendung von umweltverträglichen Kältemitteln
PCT/EP2014/060081 WO2014191237A1 (de) 2013-05-31 2014-05-16 Wärmepumpe zur verwendung von umweltverträglichen kältemitteln

Publications (2)

Publication Number Publication Date
EP3004754A1 EP3004754A1 (de) 2016-04-13
EP3004754B1 true EP3004754B1 (de) 2018-10-24

Family

ID=50884354

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14727748.7A Active EP3004754B1 (de) 2013-05-31 2014-05-16 Wärmepumpe zur verwendung von umweltverträglichen kältemitteln

Country Status (10)

Country Link
US (1) US11473819B2 (de)
EP (1) EP3004754B1 (de)
JP (1) JP6328230B2 (de)
KR (1) KR101907978B1 (de)
CN (1) CN105358920B (de)
CA (1) CA2913947C (de)
DE (1) DE102013210175A1 (de)
DK (1) DK3004754T3 (de)
PL (1) PL3004754T3 (de)
WO (1) WO2014191237A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013210175A1 (de) 2013-05-31 2014-12-18 Siemens Aktiengesellschaft Wärmepumpe zur Verwendung von umweltverträglichen Kältemitteln
AT514476A1 (de) * 2013-06-17 2015-01-15 Lenzing Akiengesellschaft Polysaccharidfaser und Verfahren zu ihrer Herstellung
DE102014200820A1 (de) 2014-01-17 2015-07-23 Siemens Aktiengesellschaft Verfahren zur Herstellung eines wenigstens eine Wärmeübertragungsfläche aufweisenden Wärmetauschers
EP3158130B1 (de) * 2014-07-29 2018-03-28 Siemens Aktiengesellschaft Verfahren und vorrichtung zur trocknung eines trocknungsguts und industrielle anlage
EP3239626A1 (de) 2016-04-27 2017-11-01 PLUM spólka z ograniczona odpowiedzialnoscia Verfahren zur wärmepumpenbetriebssteuerung
DE102017204222A1 (de) * 2017-03-14 2018-09-20 Siemens Aktiengesellschaft Wärmepumpe und Verfahren zum Betreiben einer Wärmepumpe
DE102017205484A1 (de) * 2017-03-31 2018-10-04 Siemens Aktiengesellschaft Wärmepumpe und Verfahren zum Betreiben einer Wärmepumpe
DE102017216361A1 (de) * 2017-09-14 2019-03-14 Weiss Umwelttechnik Gmbh Verfahren zur Konditionierung von Luft
DE102018125411A1 (de) 2018-10-15 2020-04-16 Vaillant Gmbh COP-optimale Leistungsregelung

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160832A1 (ja) * 2011-05-26 2012-11-29 パナソニック株式会社 冷凍サイクル装置

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2320501A1 (fr) * 1975-08-05 1977-03-04 Commissariat Energie Atomique Dispositif pour le chauffage de batiments
DE2737059C3 (de) * 1977-08-17 1981-02-19 Georg Prof. Dr. 8000 Muenchen Alefeld Kreisprozeß mit einem Mehrstoffarbeitsmittel
JPS57175858A (en) * 1981-04-23 1982-10-28 Mitsubishi Electric Corp Air conditionor
JPS58158460A (ja) * 1982-03-17 1983-09-20 株式会社荏原製作所 スクリユ−冷凍機
DE3442169A1 (de) * 1984-11-17 1986-05-28 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart Verfahren zum regeln eines kaeltekreisprozesses fuer eine waermepumpe oder eine kaeltemaschine und eine waermepumpe oder kaeltemaschine hierzu
US5241829A (en) * 1989-11-02 1993-09-07 Osaka Prefecture Government Method of operating heat pump
JPH08335847A (ja) * 1995-06-08 1996-12-17 Murata Mfg Co Ltd 厚みすべり振動型2重モードフィルタ
JPH10205894A (ja) * 1997-01-16 1998-08-04 Mitsubishi Electric Corp 冷凍装置
JP2000234811A (ja) * 1999-02-17 2000-08-29 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
CN1149366C (zh) * 1999-10-18 2004-05-12 大金工业株式会社 冷冻设备
JP3758074B2 (ja) * 1999-12-08 2006-03-22 富士電機リテイルシステムズ株式会社 電子機器の冷却装置
CN1144989C (zh) * 2000-11-03 2004-04-07 Lg电子株式会社 热泵制冷循环的冷却剂分配器
FR2820052B1 (fr) * 2001-01-30 2003-11-28 Armines Ass Pour La Rech Et Le Procede d'extraction du dioxyde de carbone par anti-sublimation en vue de son stockage
JP2002350004A (ja) * 2001-05-23 2002-12-04 Daikin Ind Ltd 空気調和機の冷媒回路
US7076964B2 (en) * 2001-10-03 2006-07-18 Denso Corporation Super-critical refrigerant cycle system and water heater using the same
JP2004184022A (ja) * 2002-12-05 2004-07-02 Sanyo Electric Co Ltd 冷媒サイクル装置
US7228693B2 (en) * 2004-01-12 2007-06-12 American Standard International Inc. Controlling airflow in an air conditioning system for control of system discharge temperature and humidity
US7100380B2 (en) * 2004-02-03 2006-09-05 United Technologies Corporation Organic rankine cycle fluid
US20060005571A1 (en) * 2004-07-07 2006-01-12 Alexander Lifson Refrigerant system with reheat function provided by auxiliary heat exchanger
JP2006077998A (ja) * 2004-09-07 2006-03-23 Matsushita Electric Ind Co Ltd 冷凍サイクル装置および制御方法
US7272948B2 (en) * 2004-09-16 2007-09-25 Carrier Corporation Heat pump with reheat and economizer functions
US20100192607A1 (en) * 2004-10-14 2010-08-05 Mitsubishi Electric Corporation Air conditioner/heat pump with injection circuit and automatic control thereof
US7726151B2 (en) * 2005-04-05 2010-06-01 Tecumseh Products Company Variable cooling load refrigeration cycle
DE102007011024A1 (de) * 2007-03-07 2008-09-18 Daimler Ag Klimaanlage für Kraftfahrzeuge
JP4948374B2 (ja) * 2007-11-30 2012-06-06 三菱電機株式会社 冷凍サイクル装置
JP2009222348A (ja) * 2008-03-18 2009-10-01 Daikin Ind Ltd 冷凍装置
KR100929192B1 (ko) * 2008-03-18 2009-12-02 엘지전자 주식회사 공기 조화기
JP2009281631A (ja) * 2008-05-21 2009-12-03 Panasonic Corp ヒートポンプユニット
EP2149767A1 (de) * 2008-07-28 2010-02-03 IMAT S.p.A. Wärmepumpenvorrichtung
US8535559B2 (en) * 2010-03-26 2013-09-17 3M Innovative Properties Company Nitrogen-containing fluoroketones for high temperature heat transfer
JP5845590B2 (ja) 2011-02-14 2016-01-20 富士電機株式会社 ヒートポンプ式蒸気生成装置
JP2012202672A (ja) * 2011-03-28 2012-10-22 Mitsubishi Heavy Ind Ltd 膨張弁制御装置、熱源機、及び膨張弁制御方法
US20130098086A1 (en) * 2011-04-19 2013-04-25 Liebert Corporation Vapor compression cooling system with improved energy efficiency through economization
JP5824628B2 (ja) * 2011-06-29 2015-11-25 パナソニックIpマネジメント株式会社 冷凍サイクル装置およびそれを備えた温水生成装置
JP5240332B2 (ja) * 2011-09-01 2013-07-17 ダイキン工業株式会社 冷凍装置
DE102013203243A1 (de) 2013-02-27 2014-08-28 Siemens Aktiengesellschaft Wärmepumpe und Verfahren zum Betreiben einer Wärmepumpe
DE102013210175A1 (de) 2013-05-31 2014-12-18 Siemens Aktiengesellschaft Wärmepumpe zur Verwendung von umweltverträglichen Kältemitteln

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160832A1 (ja) * 2011-05-26 2012-11-29 パナソニック株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
EP3004754A1 (de) 2016-04-13
DK3004754T3 (en) 2019-01-28
JP2016520187A (ja) 2016-07-11
DE102013210175A1 (de) 2014-12-18
US20160102902A1 (en) 2016-04-14
CA2913947A1 (en) 2014-12-04
KR101907978B1 (ko) 2018-10-15
WO2014191237A1 (de) 2014-12-04
CN105358920A (zh) 2016-02-24
CN105358920B (zh) 2018-05-04
PL3004754T3 (pl) 2019-06-28
JP6328230B2 (ja) 2018-05-23
CA2913947C (en) 2018-03-13
KR20160014033A (ko) 2016-02-05
US11473819B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
EP3004754B1 (de) Wärmepumpe zur verwendung von umweltverträglichen kältemitteln
DE102008046620B4 (de) Hochtemperaturwärmepumpe und Verfahren zu deren Regelung
DE2545606C2 (de) Verfahren zum Betrieb eines Kühlsystems sowie Kühlsystem zur Durchführung des Verfahrens
EP3097370B1 (de) Wärmepumpe mit vorratsbehälter
EP2844878A1 (de) Vakuumpumpensystem zur evakuierung einer kammer sowie verfahren zur steuerung eines vakuumpumpensystems
DE102011086476A1 (de) Hochtemperaturwärmepumpe und Verfahren zur Verwendung eines Arbeitsmediums in einer Hochtemperaturwärmepumpe
WO2017037026A1 (de) Speichervorrichtung und verfahren zum vorübergehenden speichern von elektrischer energie in wärmeenergie
DE102013113221B4 (de) Innerer Wärmetauscher mit variablem Wärmeübergang
EP1965154B1 (de) Wärmepumpenvorrichtung
EP3730873A2 (de) Verfahren zum betrieben einer wäremepumpe mit einem dampfkompressionssystem
DE10258524A1 (de) Kältemittelkreislauf für eine Kfz-Klimaanlage
DE19829335C2 (de) Kälteanlage
DE102013203240A1 (de) Kältemaschine und Verfahren zum Betreiben einer Kältemaschine
DE112017005948T5 (de) Klimatisierungsvorrichtung
DE102017208225A1 (de) Verfahren zur Regelung eines Kältemittelparameters auf der Hochdruckseite eines einen Kältemittelkreislauf durchströmenden Kältemittels, Kälteanlage für ein Fahrzeug sowie beheizbarer Niederdruck-Sammler für die Kälteanlage
WO2014131591A1 (de) Wärmepumpe und verfahren zum betreiben einer wärmepumpe
DE10338388B3 (de) Verfahren zur Regelung einer Klimaanlage
EP3922930B1 (de) Verfahren zum betrieb einer kompressionskälteanlage und zugehörige kompressionskälteanlage
EP3922931B1 (de) Kompressionskälteanlage und verfahren zum betrieb selbiger
EP3488152B1 (de) Wärmepumpenheizung und verfahren zum betreiben einer derartigen wärmepumpenheizung
EP4317841A1 (de) Prüfkammer und verfahren zur steuerung
AT513855B1 (de) Verfahren zum Steuern einer Klimaanlage
EP3922924B1 (de) Verfahren zum betrieb einer kompressionskälteanlage und kompressionskälteanlage
DE112021007291T5 (de) Wärmequellenmaschine einer Kühlvorrichtung und Kühlvorrichtung einschließlich derselben
EP3922933A1 (de) Verfahren zum regeln einer kompressionskälteanlage und kompressionskälteanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180312

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 40/00 20060101ALI20180605BHEP

Ipc: F25B 41/04 20060101ALI20180605BHEP

Ipc: F25B 49/02 20060101ALI20180605BHEP

Ipc: F25B 30/02 20060101AFI20180605BHEP

INTG Intention to grant announced

Effective date: 20180625

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1057166

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014009866

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190123

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190224

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190124

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190124

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190125

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014009866

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014009866

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220908 AND 20220914

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 1057166

Country of ref document: AT

Kind code of ref document: T

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Effective date: 20221018

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20221220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230525

Year of fee payment: 10

Ref country code: DK

Payment date: 20230524

Year of fee payment: 10

Ref country code: DE

Payment date: 20220617

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230524

Year of fee payment: 10

Ref country code: PL

Payment date: 20230419

Year of fee payment: 10

Ref country code: AT

Payment date: 20230519

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230523

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20231228

Year of fee payment: 11